You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

653 lines
20KB

  1. /*
  2. * RTMP input format
  3. * Copyright (c) 2009 Konstantin Shishkov
  4. *
  5. * This file is part of Libav.
  6. *
  7. * Libav is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * Libav is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with Libav; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. #include "libavcodec/bytestream.h"
  22. #include "libavutil/avstring.h"
  23. #include "libavutil/intfloat.h"
  24. #include "avformat.h"
  25. #include "rtmppkt.h"
  26. #include "flv.h"
  27. #include "url.h"
  28. void ff_amf_write_bool(uint8_t **dst, int val)
  29. {
  30. bytestream_put_byte(dst, AMF_DATA_TYPE_BOOL);
  31. bytestream_put_byte(dst, val);
  32. }
  33. void ff_amf_write_number(uint8_t **dst, double val)
  34. {
  35. bytestream_put_byte(dst, AMF_DATA_TYPE_NUMBER);
  36. bytestream_put_be64(dst, av_double2int(val));
  37. }
  38. void ff_amf_write_string(uint8_t **dst, const char *str)
  39. {
  40. bytestream_put_byte(dst, AMF_DATA_TYPE_STRING);
  41. bytestream_put_be16(dst, strlen(str));
  42. bytestream_put_buffer(dst, str, strlen(str));
  43. }
  44. void ff_amf_write_string2(uint8_t **dst, const char *str1, const char *str2)
  45. {
  46. int len1 = 0, len2 = 0;
  47. if (str1)
  48. len1 = strlen(str1);
  49. if (str2)
  50. len2 = strlen(str2);
  51. bytestream_put_byte(dst, AMF_DATA_TYPE_STRING);
  52. bytestream_put_be16(dst, len1 + len2);
  53. bytestream_put_buffer(dst, str1, len1);
  54. bytestream_put_buffer(dst, str2, len2);
  55. }
  56. void ff_amf_write_null(uint8_t **dst)
  57. {
  58. bytestream_put_byte(dst, AMF_DATA_TYPE_NULL);
  59. }
  60. void ff_amf_write_object_start(uint8_t **dst)
  61. {
  62. bytestream_put_byte(dst, AMF_DATA_TYPE_OBJECT);
  63. }
  64. void ff_amf_write_field_name(uint8_t **dst, const char *str)
  65. {
  66. bytestream_put_be16(dst, strlen(str));
  67. bytestream_put_buffer(dst, str, strlen(str));
  68. }
  69. void ff_amf_write_object_end(uint8_t **dst)
  70. {
  71. /* first two bytes are field name length = 0,
  72. * AMF object should end with it and end marker
  73. */
  74. bytestream_put_be24(dst, AMF_DATA_TYPE_OBJECT_END);
  75. }
  76. int ff_amf_read_bool(GetByteContext *bc, int *val)
  77. {
  78. if (bytestream2_get_byte(bc) != AMF_DATA_TYPE_BOOL)
  79. return AVERROR_INVALIDDATA;
  80. *val = bytestream2_get_byte(bc);
  81. return 0;
  82. }
  83. int ff_amf_read_number(GetByteContext *bc, double *val)
  84. {
  85. uint64_t read;
  86. if (bytestream2_get_byte(bc) != AMF_DATA_TYPE_NUMBER)
  87. return AVERROR_INVALIDDATA;
  88. read = bytestream2_get_be64(bc);
  89. *val = av_int2double(read);
  90. return 0;
  91. }
  92. int ff_amf_read_string(GetByteContext *bc, uint8_t *str,
  93. int strsize, int *length)
  94. {
  95. int stringlen = 0;
  96. int readsize;
  97. if (bytestream2_get_byte(bc) != AMF_DATA_TYPE_STRING)
  98. return AVERROR_INVALIDDATA;
  99. stringlen = bytestream2_get_be16(bc);
  100. if (stringlen + 1 > strsize)
  101. return AVERROR(EINVAL);
  102. readsize = bytestream2_get_buffer(bc, str, stringlen);
  103. if (readsize != stringlen) {
  104. av_log(NULL, AV_LOG_WARNING,
  105. "Unable to read as many bytes as AMF string signaled\n");
  106. }
  107. str[readsize] = '\0';
  108. *length = FFMIN(stringlen, readsize);
  109. return 0;
  110. }
  111. int ff_amf_read_null(GetByteContext *bc)
  112. {
  113. if (bytestream2_get_byte(bc) != AMF_DATA_TYPE_NULL)
  114. return AVERROR_INVALIDDATA;
  115. return 0;
  116. }
  117. int ff_rtmp_check_alloc_array(RTMPPacket **prev_pkt, int *nb_prev_pkt,
  118. int channel)
  119. {
  120. int nb_alloc;
  121. RTMPPacket *ptr;
  122. if (channel < *nb_prev_pkt)
  123. return 0;
  124. nb_alloc = channel + 16;
  125. // This can't use the av_reallocp family of functions, since we
  126. // would need to free each element in the array before the array
  127. // itself is freed.
