You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

3486 lines
136KB

  1. /*
  2. * HEVC video Decoder
  3. *
  4. * Copyright (C) 2012 - 2013 Guillaume Martres
  5. * Copyright (C) 2012 - 2013 Mickael Raulet
  6. * Copyright (C) 2012 - 2013 Gildas Cocherel
  7. * Copyright (C) 2012 - 2013 Wassim Hamidouche
  8. *
  9. * This file is part of FFmpeg.
  10. *
  11. * FFmpeg is free software; you can redistribute it and/or
  12. * modify it under the terms of the GNU Lesser General Public
  13. * License as published by the Free Software Foundation; either
  14. * version 2.1 of the License, or (at your option) any later version.
  15. *
  16. * FFmpeg is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  19. * Lesser General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU Lesser General Public
  22. * License along with FFmpeg; if not, write to the Free Software
  23. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  24. */
  25. #include "libavutil/attributes.h"
  26. #include "libavutil/common.h"
  27. #include "libavutil/display.h"
  28. #include "libavutil/internal.h"
  29. #include "libavutil/mastering_display_metadata.h"
  30. #include "libavutil/md5.h"
  31. #include "libavutil/opt.h"
  32. #include "libavutil/pixdesc.h"
  33. #include "libavutil/stereo3d.h"
  34. #include "bswapdsp.h"
  35. #include "bytestream.h"
  36. #include "cabac_functions.h"
  37. #include "golomb.h"
  38. #include "hevc.h"
  39. #include "hevc_data.h"
  40. #include "hevc_parse.h"
  41. #include "hevcdec.h"
  42. #include "profiles.h"
  43. const uint8_t ff_hevc_pel_weight[65] = { [2] = 0, [4] = 1, [6] = 2, [8] = 3, [12] = 4, [16] = 5, [24] = 6, [32] = 7, [48] = 8, [64] = 9 };
  44. /**
  45. * NOTE: Each function hls_foo correspond to the function foo in the
  46. * specification (HLS stands for High Level Syntax).
  47. */
  48. /**
  49. * Section 5.7
  50. */
  51. /* free everything allocated by pic_arrays_init() */
  52. static void pic_arrays_free(HEVCContext *s)
  53. {
  54. av_freep(&s->sao);
  55. av_freep(&s->deblock);
  56. av_freep(&s->skip_flag);
  57. av_freep(&s->tab_ct_depth);
  58. av_freep(&s->tab_ipm);
  59. av_freep(&s->cbf_luma);
  60. av_freep(&s->is_pcm);
  61. av_freep(&s->qp_y_tab);
  62. av_freep(&s->tab_slice_address);
  63. av_freep(&s->filter_slice_edges);
  64. av_freep(&s->horizontal_bs);
  65. av_freep(&s->vertical_bs);
  66. av_freep(&s->sh.entry_point_offset);
  67. av_freep(&s->sh.size);
  68. av_freep(&s->sh.offset);
  69. av_buffer_pool_uninit(&s->tab_mvf_pool);
  70. av_buffer_pool_uninit(&s->rpl_tab_pool);
  71. }
  72. /* allocate arrays that depend on frame dimensions */
  73. static int pic_arrays_init(HEVCContext *s, const HEVCSPS *sps)
  74. {
  75. int log2_min_cb_size = sps->log2_min_cb_size;
  76. int width = sps->width;
  77. int height = sps->height;
  78. int pic_size_in_ctb = ((width >> log2_min_cb_size) + 1) *
  79. ((height >> log2_min_cb_size) + 1);
  80. int ctb_count = sps->ctb_width * sps->ctb_height;
  81. int min_pu_size = sps->min_pu_width * sps->min_pu_height;
  82. s->bs_width = (width >> 2) + 1;
  83. s->bs_height = (height >> 2) + 1;
  84. s->sao = av_mallocz_array(ctb_count, sizeof(*s->sao));
  85. s->deblock = av_mallocz_array(ctb_count, sizeof(*s->deblock));
  86. if (!s->sao || !s->deblock)
  87. goto fail;
  88. s->skip_flag = av_malloc_array(sps->min_cb_height, sps->min_cb_width);
  89. s->tab_ct_depth = av_malloc_array(sps->min_cb_height, sps->min_cb_width);
  90. if (!s->skip_flag || !s->tab_ct_depth)
  91. goto fail;
  92. s->cbf_luma = av_malloc_array(sps->min_tb_width, sps->min_tb_height);
  93. s->tab_ipm = av_mallocz(min_pu_size);
  94. s->is_pcm = av_malloc_array(sps->min_pu_width + 1, sps->min_pu_height + 1);
  95. if (!s->tab_ipm || !s->cbf_luma || !s->is_pcm)
  96. goto fail;
  97. s->filter_slice_edges = av_mallocz(ctb_count);
  98. s->tab_slice_address = av_malloc_array(pic_size_in_ctb,
  99. sizeof(*s->tab_slice_address));
  100. s->qp_y_tab = av_malloc_array(pic_size_in_ctb,
  101. sizeof(*s->qp_y_tab));
