You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2984 lines
80KB

  1. @chapter Filtergraph description
  2. @c man begin FILTERGRAPH DESCRIPTION
  3. A filtergraph is a directed graph of connected filters. It can contain
  4. cycles, and there can be multiple links between a pair of
  5. filters. Each link has one input pad on one side connecting it to one
  6. filter from which it takes its input, and one output pad on the other
  7. side connecting it to the one filter accepting its output.
  8. Each filter in a filtergraph is an instance of a filter class
  9. registered in the application, which defines the features and the
  10. number of input and output pads of the filter.
  11. A filter with no input pads is called a "source", a filter with no
  12. output pads is called a "sink".
  13. @anchor{Filtergraph syntax}
  14. @section Filtergraph syntax
  15. A filtergraph can be represented using a textual representation, which is
  16. recognized by the @option{-filter}/@option{-vf} and @option{-filter_complex}
  17. options in @command{avconv} and @option{-vf} in @command{avplay}, and by the
  18. @code{avfilter_graph_parse()}/@code{avfilter_graph_parse2()} function defined in
  19. @file{libavfilter/avfilter.h}.
  20. A filterchain consists of a sequence of connected filters, each one
  21. connected to the previous one in the sequence. A filterchain is
  22. represented by a list of ","-separated filter descriptions.
  23. A filtergraph consists of a sequence of filterchains. A sequence of
  24. filterchains is represented by a list of ";"-separated filterchain
  25. descriptions.
  26. A filter is represented by a string of the form:
  27. [@var{in_link_1}]...[@var{in_link_N}]@var{filter_name}=@var{arguments}[@var{out_link_1}]...[@var{out_link_M}]
  28. @var{filter_name} is the name of the filter class of which the
  29. described filter is an instance of, and has to be the name of one of
  30. the filter classes registered in the program.
  31. The name of the filter class is optionally followed by a string
  32. "=@var{arguments}".
  33. @var{arguments} is a string which contains the parameters used to
  34. initialize the filter instance. It may have one of the two allowed forms:
  35. @itemize
  36. @item
  37. A ':'-separated list of @var{key=value} pairs.
  38. @item
  39. A ':'-separated list of @var{value}. In this case, the keys are assumed to be
  40. the option names in the order they are declared. E.g. the @code{fade} filter
  41. declares three options in this order -- @option{type}, @option{start_frame} and
  42. @option{nb_frames}. Then the parameter list @var{in:0:30} means that the value
  43. @var{in} is assigned to the option @option{type}, @var{0} to
  44. @option{start_frame} and @var{30} to @option{nb_frames}.
  45. @end itemize
  46. If the option value itself is a list of items (e.g. the @code{format} filter
  47. takes a list of pixel formats), the items in the list are usually separated by
  48. '|'.
  49. The list of arguments can be quoted using the character "'" as initial
  50. and ending mark, and the character '\' for escaping the characters
  51. within the quoted text; otherwise the argument string is considered
  52. terminated when the next special character (belonging to the set
  53. "[]=;,") is encountered.
  54. The name and arguments of the filter are optionally preceded and
  55. followed by a list of link labels.
  56. A link label allows to name a link and associate it to a filter output
  57. or input pad. The preceding labels @var{in_link_1}
  58. ... @var{in_link_N}, are associated to the filter input pads,
  59. the following labels @var{out_link_1} ... @var{out_link_M}, are
  60. associated to the output pads.
  61. When two link labels with the same name are found in the
  62. filtergraph, a link between the corresponding input and output pad is
  63. created.
  64. If an output pad is not labelled, it is linked by default to the first
  65. unlabelled input pad of the next filter in the filterchain.
  66. For example in the filterchain:
  67. @example
  68. nullsrc, split[L1], [L2]overlay, nullsink
  69. @end example
  70. the split filter instance has two output pads, and the overlay filter
  71. instance two input pads. The first output pad of split is labelled
  72. "L1", the first input pad of overlay is labelled "L2", and the second
  73. output pad of split is linked to the second input pad of overlay,
  74. which are both unlabelled.
  75. In a complete filterchain all the unlabelled filter input and output
  76. pads must be connected. A filtergraph is considered valid if all the
  77. filter input and output pads of all the filterchains are connected.
  78. Libavfilter will automatically insert @ref{scale} filters where format
  79. conversion is required. It is possible to specify swscale flags
  80. for those automatically inserted scalers by prepending
  81. @code{sws_flags=@var{flags};}
  82. to the filtergraph description.
  83. Follows a BNF description for the filtergraph syntax:
  84. @example
  85. @var{NAME} ::= sequence of alphanumeric characters and '_'
  86. @var{LINKLABEL} ::= "[" @var{NAME} "]"
  87. @var{LINKLABELS} ::= @var{LINKLABEL} [@var{LINKLABELS}]
  88. @var{FILTER_ARGUMENTS} ::= sequence of chars (eventually quoted)
  89. @var{FILTER} ::= [@var{LINKLABELS}] @var{NAME} ["=" @var{FILTER_ARGUMENTS}] [@var{LINKLABELS}]
  90. @var{FILTERCHAIN} ::= @var{FILTER} [,@var{FILTERCHAIN}]
  91. @var{FILTERGRAPH} ::= [sws_flags=@var{flags};] @var{FILTERCHAIN} [;@var{FILTERGRAPH}]
  92. @end example
  93. @c man end FILTERGRAPH DESCRIPTION
  94. @chapter Audio Filters
  95. @c man begin AUDIO FILTERS
  96. When you configure your Libav build, you can disable any of the
  97. existing filters using --disable-filters.
  98. The configure output will show the audio filters included in your
  99. build.
  100. Below is a description of the currently available audio filters.
  101. @section aformat
  102. Convert the input audio to one of the specified formats. The framework will
  103. negotiate the most appropriate format to minimize conversions.
  104. The filter accepts the following named parameters:
  105. @table @option
  106. @item sample_fmts
  107. A '|'-separated list of requested sample formats.
  108. @item sample_rates
  109. A '|'-separated list of requested sample rates.
  110. @item channel_layouts
  111. A '|'-separated list of requested channel layouts.
  112. @end table
  113. If a parameter is omitted, all values are allowed.
  114. For example to force the output to either unsigned 8-bit or signed 16-bit stereo:
  115. @example
  116. aformat=sample_fmts=u8|s16:channel_layouts=stereo
  117. @end example
  118. @section amix
  119. Mixes multiple audio inputs into a single output.
  120. For example
  121. @example
  122. avconv -i INPUT1 -i INPUT2 -i INPUT3 -filter_complex amix=inputs=3:duration=first:dropout_transition=3 OUTPUT
  123. @end example
  124. will mix 3 input audio streams to a single output with the same duration as the
  125. first input and a dropout transition time of 3 seconds.
  126. The filter accepts the following named parameters:
  127. @table @option
  128. @item inputs
  129. Number of inputs. If unspecified, it defaults to 2.
  130. @item duration
  131. How to determine the end-of-stream.
  132. @table @option
  133. @item longest
  134. Duration of longest input. (default)
  135. @item shortest
  136. Duration of shortest input.
  137. @item first
  138. Duration of first input.
  139. @end table
  140. @item dropout_transition
  141. Transition time, in seconds, for volume renormalization when an input
  142. stream ends. The default value is 2 seconds.
  143. @end table
  144. @section anull
  145. Pass the audio source unchanged to the output.
  146. @section asetpts
  147. Change the PTS (presentation timestamp) of the input audio frames.
  148. This filter accepts the following options:
  149. @table @option
  150. @item expr
  151. The expression which is evaluated for each frame to construct its timestamp.
  152. @end table
  153. The expression is evaluated through the eval API and can contain the following
  154. constants:
  155. @table @option
  156. @item PTS
  157. the presentation timestamp in input
  158. @item PI
  159. Greek PI
  160. @item PHI
  161. golden ratio
  162. @item E
  163. Euler number
  164. @item N
  165. Number of the audio samples pass through the filter so far, starting at 0.
  166. @item S
  167. Number of the audio samples in the current frame.
  168. @item SR
  169. Audio sample rate.
  170. @item STARTPTS
  171. the PTS of the first frame
  172. @item PREV_INPTS
  173. previous input PTS
  174. @item PREV_OUTPTS
  175. previous output PTS
  176. @item RTCTIME
  177. wallclock (RTC) time in microseconds
  178. @item RTCSTART
  179. wallclock (RTC) time at the start of the movie in microseconds
  180. @end table
  181. Some examples follow:
  182. @example
  183. # start counting PTS from zero
  184. asetpts=expr=PTS-STARTPTS
  185. #generate timestamps by counting samples
  186. asetpts=expr=N/SR/TB
  187. # generate timestamps from a "live source" and rebase onto the current timebase
  188. asetpts='(RTCTIME - RTCSTART) / (TB * 1000000)"
  189. @end example
  190. @section ashowinfo
  191. Show a line containing various information for each input audio frame.
  192. The input audio is not modified.
  193. The shown line contains a sequence of key/value pairs of the form
  194. @var{key}:@var{value}.
  195. A description of each shown parameter follows:
  196. @table @option
  197. @item n
  198. sequential number of the input frame, starting from 0
  199. @item pts
  200. Presentation timestamp of the input frame, in time base units; the time base
  201. depends on the filter input pad, and is usually 1/@var{sample_rate}.
  202. @item pts_time
  203. presentation timestamp of the input frame in seconds
  204. @item fmt
  205. sample format
  206. @item chlayout
  207. channel layout
  208. @item rate
  209. sample rate for the audio frame
  210. @item nb_samples
  211. number of samples (per channel) in the frame
  212. @item checksum
  213. Adler-32 checksum (printed in hexadecimal) of the audio data. For planar audio
  214. the data is treated as if all the planes were concatenated.
  215. @item plane_checksums
  216. A list of Adler-32 checksums for each data plane.
  217. @end table
  218. @section asplit
  219. Split input audio into several identical outputs.
  220. The filter accepts a single parameter which specifies the number of outputs. If
  221. unspecified, it defaults to 2.
  222. For example
  223. @example
  224. avconv -i INPUT -filter_complex asplit=5 OUTPUT
  225. @end example
  226. will create 5 copies of the input audio.
  227. @section asyncts
  228. Synchronize audio data with timestamps by squeezing/stretching it and/or
  229. dropping samples/adding silence when needed.
  230. The filter accepts the following named parameters:
  231. @table @option
  232. @item compensate
  233. Enable stretching/squeezing the data to make it match the timestamps. Disabled
  234. by default. When disabled, time gaps are covered with silence.
  235. @item min_delta
  236. Minimum difference between timestamps and audio data (in seconds) to trigger
  237. adding/dropping samples. Default value is 0.1. If you get non-perfect sync with
  238. this filter, try setting this parameter to 0.
  239. @item max_comp
  240. Maximum compensation in samples per second. Relevant only with compensate=1.
  241. Default value 500.
  242. @item first_pts
  243. Assume the first pts should be this value. The time base is 1 / sample rate.
  244. This allows for padding/trimming at the start of stream. By default, no
  245. assumption is made about the first frame's expected pts, so no padding or
  246. trimming is done. For example, this could be set to 0 to pad the beginning with
  247. silence if an audio stream starts after the video stream or to trim any samples
  248. with a negative pts due to encoder delay.
  249. @end table
  250. @section atrim
  251. Trim the input so that the output contains one continuous subpart of the input.
  252. This filter accepts the following options:
  253. @table @option
  254. @item start
  255. Timestamp (in seconds) of the start of the kept section. I.e. the audio sample
  256. with the timestamp @var{start} will be the first sample in the output.