  128. ptr = av_realloc_array(*prev_pkt, nb_alloc, sizeof(**prev_pkt));
  129. if (!ptr)
  130. return AVERROR(ENOMEM);
  131. memset(ptr + *nb_prev_pkt, 0, (nb_alloc - *nb_prev_pkt) * sizeof(*ptr));
  132. *prev_pkt = ptr;
  133. *nb_prev_pkt = nb_alloc;
  134. return 0;
  135. }
  136. int ff_rtmp_packet_read(URLContext *h, RTMPPacket *p,
  137. int chunk_size, RTMPPacket **prev_pkt, int *nb_prev_pkt)
  138. {
  139. uint8_t hdr;
  140. if (ffurl_read(h, &hdr, 1) != 1)
  141. return AVERROR(EIO);
  142. return ff_rtmp_packet_read_internal(h, p, chunk_size, prev_pkt,
  143. nb_prev_pkt, hdr);
  144. }
  145. static int rtmp_packet_read_one_chunk(URLContext *h, RTMPPacket *p,
  146. int chunk_size, RTMPPacket **prev_pkt_ptr,
  147. int *nb_prev_pkt, uint8_t hdr)
  148. {
  149. uint8_t buf[16];
  150. int channel_id, timestamp, size;
  151. uint32_t ts_field; // non-extended timestamp or delta field
  152. uint32_t extra = 0;
  153. enum RTMPPacketType type;
  154. int written = 0;
  155. int ret, toread;
  156. RTMPPacket *prev_pkt;
  157. written++;
  158. channel_id = hdr & 0x3F;
  159. if (channel_id < 2) { //special case for channel number >= 64
  160. buf[1] = 0;
  161. if (ffurl_read_complete(h, buf, channel_id + 1) != channel_id + 1)
  162. return AVERROR(EIO);
  163. written += channel_id + 1;
  164. channel_id = AV_RL16(buf) + 64;
  165. }
  166. if ((ret = ff_rtmp_check_alloc_array(prev_pkt_ptr, nb_prev_pkt,
  167. channel_id)) < 0)
  168. return ret;
  169. prev_pkt = *prev_pkt_ptr;
  170. size = prev_pkt[channel_id].size;
  171. type = prev_pkt[channel_id].type;
  172. extra = prev_pkt[channel_id].extra;
  173. hdr >>= 6; // header size indicator
  174. if (hdr == RTMP_PS_ONEBYTE) {
  175. ts_field = prev_pkt[channel_id].ts_field;
  176. } else {
  177. if (ffurl_read_complete(h, buf, 3) != 3)
  178. return AVERROR(EIO);
  179. written += 3;
  180. ts_field = AV_RB24(buf);
  181. if (hdr != RTMP_PS_FOURBYTES) {
  182. if (ffurl_read_complete(h, buf, 3) != 3)
  183. return AVERROR(EIO);
  184. written += 3;
  185. size = AV_RB24(buf);
  186. if (ffurl_read_complete(h, buf, 1) != 1)
  187. return AVERROR(EIO);
  188. written++;
  189. type = buf[0];
  190. if (hdr == RTMP_PS_TWELVEBYTES) {
  191. if (ffurl_read_complete(h, buf, 4) != 4)
  192. return AVERROR(EIO);
  193. written += 4;
  194. extra = AV_RL32(buf);
  195. }
  196. }
  197. }
  198. if (ts_field == 0xFFFFFF) {
  199. if (ffurl_read_complete(h, buf, 4) != 4)
  200. return AVERROR(EIO);
  201. timestamp = AV_RB32(buf);
  202. } else {
  203. timestamp = ts_field;
  204. }
  205. if (hdr != RTMP_PS_TWELVEBYTES)
  206. timestamp += prev_pkt[channel_id].timestamp;
  207. if (!prev_pkt[channel_id].read) {