  102. if (!s->qp_y_tab || !s->filter_slice_edges || !s->tab_slice_address)
  103. goto fail;
  104. s->horizontal_bs = av_mallocz_array(s->bs_width, s->bs_height);
  105. s->vertical_bs = av_mallocz_array(s->bs_width, s->bs_height);
  106. if (!s->horizontal_bs || !s->vertical_bs)
  107. goto fail;
  108. s->tab_mvf_pool = av_buffer_pool_init(min_pu_size * sizeof(MvField),
  109. av_buffer_allocz);
  110. s->rpl_tab_pool = av_buffer_pool_init(ctb_count * sizeof(RefPicListTab),
  111. av_buffer_allocz);
  112. if (!s->tab_mvf_pool || !s->rpl_tab_pool)
  113. goto fail;
  114. return 0;
  115. fail:
  116. pic_arrays_free(s);
  117. return AVERROR(ENOMEM);
  118. }
  119. static int pred_weight_table(HEVCContext *s, GetBitContext *gb)
  120. {
  121. int i = 0;
  122. int j = 0;
  123. uint8_t luma_weight_l0_flag[16];
  124. uint8_t chroma_weight_l0_flag[16];
  125. uint8_t luma_weight_l1_flag[16];
  126. uint8_t chroma_weight_l1_flag[16];
  127. int luma_log2_weight_denom;
  128. luma_log2_weight_denom = get_ue_golomb_long(gb);
  129. if (luma_log2_weight_denom < 0 || luma_log2_weight_denom > 7) {
  130. av_log(s->avctx, AV_LOG_ERROR, "luma_log2_weight_denom %d is invalid\n", luma_log2_weight_denom);
  131. return AVERROR_INVALIDDATA;
  132. }
  133. s->sh.luma_log2_weight_denom = av_clip_uintp2(luma_log2_weight_denom, 3);
  134. if (s->ps.sps->chroma_format_idc != 0) {
  135. int64_t chroma_log2_weight_denom = luma_log2_weight_denom + (int64_t)get_se_golomb(gb);
  136. if (chroma_log2_weight_denom < 0 || chroma_log2_weight_denom > 7) {
  137. av_log(s->avctx, AV_LOG_ERROR, "chroma_log2_weight_denom %"PRId64" is invalid\n", chroma_log2_weight_denom);
  138. return AVERROR_INVALIDDATA;
  139. }
  140. s->sh.chroma_log2_weight_denom = chroma_log2_weight_denom;
  141. }
  142. for (i = 0; i < s->sh.nb_refs[L0]; i++) {
  143. luma_weight_l0_flag[i] = get_bits1(gb);
  144. if (!luma_weight_l0_flag[i]) {
  145. s->sh.luma_weight_l0[i] = 1 << s->sh.luma_log2_weight_denom;
  146. s->sh.luma_offset_l0[i] = 0;
  147. }
  148. }
  149. if (s->ps.sps->chroma_format_idc != 0) {
  150. for (i = 0; i < s->sh.nb_refs[L0]; i++)
  151. chroma_weight_l0_flag[i] = get_bits1(gb);
  152. } else {
  153. for (i = 0; i < s->sh.nb_refs[L0]; i++)
  154. chroma_weight_l0_flag[i] = 0;
  155. }
  156. for (i = 0; i < s->sh.nb_refs[L0]; i++) {
  157. if (luma_weight_l0_flag[i]) {
  158. int delta_luma_weight_l0 = get_se_golomb(gb);
  159. if ((int8_t)delta_luma_weight_l0 != delta_luma_weight_l0)
  160. return AVERROR_INVALIDDATA;
  161. s->sh.luma_weight_l0[i] = (1 << s->sh.luma_log2_weight_denom) + delta_luma_weight_l0;
  162. s->sh.luma_offset_l0[i] = get_se_golomb(gb);
  163. }
  164. if (chroma_weight_l0_flag[i]) {
  165. for (j = 0; j < 2; j++) {
  166. int delta_chroma_weight_l0 = get_se_golomb(gb);
  167. int delta_chroma_offset_l0 = get_se_golomb(gb);
  168. if ( (int8_t)delta_chroma_weight_l0 != delta_chroma_weight_l0
  169. || delta_chroma_offset_l0 < -(1<<17) || delta_chroma_offset_l0 > (1<<17)) {
  170. return AVERROR_INVALIDDATA;
  171. }
  172. s->sh.chroma_weight_l0[i][j] = (1 << s->sh.chroma_log2_weight_denom) + delta_chroma_weight_l0;
  173. s->sh.chroma_offset_l0[i][j] = av_clip((delta_chroma_offset_l0 - ((128 * s->sh.chroma_weight_l0[i][j])
  174. >> s->sh.chroma_log2_weight_denom) + 128), -128, 127);
  175. }
  176. } else {
  177. s->sh.chroma_weight_l0[i][0] = 1 << s->sh.chroma_log2_weight_denom;
  178. s->sh.chroma_offset_l0[i][0] = 0;
  179. s->sh.chroma_weight_l0[i][1] = 1 << s->sh.chroma_log2_weight_denom;
  180. s->sh.chroma_offset_l0[i][1] = 0;
  181. }
  182. }
  183. if (s->sh.slice_type == HEVC_SLICE_B) {
  184. for (i = 0; i < s->sh.nb_refs[L1]; i++) {
  185. luma_weight_l1_flag[i] = get_bits1(gb);
  186. if (!luma_weight_l1_flag[i]) {
  187. s->sh.luma_weight_l1[i] = 1 << s->sh.luma_log2_weight_denom;
  188. s->sh.luma_offset_l1[i] = 0;
  189. }
  190. }
  191. if (s->ps.sps->chroma_format_idc != 0) {
  192. for (i = 0; i < s->sh.nb_refs[L1]; i++)
  193. chroma_weight_l1_flag[i] = get_bits1(gb);
