You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

498 lines
13KB

  1. /*
  2. * (c) 2002 Fabrice Bellard
  3. *
  4. * This file is part of Libav.
  5. *
  6. * Libav is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * Libav is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with Libav; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. /**
  21. * @file
  22. * FFT and MDCT tests.
  23. */
  24. #include "libavutil/cpu.h"
  25. #include "libavutil/mathematics.h"
  26. #include "libavutil/lfg.h"
  27. #include "libavutil/log.h"
  28. #include "libavutil/time.h"
  29. #include "fft.h"
  30. #if FFT_FLOAT
  31. #include "dct.h"
  32. #include "rdft.h"
  33. #endif
  34. #include <math.h>
  35. #if HAVE_UNISTD_H
  36. #include <unistd.h>
  37. #endif
  38. #include <stdio.h>
  39. #include <stdlib.h>
  40. #include <string.h>
  41. /* reference fft */
  42. #define MUL16(a,b) ((a) * (b))
  43. #define CMAC(pre, pim, are, aim, bre, bim) \
  44. {\
  45. pre += (MUL16(are, bre) - MUL16(aim, bim));\
  46. pim += (MUL16(are, bim) + MUL16(bre, aim));\
  47. }
  48. #if FFT_FLOAT
  49. # define RANGE 1.0
  50. # define REF_SCALE(x, bits) (x)
  51. # define FMT "%10.6f"
  52. #else
  53. # define RANGE 16384
  54. # define REF_SCALE(x, bits) ((x) / (1<<(bits)))
  55. # define FMT "%6d"
  56. #endif
  57. struct {
  58. float re, im;
  59. } *exptab;
  60. static void fft_ref_init(int nbits, int inverse)
  61. {
  62. int n, i;
  63. double c1, s1, alpha;
  64. n = 1 << nbits;
  65. exptab = av_malloc((n / 2) * sizeof(*exptab));
  66. for (i = 0; i < (n/2); i++) {
  67. alpha = 2 * M_PI * (float)i / (float)n;
  68. c1 = cos(alpha);
  69. s1 = sin(alpha);
  70. if (!inverse)
  71. s1 = -s1;
  72. exptab[i].re = c1;
  73. exptab[i].im = s1;
  74. }
  75. }
  76. static void fft_ref(FFTComplex *tabr, FFTComplex *tab, int nbits)
  77. {
  78. int n, i, j, k, n2;
  79. double tmp_re, tmp_im, s, c;
  80. FFTComplex *q;
  81. n = 1 << nbits;
  82. n2 = n >> 1;
  83. for (i = 0; i < n; i++) {
  84. tmp_re = 0;
  85. tmp_im = 0;
  86. q = tab;
  87. for (j = 0; j < n; j++) {
  88. k = (i * j) & (n - 1);
  89. if (k >= n2) {
  90. c = -exptab[k - n2].re;
  91. s = -exptab[k - n2].im;
  92. } else {
  93. c = exptab[k].re;
  94. s = exptab[k].im;
  95. }
  96. CMAC(tmp_re, tmp_im, c, s, q->re, q->im);
  97. q++;
  98. }
  99. tabr[i].re = REF_SCALE(tmp_re, nbits);
  100. tabr[i].im = REF_SCALE(tmp_im, nbits);
  101. }
  102. }
  103. static void imdct_ref(FFTSample *out, FFTSample *in, int nbits)
  104. {
  105. int n = 1<<nbits;
  106. int k, i, a;
  107. double sum, f;
  108. for (i = 0; i < n; i++) {
  109. sum = 0;
  110. for (k = 0; k < n/2; k++) {
  111. a = (2 * i + 1 + (n / 2)) * (2 * k + 1);
  112. f = cos(M_PI * a / (double)(2 * n));
  113. sum += f * in[k];
  114. }
  115. out[i] = REF_SCALE(-sum, nbits - 2);
  116. }
  117. }
  118. /* NOTE: no normalisation by 1 / N is done */
  119. static void mdct_ref(FFTSample *output, FFTSample *input, int nbits)
  120. {
  121. int n = 1<<nbits;
  122. int k, i;
  123. double a, s;
  124. /* do it by hand */