  257. @item end
  258. Timestamp (in seconds) of the first audio sample that will be dropped. I.e. the
  259. audio sample immediately preceding the one with the timestamp @var{end} will be
  260. the last sample in the output.
  261. @item start_pts
  262. Same as @var{start}, except this option sets the start timestamp in samples
  263. instead of seconds.
  264. @item end_pts
  265. Same as @var{end}, except this option sets the end timestamp in samples instead
  266. of seconds.
  267. @item duration
  268. Maximum duration of the output in seconds.
  269. @item start_sample
  270. Number of the first sample that should be passed to output.
  271. @item end_sample
  272. Number of the first sample that should be dropped.
  273. @end table
  274. Note that the first two sets of the start/end options and the @option{duration}
  275. option look at the frame timestamp, while the _sample options simply count the
  276. samples that pass through the filter. So start/end_pts and start/end_sample will
  277. give different results when the timestamps are wrong, inexact or do not start at
  278. zero. Also note that this filter does not modify the timestamps. If you wish
  279. that the output timestamps start at zero, insert the asetpts filter after the
  280. atrim filter.
  281. If multiple start or end options are set, this filter tries to be greedy and
  282. keep all samples that match at least one of the specified constraints. To keep
  283. only the part that matches all the constraints at once, chain multiple atrim
  284. filters.
  285. The defaults are such that all the input is kept. So it is possible to set e.g.
  286. just the end values to keep everything before the specified time.
  287. Examples:
  288. @itemize
  289. @item
  290. drop everything except the second minute of input
  291. @example
  292. avconv -i INPUT -af atrim=60:120
  293. @end example
  294. @item
  295. keep only the first 1000 samples
  296. @example
  297. avconv -i INPUT -af atrim=end_sample=1000
  298. @end example
  299. @end itemize
  300. @section channelsplit
  301. Split each channel in input audio stream into a separate output stream.
  302. This filter accepts the following named parameters:
  303. @table @option
  304. @item channel_layout
  305. Channel layout of the input stream. Default is "stereo".
  306. @end table
  307. For example, assuming a stereo input MP3 file
  308. @example
  309. avconv -i in.mp3 -filter_complex channelsplit out.mkv
  310. @end example
  311. will create an output Matroska file with two audio streams, one containing only
  312. the left channel and the other the right channel.
  313. To split a 5.1 WAV file into per-channel files
  314. @example
  315. avconv -i in.wav -filter_complex
  316. 'channelsplit=channel_layout=5.1[FL][FR][FC][LFE][SL][SR]'
  317. -map '[FL]' front_left.wav -map '[FR]' front_right.wav -map '[FC]'
  318. front_center.wav -map '[LFE]' lfe.wav -map '[SL]' side_left.wav -map '[SR]'
  319. side_right.wav
  320. @end example
  321. @section channelmap
  322. Remap input channels to new locations.
  323. This filter accepts the following named parameters:
  324. @table @option
  325. @item channel_layout
  326. Channel layout of the output stream.
  327. @item map
  328. Map channels from input to output. The argument is a '|'-separated list of
  329. mappings, each in the @code{@var{in_channel}-@var{out_channel}} or
  330. @var{in_channel} form. @var{in_channel} can be either the name of the input
  331. channel (e.g. FL for front left) or its index in the input channel layout.
  332. @var{out_channel} is the name of the output channel or its index in the output
  333. channel layout. If @var{out_channel} is not given then it is implicitly an
  334. index, starting with zero and increasing by one for each mapping.
  335. @end table
  336. If no mapping is present, the filter will implicitly map input channels to
  337. output channels preserving index.
  338. For example, assuming a 5.1+downmix input MOV file
  339. @example
  340. avconv -i in.mov -filter 'channelmap=map=DL-FL|DR-FR' out.wav
  341. @end example
  342. will create an output WAV file tagged as stereo from the downmix channels of
  343. the input.
  344. To fix a 5.1 WAV improperly encoded in AAC's native channel order
  345. @example
  346. avconv -i in.wav -filter 'channelmap=1|2|0|5|3|4:channel_layout=5.1' out.wav
  347. @end example
  348. @section compand
  349. Compress or expand audio dynamic range.
  350. A description of the accepted options follows.
  351. @table @option
  352. @item attacks
  353. @item decays
  354. Set list of times in seconds for each channel over which the instantaneous level
  355. of the input signal is averaged to determine its volume. @var{attacks} refers to
  356. increase of volume and @var{decays} refers to decrease of volume. For most
  357. situations, the attack time (response to the audio getting louder) should be
  358. shorter than the decay time because the human ear is more sensitive to sudden
  359. loud audio than sudden soft audio. A typical value for attack is 0.3 seconds and
  360. a typical value for decay is 0.8 seconds.
  361. @item points
  362. Set list of points for the transfer function, specified in dB relative to the
  363. maximum possible signal amplitude. Each key points list must be defined using
  364. the following syntax: @code{x0/y0|x1/y1|x2/y2|....}
  365. The input values must be in strictly increasing order but the transfer function
  366. does not have to be monotonically rising. The point @code{0/0} is assumed but
  367. may be overridden (by @code{0/out-dBn}). Typical values for the transfer
  368. function are @code{-70/-70|-60/-20}.
  369. @item soft-knee
  370. Set the curve radius in dB for all joints. Defaults to 0.01.
  371. @item gain
  372. Set additional gain in dB to be applied at all points on the transfer function.
  373. This allows easy adjustment of the overall gain. Defaults to 0.
  374. @item volume
  375. Set initial volume in dB to be assumed for each channel when filtering starts.
  376. This permits the user to supply a nominal level initially, so that, for
  377. example, a very large gain is not applied to initial signal levels before the
  378. companding has begun to operate. A typical value for audio which is initially
  379. quiet is -90 dB. Defaults to 0.
  380. @item delay
  381. Set delay in seconds. The input audio is analyzed immediately, but audio is
  382. delayed before being fed to the volume adjuster. Specifying a delay
  383. approximately equal to the attack/decay times allows the filter to effectively
  384. operate in predictive rather than reactive mode. Defaults to 0.
  385. @end table
  386. @subsection Examples
  387. @itemize
  388. @item
  389. Make music with both quiet and loud passages suitable for listening in a noisy
  390. environment:
  391. @example
  392. compand=.3|.3:1|1:-90/-60|-60/-40|-40/-30|-20/-20:6:0:-90:0.2
  393. @end example
  394. @item
  395. Noise gate for when the noise is at a lower level than the signal:
  396. @example
  397. compand=.1|.1:.2|.2:-900/-900|-50.1/-900|-50/-50:.01:0:-90:.1
  398. @end example
  399. @item
  400. Here is another noise gate, this time for when the noise is at a higher level
  401. than the signal (making it, in some ways, similar to squelch):
  402. @example
  403. compand=.1|.1:.1|.1:-45.1/-45.1|-45/-900|0/-900:.01:45:-90:.1
  404. @end example
  405. @end itemize
  406. @section join
  407. Join multiple input streams into one multi-channel stream.
  408. The filter accepts the following named parameters:
  409. @table @option
  410. @item inputs
  411. Number of input streams. Defaults to 2.
  412. @item channel_layout
  413. Desired output channel layout. Defaults to stereo.
  414. @item map
  415. Map channels from inputs to output. The argument is a '|'-separated list of
  416. mappings, each in the @code{@var{input_idx}.@var{in_channel}-@var{out_channel}}
  417. form. @var{input_idx} is the 0-based index of the input stream. @var{in_channel}
  418. can be either the name of the input channel (e.g. FL for front left) or its
  419. index in the specified input stream. @var{out_channel} is the name of the output
  420. channel.
  421. @end table
  422. The filter will attempt to guess the mappings when those are not specified
  423. explicitly. It does so by first trying to find an unused matching input channel
  424. and if that fails it picks the first unused input channel.
  425. E.g. to join 3 inputs (with properly set channel layouts)
  426. @example
  427. avconv -i INPUT1 -i INPUT2 -i INPUT3 -filter_complex join=inputs=3 OUTPUT
  428. @end example
  429. To build a 5.1 output from 6 single-channel streams:
  430. @example
  431. avconv -i fl -i fr -i fc -i sl -i sr -i lfe -filter_complex
  432. 'join=inputs=6:channel_layout=5.1:map=0.0-FL|1.0-FR|2.0-FC|3.0-SL|4.0-SR|5.0-LFE'
  433. out
  434. @end example
  435. @section resample
  436. Convert the audio sample format, sample rate and channel layout. This filter is
  437. not meant to be used directly, it is inserted automatically by libavfilter
  438. whenever conversion is needed. Use the @var{aformat} filter to force a specific
  439. conversion.
  440. @section volume
  441. Adjust the input audio volume.
  442. The filter accepts the following named parameters:
  443. @table @option
  444. @item volume
  445. Expresses how the audio volume will be increased or decreased.
  446. Output values are clipped to the maximum value.
  447. The output audio volume is given by the relation:
  448. @example
  449. @var{output_volume} = @var{volume} * @var{input_volume}
  450. @end example
  451. Default value for @var{volume} is 1.0.
  452. @item precision
  453. Mathematical precision.
  454. This determines which input sample formats will be allowed, which affects the
  455. precision of the volume scaling.
  456. @table @option
  457. @item fixed
  458. 8-bit fixed-point; limits input sample format to U8, S16, and S32.
  459. @item float
  460. 32-bit floating-point; limits input sample format to FLT. (default)
  461. @item double
  462. 64-bit floating-point; limits input sample format to DBL.
  463. @end table
  464. @end table
  465. @subsection Examples
  466. @itemize
  467. @item
  468. Halve the input audio volume:
  469. @example
  470. volume=volume=0.5
  471. volume=volume=1/2
  472. volume=volume=-6.0206dB
  473. @end example
  474. @item
  475. Increase input audio power by 6 decibels using fixed-point precision:
  476. @example
  477. volume=volume=6dB:precision=fixed
  478. @end example
  479. @end itemize
  480. @c man end AUDIO FILTERS
  481. @chapter Audio Sources
  482. @c man begin AUDIO SOURCES
  483. Below is a description of the currently available audio sources.
  484. @section anullsrc
  485. Null audio source, never return audio frames. It is mainly useful as a
  486. template and to be employed in analysis / debugging tools.
  487. It accepts as optional parameter a string of the form
  488. @var{sample_rate}:@var{channel_layout}.
  489. @var{sample_rate} specify the sample rate, and defaults to 44100.
  490. @var{channel_layout} specify the channel layout, and can be either an
  491. integer or a string representing a channel layout. The default value
  492. of @var{channel_layout} is 3, which corresponds to CH_LAYOUT_STEREO.
  493. Check the channel_layout_map definition in
  494. @file{libavutil/channel_layout.c} for the mapping between strings and
  495. channel layout values.
  496. Follow some examples:
  497. @example
  498. # set the sample rate to 48000 Hz and the channel layout to CH_LAYOUT_MONO.
  499. anullsrc=48000:4
  500. # same as
  501. anullsrc=48000:mono
  502. @end example
  503. @section abuffer
  504. Buffer audio frames, and make them available to the filter chain.
  505. This source is not intended to be part of user-supplied graph descriptions but
  506. for insertion by calling programs through the interface defined in
  507. @file{libavfilter/buffersrc.h}.
  508. It accepts the following named parameters:
  509. @table @option
  510. @item time_base
  511. Timebase which will be used for timestamps of submitted frames. It must be
  512. either a floating-point number or in @var{numerator}/@var{denominator} form.
  513. @item sample_rate
  514. Audio sample rate.
  515. @item sample_fmt
  516. Name of the sample format, as returned by @code{av_get_sample_fmt_name()}.
  517. @item channel_layout
  518. Channel layout of the audio data, in the form that can be accepted by
  519. @code{av_get_channel_layout()}.