  194. } else {
  195. for (i = 0; i < s->sh.nb_refs[L1]; i++)
  196. chroma_weight_l1_flag[i] = 0;
  197. }
  198. for (i = 0; i < s->sh.nb_refs[L1]; i++) {
  199. if (luma_weight_l1_flag[i]) {
  200. int delta_luma_weight_l1 = get_se_golomb(gb);
  201. if ((int8_t)delta_luma_weight_l1 != delta_luma_weight_l1)
  202. return AVERROR_INVALIDDATA;
  203. s->sh.luma_weight_l1[i] = (1 << s->sh.luma_log2_weight_denom) + delta_luma_weight_l1;
  204. s->sh.luma_offset_l1[i] = get_se_golomb(gb);
  205. }
  206. if (chroma_weight_l1_flag[i]) {
  207. for (j = 0; j < 2; j++) {
  208. int delta_chroma_weight_l1 = get_se_golomb(gb);
  209. int delta_chroma_offset_l1 = get_se_golomb(gb);
  210. if ( (int8_t)delta_chroma_weight_l1 != delta_chroma_weight_l1
  211. || delta_chroma_offset_l1 < -(1<<17) || delta_chroma_offset_l1 > (1<<17)) {
  212. return AVERROR_INVALIDDATA;
  213. }
  214. s->sh.chroma_weight_l1[i][j] = (1 << s->sh.chroma_log2_weight_denom) + delta_chroma_weight_l1;
  215. s->sh.chroma_offset_l1[i][j] = av_clip((delta_chroma_offset_l1 - ((128 * s->sh.chroma_weight_l1[i][j])
  216. >> s->sh.chroma_log2_weight_denom) + 128), -128, 127);
  217. }
  218. } else {
  219. s->sh.chroma_weight_l1[i][0] = 1 << s->sh.chroma_log2_weight_denom;
  220. s->sh.chroma_offset_l1[i][0] = 0;
  221. s->sh.chroma_weight_l1[i][1] = 1 << s->sh.chroma_log2_weight_denom;
  222. s->sh.chroma_offset_l1[i][1] = 0;
  223. }
  224. }
  225. }
  226. return 0;
  227. }
  228. static int decode_lt_rps(HEVCContext *s, LongTermRPS *rps, GetBitContext *gb)
  229. {
  230. const HEVCSPS *sps = s->ps.sps;
  231. int max_poc_lsb = 1 << sps->log2_max_poc_lsb;
  232. int prev_delta_msb = 0;
  233. unsigned int nb_sps = 0, nb_sh;
  234. int i;
  235. rps->nb_refs = 0;
  236. if (!sps->long_term_ref_pics_present_flag)
  237. return 0;
  238. if (sps->num_long_term_ref_pics_sps > 0)
  239. nb_sps = get_ue_golomb_long(gb);
  240. nb_sh = get_ue_golomb_long(gb);
  241. if (nb_sps > sps->num_long_term_ref_pics_sps)
  242. return AVERROR_INVALIDDATA;
  243. if (nb_sh + (uint64_t)nb_sps > FF_ARRAY_ELEMS(rps->poc))
  244. return AVERROR_INVALIDDATA;
  245. rps->nb_refs = nb_sh + nb_sps;
  246. for (i = 0; i < rps->nb_refs; i++) {
  247. uint8_t delta_poc_msb_present;
  248. if (i < nb_sps) {
  249. uint8_t lt_idx_sps = 0;
  250. if (sps->num_long_term_ref_pics_sps > 1)
  251. lt_idx_sps = get_bits(gb, av_ceil_log2(sps->num_long_term_ref_pics_sps));
  252. rps->poc[i] = sps->lt_ref_pic_poc_lsb_sps[lt_idx_sps];
  253. rps->used[i] = sps->used_by_curr_pic_lt_sps_flag[lt_idx_sps];
  254. } else {
  255. rps->poc[i] = get_bits(gb, sps->log2_max_poc_lsb);
  256. rps->used[i] = get_bits1(gb);
  257. }
  258. delta_poc_msb_present = get_bits1(gb);
  259. if (delta_poc_msb_present) {
  260. int64_t delta = get_ue_golomb_long(gb);
  261. int64_t poc;
  262. if (i && i != nb_sps)
  263. delta += prev_delta_msb;
  264. poc = rps->poc[i] + s->poc - delta * max_poc_lsb - s->sh.pic_order_cnt_lsb;
  265. if (poc != (int32_t)poc)
  266. return AVERROR_INVALIDDATA;
  267. rps->poc[i] = poc;
  268. prev_delta_msb = delta;
  269. }
  270. }
  271. return 0;
  272. }
  273. static void export_stream_params(AVCodecContext *avctx, const HEVCParamSets *ps,
  274. const HEVCSPS *sps)
  275. {
  276. const HEVCVPS *vps = (const HEVCVPS*)ps->vps_list[sps->vps_id]->data;
  277. const HEVCWindow *ow = &sps->output_window;
  278. unsigned int num = 0, den = 0;
  279. avctx->pix_fmt = sps->pix_fmt;
  280. avctx->coded_width = sps->width;
  281. avctx->coded_height = sps->height;
  282. avctx->width = sps->width - ow->left_offset - ow->right_offset;
  283. avctx->height = sps->height - ow->top_offset - ow->bottom_offset;
  284. avctx->has_b_frames = sps->temporal_layer[sps->max_sub_layers - 1].num_reorder_pics;
  285. avctx->profile = sps->ptl.general_ptl.profile_idc;
  286. avctx->level = sps->ptl.general_ptl.level_idc;
  287. ff_set_sar(avctx, sps->vui.sar);
  288. if (sps->vui.video_signal_type_present_flag)
  289. avctx->color_range = sps->vui.video_full_range_flag ? AVCOL_RANGE_JPEG