  125. for (k = 0; k < n/2; k++) {
  126. s = 0;
  127. for (i = 0; i < n; i++) {
  128. a = (2*M_PI*(2*i+1+n/2)*(2*k+1) / (4 * n));
  129. s += input[i] * cos(a);
  130. }
  131. output[k] = REF_SCALE(s, nbits - 1);
  132. }
  133. }
  134. #if FFT_FLOAT
  135. static void idct_ref(float *output, float *input, int nbits)
  136. {
  137. int n = 1<<nbits;
  138. int k, i;
  139. double a, s;
  140. /* do it by hand */
  141. for (i = 0; i < n; i++) {
  142. s = 0.5 * input[0];
  143. for (k = 1; k < n; k++) {
  144. a = M_PI*k*(i+0.5) / n;
  145. s += input[k] * cos(a);
  146. }
  147. output[i] = 2 * s / n;
  148. }
  149. }
  150. static void dct_ref(float *output, float *input, int nbits)
  151. {
  152. int n = 1<<nbits;
  153. int k, i;
  154. double a, s;
  155. /* do it by hand */
  156. for (k = 0; k < n; k++) {
  157. s = 0;
  158. for (i = 0; i < n; i++) {
  159. a = M_PI*k*(i+0.5) / n;
  160. s += input[i] * cos(a);
  161. }
  162. output[k] = s;
  163. }
  164. }
  165. #endif
  166. static FFTSample frandom(AVLFG *prng)
  167. {
  168. return (int16_t)av_lfg_get(prng) / 32768.0 * RANGE;
  169. }
  170. static int check_diff(FFTSample *tab1, FFTSample *tab2, int n, double scale)
  171. {
  172. int i;
  173. double max= 0;
  174. double error= 0;
  175. int err = 0;
  176. for (i = 0; i < n; i++) {
  177. double e = fabsf(tab1[i] - (tab2[i] / scale)) / RANGE;
  178. if (e >= 1e-3) {
  179. av_log(NULL, AV_LOG_ERROR, "ERROR %5d: "FMT" "FMT"\n",
  180. i, tab1[i], tab2[i]);
  181. err = 1;
  182. }
  183. error+= e*e;
  184. if(e>max) max= e;
  185. }
  186. av_log(NULL, AV_LOG_INFO, "max:%f e:%g\n", max, sqrt(error)/n);
  187. return err;
  188. }
  189. static void help(void)
  190. {
  191. av_log(NULL, AV_LOG_INFO,"usage: fft-test [-h] [-s] [-i] [-n b]\n"
  192. "-h print this help\n"
  193. "-s speed test\n"
  194. "-m (I)MDCT test\n"
  195. "-d (I)DCT test\n"
  196. "-r (I)RDFT test\n"
  197. "-i inverse transform test\n"
  198. "-n b set the transform size to 2^b\n"
  199. "-f x set scale factor for output data of (I)MDCT to x\n"
  200. );
  201. }
  202. enum tf_transform {
  203. TRANSFORM_FFT,
  204. TRANSFORM_MDCT,
  205. TRANSFORM_RDFT,
  206. TRANSFORM_DCT,
  207. };
  208. #if !HAVE_GETOPT
  209. #include "compat/getopt.c"
  210. #endif
  211. int main(int argc, char **argv)
  212. {
  213. FFTComplex *tab, *tab1, *tab_ref;
  214. FFTSample *tab2;
  215. int it, i, c;
  216. int cpuflags;
  217. int do_speed = 0;
  218. int err = 1;
  219. enum tf_transform transform = TRANSFORM_FFT;
  220. int do_inverse = 0;
  221. FFTContext s1, *s = &s1;
  222. FFTContext m1, *m = &m1;
  223. #if FFT_FLOAT
  224. RDFTContext r1, *r = &r1;
  225. DCTContext d1, *d = &d1;
  226. int fft_size_2;
  227. #endif
  228. int fft_nbits, fft_size;
  229. double scale = 1.0;
  230. AVLFG prng;
  231. av_lfg_init(&prng, 1);
  232. fft_nbits = 9;
  233. for(;;) {
  234. c = getopt(argc, argv, "hsimrdn:f:c:");
  235. if (c == -1)
  236. break;
  237. switch(c) {
  238. case 'h':
  239. help();
  240. return 1;
  241. case 's':
  242. do_speed = 1;
  243. break;
  244. case 'i':