  520. @end table
  521. All the parameters need to be explicitly defined.
  522. @c man end AUDIO SOURCES
  523. @chapter Audio Sinks
  524. @c man begin AUDIO SINKS
  525. Below is a description of the currently available audio sinks.
  526. @section anullsink
  527. Null audio sink, do absolutely nothing with the input audio. It is
  528. mainly useful as a template and to be employed in analysis / debugging
  529. tools.
  530. @section abuffersink
  531. This sink is intended for programmatic use. Frames that arrive on this sink can
  532. be retrieved by the calling program using the interface defined in
  533. @file{libavfilter/buffersink.h}.
  534. This filter accepts no parameters.
  535. @c man end AUDIO SINKS
  536. @chapter Video Filters
  537. @c man begin VIDEO FILTERS
  538. When you configure your Libav build, you can disable any of the
  539. existing filters using --disable-filters.
  540. The configure output will show the video filters included in your
  541. build.
  542. Below is a description of the currently available video filters.
  543. @section blackframe
  544. Detect frames that are (almost) completely black. Can be useful to
  545. detect chapter transitions or commercials. Output lines consist of
  546. the frame number of the detected frame, the percentage of blackness,
  547. the position in the file if known or -1 and the timestamp in seconds.
  548. In order to display the output lines, you need to set the loglevel at
  549. least to the AV_LOG_INFO value.
  550. The filter accepts the following options:
  551. @table @option
  552. @item amount
  553. The percentage of the pixels that have to be below the threshold, defaults to
  554. 98.
  555. @item threshold
  556. Threshold below which a pixel value is considered black, defaults to 32.
  557. @end table
  558. @section boxblur
  559. Apply boxblur algorithm to the input video.
  560. This filter accepts the following options:
  561. @table @option
  562. @item luma_radius
  563. @item luma_power
  564. @item chroma_radius
  565. @item chroma_power
  566. @item alpha_radius
  567. @item alpha_power
  568. @end table
  569. Chroma and alpha parameters are optional, if not specified they default
  570. to the corresponding values set for @var{luma_radius} and
  571. @var{luma_power}.
  572. @var{luma_radius}, @var{chroma_radius}, and @var{alpha_radius} represent
  573. the radius in pixels of the box used for blurring the corresponding
  574. input plane. They are expressions, and can contain the following
  575. constants:
  576. @table @option
  577. @item w, h
  578. the input width and height in pixels
  579. @item cw, ch
  580. the input chroma image width and height in pixels
  581. @item hsub, vsub
  582. horizontal and vertical chroma subsample values. For example for the
  583. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  584. @end table
  585. The radius must be a non-negative number, and must not be greater than
  586. the value of the expression @code{min(w,h)/2} for the luma and alpha planes,
  587. and of @code{min(cw,ch)/2} for the chroma planes.
  588. @var{luma_power}, @var{chroma_power}, and @var{alpha_power} represent
  589. how many times the boxblur filter is applied to the corresponding
  590. plane.
  591. Some examples follow:
  592. @itemize
  593. @item
  594. Apply a boxblur filter with luma, chroma, and alpha radius
  595. set to 2:
  596. @example
  597. boxblur=luma_radius=2:luma_power=1
  598. @end example
  599. @item
  600. Set luma radius to 2, alpha and chroma radius to 0
  601. @example
  602. boxblur=2:1:0:0:0:0
  603. @end example
  604. @item
  605. Set luma and chroma radius to a fraction of the video dimension
  606. @example
  607. boxblur=luma_radius=min(h\,w)/10:luma_power=1:chroma_radius=min(cw\,ch)/10:chroma_power=1
  608. @end example
  609. @end itemize
  610. @section copy
  611. Copy the input source unchanged to the output. Mainly useful for
  612. testing purposes.
  613. @section crop
  614. Crop the input video to given dimensions.
  615. This filter accepts the following options:
  616. @table @option
  617. @item out_w
  618. Width of the output video.
  619. @item out_h
  620. Height of the output video.
  621. @item x
  622. Horizontal position, in the input video, of the left edge of the output video.
  623. @item y
  624. Vertical position, in the input video, of the top edge of the output video.
  625. @end table
  626. The parameters are expressions containing the following constants:
  627. @table @option
  628. @item E, PI, PHI
  629. the corresponding mathematical approximated values for e
  630. (euler number), pi (greek PI), PHI (golden ratio)
  631. @item x, y
  632. the computed values for @var{x} and @var{y}. They are evaluated for
  633. each new frame.
  634. @item in_w, in_h
  635. the input width and height
  636. @item iw, ih
  637. same as @var{in_w} and @var{in_h}
  638. @item out_w, out_h
  639. the output (cropped) width and height
  640. @item ow, oh
  641. same as @var{out_w} and @var{out_h}
  642. @item n
  643. the number of input frame, starting from 0
  644. @item t
  645. timestamp expressed in seconds, NAN if the input timestamp is unknown
  646. @end table
  647. The @var{out_w} and @var{out_h} parameters specify the expressions for
  648. the width and height of the output (cropped) video. They are
  649. evaluated just at the configuration of the filter.
  650. The default value of @var{out_w} is "in_w", and the default value of
  651. @var{out_h} is "in_h".
  652. The expression for @var{out_w} may depend on the value of @var{out_h},
  653. and the expression for @var{out_h} may depend on @var{out_w}, but they
  654. cannot depend on @var{x} and @var{y}, as @var{x} and @var{y} are
  655. evaluated after @var{out_w} and @var{out_h}.
  656. The @var{x} and @var{y} parameters specify the expressions for the
  657. position of the top-left corner of the output (non-cropped) area. They
  658. are evaluated for each frame. If the evaluated value is not valid, it
  659. is approximated to the nearest valid value.
  660. The default value of @var{x} is "(in_w-out_w)/2", and the default
  661. value for @var{y} is "(in_h-out_h)/2", which set the cropped area at
  662. the center of the input image.
  663. The expression for @var{x} may depend on @var{y}, and the expression
  664. for @var{y} may depend on @var{x}.
  665. Follow some examples:
  666. @example
  667. # crop the central input area with size 100x100
  668. crop=out_w=100:out_h=100
  669. # crop the central input area with size 2/3 of the input video
  670. "crop=out_w=2/3*in_w:out_h=2/3*in_h"
  671. # crop the input video central square
  672. crop=out_w=in_h
  673. # delimit the rectangle with the top-left corner placed at position
  674. # 100:100 and the right-bottom corner corresponding to the right-bottom
  675. # corner of the input image.
  676. crop=out_w=in_w-100:out_h=in_h-100:x=100:y=100
  677. # crop 10 pixels from the left and right borders, and 20 pixels from
  678. # the top and bottom borders
  679. "crop=out_w=in_w-2*10:out_h=in_h-2*20"
  680. # keep only the bottom right quarter of the input image
  681. "crop=out_w=in_w/2:out_h=in_h/2:x=in_w/2:y=in_h/2"
  682. # crop height for getting Greek harmony
  683. "crop=out_w=in_w:out_h=1/PHI*in_w"
  684. # trembling effect
  685. "crop=in_w/2:in_h/2:(in_w-out_w)/2+((in_w-out_w)/2)*sin(n/10):(in_h-out_h)/2 +((in_h-out_h)/2)*sin(n/7)"
  686. # erratic camera effect depending on timestamp
  687. "crop=out_w=in_w/2:out_h=in_h/2:x=(in_w-out_w)/2+((in_w-out_w)/2)*sin(t*10):y=(in_h-out_h)/2 +((in_h-out_h)/2)*sin(t*13)"
  688. # set x depending on the value of y
  689. "crop=in_w/2:in_h/2:y:10+10*sin(n/10)"
  690. @end example
  691. @section cropdetect
  692. Auto-detect crop size.
  693. Calculate necessary cropping parameters and prints the recommended
  694. parameters through the logging system. The detected dimensions
  695. correspond to the non-black area of the input video.
  696. This filter accepts the following options:
  697. @table @option
  698. @item limit
  699. Threshold, which can be optionally specified from nothing (0) to
  700. everything (255), defaults to 24.
  701. @item round
  702. Value which the width/height should be divisible by, defaults to
  703. 16. The offset is automatically adjusted to center the video. Use 2 to
  704. get only even dimensions (needed for 4:2:2 video). 16 is best when
  705. encoding to most video codecs.
  706. @item reset
  707. Counter that determines after how many frames cropdetect will reset
  708. the previously detected largest video area and start over to detect
  709. the current optimal crop area. Defaults to 0.
  710. This can be useful when channel logos distort the video area. 0
  711. indicates never reset and return the largest area encountered during
  712. playback.
  713. @end table
  714. @section delogo
  715. Suppress a TV station logo by a simple interpolation of the surrounding
  716. pixels. Just set a rectangle covering the logo and watch it disappear
  717. (and sometimes something even uglier appear - your mileage may vary).
  718. This filter accepts the following options:
  719. @table @option
  720. @item x, y
  721. Specify the top left corner coordinates of the logo. They must be
  722. specified.
  723. @item w, h
  724. Specify the width and height of the logo to clear. They must be
  725. specified.
  726. @item band, t
  727. Specify the thickness of the fuzzy edge of the rectangle (added to
  728. @var{w} and @var{h}). The default value is 4.
  729. @item show
  730. When set to 1, a green rectangle is drawn on the screen to simplify
  731. finding the right @var{x}, @var{y}, @var{w}, @var{h} parameters, and
  732. @var{band} is set to 4. The default value is 0.
  733. @end table
  734. Some examples follow.
  735. @itemize
  736. @item
  737. Set a rectangle covering the area with top left corner coordinates 0,0
  738. and size 100x77, setting a band of size 10:
  739. @example
  740. delogo=x=0:y=0:w=100:h=77:band=10
  741. @end example
  742. @end itemize
  743. @section drawbox
  744. Draw a colored box on the input image.
  745. This filter accepts the following options:
  746. @table @option
  747. @item x, y
  748. Specify the top left corner coordinates of the box. Default to 0.
  749. @item width, height
  750. Specify the width and height of the box, if 0 they are interpreted as
  751. the input width and height. Default to 0.
  752. @item color
  753. Specify the color of the box to write, it can be the name of a color
  754. (case insensitive match) or a 0xRRGGBB[AA] sequence.
  755. @end table
  756. Follow some examples:
  757. @example
  758. # draw a black box around the edge of the input image
  759. drawbox
  760. # draw a box with color red and an opacity of 50%
  761. drawbox=x=10:y=20:width=200:height=60:color=red@@0.5"
  762. @end example
  763. @section drawtext
  764. Draw text string or text from specified file on top of video using the
  765. libfreetype library.
  766. To enable compilation of this filter you need to configure Libav with
  767. @code{--enable-libfreetype}.
  768. The filter also recognizes strftime() sequences in the provided text
  769. and expands them accordingly. Check the documentation of strftime().
  770. The description of the accepted parameters follows.
  771. @table @option
  772. @item fontfile
  773. The font file to be used for drawing text. Path must be included.
  774. This parameter is mandatory.
  775. @item text
  776. The text string to be drawn. The text must be a sequence of UTF-8
  777. encoded characters.
  778. This parameter is mandatory if no file is specified with the parameter
  779. @var{textfile}.
  780. @item textfile
  781. A text file containing text to be drawn. The text must be a sequence
  782. of UTF-8 encoded characters.
  783. This parameter is mandatory if no text string is specified with the
  784. parameter @var{text}.
  785. If both text and textfile are specified, an error is thrown.
  786. @item x, y
  787. The offsets where text will be drawn within the video frame.
  788. Relative to the top/left border of the output image.
  789. They accept expressions similar to the @ref{overlay} filter:
  790. @table @option
  791. @item x, y
  792. the computed values for @var{x} and @var{y}. They are evaluated for
  793. each new frame.