  208. if ((ret = ff_rtmp_packet_create(p, channel_id, type, timestamp,
  209. size)) < 0)
  210. return ret;
  211. p->read = written;
  212. p->offset = 0;
  213. prev_pkt[channel_id].ts_field = ts_field;
  214. prev_pkt[channel_id].timestamp = timestamp;
  215. } else {
  216. // previous packet in this channel hasn't completed reading
  217. RTMPPacket *prev = &prev_pkt[channel_id];
  218. p->data = prev->data;
  219. p->size = prev->size;
  220. p->channel_id = prev->channel_id;
  221. p->type = prev->type;
  222. p->ts_field = prev->ts_field;
  223. p->extra = prev->extra;
  224. p->offset = prev->offset;
  225. p->read = prev->read + written;
  226. p->timestamp = prev->timestamp;
  227. prev->data = NULL;
  228. }
  229. p->extra = extra;
  230. // save history
  231. prev_pkt[channel_id].channel_id = channel_id;
  232. prev_pkt[channel_id].type = type;
  233. prev_pkt[channel_id].size = size;
  234. prev_pkt[channel_id].extra = extra;
  235. size = size - p->offset;
  236. toread = FFMIN(size, chunk_size);
  237. if (ffurl_read_complete(h, p->data + p->offset, toread) != toread) {
  238. ff_rtmp_packet_destroy(p);
  239. return AVERROR(EIO);
  240. }
  241. size -= toread;
  242. p->read += toread;
  243. p->offset += toread;
  244. if (size > 0) {
  245. RTMPPacket *prev = &prev_pkt[channel_id];
  246. prev->data = p->data;
  247. prev->read = p->read;
  248. prev->offset = p->offset;
  249. return AVERROR(EAGAIN);
  250. }
  251. prev_pkt[channel_id].read = 0; // read complete; reset if needed
  252. return p->read;
  253. }
  254. int ff_rtmp_packet_read_internal(URLContext *h, RTMPPacket *p, int chunk_size,
  255. RTMPPacket **prev_pkt, int *nb_prev_pkt,
  256. uint8_t hdr)
  257. {
  258. while (1) {
  259. int ret = rtmp_packet_read_one_chunk(h, p, chunk_size, prev_pkt,
  260. nb_prev_pkt, hdr);
  261. if (ret > 0 || ret != AVERROR(EAGAIN))
  262. return ret;
  263. if (ffurl_read(h, &hdr, 1) != 1)
  264. return AVERROR(EIO);
  265. }
  266. }
  267. int ff_rtmp_packet_write(URLContext *h, RTMPPacket *pkt,
  268. int chunk_size, RTMPPacket **prev_pkt_ptr,
  269. int *nb_prev_pkt)
  270. {
  271. uint8_t pkt_hdr[16], *p = pkt_hdr;
  272. int mode = RTMP_PS_TWELVEBYTES;
  273. int off = 0;
  274. int written = 0;
  275. int ret;
  276. RTMPPacket *prev_pkt;
  277. int use_delta; // flag if using timestamp delta, not RTMP_PS_TWELVEBYTES
  278. uint32_t timestamp; // full 32-bit timestamp or delta value
  279. if ((ret = ff_rtmp_check_alloc_array(prev_pkt_ptr, nb_prev_pkt,
  280. pkt->channel_id)) < 0)
  281. return ret;
  282. prev_pkt = *prev_pkt_ptr;
  283. //if channel_id = 0, this is first presentation of prev_pkt, send full hdr.