  290. : AVCOL_RANGE_MPEG;
  291. else
  292. avctx->color_range = AVCOL_RANGE_MPEG;
  293. if (sps->vui.colour_description_present_flag) {
  294. avctx->color_primaries = sps->vui.colour_primaries;
  295. avctx->color_trc = sps->vui.transfer_characteristic;
  296. avctx->colorspace = sps->vui.matrix_coeffs;
  297. } else {
  298. avctx->color_primaries = AVCOL_PRI_UNSPECIFIED;
  299. avctx->color_trc = AVCOL_TRC_UNSPECIFIED;
  300. avctx->colorspace = AVCOL_SPC_UNSPECIFIED;
  301. }
  302. if (vps->vps_timing_info_present_flag) {
  303. num = vps->vps_num_units_in_tick;
  304. den = vps->vps_time_scale;
  305. } else if (sps->vui.vui_timing_info_present_flag) {
  306. num = sps->vui.vui_num_units_in_tick;
  307. den = sps->vui.vui_time_scale;
  308. }
  309. if (num != 0 && den != 0)
  310. av_reduce(&avctx->framerate.den, &avctx->framerate.num,
  311. num, den, 1 << 30);
  312. }
  313. static enum AVPixelFormat get_format(HEVCContext *s, const HEVCSPS *sps)
  314. {
  315. #define HWACCEL_MAX (CONFIG_HEVC_DXVA2_HWACCEL + \
  316. CONFIG_HEVC_D3D11VA_HWACCEL * 2 + \
  317. CONFIG_HEVC_VAAPI_HWACCEL + \
  318. CONFIG_HEVC_VIDEOTOOLBOX_HWACCEL + \
  319. CONFIG_HEVC_VDPAU_HWACCEL)
  320. enum AVPixelFormat pix_fmts[HWACCEL_MAX + 2], *fmt = pix_fmts;
  321. switch (sps->pix_fmt) {
  322. case AV_PIX_FMT_YUV420P:
  323. case AV_PIX_FMT_YUVJ420P:
  324. #if CONFIG_HEVC_DXVA2_HWACCEL
  325. *fmt++ = AV_PIX_FMT_DXVA2_VLD;
  326. #endif
  327. #if CONFIG_HEVC_D3D11VA_HWACCEL
  328. *fmt++ = AV_PIX_FMT_D3D11VA_VLD;
  329. *fmt++ = AV_PIX_FMT_D3D11;
  330. #endif
  331. #if CONFIG_HEVC_VAAPI_HWACCEL
  332. *fmt++ = AV_PIX_FMT_VAAPI;
  333. #endif
  334. #if CONFIG_HEVC_VDPAU_HWACCEL
  335. *fmt++ = AV_PIX_FMT_VDPAU;
  336. #endif
  337. #if CONFIG_HEVC_VIDEOTOOLBOX_HWACCEL
  338. *fmt++ = AV_PIX_FMT_VIDEOTOOLBOX;
  339. #endif
  340. break;
  341. case AV_PIX_FMT_YUV420P10:
  342. #if CONFIG_HEVC_DXVA2_HWACCEL
  343. *fmt++ = AV_PIX_FMT_DXVA2_VLD;
  344. #endif
  345. #if CONFIG_HEVC_D3D11VA_HWACCEL
  346. *fmt++ = AV_PIX_FMT_D3D11VA_VLD;
  347. *fmt++ = AV_PIX_FMT_D3D11;
  348. #endif
  349. #if CONFIG_HEVC_VAAPI_HWACCEL
  350. *fmt++ = AV_PIX_FMT_VAAPI;
  351. #endif
  352. #if CONFIG_HEVC_VIDEOTOOLBOX_HWACCEL
  353. *fmt++ = AV_PIX_FMT_VIDEOTOOLBOX;
  354. #endif
  355. break;
  356. }
  357. *fmt++ = sps->pix_fmt;
  358. *fmt = AV_PIX_FMT_NONE;
  359. return ff_thread_get_format(s->avctx, pix_fmts);
  360. }
  361. static int set_sps(HEVCContext *s, const HEVCSPS *sps,
  362. enum AVPixelFormat pix_fmt)
  363. {
  364. int ret, i;
  365. pic_arrays_free(s);
  366. s->ps.sps = NULL;
  367. s->ps.vps = NULL;
  368. if (!sps)
  369. return 0;
  370. ret = pic_arrays_init(s, sps);
  371. if (ret < 0)
  372. goto fail;
  373. export_stream_params(s->avctx, &s->ps, sps);
  374. s->avctx->pix_fmt = pix_fmt;
  375. ff_hevc_pred_init(&s->hpc, sps->bit_depth);
  376. ff_hevc_dsp_init (&s->hevcdsp, sps->bit_depth);
  377. ff_videodsp_init (&s->vdsp, sps->bit_depth);
  378. for (i = 0; i < 3; i++) {
  379. av_freep(&s->sao_pixel_buffer_h[i]);
  380. av_freep(&s->sao_pixel_buffer_v[i]);
  381. }
  382. if (sps->sao_enabled && !s->avctx->hwaccel) {
  383. int c_count = (sps->chroma_format_idc != 0) ? 3 : 1;
  384. int c_idx;
  385. for(c_idx = 0; c_idx < c_count; c_idx++) {
  386. int w = sps->width >> sps->hshift[c_idx];
  387. int h = sps->height >> sps->vshift[c_idx];
  388. s->sao_pixel_buffer_h[c_idx] =
  389. av_malloc((w * 2 * sps->ctb_height) <<
  390. sps->pixel_shift);
  391. s->sao_pixel_buffer_v[c_idx] =
  392. av_malloc((h * 2 * sps->ctb_width) <<
  393. sps->pixel_shift);
  394. }
  395. }
  396. s->ps.sps = sps;
  397. s->ps.vps = (HEVCVPS*) s->ps.vps_list[s->ps.sps->vps_id]->data;
  398. return 0;
  399. fail:
  400. pic_arrays_free(s);
  401. s->ps.sps = NULL;
  402. return ret;
  403. }
  404. static int hls_slice_header(HEVCContext *s)
  405. {
  406. GetBitContext *gb = &s->HEVClc->gb;
  407. SliceHeader *sh = &s->sh;
  408. int i, ret;
  409. // Coded parameters