  794. @item main_w, main_h
  795. main input width and height
  796. @item W, H
  797. same as @var{main_w} and @var{main_h}
  798. @item text_w, text_h
  799. rendered text width and height
  800. @item w, h
  801. same as @var{text_w} and @var{text_h}
  802. @item n
  803. the number of frames processed, starting from 0
  804. @item t
  805. timestamp expressed in seconds, NAN if the input timestamp is unknown
  806. @end table
  807. The default value of @var{x} and @var{y} is 0.
  808. @item fontsize
  809. The font size to be used for drawing text.
  810. The default value of @var{fontsize} is 16.
  811. @item fontcolor
  812. The color to be used for drawing fonts.
  813. Either a string (e.g. "red") or in 0xRRGGBB[AA] format
  814. (e.g. "0xff000033"), possibly followed by an alpha specifier.
  815. The default value of @var{fontcolor} is "black".
  816. @item boxcolor
  817. The color to be used for drawing box around text.
  818. Either a string (e.g. "yellow") or in 0xRRGGBB[AA] format
  819. (e.g. "0xff00ff"), possibly followed by an alpha specifier.
  820. The default value of @var{boxcolor} is "white".
  821. @item box
  822. Used to draw a box around text using background color.
  823. Value should be either 1 (enable) or 0 (disable).
  824. The default value of @var{box} is 0.
  825. @item shadowx, shadowy
  826. The x and y offsets for the text shadow position with respect to the
  827. position of the text. They can be either positive or negative
  828. values. Default value for both is "0".
  829. @item shadowcolor
  830. The color to be used for drawing a shadow behind the drawn text. It
  831. can be a color name (e.g. "yellow") or a string in the 0xRRGGBB[AA]
  832. form (e.g. "0xff00ff"), possibly followed by an alpha specifier.
  833. The default value of @var{shadowcolor} is "black".
  834. @item ft_load_flags
  835. Flags to be used for loading the fonts.
  836. The flags map the corresponding flags supported by libfreetype, and are
  837. a combination of the following values:
  838. @table @var
  839. @item default
  840. @item no_scale
  841. @item no_hinting
  842. @item render
  843. @item no_bitmap
  844. @item vertical_layout
  845. @item force_autohint
  846. @item crop_bitmap
  847. @item pedantic
  848. @item ignore_global_advance_width
  849. @item no_recurse
  850. @item ignore_transform
  851. @item monochrome
  852. @item linear_design
  853. @item no_autohint
  854. @item end table
  855. @end table
  856. Default value is "render".
  857. For more information consult the documentation for the FT_LOAD_*
  858. libfreetype flags.
  859. @item tabsize
  860. The size in number of spaces to use for rendering the tab.
  861. Default value is 4.
  862. @item fix_bounds
  863. If true, check and fix text coords to avoid clipping.
  864. @end table
  865. For example the command:
  866. @example
  867. drawtext="fontfile=/usr/share/fonts/truetype/freefont/FreeSerif.ttf: text='Test Text'"
  868. @end example
  869. will draw "Test Text" with font FreeSerif, using the default values
  870. for the optional parameters.
  871. The command:
  872. @example
  873. drawtext="fontfile=/usr/share/fonts/truetype/freefont/FreeSerif.ttf: text='Test Text':\
  874. x=100: y=50: fontsize=24: fontcolor=yellow@@0.2: box=1: boxcolor=red@@0.2"
  875. @end example
  876. will draw 'Test Text' with font FreeSerif of size 24 at position x=100
  877. and y=50 (counting from the top-left corner of the screen), text is
  878. yellow with a red box around it. Both the text and the box have an
  879. opacity of 20%.
  880. Note that the double quotes are not necessary if spaces are not used
  881. within the parameter list.
  882. For more information about libfreetype, check:
  883. @url{http://www.freetype.org/}.
  884. @section fade
  885. Apply fade-in/out effect to input video.
  886. This filter accepts the following options:
  887. @table @option
  888. @item type
  889. The effect type -- can be either "in" for fade-in, or "out" for a fade-out
  890. effect.
  891. @item start_frame
  892. The number of the start frame for starting to apply the fade effect.
  893. @item nb_frames
  894. The number of frames for which the fade effect has to last. At the end of the
  895. fade-in effect the output video will have the same intensity as the input video,
  896. at the end of the fade-out transition the output video will be completely black.
  897. @end table
  898. A few usage examples follow, usable too as test scenarios.
  899. @example
  900. # fade in first 30 frames of video
  901. fade=type=in:nb_frames=30
  902. # fade out last 45 frames of a 200-frame video
  903. fade=type=out:start_frame=155:nb_frames=45
  904. # fade in first 25 frames and fade out last 25 frames of a 1000-frame video
  905. fade=type=in:start_frame=0:nb_frames=25, fade=type=out:start_frame=975:nb_frames=25
  906. # make first 5 frames black, then fade in from frame 5-24
  907. fade=type=in:start_frame=5:nb_frames=20
  908. @end example
  909. @section fieldorder
  910. Transform the field order of the input video.
  911. This filter accepts the following options:
  912. @table @option
  913. @item order
  914. Output field order. Valid values are @var{tff} for top field first or @var{bff}
  915. for bottom field first.
  916. @end table
  917. Default value is "tff".
  918. Transformation is achieved by shifting the picture content up or down
  919. by one line, and filling the remaining line with appropriate picture content.
  920. This method is consistent with most broadcast field order converters.
  921. If the input video is not flagged as being interlaced, or it is already
  922. flagged as being of the required output field order then this filter does
  923. not alter the incoming video.
  924. This filter is very useful when converting to or from PAL DV material,
  925. which is bottom field first.
  926. For example:
  927. @example
  928. ./avconv -i in.vob -vf "fieldorder=order=bff" out.dv
  929. @end example
  930. @section fifo
  931. Buffer input images and send them when they are requested.
  932. This filter is mainly useful when auto-inserted by the libavfilter
  933. framework.
  934. The filter does not take parameters.
  935. @section format
  936. Convert the input video to one of the specified pixel formats.
  937. Libavfilter will try to pick one that is supported for the input to
  938. the next filter.
  939. This filter accepts the following parameters:
  940. @table @option
  941. @item pix_fmts
  942. A '|'-separated list of pixel format names, for example
  943. "pix_fmts=yuv420p|monow|rgb24".
  944. @end table
  945. Some examples follow:
  946. @example
  947. # convert the input video to the format "yuv420p"
  948. format=pix_fmts=yuv420p
  949. # convert the input video to any of the formats in the list
  950. format=pix_fmts=yuv420p|yuv444p|yuv410p
  951. @end example
  952. @anchor{fps}
  953. @section fps
  954. Convert the video to specified constant framerate by duplicating or dropping
  955. frames as necessary.
  956. This filter accepts the following named parameters:
  957. @table @option
  958. @item fps
  959. Desired output framerate.
  960. @item start_time
  961. Assume the first PTS should be the given value, in seconds. This allows for
  962. padding/trimming at the start of stream. By default, no assumption is made
  963. about the first frame's expected PTS, so no padding or trimming is done.
  964. For example, this could be set to 0 to pad the beginning with duplicates of
  965. the first frame if a video stream starts after the audio stream or to trim any
  966. frames with a negative PTS.
  967. @end table
  968. @section framepack
  969. Pack two different video streams into a stereoscopic video, setting proper
  970. metadata on supported codecs. The two views should have the same size and
  971. framerate and processing will stop when the shorter video ends. Please note
  972. that you may conveniently adjust view properties with the @ref{scale} and
  973. @ref{fps} filters.
  974. This filter accepts the following named parameters:
  975. @table @option
  976. @item format
  977. Desired packing format. Supported values are:
  978. @table @option
  979. @item sbs
  980. Views are next to each other (default).
  981. @item tab
  982. Views are on top of each other.
  983. @item lines
  984. Views are packed by line.
  985. @item columns
  986. Views are eacked by column.
  987. @item frameseq
  988. Views are temporally interleaved.
  989. @end table
  990. @end table
  991. Some examples follow:
  992. @example
  993. # Convert left and right views into a frame sequential video.
  994. avconv -i LEFT -i RIGHT -filter_complex framepack=frameseq OUTPUT
  995. # Convert views into a side-by-side video with the same output resolution as the input.
  996. avconv -i LEFT -i RIGHT -filter_complex [0:v]scale=w=iw/2[left],[1:v]scale=w=iw/2[right],[left][right]framepack=sbs OUTPUT
  997. @end example
  998. @anchor{frei0r}
  999. @section frei0r
  1000. Apply a frei0r effect to the input video.
  1001. To enable compilation of this filter you need to install the frei0r
  1002. header and configure Libav with --enable-frei0r.
  1003. This filter accepts the following options:
  1004. @table @option
  1005. @item filter_name
  1006. The name to the frei0r effect to load. If the environment variable
  1007. @env{FREI0R_PATH} is defined, the frei0r effect is searched in each one of the
  1008. directories specified by the colon separated list in @env{FREIOR_PATH},
  1009. otherwise in the standard frei0r paths, which are in this order:
  1010. @file{HOME/.frei0r-1/lib/}, @file{/usr/local/lib/frei0r-1/},
  1011. @file{/usr/lib/frei0r-1/}.
  1012. @item filter_params
  1013. A '|'-separated list of parameters to pass to the frei0r effect.
  1014. @end table
  1015. A frei0r effect parameter can be a boolean (whose values are specified
  1016. with "y" and "n"), a double, a color (specified by the syntax
  1017. @var{R}/@var{G}/@var{B}, @var{R}, @var{G}, and @var{B} being float
  1018. numbers from 0.0 to 1.0) or by an @code{av_parse_color()} color
  1019. description), a position (specified by the syntax @var{X}/@var{Y},
  1020. @var{X} and @var{Y} being float numbers) and a string.
  1021. The number and kind of parameters depend on the loaded effect. If an
  1022. effect parameter is not specified the default value is set.
  1023. Some examples follow:
  1024. @example
  1025. # apply the distort0r effect, set the first two double parameters
  1026. frei0r=filter_name=distort0r:filter_params=0.5|0.01
  1027. # apply the colordistance effect, takes a color as first parameter
  1028. frei0r=colordistance:0.2/0.3/0.4
  1029. frei0r=colordistance:violet
  1030. frei0r=colordistance:0x112233
  1031. # apply the perspective effect, specify the top left and top right
  1032. # image positions
  1033. frei0r=perspective:0.2/0.2|0.8/0.2
  1034. @end example
  1035. For more information see:
  1036. @url{http://piksel.org/frei0r}
  1037. @section gradfun
  1038. Fix the banding artifacts that are sometimes introduced into nearly flat
  1039. regions by truncation to 8bit colordepth.
  1040. Interpolate the gradients that should go where the bands are, and
  1041. dither them.
  1042. This filter is designed for playback only. Do not use it prior to
  1043. lossy compression, because compression tends to lose the dither and
  1044. bring back the bands.
  1045. This filter accepts the following options:
  1046. @table @option
  1047. @item strength
  1048. The maximum amount by which the filter will change any one pixel. Also the
  1049. threshold for detecting nearly flat regions. Acceptable values range from .51 to
  1050. 64, default value is 1.2, out-of-range values will be clipped to the valid
  1051. range.
  1052. @item radius
  1053. The neighborhood to fit the gradient to. A larger radius makes for smoother
  1054. gradients, but also prevents the filter from modifying the pixels near detailed
  1055. regions. Acceptable values are 8-32, default value is 16, out-of-range values
  1056. will be clipped to the valid range.