  284. use_delta = prev_pkt[pkt->channel_id].channel_id &&
  285. pkt->extra == prev_pkt[pkt->channel_id].extra &&
  286. pkt->timestamp >= prev_pkt[pkt->channel_id].timestamp;
  287. timestamp = pkt->timestamp;
  288. if (use_delta) {
  289. timestamp -= prev_pkt[pkt->channel_id].timestamp;
  290. }
  291. if (timestamp >= 0xFFFFFF) {
  292. pkt->ts_field = 0xFFFFFF;
  293. } else {
  294. pkt->ts_field = timestamp;
  295. }
  296. if (use_delta) {
  297. if (pkt->type == prev_pkt[pkt->channel_id].type &&
  298. pkt->size == prev_pkt[pkt->channel_id].size) {
  299. mode = RTMP_PS_FOURBYTES;
  300. if (pkt->ts_field == prev_pkt[pkt->channel_id].ts_field)
  301. mode = RTMP_PS_ONEBYTE;
  302. } else {
  303. mode = RTMP_PS_EIGHTBYTES;
  304. }
  305. }
  306. if (pkt->channel_id < 64) {
  307. bytestream_put_byte(&p, pkt->channel_id | (mode << 6));
  308. } else if (pkt->channel_id < 64 + 256) {
  309. bytestream_put_byte(&p, 0 | (mode << 6));
  310. bytestream_put_byte(&p, pkt->channel_id - 64);
  311. } else {
  312. bytestream_put_byte(&p, 1 | (mode << 6));
  313. bytestream_put_le16(&p, pkt->channel_id - 64);
  314. }
  315. if (mode != RTMP_PS_ONEBYTE) {
  316. bytestream_put_be24(&p, pkt->ts_field);
  317. if (mode != RTMP_PS_FOURBYTES) {
  318. bytestream_put_be24(&p, pkt->size);
  319. bytestream_put_byte(&p, pkt->type);
  320. if (mode == RTMP_PS_TWELVEBYTES)
  321. bytestream_put_le32(&p, pkt->extra);
  322. }
  323. }
  324. if (pkt->ts_field == 0xFFFFFF)
  325. bytestream_put_be32(&p, timestamp);
  326. // save history
  327. prev_pkt[pkt->channel_id].channel_id = pkt->channel_id;
  328. prev_pkt[pkt->channel_id].type = pkt->type;
  329. prev_pkt[pkt->channel_id].size = pkt->size;
  330. prev_pkt[pkt->channel_id].timestamp = pkt->timestamp;
  331. prev_pkt[pkt->channel_id].ts_field = pkt->ts_field;
  332. prev_pkt[pkt->channel_id].extra = pkt->extra;
  333. if ((ret = ffurl_write(h, pkt_hdr, p - pkt_hdr)) < 0)
  334. return ret;
  335. written = p - pkt_hdr + pkt->size;
  336. while (off < pkt->size) {
  337. int towrite = FFMIN(chunk_size, pkt->size - off);
  338. if ((ret = ffurl_write(h, pkt->data + off, towrite)) < 0)
  339. return ret;
  340. off += towrite;
  341. if (off < pkt->size) {
  342. uint8_t marker = 0xC0 | pkt->channel_id;
  343. if ((ret = ffurl_write(h, &marker, 1)) < 0)
  344. return ret;
  345. written++;
  346. }
  347. }
  348. return written;
  349. }
  350. int ff_rtmp_packet_create(RTMPPacket *pkt, int channel_id, RTMPPacketType type,
  351. int timestamp, int size)
  352. {
  353. if (size) {
  354. pkt->data = av_malloc(size);
  355. if (!pkt->data)
  356. return AVERROR(ENOMEM);
  357. }
  358. pkt->size = size;
  359. pkt->channel_id = channel_id;
  360. pkt->type = type;
  361. pkt->timestamp = timestamp;
  362. pkt->extra = 0;
  363. pkt->ts_field = 0;
  364. return 0;
  365. }
  366. void ff_rtmp_packet_destroy(RTMPPacket *pkt)
  367. {
  368. if (!pkt)
  369. return;
  370. av_freep(&pkt->data);
  371. pkt->size = 0;
  372. }
  373. int ff_amf_tag_size(const uint8_t *data, const uint8_t *data_end)
  374. {
  375. const uint8_t *base = data;
  376. AMFDataType type;
  377. unsigned nb = -1;
  378. int parse_key = 1;
  379. if (data >= data_end)
  380. return -1;
  381. switch ((type = *data++)) {
  382. case AMF_DATA_TYPE_NUMBER: return 9;
  383. case AMF_DATA_TYPE_BOOL: return 2;
  384. case AMF_DATA_TYPE_STRING: return 3 + AV_RB16(data);