  245. do_inverse = 1;
  246. break;
  247. case 'm':
  248. transform = TRANSFORM_MDCT;
  249. break;
  250. case 'r':
  251. transform = TRANSFORM_RDFT;
  252. break;
  253. case 'd':
  254. transform = TRANSFORM_DCT;
  255. break;
  256. case 'n':
  257. fft_nbits = atoi(optarg);
  258. break;
  259. case 'f':
  260. scale = atof(optarg);
  261. break;
  262. case 'c':
  263. cpuflags = av_parse_cpu_flags(optarg);
  264. if (cpuflags < 0)
  265. return 1;
  266. av_set_cpu_flags_mask(cpuflags);
  267. break;
  268. }
  269. }
  270. fft_size = 1 << fft_nbits;
  271. tab = av_malloc(fft_size * sizeof(FFTComplex));
  272. tab1 = av_malloc(fft_size * sizeof(FFTComplex));
  273. tab_ref = av_malloc(fft_size * sizeof(FFTComplex));
  274. tab2 = av_malloc(fft_size * sizeof(FFTSample));
  275. switch (transform) {
  276. case TRANSFORM_MDCT:
  277. av_log(NULL, AV_LOG_INFO,"Scale factor is set to %f\n", scale);
  278. if (do_inverse)
  279. av_log(NULL, AV_LOG_INFO,"IMDCT");
  280. else
  281. av_log(NULL, AV_LOG_INFO,"MDCT");
  282. ff_mdct_init(m, fft_nbits, do_inverse, scale);
  283. break;
  284. case TRANSFORM_FFT:
  285. if (do_inverse)
  286. av_log(NULL, AV_LOG_INFO,"IFFT");
  287. else
  288. av_log(NULL, AV_LOG_INFO,"FFT");
  289. ff_fft_init(s, fft_nbits, do_inverse);
  290. fft_ref_init(fft_nbits, do_inverse);
  291. break;
  292. #if FFT_FLOAT
  293. case TRANSFORM_RDFT:
  294. if (do_inverse)
  295. av_log(NULL, AV_LOG_INFO,"IDFT_C2R");
  296. else
  297. av_log(NULL, AV_LOG_INFO,"DFT_R2C");
  298. ff_rdft_init(r, fft_nbits, do_inverse ? IDFT_C2R : DFT_R2C);
  299. fft_ref_init(fft_nbits, do_inverse);
  300. break;
  301. case TRANSFORM_DCT:
  302. if (do_inverse)
  303. av_log(NULL, AV_LOG_INFO,"DCT_III");
  304. else
  305. av_log(NULL, AV_LOG_INFO,"DCT_II");
  306. ff_dct_init(d, fft_nbits, do_inverse ? DCT_III : DCT_II);
  307. break;
  308. #endif
  309. default:
  310. av_log(NULL, AV_LOG_ERROR, "Requested transform not supported\n");
  311. return 1;
  312. }
  313. av_log(NULL, AV_LOG_INFO," %d test\n", fft_size);
  314. /* generate random data */
  315. for (i = 0; i < fft_size; i++) {
  316. tab1[i].re = frandom(&prng);
  317. tab1[i].im = frandom(&prng);
  318. }
  319. /* checking result */
  320. av_log(NULL, AV_LOG_INFO,"Checking...\n");
  321. switch (transform) {
  322. case TRANSFORM_MDCT:
  323. if (do_inverse) {
  324. imdct_ref((FFTSample *)tab_ref, (FFTSample *)tab1, fft_nbits);
  325. m->imdct_calc(m, tab2, (FFTSample *)tab1);
  326. err = check_diff((FFTSample *)tab_ref, tab2, fft_size, scale);
  327. } else {
  328. mdct_ref((FFTSample *)tab_ref, (FFTSample *)tab1, fft_nbits);
  329. m->mdct_calc(m, tab2, (FFTSample *)tab1);
  330. err = check_diff((FFTSample *)tab_ref, tab2, fft_size / 2, scale);
  331. }
  332. break;
  333. case TRANSFORM_FFT:
  334. memcpy(tab, tab1, fft_size * sizeof(FFTComplex));
  335. s->fft_permute(s, tab);
  336. s->fft_calc(s, tab);
  337. fft_ref(tab_ref, tab1, fft_nbits);
  338. err = check_diff((FFTSample *)tab_ref, (FFTSample *)tab, fft_size * 2, 1.0);
  339. break;
  340. #if FFT_FLOAT
  341. case TRANSFORM_RDFT:
  342. fft_size_2 = fft_size >> 1;
  343. if (do_inverse) {
  344. tab1[ 0].im = 0;
  345. tab1[fft_size_2].im = 0;
  346. for (i = 1; i < fft_size_2; i++) {
  347. tab1[fft_size_2+i].re = tab1[fft_size_2-i].re;
  348. tab1[fft_size_2+i].im = -tab1[fft_size_2-i].im;
  349. }
  350. memcpy(tab2, tab1, fft_size * sizeof(FFTSample));
  351. tab2[1] = tab1[fft_size_2].re;
  352. r->rdft_calc(r, tab2);
  353. fft_ref(tab_ref, tab1, fft_nbits);
  354. for (i = 0; i < fft_size; i++) {
  355. tab[i].re = tab2[i];
  356. tab[i].im = 0;
  357. }
  358. err = check_diff((float *)tab_ref, (float *)tab, fft_size * 2, 0.5);
  359. } else {
  360. for (i = 0; i < fft_size; i++) {
  361. tab2[i] = tab1[i].re;
  362. tab1[i].im = 0;
  363. }
  364. r->rdft_calc(r, tab2);
  365. fft_ref(tab_ref, tab1, fft_nbits);
  366. tab_ref[0].im = tab_ref[fft_size_2].re;
  367. err = check_diff((float *)tab_ref, (float *)tab2, fft_size, 1.0);
  368. }
  369. break;
  370. case TRANSFORM_DCT:
  371. memcpy(tab, tab1, fft_size * sizeof(FFTComplex));
  372. d->dct_calc(d, tab);
  373. if (do_inverse) {
  374. idct_ref(tab_ref, tab1, fft_nbits);
  375. } else {
  376. dct_ref(tab_ref, tab1, fft_nbits);
  377. }
  378. err = check_diff((float *)tab_ref, (float *)tab, fft_size, 1.0);
  379. break;
  380. #endif
  381. }
  382. /* do a speed test */
  383. if (do_speed) {
  384. int64_t time_start, duration;
  385. int nb_its;
  386. av_log(NULL, AV_LOG_INFO,"Speed test...\n");
  387. /* we measure during about 1 seconds */
  388. nb_its = 1;
  389. for(;;) {
  390. time_start = av_gettime();
  391. for (it = 0; it < nb_its; it++) {
  392. switch (transform) {
  393. case TRANSFORM_MDCT:
  394. if (do_inverse) {
  395. m->imdct_calc(m, (FFTSample *)tab, (FFTSample *)tab1);
  396. } else {
  397. m->mdct_calc(m, (FFTSample *)tab, (FFTSample *)tab1);
  398. }
  399. break;
  400. case TRANSFORM_FFT:
  401. memcpy(tab, tab1, fft_size * sizeof(FFTComplex));
  402. s->fft_calc(s, tab);
  403. break;
  404. #if FFT_FLOAT
  405. case TRANSFORM_RDFT:
  406. memcpy(tab2, tab1, fft_size * sizeof(FFTSample));
  407. r->rdft_calc(r, tab2);
  408. break;
  409. case TRANSFORM_DCT:
  410. memcpy(tab2, tab1, fft_size * sizeof(FFTSample));
  411. d->dct_calc(d, tab2);
  412. break;
  413. #endif
  414. }
  415. }
  416. duration = av_gettime() - time_start;
  417. if (duration >= 1000000)
  418. break;
  419. nb_its *= 2;
  420. }
  421. av_log(NULL, AV_LOG_INFO,"time: %0.1f us/transform [total time=%0.2f s its=%d]\n",
  422. (double)duration / nb_its,
  423. (double)duration / 1000000.0,
  424. nb_its);
  425. }
  426. switch (transform) {
  427. case TRANSFORM_MDCT:
  428. ff_mdct_end(m);
  429. break;
  430. case TRANSFORM_FFT:
  431. ff_fft_end(s);
  432. break;
  433. #if FFT_FLOAT
  434. case TRANSFORM_RDFT:
  435. ff_rdft_end(r);
  436. break;
  437. case TRANSFORM_DCT:
  438. ff_dct_end(d);
  439. break;
  440. #endif
  441. }
  442. av_free(tab);
  443. av_free(tab1);
  444. av_free(tab2);
  445. av_free(tab_ref);
  446. av_free(exptab);
  447. if (err)
  448. printf("Error: %d.\n", err);
  449. return !!err;
  450. }