  410. sh->first_slice_in_pic_flag = get_bits1(gb);
  411. if (s->ref && sh->first_slice_in_pic_flag) {
  412. av_log(s->avctx, AV_LOG_ERROR, "Two slices reporting being the first in the same frame.\n");
  413. return 1; // This slice will be skiped later, do not corrupt state
  414. }
  415. if ((IS_IDR(s) || IS_BLA(s)) && sh->first_slice_in_pic_flag) {
  416. s->seq_decode = (s->seq_decode + 1) & 0xff;
  417. s->max_ra = INT_MAX;
  418. if (IS_IDR(s))
  419. ff_hevc_clear_refs(s);
  420. }
  421. sh->no_output_of_prior_pics_flag = 0;
  422. if (IS_IRAP(s))
  423. sh->no_output_of_prior_pics_flag = get_bits1(gb);
  424. sh->pps_id = get_ue_golomb_long(gb);
  425. if (sh->pps_id >= HEVC_MAX_PPS_COUNT || !s->ps.pps_list[sh->pps_id]) {
  426. av_log(s->avctx, AV_LOG_ERROR, "PPS id out of range: %d\n", sh->pps_id);
  427. return AVERROR_INVALIDDATA;
  428. }
  429. if (!sh->first_slice_in_pic_flag &&
  430. s->ps.pps != (HEVCPPS*)s->ps.pps_list[sh->pps_id]->data) {
  431. av_log(s->avctx, AV_LOG_ERROR, "PPS changed between slices.\n");
  432. return AVERROR_INVALIDDATA;
  433. }
  434. s->ps.pps = (HEVCPPS*)s->ps.pps_list[sh->pps_id]->data;
  435. if (s->nal_unit_type == HEVC_NAL_CRA_NUT && s->last_eos == 1)
  436. sh->no_output_of_prior_pics_flag = 1;
  437. if (s->ps.sps != (HEVCSPS*)s->ps.sps_list[s->ps.pps->sps_id]->data) {
  438. const HEVCSPS *sps = (HEVCSPS*)s->ps.sps_list[s->ps.pps->sps_id]->data;
  439. const HEVCSPS *last_sps = s->ps.sps;
  440. enum AVPixelFormat pix_fmt;
  441. if (last_sps && IS_IRAP(s) && s->nal_unit_type != HEVC_NAL_CRA_NUT) {
  442. if (sps->width != last_sps->width || sps->height != last_sps->height ||
  443. sps->temporal_layer[sps->max_sub_layers - 1].max_dec_pic_buffering !=
  444. last_sps->temporal_layer[last_sps->max_sub_layers - 1].max_dec_pic_buffering)
  445. sh->no_output_of_prior_pics_flag = 0;
  446. }
  447. ff_hevc_clear_refs(s);
  448. pix_fmt = get_format(s, sps);
  449. if (pix_fmt < 0)
  450. return pix_fmt;
  451. ret = set_sps(s, sps, pix_fmt);
  452. if (ret < 0)
  453. return ret;
  454. s->seq_decode = (s->seq_decode + 1) & 0xff;
  455. s->max_ra = INT_MAX;
  456. }
  457. sh->dependent_slice_segment_flag = 0;
  458. if (!sh->first_slice_in_pic_flag) {
  459. int slice_address_length;
  460. if (s->ps.pps->dependent_slice_segments_enabled_flag)
  461. sh->dependent_slice_segment_flag = get_bits1(gb);
  462. slice_address_length = av_ceil_log2(s->ps.sps->ctb_width *
  463. s->ps.sps->ctb_height);
  464. sh->slice_segment_addr = get_bitsz(gb, slice_address_length);
  465. if (sh->slice_segment_addr >= s->ps.sps->ctb_width * s->ps.sps->ctb_height) {
  466. av_log(s->avctx, AV_LOG_ERROR,
  467. "Invalid slice segment address: %u.\n",
  468. sh->slice_segment_addr);
  469. return AVERROR_INVALIDDATA;
  470. }
  471. if (!sh->dependent_slice_segment_flag) {
  472. sh->slice_addr = sh->slice_segment_addr;
  473. s->slice_idx++;
  474. }
  475. } else {
  476. sh->slice_segment_addr = sh->slice_addr = 0;
  477. s->slice_idx = 0;
  478. s->slice_initialized = 0;
  479. }
  480. if (!sh->dependent_slice_segment_flag) {
  481. s->slice_initialized = 0;
  482. for (i = 0; i < s->ps.pps->num_extra_slice_header_bits; i++)
  483. skip_bits(gb, 1); // slice_reserved_undetermined_flag[]
  484. sh->slice_type = get_ue_golomb_long(gb);
  485. if (!(sh->slice_type == HEVC_SLICE_I ||
  486. sh->slice_type == HEVC_SLICE_P ||
  487. sh->slice_type == HEVC_SLICE_B)) {
  488. av_log(s->avctx, AV_LOG_ERROR, "Unknown slice type: %d.\n",
  489. sh->slice_type);
  490. return AVERROR_INVALIDDATA;
  491. }
  492. if (IS_IRAP(s) && sh->slice_type != HEVC_SLICE_I) {
  493. av_log(s->avctx, AV_LOG_ERROR, "Inter slices in an IRAP frame.\n");
  494. return AVERROR_INVALIDDATA;
  495. }
  496. // when flag is not present, picture is inferred to be output
  497. sh->pic_output_flag = 1;
  498. if (s->ps.pps->output_flag_present_flag)
  499. sh->pic_output_flag = get_bits1(gb);
  500. if (s->ps.sps->separate_colour_plane_flag)
  501. sh->colour_plane_id = get_bits(gb, 2);