  1057. @end table
  1058. @example
  1059. # default parameters
  1060. gradfun=strength=1.2:radius=16
  1061. # omitting radius
  1062. gradfun=1.2
  1063. @end example
  1064. @section hflip
  1065. Flip the input video horizontally.
  1066. For example to horizontally flip the input video with @command{avconv}:
  1067. @example
  1068. avconv -i in.avi -vf "hflip" out.avi
  1069. @end example
  1070. @section hqdn3d
  1071. High precision/quality 3d denoise filter. This filter aims to reduce
  1072. image noise producing smooth images and making still images really
  1073. still. It should enhance compressibility.
  1074. It accepts the following optional parameters:
  1075. @table @option
  1076. @item luma_spatial
  1077. a non-negative float number which specifies spatial luma strength,
  1078. defaults to 4.0
  1079. @item chroma_spatial
  1080. a non-negative float number which specifies spatial chroma strength,
  1081. defaults to 3.0*@var{luma_spatial}/4.0
  1082. @item luma_tmp
  1083. a float number which specifies luma temporal strength, defaults to
  1084. 6.0*@var{luma_spatial}/4.0
  1085. @item chroma_tmp
  1086. a float number which specifies chroma temporal strength, defaults to
  1087. @var{luma_tmp}*@var{chroma_spatial}/@var{luma_spatial}
  1088. @end table
  1089. @section interlace
  1090. Simple interlacing filter from progressive contents. This interleaves upper (or
  1091. lower) lines from odd frames with lower (or upper) lines from even frames,
  1092. halving the frame rate and preserving image height. A vertical lowpass filter
  1093. is always applied in order to avoid twitter effects and reduce moiré patterns.
  1094. @example
  1095. Original Original New Frame
  1096. Frame 'j' Frame 'j+1' (tff)
  1097. ========== =========== ==================
  1098. Line 0 --------------------> Frame 'j' Line 0
  1099. Line 1 Line 1 ----> Frame 'j+1' Line 1
  1100. Line 2 ---------------------> Frame 'j' Line 2
  1101. Line 3 Line 3 ----> Frame 'j+1' Line 3
  1102. ... ... ...
  1103. New Frame + 1 will be generated by Frame 'j+2' and Frame 'j+3' and so on
  1104. @end example
  1105. It accepts the following optional parameters:
  1106. @table @option
  1107. @item scan
  1108. determines whether the interlaced frame is taken from the even (tff - default)
  1109. or odd (bff) lines of the progressive frame.
  1110. @end table
  1111. @section lut, lutrgb, lutyuv
  1112. Compute a look-up table for binding each pixel component input value
  1113. to an output value, and apply it to input video.
  1114. @var{lutyuv} applies a lookup table to a YUV input video, @var{lutrgb}
  1115. to an RGB input video.
  1116. These filters accept the following options:
  1117. @table @option
  1118. @item @var{c0} (first pixel component)
  1119. @item @var{c1} (second pixel component)
  1120. @item @var{c2} (third pixel component)
  1121. @item @var{c3} (fourth pixel component, corresponds to the alpha component)
  1122. @item @var{r} (red component)
  1123. @item @var{g} (green component)
  1124. @item @var{b} (blue component)
  1125. @item @var{a} (alpha component)
  1126. @item @var{y} (Y/luminance component)
  1127. @item @var{u} (U/Cb component)
  1128. @item @var{v} (V/Cr component)
  1129. @end table
  1130. Each of them specifies the expression to use for computing the lookup table for
  1131. the corresponding pixel component values.
  1132. The exact component associated to each of the @var{c*} options depends on the
  1133. format in input.
  1134. The @var{lut} filter requires either YUV or RGB pixel formats in input,
  1135. @var{lutrgb} requires RGB pixel formats in input, and @var{lutyuv} requires YUV.
  1136. The expressions can contain the following constants and functions:
  1137. @table @option
  1138. @item E, PI, PHI
  1139. the corresponding mathematical approximated values for e
  1140. (euler number), pi (greek PI), PHI (golden ratio)
  1141. @item w, h
  1142. the input width and height
  1143. @item val
  1144. input value for the pixel component
  1145. @item clipval
  1146. the input value clipped in the @var{minval}-@var{maxval} range
  1147. @item maxval
  1148. maximum value for the pixel component
  1149. @item minval
  1150. minimum value for the pixel component
  1151. @item negval
  1152. the negated value for the pixel component value clipped in the
  1153. @var{minval}-@var{maxval} range , it corresponds to the expression
  1154. "maxval-clipval+minval"
  1155. @item clip(val)
  1156. the computed value in @var{val} clipped in the
  1157. @var{minval}-@var{maxval} range
  1158. @item gammaval(gamma)
  1159. the computed gamma correction value of the pixel component value
  1160. clipped in the @var{minval}-@var{maxval} range, corresponds to the
  1161. expression
  1162. "pow((clipval-minval)/(maxval-minval)\,@var{gamma})*(maxval-minval)+minval"
  1163. @end table
  1164. All expressions default to "val".
  1165. Some examples follow:
  1166. @example
  1167. # negate input video
  1168. lutrgb="r=maxval+minval-val:g=maxval+minval-val:b=maxval+minval-val"
  1169. lutyuv="y=maxval+minval-val:u=maxval+minval-val:v=maxval+minval-val"
  1170. # the above is the same as
  1171. lutrgb="r=negval:g=negval:b=negval"
  1172. lutyuv="y=negval:u=negval:v=negval"
  1173. # negate luminance
  1174. lutyuv=negval
  1175. # remove chroma components, turns the video into a graytone image
  1176. lutyuv="u=128:v=128"
  1177. # apply a luma burning effect
  1178. lutyuv="y=2*val"
  1179. # remove green and blue components
  1180. lutrgb="g=0:b=0"
  1181. # set a constant alpha channel value on input
  1182. format=rgba,lutrgb=a="maxval-minval/2"
  1183. # correct luminance gamma by a 0.5 factor
  1184. lutyuv=y=gammaval(0.5)
  1185. @end example
  1186. @section negate
  1187. Negate input video.
  1188. This filter accepts an integer in input, if non-zero it negates the
  1189. alpha component (if available). The default value in input is 0.
  1190. @section noformat
  1191. Force libavfilter not to use any of the specified pixel formats for the
  1192. input to the next filter.
  1193. This filter accepts the following parameters:
  1194. @table @option
  1195. @item pix_fmts
  1196. A '|'-separated list of pixel format names, for example
  1197. "pix_fmts=yuv420p|monow|rgb24".
  1198. @end table
  1199. Some examples follow:
  1200. @example
  1201. # force libavfilter to use a format different from "yuv420p" for the
  1202. # input to the vflip filter
  1203. noformat=pix_fmts=yuv420p,vflip
  1204. # convert the input video to any of the formats not contained in the list
  1205. noformat=yuv420p|yuv444p|yuv410p
  1206. @end example
  1207. @section null
  1208. Pass the video source unchanged to the output.
  1209. @section ocv
  1210. Apply video transform using libopencv.
  1211. To enable this filter install libopencv library and headers and
  1212. configure Libav with --enable-libopencv.
  1213. This filter accepts the following parameters:
  1214. @table @option
  1215. @item filter_name
  1216. The name of the libopencv filter to apply.
  1217. @item filter_params
  1218. The parameters to pass to the libopencv filter. If not specified the default
  1219. values are assumed.
  1220. @end table
  1221. Refer to the official libopencv documentation for more precise
  1222. information:
  1223. @url{http://opencv.willowgarage.com/documentation/c/image_filtering.html}
  1224. Follows the list of supported libopencv filters.
  1225. @anchor{dilate}
  1226. @subsection dilate
  1227. Dilate an image by using a specific structuring element.
  1228. This filter corresponds to the libopencv function @code{cvDilate}.
  1229. It accepts the parameters: @var{struct_el}|@var{nb_iterations}.
  1230. @var{struct_el} represents a structuring element, and has the syntax:
  1231. @var{cols}x@var{rows}+@var{anchor_x}x@var{anchor_y}/@var{shape}
  1232. @var{cols} and @var{rows} represent the number of columns and rows of
  1233. the structuring element, @var{anchor_x} and @var{anchor_y} the anchor
  1234. point, and @var{shape} the shape for the structuring element, and
  1235. can be one of the values "rect", "cross", "ellipse", "custom".
  1236. If the value for @var{shape} is "custom", it must be followed by a
  1237. string of the form "=@var{filename}". The file with name
  1238. @var{filename} is assumed to represent a binary image, with each
  1239. printable character corresponding to a bright pixel. When a custom
  1240. @var{shape} is used, @var{cols} and @var{rows} are ignored, the number
  1241. or columns and rows of the read file are assumed instead.
  1242. The default value for @var{struct_el} is "3x3+0x0/rect".
  1243. @var{nb_iterations} specifies the number of times the transform is
  1244. applied to the image, and defaults to 1.
  1245. Follow some example:
  1246. @example
  1247. # use the default values
  1248. ocv=dilate
  1249. # dilate using a structuring element with a 5x5 cross, iterate two times
  1250. ocv=filter_name=dilate:filter_params=5x5+2x2/cross|2
  1251. # read the shape from the file diamond.shape, iterate two times
  1252. # the file diamond.shape may contain a pattern of characters like this:
  1253. # *
  1254. # ***
  1255. # *****
  1256. # ***
  1257. # *
  1258. # the specified cols and rows are ignored (but not the anchor point coordinates)
  1259. ocv=dilate:0x0+2x2/custom=diamond.shape|2
  1260. @end example
  1261. @subsection erode
  1262. Erode an image by using a specific structuring element.
  1263. This filter corresponds to the libopencv function @code{cvErode}.
  1264. The filter accepts the parameters: @var{struct_el}:@var{nb_iterations},
  1265. with the same syntax and semantics as the @ref{dilate} filter.
  1266. @subsection smooth
  1267. Smooth the input video.
  1268. The filter takes the following parameters:
  1269. @var{type}|@var{param1}|@var{param2}|@var{param3}|@var{param4}.
  1270. @var{type} is the type of smooth filter to apply, and can be one of
  1271. the following values: "blur", "blur_no_scale", "median", "gaussian",
  1272. "bilateral". The default value is "gaussian".
  1273. @var{param1}, @var{param2}, @var{param3}, and @var{param4} are
  1274. parameters whose meanings depend on smooth type. @var{param1} and
  1275. @var{param2} accept integer positive values or 0, @var{param3} and
  1276. @var{param4} accept float values.
  1277. The default value for @var{param1} is 3, the default value for the
  1278. other parameters is 0.
  1279. These parameters correspond to the parameters assigned to the
  1280. libopencv function @code{cvSmooth}.
  1281. @anchor{overlay}
  1282. @section overlay
  1283. Overlay one video on top of another.
  1284. It takes two inputs and one output, the first input is the "main"
  1285. video on which the second input is overlayed.
  1286. This filter accepts the following parameters:
  1287. @table @option
  1288. @item x
  1289. The horizontal position of the left edge of the overlaid video on the main video.
  1290. @item y
  1291. The vertical position of the top edge of the overlaid video on the main video.
  1292. @end table
  1293. The parameters are expressions containing the following parameters:
  1294. @table @option
  1295. @item main_w, main_h
  1296. main input width and height
  1297. @item W, H
  1298. same as @var{main_w} and @var{main_h}
  1299. @item overlay_w, overlay_h
  1300. overlay input width and height
  1301. @item w, h
  1302. same as @var{overlay_w} and @var{overlay_h}
  1303. @item eof_action
  1304. The action to take when EOF is encountered on the secondary input, accepts one
  1305. of the following values:
  1306. @table @option
  1307. @item repeat
  1308. repeat the last frame (the default)
  1309. @item endall
  1310. end both streams
  1311. @item pass
  1312. pass through the main input
  1313. @end table
  1314. @end table
  1315. Be aware that frames are taken from each input video in timestamp
  1316. order, hence, if their initial timestamps differ, it is a a good idea
  1317. to pass the two inputs through a @var{setpts=PTS-STARTPTS} filter to
  1318. have them begin in the same zero timestamp, as it does the example for
  1319. the @var{movie} filter.