  385. case AMF_DATA_TYPE_LONG_STRING: return 5 + AV_RB32(data);
  386. case AMF_DATA_TYPE_NULL: return 1;
  387. case AMF_DATA_TYPE_ARRAY:
  388. parse_key = 0;
  389. case AMF_DATA_TYPE_MIXEDARRAY:
  390. nb = bytestream_get_be32(&data);
  391. case AMF_DATA_TYPE_OBJECT:
  392. while (nb-- > 0 || type != AMF_DATA_TYPE_ARRAY) {
  393. int t;
  394. if (parse_key) {
  395. int size = bytestream_get_be16(&data);
  396. if (!size) {
  397. data++;
  398. break;
  399. }
  400. if (size < 0 || size >= data_end - data)
  401. return -1;
  402. data += size;
  403. }
  404. t = ff_amf_tag_size(data, data_end);
  405. if (t < 0 || t >= data_end - data)
  406. return -1;
  407. data += t;
  408. }
  409. return data - base;
  410. case AMF_DATA_TYPE_OBJECT_END: return 1;
  411. default: return -1;
  412. }
  413. }
  414. int ff_amf_get_field_value(const uint8_t *data, const uint8_t *data_end,
  415. const uint8_t *name, uint8_t *dst, int dst_size)
  416. {
  417. int namelen = strlen(name);
  418. int len;
  419. while (*data != AMF_DATA_TYPE_OBJECT && data < data_end) {
  420. len = ff_amf_tag_size(data, data_end);
  421. if (len < 0)
  422. len = data_end - data;
  423. data += len;
  424. }
  425. if (data_end - data < 3)
  426. return -1;
  427. data++;
  428. for (;;) {
  429. int size = bytestream_get_be16(&data);
  430. if (!size)
  431. break;
  432. if (size < 0 || size >= data_end - data)
  433. return -1;
  434. data += size;
  435. if (size == namelen && !memcmp(data-size, name, namelen)) {
  436. switch (*data++) {
  437. case AMF_DATA_TYPE_NUMBER:
  438. snprintf(dst, dst_size, "%g", av_int2double(AV_RB64(data)));
  439. break;
  440. case AMF_DATA_TYPE_BOOL:
  441. snprintf(dst, dst_size, "%s", *data ? "true" : "false");
  442. break;
  443. case AMF_DATA_TYPE_STRING:
  444. len = bytestream_get_be16(&data);
  445. av_strlcpy(dst, data, FFMIN(len+1, dst_size));
  446. break;
  447. default:
  448. return -1;
  449. }
  450. return 0;
  451. }
  452. len = ff_amf_tag_size(data, data_end);
  453. if (len < 0 || len >= data_end - data)
  454. return -1;
  455. data += len;
  456. }
  457. return -1;
  458. }
  459. static const char* rtmp_packet_type(int type)
  460. {
  461. switch (type) {
  462. case RTMP_PT_CHUNK_SIZE: return "chunk size";
  463. case RTMP_PT_BYTES_READ: return "bytes read";
  464. case RTMP_PT_PING: return "ping";
  465. case RTMP_PT_SERVER_BW: return "server bandwidth";
  466. case RTMP_PT_CLIENT_BW: return "client bandwidth";
  467. case RTMP_PT_AUDIO: return "audio packet";
  468. case RTMP_PT_VIDEO: return "video packet";
  469. case RTMP_PT_FLEX_STREAM: return "Flex shared stream";
  470. case RTMP_PT_FLEX_OBJECT: return "Flex shared object";
  471. case RTMP_PT_FLEX_MESSAGE: return "Flex shared message";
  472. case RTMP_PT_NOTIFY: return "notification";
  473. case RTMP_PT_SHARED_OBJ: return "shared object";
  474. case RTMP_PT_INVOKE: return "invoke";
  475. case RTMP_PT_METADATA: return "metadata";
  476. default: return "unknown";
  477. }
  478. }
  479. static void amf_tag_contents(void *ctx, const uint8_t *data,
  480. const uint8_t *data_end)
  481. {
  482. unsigned int size, nb = -1;
  483. char buf[1024];
  484. AMFDataType type;
  485. int parse_key = 1;
  486. if (data >= data_end)
  487. return;
  488. switch ((type = *data++)) {
  489. case AMF_DATA_TYPE_NUMBER:
  490. av_log(ctx, AV_LOG_DEBUG, " number %g\n", av_int2double(AV_RB64(data)));