  502. if (!IS_IDR(s)) {
  503. int poc, pos;
  504. sh->pic_order_cnt_lsb = get_bits(gb, s->ps.sps->log2_max_poc_lsb);
  505. poc = ff_hevc_compute_poc(s->ps.sps, s->pocTid0, sh->pic_order_cnt_lsb, s->nal_unit_type);
  506. if (!sh->first_slice_in_pic_flag && poc != s->poc) {
  507. av_log(s->avctx, AV_LOG_WARNING,
  508. "Ignoring POC change between slices: %d -> %d\n", s->poc, poc);
  509. if (s->avctx->err_recognition & AV_EF_EXPLODE)
  510. return AVERROR_INVALIDDATA;
  511. poc = s->poc;
  512. }
  513. s->poc = poc;
  514. sh->short_term_ref_pic_set_sps_flag = get_bits1(gb);
  515. pos = get_bits_left(gb);
  516. if (!sh->short_term_ref_pic_set_sps_flag) {
  517. ret = ff_hevc_decode_short_term_rps(gb, s->avctx, &sh->slice_rps, s->ps.sps, 1);
  518. if (ret < 0)
  519. return ret;
  520. sh->short_term_rps = &sh->slice_rps;
  521. } else {
  522. int numbits, rps_idx;
  523. if (!s->ps.sps->nb_st_rps) {
  524. av_log(s->avctx, AV_LOG_ERROR, "No ref lists in the SPS.\n");
  525. return AVERROR_INVALIDDATA;
  526. }
  527. numbits = av_ceil_log2(s->ps.sps->nb_st_rps);
  528. rps_idx = numbits > 0 ? get_bits(gb, numbits) : 0;
  529. sh->short_term_rps = &s->ps.sps->st_rps[rps_idx];
  530. }
  531. sh->short_term_ref_pic_set_size = pos - get_bits_left(gb);
  532. pos = get_bits_left(gb);
  533. ret = decode_lt_rps(s, &sh->long_term_rps, gb);
  534. if (ret < 0) {
  535. av_log(s->avctx, AV_LOG_WARNING, "Invalid long term RPS.\n");
  536. if (s->avctx->err_recognition & AV_EF_EXPLODE)
  537. return AVERROR_INVALIDDATA;
  538. }
  539. sh->long_term_ref_pic_set_size = pos - get_bits_left(gb);
  540. if (s->ps.sps->sps_temporal_mvp_enabled_flag)
  541. sh->slice_temporal_mvp_enabled_flag = get_bits1(gb);
  542. else
  543. sh->slice_temporal_mvp_enabled_flag = 0;
  544. } else {
  545. s->sh.short_term_rps = NULL;
  546. s->poc = 0;
  547. }
  548. /* 8.3.1 */
  549. if (sh->first_slice_in_pic_flag && s->temporal_id == 0 &&
  550. s->nal_unit_type != HEVC_NAL_TRAIL_N &&
  551. s->nal_unit_type != HEVC_NAL_TSA_N &&
  552. s->nal_unit_type != HEVC_NAL_STSA_N &&
  553. s->nal_unit_type != HEVC_NAL_RADL_N &&
  554. s->nal_unit_type != HEVC_NAL_RADL_R &&
  555. s->nal_unit_type != HEVC_NAL_RASL_N &&
  556. s->nal_unit_type != HEVC_NAL_RASL_R)
  557. s->pocTid0 = s->poc;
  558. if (s->ps.sps->sao_enabled) {
  559. sh->slice_sample_adaptive_offset_flag[0] = get_bits1(gb);
  560. if (s->ps.sps->chroma_format_idc) {
  561. sh->slice_sample_adaptive_offset_flag[1] =
  562. sh->slice_sample_adaptive_offset_flag[2] = get_bits1(gb);
  563. }
  564. } else {
  565. sh->slice_sample_adaptive_offset_flag[0] = 0;
  566. sh->slice_sample_adaptive_offset_flag[1] = 0;
  567. sh->slice_sample_adaptive_offset_flag[2] = 0;
  568. }
  569. sh->nb_refs[L0] = sh->nb_refs[L1] = 0;
  570. if (sh->slice_type == HEVC_SLICE_P || sh->slice_type == HEVC_SLICE_B) {
  571. int nb_refs;
  572. sh->nb_refs[L0] = s->ps.pps->num_ref_idx_l0_default_active;
  573. if (sh->slice_type == HEVC_SLICE_B)
  574. sh->nb_refs[L1] = s->ps.pps->num_ref_idx_l1_default_active;
  575. if (get_bits1(gb)) { // num_ref_idx_active_override_flag
  576. sh->nb_refs[L0] = get_ue_golomb_long(gb) + 1;
  577. if (sh->slice_type == HEVC_SLICE_B)
  578. sh->nb_refs[L1] = get_ue_golomb_long(gb) + 1;
  579. }
  580. if (sh->nb_refs[L0] > HEVC_MAX_REFS || sh->nb_refs[L1] > HEVC_MAX_REFS) {
  581. av_log(s->avctx, AV_LOG_ERROR, "Too many refs: %d/%d.\n",
  582. sh->nb_refs[L0], sh->nb_refs[L1]);
  583. return AVERROR_INVALIDDATA;
  584. }
  585. sh->rpl_modification_flag[0] = 0;
  586. sh->rpl_modification_flag[1] = 0;
  587. nb_refs = ff_hevc_frame_nb_refs(s);
  588. if (!nb_refs) {
  589. av_log(s->avctx, AV_LOG_ERROR, "Zero refs for a frame with P or B slices.\n");
  590. return AVERROR_INVALIDDATA;
  591. }
  592. if (s->ps.pps->lists_modification_present_flag && nb_refs > 1) {
  593. sh->rpl_modification_flag[0] = get_bits1(gb);
  594. if (sh->rpl_modification_flag[0]) {
  595. for (i = 0; i < sh->nb_refs[L0]; i++)
  596. sh->list_entry_lx[0][i] = get_bits(gb, av_ceil_log2(nb_refs));