  1320. Follow some examples:
  1321. @example
  1322. # draw the overlay at 10 pixels from the bottom right
  1323. # corner of the main video.
  1324. overlay=x=main_w-overlay_w-10:y=main_h-overlay_h-10
  1325. # insert a transparent PNG logo in the bottom left corner of the input
  1326. avconv -i input -i logo -filter_complex 'overlay=x=10:y=main_h-overlay_h-10' output
  1327. # insert 2 different transparent PNG logos (second logo on bottom
  1328. # right corner):
  1329. avconv -i input -i logo1 -i logo2 -filter_complex
  1330. 'overlay=x=10:y=H-h-10,overlay=x=W-w-10:y=H-h-10' output
  1331. # add a transparent color layer on top of the main video,
  1332. # WxH specifies the size of the main input to the overlay filter
  1333. color=red@.3:WxH [over]; [in][over] overlay [out]
  1334. # mask 10-20 seconds of a video by applying the delogo filter to a section
  1335. avconv -i test.avi -codec:v:0 wmv2 -ar 11025 -b:v 9000k
  1336. -vf '[in]split[split_main][split_delogo];[split_delogo]trim=start=360:end=371,delogo=0:0:640:480[delogoed];[split_main][delogoed]overlay=eof_action=pass[out]'
  1337. masked.avi
  1338. @end example
  1339. You can chain together more overlays but the efficiency of such
  1340. approach is yet to be tested.
  1341. @section pad
  1342. Add paddings to the input image, and places the original input at the
  1343. given coordinates @var{x}, @var{y}.
  1344. This filter accepts the following parameters:
  1345. @table @option
  1346. @item width, height
  1347. Specify the size of the output image with the paddings added. If the
  1348. value for @var{width} or @var{height} is 0, the corresponding input size
  1349. is used for the output.
  1350. The @var{width} expression can reference the value set by the
  1351. @var{height} expression, and vice versa.
  1352. The default value of @var{width} and @var{height} is 0.
  1353. @item x, y
  1354. Specify the offsets where to place the input image in the padded area
  1355. with respect to the top/left border of the output image.
  1356. The @var{x} expression can reference the value set by the @var{y}
  1357. expression, and vice versa.
  1358. The default value of @var{x} and @var{y} is 0.
  1359. @item color
  1360. Specify the color of the padded area, it can be the name of a color
  1361. (case insensitive match) or a 0xRRGGBB[AA] sequence.
  1362. The default value of @var{color} is "black".
  1363. @end table
  1364. The parameters @var{width}, @var{height}, @var{x}, and @var{y} are
  1365. expressions containing the following constants:
  1366. @table @option
  1367. @item E, PI, PHI
  1368. the corresponding mathematical approximated values for e
  1369. (euler number), pi (greek PI), phi (golden ratio)
  1370. @item in_w, in_h
  1371. the input video width and height
  1372. @item iw, ih
  1373. same as @var{in_w} and @var{in_h}
  1374. @item out_w, out_h
  1375. the output width and height, that is the size of the padded area as
  1376. specified by the @var{width} and @var{height} expressions
  1377. @item ow, oh
  1378. same as @var{out_w} and @var{out_h}
  1379. @item x, y
  1380. x and y offsets as specified by the @var{x} and @var{y}
  1381. expressions, or NAN if not yet specified
  1382. @item a
  1383. input display aspect ratio, same as @var{iw} / @var{ih}
  1384. @item hsub, vsub
  1385. horizontal and vertical chroma subsample values. For example for the
  1386. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  1387. @end table
  1388. Some examples follow:
  1389. @example
  1390. # Add paddings with color "violet" to the input video. Output video
  1391. # size is 640x480, the top-left corner of the input video is placed at
  1392. # column 0, row 40.
  1393. pad=width=640:height=480:x=0:y=40:color=violet
  1394. # pad the input to get an output with dimensions increased bt 3/2,
  1395. # and put the input video at the center of the padded area
  1396. pad="3/2*iw:3/2*ih:(ow-iw)/2:(oh-ih)/2"
  1397. # pad the input to get a squared output with size equal to the maximum
  1398. # value between the input width and height, and put the input video at
  1399. # the center of the padded area
  1400. pad="max(iw\,ih):ow:(ow-iw)/2:(oh-ih)/2"
  1401. # pad the input to get a final w/h ratio of 16:9
  1402. pad="ih*16/9:ih:(ow-iw)/2:(oh-ih)/2"
  1403. # double output size and put the input video in the bottom-right
  1404. # corner of the output padded area
  1405. pad="2*iw:2*ih:ow-iw:oh-ih"
  1406. @end example
  1407. @section pixdesctest
  1408. Pixel format descriptor test filter, mainly useful for internal
  1409. testing. The output video should be equal to the input video.
  1410. For example:
  1411. @example
  1412. format=monow, pixdesctest
  1413. @end example
  1414. can be used to test the monowhite pixel format descriptor definition.
  1415. @anchor{scale}
  1416. @section scale
  1417. Scale the input video and/or convert the image format.
  1418. This filter accepts the following options:
  1419. @table @option
  1420. @item w
  1421. Output video width.
  1422. @item h
  1423. Output video height.
  1424. @end table
  1425. The parameters @var{w} and @var{h} are expressions containing
  1426. the following constants:
  1427. @table @option
  1428. @item E, PI, PHI
  1429. the corresponding mathematical approximated values for e
  1430. (euler number), pi (greek PI), phi (golden ratio)
  1431. @item in_w, in_h
  1432. the input width and height
  1433. @item iw, ih
  1434. same as @var{in_w} and @var{in_h}
  1435. @item out_w, out_h
  1436. the output (cropped) width and height
  1437. @item ow, oh
  1438. same as @var{out_w} and @var{out_h}
  1439. @item a
  1440. same as @var{iw} / @var{ih}
  1441. @item sar
  1442. input sample aspect ratio
  1443. @item dar
  1444. input display aspect ratio, it is the same as (@var{iw} / @var{ih}) * @var{sar}
  1445. @item hsub, vsub
  1446. horizontal and vertical chroma subsample values. For example for the
  1447. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  1448. @end table
  1449. If the input image format is different from the format requested by
  1450. the next filter, the scale filter will convert the input to the
  1451. requested format.
  1452. If the value for @var{w} or @var{h} is 0, the respective input
  1453. size is used for the output.
  1454. If the value for @var{w} or @var{h} is -1, the scale filter will use, for the
  1455. respective output size, a value that maintains the aspect ratio of the input
  1456. image.
  1457. The default value of @var{w} and @var{h} is 0.
  1458. Some examples follow:
  1459. @example
  1460. # scale the input video to a size of 200x100.
  1461. scale=w=200:h=100
  1462. # scale the input to 2x
  1463. scale=w=2*iw:h=2*ih
  1464. # the above is the same as
  1465. scale=2*in_w:2*in_h
  1466. # scale the input to half size
  1467. scale=w=iw/2:h=ih/2
  1468. # increase the width, and set the height to the same size
  1469. scale=3/2*iw:ow
  1470. # seek for Greek harmony
  1471. scale=iw:1/PHI*iw
  1472. scale=ih*PHI:ih
  1473. # increase the height, and set the width to 3/2 of the height
  1474. scale=w=3/2*oh:h=3/5*ih
  1475. # increase the size, but make the size a multiple of the chroma
  1476. scale="trunc(3/2*iw/hsub)*hsub:trunc(3/2*ih/vsub)*vsub"
  1477. # increase the width to a maximum of 500 pixels, keep the same input aspect ratio
  1478. scale=w='min(500\, iw*3/2):h=-1'
  1479. @end example
  1480. @section select
  1481. Select frames to pass in output.
  1482. This filter accepts the following options:
  1483. @table @option
  1484. @item expr
  1485. An expression, which is evaluated for each input frame. If the expression is
  1486. evaluated to a non-zero value, the frame is selected and passed to the output,
  1487. otherwise it is discarded.
  1488. @end table
  1489. The expression can contain the following constants:
  1490. @table @option
  1491. @item PI
  1492. Greek PI
  1493. @item PHI
  1494. golden ratio
  1495. @item E
  1496. Euler number
  1497. @item n
  1498. the sequential number of the filtered frame, starting from 0
  1499. @item selected_n
  1500. the sequential number of the selected frame, starting from 0
  1501. @item prev_selected_n
  1502. the sequential number of the last selected frame, NAN if undefined
  1503. @item TB
  1504. timebase of the input timestamps
  1505. @item pts
  1506. the PTS (Presentation TimeStamp) of the filtered video frame,
  1507. expressed in @var{TB} units, NAN if undefined
  1508. @item t
  1509. the PTS (Presentation TimeStamp) of the filtered video frame,
  1510. expressed in seconds, NAN if undefined
  1511. @item prev_pts
  1512. the PTS of the previously filtered video frame, NAN if undefined
  1513. @item prev_selected_pts
  1514. the PTS of the last previously filtered video frame, NAN if undefined
  1515. @item prev_selected_t
  1516. the PTS of the last previously selected video frame, NAN if undefined
  1517. @item start_pts
  1518. the PTS of the first video frame in the video, NAN if undefined
  1519. @item start_t
  1520. the time of the first video frame in the video, NAN if undefined
  1521. @item pict_type
  1522. the type of the filtered frame, can assume one of the following
  1523. values:
  1524. @table @option
  1525. @item I
  1526. @item P
  1527. @item B
  1528. @item S
  1529. @item SI
  1530. @item SP
  1531. @item BI
  1532. @end table
  1533. @item interlace_type
  1534. the frame interlace type, can assume one of the following values:
  1535. @table @option
  1536. @item PROGRESSIVE
  1537. the frame is progressive (not interlaced)
  1538. @item TOPFIRST
  1539. the frame is top-field-first
  1540. @item BOTTOMFIRST
  1541. the frame is bottom-field-first
  1542. @end table
  1543. @item key
  1544. 1 if the filtered frame is a key-frame, 0 otherwise
  1545. @end table
  1546. The default value of the select expression is "1".
  1547. Some examples follow:
  1548. @example
  1549. # select all frames in input
  1550. select
  1551. # the above is the same as:
  1552. select=expr=1
  1553. # skip all frames:
  1554. select=expr=0
  1555. # select only I-frames
  1556. select='expr=eq(pict_type\,I)'
  1557. # select one frame every 100
  1558. select='not(mod(n\,100))'
  1559. # select only frames contained in the 10-20 time interval
  1560. select='gte(t\,10)*lte(t\,20)'
  1561. # select only I frames contained in the 10-20 time interval
  1562. select='gte(t\,10)*lte(t\,20)*eq(pict_type\,I)'
  1563. # select frames with a minimum distance of 10 seconds
  1564. select='isnan(prev_selected_t)+gte(t-prev_selected_t\,10)'
  1565. @end example
  1566. @anchor{setdar}
  1567. @section setdar
  1568. Set the Display Aspect Ratio for the filter output video.
  1569. This is done by changing the specified Sample (aka Pixel) Aspect
  1570. Ratio, according to the following equation:
  1571. @math{DAR = HORIZONTAL_RESOLUTION / VERTICAL_RESOLUTION * SAR}
  1572. Keep in mind that this filter does not modify the pixel dimensions of
  1573. the video frame. Also the display aspect ratio set by this filter may
  1574. be changed by later filters in the filterchain, e.g. in case of
  1575. scaling or if another "setdar" or a "setsar" filter is applied.