  491. return;
  492. case AMF_DATA_TYPE_BOOL:
  493. av_log(ctx, AV_LOG_DEBUG, " bool %d\n", *data);
  494. return;
  495. case AMF_DATA_TYPE_STRING:
  496. case AMF_DATA_TYPE_LONG_STRING:
  497. if (type == AMF_DATA_TYPE_STRING) {
  498. size = bytestream_get_be16(&data);
  499. } else {
  500. size = bytestream_get_be32(&data);
  501. }
  502. size = FFMIN(size, sizeof(buf) - 1);
  503. memcpy(buf, data, size);
  504. buf[size] = 0;
  505. av_log(ctx, AV_LOG_DEBUG, " string '%s'\n", buf);
  506. return;
  507. case AMF_DATA_TYPE_NULL:
  508. av_log(ctx, AV_LOG_DEBUG, " NULL\n");
  509. return;
  510. case AMF_DATA_TYPE_ARRAY:
  511. parse_key = 0;
  512. case AMF_DATA_TYPE_MIXEDARRAY:
  513. nb = bytestream_get_be32(&data);
  514. case AMF_DATA_TYPE_OBJECT:
  515. av_log(ctx, AV_LOG_DEBUG, " {\n");
  516. while (nb-- > 0 || type != AMF_DATA_TYPE_ARRAY) {
  517. int t;
  518. if (parse_key) {
  519. size = bytestream_get_be16(&data);
  520. size = FFMIN(size, sizeof(buf) - 1);
  521. if (!size) {
  522. av_log(ctx, AV_LOG_DEBUG, " }\n");
  523. data++;
  524. break;
  525. }
  526. memcpy(buf, data, size);
  527. buf[size] = 0;
  528. if (size >= data_end - data)
  529. return;
  530. data += size;
  531. av_log(ctx, AV_LOG_DEBUG, " %s: ", buf);
  532. }
  533. amf_tag_contents(ctx, data, data_end);
  534. t = ff_amf_tag_size(data, data_end);
  535. if (t < 0 || t >= data_end - data)
  536. return;
  537. data += t;
  538. }
  539. return;
  540. case AMF_DATA_TYPE_OBJECT_END:
  541. av_log(ctx, AV_LOG_DEBUG, " }\n");
  542. return;
  543. default:
  544. return;
  545. }
  546. }
  547. void ff_rtmp_packet_dump(void *ctx, RTMPPacket *p)
  548. {
  549. av_log(ctx, AV_LOG_DEBUG, "RTMP packet type '%s'(%d) for channel %d, timestamp %d, extra field %d size %d\n",
  550. rtmp_packet_type(p->type), p->type, p->channel_id, p->timestamp, p->extra, p->size);
  551. if (p->type == RTMP_PT_INVOKE || p->type == RTMP_PT_NOTIFY) {
  552. uint8_t *src = p->data, *src_end = p->data + p->size;
  553. while (src < src_end) {
  554. int sz;
  555. amf_tag_contents(ctx, src, src_end);
  556. sz = ff_amf_tag_size(src, src_end);
  557. if (sz < 0)
  558. break;
  559. src += sz;
  560. }
  561. } else if (p->type == RTMP_PT_SERVER_BW){
  562. av_log(ctx, AV_LOG_DEBUG, "Server BW = %d\n", AV_RB32(p->data));
  563. } else if (p->type == RTMP_PT_CLIENT_BW){
  564. av_log(ctx, AV_LOG_DEBUG, "Client BW = %d\n", AV_RB32(p->data));
  565. } else if (p->type != RTMP_PT_AUDIO && p->type != RTMP_PT_VIDEO && p->type != RTMP_PT_METADATA) {
  566. int i;
  567. for (i = 0; i < p->size; i++)
  568. av_log(ctx, AV_LOG_DEBUG, " %02X", p->data[i]);
  569. av_log(ctx, AV_LOG_DEBUG, "\n");
  570. }
  571. }
  572. int ff_amf_match_string(const uint8_t *data, int size, const char *str)
  573. {
  574. int len = strlen(str);
  575. int amf_len, type;
  576. if (size < 1)
  577. return 0;
  578. type = *data++;
  579. if (type != AMF_DATA_TYPE_LONG_STRING &&
  580. type != AMF_DATA_TYPE_STRING)
  581. return 0;
  582. if (type == AMF_DATA_TYPE_LONG_STRING) {
  583. if ((size -= 4 + 1) < 0)
  584. return 0;
  585. amf_len = bytestream_get_be32(&data);
  586. } else {
  587. if ((size -= 2 + 1) < 0)
  588. return 0;
  589. amf_len = bytestream_get_be16(&data);
  590. }
  591. if (amf_len > size)
  592. return 0;
  593. if (amf_len != len)
  594. return 0;
  595. return !memcmp(data, str, len);
  596. }