  597. }
  598. if (sh->slice_type == HEVC_SLICE_B) {
  599. sh->rpl_modification_flag[1] = get_bits1(gb);
  600. if (sh->rpl_modification_flag[1] == 1)
  601. for (i = 0; i < sh->nb_refs[L1]; i++)
  602. sh->list_entry_lx[1][i] = get_bits(gb, av_ceil_log2(nb_refs));
  603. }
  604. }
  605. if (sh->slice_type == HEVC_SLICE_B)
  606. sh->mvd_l1_zero_flag = get_bits1(gb);
  607. if (s->ps.pps->cabac_init_present_flag)
  608. sh->cabac_init_flag = get_bits1(gb);
  609. else
  610. sh->cabac_init_flag = 0;
  611. sh->collocated_ref_idx = 0;
  612. if (sh->slice_temporal_mvp_enabled_flag) {
  613. sh->collocated_list = L0;
  614. if (sh->slice_type == HEVC_SLICE_B)
  615. sh->collocated_list = !get_bits1(gb);
  616. if (sh->nb_refs[sh->collocated_list] > 1) {
  617. sh->collocated_ref_idx = get_ue_golomb_long(gb);
  618. if (sh->collocated_ref_idx >= sh->nb_refs[sh->collocated_list]) {
  619. av_log(s->avctx, AV_LOG_ERROR,
  620. "Invalid collocated_ref_idx: %d.\n",
  621. sh->collocated_ref_idx);
  622. return AVERROR_INVALIDDATA;
  623. }
  624. }
  625. }
  626. if ((s->ps.pps->weighted_pred_flag && sh->slice_type == HEVC_SLICE_P) ||
  627. (s->ps.pps->weighted_bipred_flag && sh->slice_type == HEVC_SLICE_B)) {
  628. int ret = pred_weight_table(s, gb);
  629. if (ret < 0)
  630. return ret;
  631. }
  632. sh->max_num_merge_cand = 5 - get_ue_golomb_long(gb);
  633. if (sh->max_num_merge_cand < 1 || sh->max_num_merge_cand > 5) {
  634. av_log(s->avctx, AV_LOG_ERROR,
  635. "Invalid number of merging MVP candidates: %d.\n",
  636. sh->max_num_merge_cand);
  637. return AVERROR_INVALIDDATA;
  638. }
  639. }
  640. sh->slice_qp_delta = get_se_golomb(gb);
  641. if (s->ps.pps->pic_slice_level_chroma_qp_offsets_present_flag) {
  642. sh->slice_cb_qp_offset = get_se_golomb(gb);
  643. sh->slice_cr_qp_offset = get_se_golomb(gb);
  644. } else {
  645. sh->slice_cb_qp_offset = 0;
  646. sh->slice_cr_qp_offset = 0;
  647. }
  648. if (s->ps.pps->chroma_qp_offset_list_enabled_flag)
  649. sh->cu_chroma_qp_offset_enabled_flag = get_bits1(gb);
  650. else
  651. sh->cu_chroma_qp_offset_enabled_flag = 0;
  652. if (s->ps.pps->deblocking_filter_control_present_flag) {
  653. int deblocking_filter_override_flag = 0;
  654. if (s->ps.pps->deblocking_filter_override_enabled_flag)
  655. deblocking_filter_override_flag = get_bits1(gb);
  656. if (deblocking_filter_override_flag) {
  657. sh->disable_deblocking_filter_flag = get_bits1(gb);
  658. if (!sh->disable_deblocking_filter_flag) {
  659. int beta_offset_div2 = get_se_golomb(gb);
  660. int tc_offset_div2 = get_se_golomb(gb) ;
  661. if (beta_offset_div2 < -6 || beta_offset_div2 > 6 ||
  662. tc_offset_div2 < -6 || tc_offset_div2 > 6) {
  663. av_log(s->avctx, AV_LOG_ERROR,
  664. "Invalid deblock filter offsets: %d, %d\n",
  665. beta_offset_div2, tc_offset_div2);
  666. return AVERROR_INVALIDDATA;
  667. }
  668. sh->beta_offset = beta_offset_div2 * 2;
  669. sh->tc_offset = tc_offset_div2 * 2;
  670. }
  671. } else {
  672. sh->disable_deblocking_filter_flag = s->ps.pps->disable_dbf;
  673. sh->beta_offset = s->ps.pps->beta_offset;
  674. sh->tc_offset = s->ps.pps->tc_offset;
  675. }
  676. } else {
  677. sh->disable_deblocking_filter_flag = 0;
  678. sh->beta_offset = 0;
  679. sh->tc_offset = 0;
  680. }
  681. if (s->ps.pps->seq_loop_filter_across_slices_enabled_flag &&
  682. (sh->slice_sample_adaptive_offset_flag[0] ||
  683. sh->slice_sample_adaptive_offset_flag[1] ||
  684. !sh->disable_deblocking_filter_flag)) {
  685. sh->slice_loop_filter_across_slices_enabled_flag = get_bits1(gb);
  686. } else {
  687. sh->slice_loop_filter_across_slices_enabled_flag = s->ps.pps->seq_loop_filter_across_slices_enabled_flag;
  688. }
  689. } else if (!s->slice_initialized) {
  690. av_log(s->avctx, AV_LOG_ERROR, "Independent slice segment missing.\n");
  691. return AVERROR_INVALIDDATA;
  692. }
  693. sh->num_entry_point_offsets = 0;
  694. if (s->ps.pps->tiles_enabled_flag || s->ps.pps->entropy_coding_sync_enabled_flag) {