  1576. This filter accepts the following options:
  1577. @table @option
  1578. @item dar
  1579. Output display aspect ratio.
  1580. @end table
  1581. The parameter @var{dar} is an expression containing
  1582. the following constants:
  1583. @table @option
  1584. @item E, PI, PHI
  1585. the corresponding mathematical approximated values for e
  1586. (euler number), pi (greek PI), phi (golden ratio)
  1587. @item w, h
  1588. the input width and height
  1589. @item a
  1590. same as @var{w} / @var{h}
  1591. @item sar
  1592. input sample aspect ratio
  1593. @item dar
  1594. input display aspect ratio, it is the same as (@var{w} / @var{h}) * @var{sar}
  1595. @item hsub, vsub
  1596. horizontal and vertical chroma subsample values. For example for the
  1597. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  1598. @end table
  1599. For example to change the display aspect ratio to 16:9, specify:
  1600. @example
  1601. setdar=dar=16/9
  1602. # the above is equivalent to
  1603. setdar=dar=1.77777
  1604. @end example
  1605. See also the @ref{setsar} filter documentation.
  1606. @section setpts
  1607. Change the PTS (presentation timestamp) of the input video frames.
  1608. This filter accepts the following options:
  1609. @table @option
  1610. @item expr
  1611. The expression which is evaluated for each frame to construct its timestamp.
  1612. @end table
  1613. The expression is evaluated through the eval API and can contain the following
  1614. constants:
  1615. @table @option
  1616. @item PTS
  1617. the presentation timestamp in input
  1618. @item PI
  1619. Greek PI
  1620. @item PHI
  1621. golden ratio
  1622. @item E
  1623. Euler number
  1624. @item N
  1625. the count of the input frame, starting from 0.
  1626. @item STARTPTS
  1627. the PTS of the first video frame
  1628. @item INTERLACED
  1629. tell if the current frame is interlaced
  1630. @item PREV_INPTS
  1631. previous input PTS
  1632. @item PREV_OUTPTS
  1633. previous output PTS
  1634. @item RTCTIME
  1635. wallclock (RTC) time in microseconds
  1636. @item RTCSTART
  1637. wallclock (RTC) time at the start of the movie in microseconds
  1638. @item TB
  1639. timebase of the input timestamps
  1640. @end table
  1641. Some examples follow:
  1642. @example
  1643. # start counting PTS from zero
  1644. setpts=expr=PTS-STARTPTS
  1645. # fast motion
  1646. setpts=expr=0.5*PTS
  1647. # slow motion
  1648. setpts=2.0*PTS
  1649. # fixed rate 25 fps
  1650. setpts=N/(25*TB)
  1651. # fixed rate 25 fps with some jitter
  1652. setpts='1/(25*TB) * (N + 0.05 * sin(N*2*PI/25))'
  1653. # generate timestamps from a "live source" and rebase onto the current timebase
  1654. setpts='(RTCTIME - RTCSTART) / (TB * 1000000)"
  1655. @end example
  1656. @anchor{setsar}
  1657. @section setsar
  1658. Set the Sample (aka Pixel) Aspect Ratio for the filter output video.
  1659. Note that as a consequence of the application of this filter, the
  1660. output display aspect ratio will change according to the following
  1661. equation:
  1662. @math{DAR = HORIZONTAL_RESOLUTION / VERTICAL_RESOLUTION * SAR}
  1663. Keep in mind that the sample aspect ratio set by this filter may be
  1664. changed by later filters in the filterchain, e.g. if another "setsar"
  1665. or a "setdar" filter is applied.
  1666. This filter accepts the following options:
  1667. @table @option
  1668. @item sar
  1669. Output sample aspect ratio.
  1670. @end table
  1671. The parameter @var{sar} is an expression containing
  1672. the following constants:
  1673. @table @option
  1674. @item E, PI, PHI
  1675. the corresponding mathematical approximated values for e
  1676. (euler number), pi (greek PI), phi (golden ratio)
  1677. @item w, h
  1678. the input width and height
  1679. @item a
  1680. same as @var{w} / @var{h}
  1681. @item sar
  1682. input sample aspect ratio
  1683. @item dar
  1684. input display aspect ratio, it is the same as (@var{w} / @var{h}) * @var{sar}
  1685. @item hsub, vsub
  1686. horizontal and vertical chroma subsample values. For example for the
  1687. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  1688. @end table
  1689. For example to change the sample aspect ratio to 10:11, specify:
  1690. @example
  1691. setsar=sar=10/11
  1692. @end example
  1693. @section settb
  1694. Set the timebase to use for the output frames timestamps.
  1695. It is mainly useful for testing timebase configuration.
  1696. This filter accepts the following options:
  1697. @table @option
  1698. @item expr
  1699. The expression which is evaluated into the output timebase.
  1700. @end table
  1701. The expression can contain the constants "PI", "E", "PHI", "AVTB" (the
  1702. default timebase), and "intb" (the input timebase).
  1703. The default value for the input is "intb".
  1704. Follow some examples.
  1705. @example
  1706. # set the timebase to 1/25
  1707. settb=expr=1/25
  1708. # set the timebase to 1/10
  1709. settb=expr=0.1
  1710. #set the timebase to 1001/1000
  1711. settb=1+0.001
  1712. #set the timebase to 2*intb
  1713. settb=2*intb
  1714. #set the default timebase value
  1715. settb=AVTB
  1716. @end example
  1717. @section showinfo
  1718. Show a line containing various information for each input video frame.
  1719. The input video is not modified.
  1720. The shown line contains a sequence of key/value pairs of the form
  1721. @var{key}:@var{value}.
  1722. A description of each shown parameter follows:
  1723. @table @option
  1724. @item n
  1725. sequential number of the input frame, starting from 0
  1726. @item pts
  1727. Presentation TimeStamp of the input frame, expressed as a number of
  1728. time base units. The time base unit depends on the filter input pad.
  1729. @item pts_time
  1730. Presentation TimeStamp of the input frame, expressed as a number of
  1731. seconds
  1732. @item pos
  1733. position of the frame in the input stream, -1 if this information in
  1734. unavailable and/or meaningless (for example in case of synthetic video)
  1735. @item fmt
  1736. pixel format name
  1737. @item sar
  1738. sample aspect ratio of the input frame, expressed in the form
  1739. @var{num}/@var{den}
  1740. @item s
  1741. size of the input frame, expressed in the form
  1742. @var{width}x@var{height}
  1743. @item i
  1744. interlaced mode ("P" for "progressive", "T" for top field first, "B"
  1745. for bottom field first)
  1746. @item iskey
  1747. 1 if the frame is a key frame, 0 otherwise
  1748. @item type
  1749. picture type of the input frame ("I" for an I-frame, "P" for a
  1750. P-frame, "B" for a B-frame, "?" for unknown type).
  1751. Check also the documentation of the @code{AVPictureType} enum and of
  1752. the @code{av_get_picture_type_char} function defined in
  1753. @file{libavutil/avutil.h}.
  1754. @item checksum
  1755. Adler-32 checksum of all the planes of the input frame
  1756. @item plane_checksum
  1757. Adler-32 checksum of each plane of the input frame, expressed in the form
  1758. "[@var{c0} @var{c1} @var{c2} @var{c3}]"
  1759. @end table
  1760. @section shuffleplanes
  1761. Reorder and/or duplicate video planes.
  1762. This filter accepts the following options:
  1763. @table @option
  1764. @item map0
  1765. The index of the input plane to be used as the first output plane.
  1766. @item map1
  1767. The index of the input plane to be used as the second output plane.
  1768. @item map2
  1769. The index of the input plane to be used as the third output plane.
  1770. @item map3
  1771. The index of the input plane to be used as the fourth output plane.
  1772. @end table
  1773. The first plane has the index 0. The default is to keep the input unchanged.
  1774. E.g.
  1775. @example
  1776. avconv -i INPUT -vf shuffleplanes=0:2:1:3 OUTPUT
  1777. @end example
  1778. swaps the second and third planes of the input.
  1779. @section split
  1780. Split input video into several identical outputs.
  1781. The filter accepts a single parameter which specifies the number of outputs. If
  1782. unspecified, it defaults to 2.
  1783. For example
  1784. @example
  1785. avconv -i INPUT -filter_complex split=5 OUTPUT
  1786. @end example
  1787. will create 5 copies of the input video.
  1788. @section transpose
  1789. Transpose rows with columns in the input video and optionally flip it.
  1790. This filter accepts the following options:
  1791. @table @option
  1792. @item dir
  1793. The direction of the transpose.
  1794. @end table
  1795. The direction can assume the following values:
  1796. @table @samp
  1797. @item cclock_flip
  1798. Rotate by 90 degrees counterclockwise and vertically flip (default), that is:
  1799. @example
  1800. L.R L.l
  1801. . . -> . .
  1802. l.r R.r
  1803. @end example
  1804. @item clock
  1805. Rotate by 90 degrees clockwise, that is:
  1806. @example
  1807. L.R l.L
  1808. . . -> . .
  1809. l.r r.R
  1810. @end example
  1811. @item cclock
  1812. Rotate by 90 degrees counterclockwise, that is:
  1813. @example
  1814. L.R R.r
  1815. . . -> . .
  1816. l.r L.l
  1817. @end example
  1818. @item clock_flip
  1819. Rotate by 90 degrees clockwise and vertically flip, that is:
  1820. @example
  1821. L.R r.R
  1822. . . -> . .
  1823. l.r l.L
  1824. @end example
  1825. @end table
  1826. @section trim
  1827. Trim the input so that the output contains one continuous subpart of the input.
  1828. This filter accepts the following options:
  1829. @table @option
  1830. @item start
  1831. Timestamp (in seconds) of the start of the kept section. I.e. the frame with the
  1832. timestamp @var{start} will be the first frame in the output.
  1833. @item end
  1834. Timestamp (in seconds) of the first frame that will be dropped. I.e. the frame
  1835. immediately preceding the one with the timestamp @var{end} will be the last
  1836. frame in the output.
  1837. @item start_pts
  1838. Same as @var{start}, except this option sets the start timestamp in timebase
  1839. units instead of seconds.
  1840. @item end_pts
  1841. Same as @var{end}, except this option sets the end timestamp in timebase units
  1842. instead of seconds.
  1843. @item duration
  1844. Maximum duration of the output in seconds.
  1845. @item start_frame
  1846. Number of the first frame that should be passed to output.
  1847. @item end_frame
  1848. Number of the first frame that should be dropped.
  1849. @end table
  1850. Note that the first two sets of the start/end options and the @option{duration}
  1851. option look at the frame timestamp, while the _frame variants simply count the
  1852. frames that pass through the filter. Also note that this filter does not modify
  1853. the timestamps. If you wish that the output timestamps start at zero, insert a
  1854. setpts filter after the trim filter.
  1855. If multiple start or end options are set, this filter tries to be greedy and
  1856. keep all the frames that match at least one of the specified constraints. To keep
  1857. only the part that matches all the constraints at once, chain multiple trim
  1858. filters.
  1859. The defaults are such that all the input is kept. So it is possible to set e.g.
  1860. just the end values to keep everything before the specified time.
  1861. Examples:
  1862. @itemize
  1863. @item
  1864. drop everything except the second minute of input
  1865. @example
  1866. avconv -i INPUT -vf trim=60:120
  1867. @end example
  1868. @item
  1869. keep only the first second
  1870. @example
  1871. avconv -i INPUT -vf trim=duration=1
  1872. @end example
  1873. @end itemize
  1874. @section unsharp
  1875. Sharpen or blur the input video.
  1876. It accepts the following parameters:
  1877. @table @option
  1878. @item luma_msize_x
  1879. Set the luma matrix horizontal size. It can be an integer between 3
  1880. and 13, default value is 5.
  1881. @item luma_msize_y
  1882. Set the luma matrix vertical size. It can be an integer between 3
  1883. and 13, default value is 5.
  1884. @item luma_amount
  1885. Set the luma effect strength. It can be a float number between -2.0
  1886. and 5.0, default value is 1.0.
  1887. @item chroma_msize_x
  1888. Set the chroma matrix horizontal size. It can be an integer between 3
  1889. and 13, default value is 5.
  1890. @item chroma_msize_y
  1891. Set the chroma matrix vertical size. It can be an integer between 3
  1892. and 13, default value is 5.
  1893. @item chroma_amount
  1894. Set the chroma effect strength. It can be a float number between -2.0
  1895. and 5.0, default value is 0.0.
  1896. @end table
  1897. Negative values for the amount will blur the input video, while positive
  1898. values will sharpen. All parameters are optional and default to the
  1899. equivalent of the string '5:5:1.0:5:5:0.0'.
  1900. @example
  1901. # Strong luma sharpen effect parameters
  1902. unsharp=luma_msize_x=7:luma_msize_y=7:luma_amount=2.5
  1903. # Strong blur of both luma and chroma parameters
  1904. unsharp=7:7:-2:7:7:-2
  1905. # Use the default values with @command{avconv}
  1906. ./avconv -i in.avi -vf "unsharp" out.mp4
  1907. @end example
  1908. @section vflip
  1909. Flip the input video vertically.
  1910. @example
  1911. ./avconv -i in.avi -vf "vflip" out.avi
  1912. @end example
  1913. @section yadif
  1914. Deinterlace the input video ("yadif" means "yet another deinterlacing
  1915. filter").
  1916. This filter accepts the following options:
  1917. @table @option
  1918. @item mode
  1919. The interlacing mode to adopt, accepts one of the following values:
  1920. @table @option
  1921. @item 0
  1922. output 1 frame for each frame
  1923. @item 1
  1924. output 1 frame for each field
  1925. @item 2
  1926. like 0 but skips spatial interlacing check
  1927. @item 3
  1928. like 1 but skips spatial interlacing check
  1929. @end table
  1930. Default value is 0.
  1931. @item parity
  1932. The picture field parity assumed for the input interlaced video, accepts one of
  1933. the following values:
  1934. @table @option
  1935. @item 0
  1936. assume top field first
  1937. @item 1
  1938. assume bottom field first
  1939. @item -1
  1940. enable automatic detection
  1941. @end table
  1942. Default value is -1.
  1943. If interlacing is unknown or decoder does not export this information,
  1944. top field first will be assumed.
  1945. @item auto
  1946. Whether deinterlacer should trust the interlaced flag and only deinterlace
  1947. frames marked as interlaced
  1948. @table @option
  1949. @item 0
  1950. deinterlace all frames
  1951. @item 1
  1952. only deinterlace frames marked as interlaced
  1953. @end table
  1954. Default value is 0.
  1955. @end table
  1956. @c man end VIDEO FILTERS
  1957. @chapter Video Sources
  1958. @c man begin VIDEO SOURCES
  1959. Below is a description of the currently available video sources.
  1960. @section buffer
  1961. Buffer video frames, and make them available to the filter chain.
  1962. This source is mainly intended for a programmatic use, in particular
  1963. through the interface defined in @file{libavfilter/vsrc_buffer.h}.
  1964. This filter accepts the following parameters:
  1965. @table @option
  1966. @item width
  1967. Input video width.
  1968. @item height
  1969. Input video height.
  1970. @item pix_fmt
  1971. Name of the input video pixel format.
  1972. @item time_base
  1973. The time base used for input timestamps.
  1974. @item sar
  1975. Sample (pixel) aspect ratio of the input video.
  1976. @end table
  1977. For example:
  1978. @example
  1979. buffer=width=320:height=240:pix_fmt=yuv410p:time_base=1/24:sar=1
  1980. @end example
  1981. will instruct the source to accept video frames with size 320x240 and
  1982. with format "yuv410p", assuming 1/24 as the timestamps timebase and
  1983. square pixels (1:1 sample aspect ratio).
  1984. @section color
  1985. Provide an uniformly colored input.
  1986. It accepts the following parameters:
  1987. @table @option
  1988. @item color
  1989. Specify the color of the source. It can be the name of a color (case
  1990. insensitive match) or a 0xRRGGBB[AA] sequence, possibly followed by an
  1991. alpha specifier. The default value is "black".
  1992. @item size
  1993. Specify the size of the sourced video, it may be a string of the form
  1994. @var{width}x@var{height}, or the name of a size abbreviation. The
  1995. default value is "320x240".
  1996. @item framerate
  1997. Specify the frame rate of the sourced video, as the number of frames
  1998. generated per second. It has to be a string in the format
  1999. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float
  2000. number or a valid video frame rate abbreviation. The default value is
  2001. "25".
  2002. @end table
  2003. For example the following graph description will generate a red source
  2004. with an opacity of 0.2, with size "qcif" and a frame rate of 10
  2005. frames per second, which will be overlayed over the source connected
  2006. to the pad with identifier "in".
  2007. @example
  2008. "color=red@@0.2:qcif:10 [color]; [in][color] overlay [out]"
  2009. @end example
  2010. @section movie
  2011. Read a video stream from a movie container.
  2012. Note that this source is a hack that bypasses the standard input path. It can be
  2013. useful in applications that do not support arbitrary filter graphs, but its use
  2014. is discouraged in those that do. Specifically in @command{avconv} this filter
  2015. should never be used, the @option{-filter_complex} option fully replaces it.
  2016. This filter accepts the following options:
  2017. @table @option
  2018. @item filename
  2019. The name of the resource to read (not necessarily a file but also a device or a
  2020. stream accessed through some protocol).
  2021. @item format_name, f
  2022. Specifies the format assumed for the movie to read, and can be either
  2023. the name of a container or an input device. If not specified the
  2024. format is guessed from @var{movie_name} or by probing.
  2025. @item seek_point, sp
  2026. Specifies the seek point in seconds, the frames will be output
  2027. starting from this seek point, the parameter is evaluated with
  2028. @code{av_strtod} so the numerical value may be suffixed by an IS
  2029. postfix. Default value is "0".
  2030. @item stream_index, si
  2031. Specifies the index of the video stream to read. If the value is -1,
  2032. the best suited video stream will be automatically selected. Default
  2033. value is "-1".
  2034. @end table
  2035. This filter allows to overlay a second video on top of main input of
  2036. a filtergraph as shown in this graph:
  2037. @example
  2038. input -----------> deltapts0 --> overlay --> output
  2039. ^
  2040. |
  2041. movie --> scale--> deltapts1 -------+
  2042. @end example
  2043. Some examples follow:
  2044. @example
  2045. # skip 3.2 seconds from the start of the avi file in.avi, and overlay it
  2046. # on top of the input labelled as "in".
  2047. movie=in.avi:seek_point=3.2, scale=180:-1, setpts=PTS-STARTPTS [movie];
  2048. [in] setpts=PTS-STARTPTS, [movie] overlay=16:16 [out]
  2049. # read from a video4linux2 device, and overlay it on top of the input
  2050. # labelled as "in"
  2051. movie=/dev/video0:f=video4linux2, scale=180:-1, setpts=PTS-STARTPTS [movie];
  2052. [in] setpts=PTS-STARTPTS, [movie] overlay=16:16 [out]
  2053. @end example
  2054. @section nullsrc
  2055. Null video source, never return images. It is mainly useful as a
  2056. template and to be employed in analysis / debugging tools.
  2057. It accepts as optional parameter a string of the form
  2058. @var{width}:@var{height}:@var{timebase}.
  2059. @var{width} and @var{height} specify the size of the configured
  2060. source. The default values of @var{width} and @var{height} are
  2061. respectively 352 and 288 (corresponding to the CIF size format).
  2062. @var{timebase} specifies an arithmetic expression representing a
  2063. timebase. The expression can contain the constants "PI", "E", "PHI",
  2064. "AVTB" (the default timebase), and defaults to the value "AVTB".
  2065. @section frei0r_src
  2066. Provide a frei0r source.
  2067. To enable compilation of this filter you need to install the frei0r
  2068. header and configure Libav with --enable-frei0r.
  2069. This source accepts the following options:
  2070. @table @option
  2071. @item size
  2072. The size of the video to generate, may be a string of the form
  2073. @var{width}x@var{height} or a frame size abbreviation.
  2074. @item framerate
  2075. Framerate of the generated video, may be a string of the form
  2076. @var{num}/@var{den} or a frame rate abbreviation.
  2077. @item filter_name
  2078. The name to the frei0r source to load. For more information regarding frei0r and
  2079. how to set the parameters read the section @ref{frei0r} in the description of
  2080. the video filters.
  2081. @item filter_params
  2082. A '|'-separated list of parameters to pass to the frei0r source.
  2083. @end table
  2084. Some examples follow:
  2085. @example
  2086. # generate a frei0r partik0l source with size 200x200 and framerate 10
  2087. # which is overlayed on the overlay filter main input
  2088. frei0r_src=size=200x200:framerate=10:filter_name=partik0l:filter_params=1234 [overlay]; [in][overlay] overlay
  2089. @end example
  2090. @section rgbtestsrc, testsrc
  2091. The @code{rgbtestsrc} source generates an RGB test pattern useful for
  2092. detecting RGB vs BGR issues. You should see a red, green and blue
  2093. stripe from top to bottom.
  2094. The @code{testsrc} source generates a test video pattern, showing a
  2095. color pattern, a scrolling gradient and a timestamp. This is mainly
  2096. intended for testing purposes.
  2097. The sources accept the following options:
  2098. @table @option
  2099. @item size, s
  2100. Specify the size of the sourced video, it may be a string of the form
  2101. @var{width}x@var{height}, or the name of a size abbreviation. The
  2102. default value is "320x240".
  2103. @item rate, r
  2104. Specify the frame rate of the sourced video, as the number of frames
  2105. generated per second. It has to be a string in the format
  2106. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float
  2107. number or a valid video frame rate abbreviation. The default value is
  2108. "25".
  2109. @item sar
  2110. Set the sample aspect ratio of the sourced video.
  2111. @item duration
  2112. Set the video duration of the sourced video. The accepted syntax is:
  2113. @example
  2114. [-]HH[:MM[:SS[.m...]]]
  2115. [-]S+[.m...]
  2116. @end example
  2117. See also the function @code{av_parse_time()}.
  2118. If not specified, or the expressed duration is negative, the video is
  2119. supposed to be generated forever.
  2120. @end table
  2121. For example the following:
  2122. @example
  2123. testsrc=duration=5.3:size=qcif:rate=10
  2124. @end example
  2125. will generate a video with a duration of 5.3 seconds, with size
  2126. 176x144 and a framerate of 10 frames per second.
  2127. @c man end VIDEO SOURCES
  2128. @chapter Video Sinks
  2129. @c man begin VIDEO SINKS
  2130. Below is a description of the currently available video sinks.
  2131. @section buffersink
  2132. Buffer video frames, and make them available to the end of the filter
  2133. graph.
  2134. This sink is intended for a programmatic use through the interface defined in
  2135. @file{libavfilter/buffersink.h}.
  2136. @section nullsink
  2137. Null video sink, do absolutely nothing with the input video. It is
  2138. mainly useful as a template and to be employed in analysis / debugging
  2139. tools.
  2140. @c man end VIDEO SINKS