  695. unsigned num_entry_point_offsets = get_ue_golomb_long(gb);
  696. // It would be possible to bound this tighter but this here is simpler
  697. if (num_entry_point_offsets > get_bits_left(gb)) {
  698. av_log(s->avctx, AV_LOG_ERROR, "num_entry_point_offsets %d is invalid\n", num_entry_point_offsets);
  699. return AVERROR_INVALIDDATA;
  700. }
  701. sh->num_entry_point_offsets = num_entry_point_offsets;
  702. if (sh->num_entry_point_offsets > 0) {
  703. int offset_len = get_ue_golomb_long(gb) + 1;
  704. if (offset_len < 1 || offset_len > 32) {
  705. sh->num_entry_point_offsets = 0;
  706. av_log(s->avctx, AV_LOG_ERROR, "offset_len %d is invalid\n", offset_len);
  707. return AVERROR_INVALIDDATA;
  708. }
  709. av_freep(&sh->entry_point_offset);
  710. av_freep(&sh->offset);
  711. av_freep(&sh->size);
  712. sh->entry_point_offset = av_malloc_array(sh->num_entry_point_offsets, sizeof(unsigned));
  713. sh->offset = av_malloc_array(sh->num_entry_point_offsets, sizeof(int));
  714. sh->size = av_malloc_array(sh->num_entry_point_offsets, sizeof(int));
  715. if (!sh->entry_point_offset || !sh->offset || !sh->size) {
  716. sh->num_entry_point_offsets = 0;
  717. av_log(s->avctx, AV_LOG_ERROR, "Failed to allocate memory\n");
  718. return AVERROR(ENOMEM);
  719. }
  720. for (i = 0; i < sh->num_entry_point_offsets; i++) {
  721. unsigned val = get_bits_long(gb, offset_len);
  722. sh->entry_point_offset[i] = val + 1; // +1; // +1 to get the size
  723. }
  724. if (s->threads_number > 1 && (s->ps.pps->num_tile_rows > 1 || s->ps.pps->num_tile_columns > 1)) {
  725. s->enable_parallel_tiles = 0; // TODO: you can enable tiles in parallel here
  726. s->threads_number = 1;
  727. } else
  728. s->enable_parallel_tiles = 0;
  729. } else
  730. s->enable_parallel_tiles = 0;
  731. }
  732. if (s->ps.pps->slice_header_extension_present_flag) {
  733. unsigned int length = get_ue_golomb_long(gb);
  734. if (length*8LL > get_bits_left(gb)) {
  735. av_log(s->avctx, AV_LOG_ERROR, "too many slice_header_extension_data_bytes\n");
  736. return AVERROR_INVALIDDATA;
  737. }
  738. for (i = 0; i < length; i++)
  739. skip_bits(gb, 8); // slice_header_extension_data_byte
  740. }
  741. // Inferred parameters
  742. sh->slice_qp = 26U + s->ps.pps->pic_init_qp_minus26 + sh->slice_qp_delta;
  743. if (sh->slice_qp > 51 ||
  744. sh->slice_qp < -s->ps.sps->qp_bd_offset) {
  745. av_log(s->avctx, AV_LOG_ERROR,
  746. "The slice_qp %d is outside the valid range "
  747. "[%d, 51].\n",
  748. sh->slice_qp,
  749. -s->ps.sps->qp_bd_offset);
  750. return AVERROR_INVALIDDATA;
  751. }
  752. sh->slice_ctb_addr_rs = sh->slice_segment_addr;
  753. if (!s->sh.slice_ctb_addr_rs && s->sh.dependent_slice_segment_flag) {
  754. av_log(s->avctx, AV_LOG_ERROR, "Impossible slice segment.\n");
  755. return AVERROR_INVALIDDATA;
  756. }
  757. if (get_bits_left(gb) < 0) {
  758. av_log(s->avctx, AV_LOG_ERROR,
  759. "Overread slice header by %d bits\n", -get_bits_left(gb));
  760. return AVERROR_INVALIDDATA;
  761. }
  762. s->HEVClc->first_qp_group = !s->sh.dependent_slice_segment_flag;
  763. if (!s->ps.pps->cu_qp_delta_enabled_flag)
  764. s->HEVClc->qp_y = s->sh.slice_qp;
  765. s->slice_initialized = 1;
  766. s->HEVClc->tu.cu_qp_offset_cb = 0;
  767. s->HEVClc->tu.cu_qp_offset_cr = 0;
  768. return 0;
  769. }
  770. #define CTB(tab, x, y) ((tab)[(y) * s->ps.sps->ctb_width + (x)])
  771. #define SET_SAO(elem, value) \
  772. do { \
  773. if (!sao_merge_up_flag && !sao_merge_left_flag) \
  774. sao->elem = value; \
  775. else if (sao_merge_left_flag) \
  776. sao->elem = CTB(s->sao, rx-1, ry).elem; \
  777. else if (sao_merge_up_flag) \
  778. sao->elem = CTB(s->sao, rx, ry-1).elem; \
  779. else \
  780. sao->elem = 0; \
  781. } while (0)
  782. static void hls_sao_param(HEVCContext *s, int rx, int ry)
  783. {
  784. HEVCLocalContext *lc = s->HEVClc;
  785. int sao_merge_left_flag = 0;
  786. int sao_merge_up_flag = 0;
  787. SAOParams *sao = &CTB(s->sao, rx, ry);
  788. int c_idx, i;
  789. if (s->sh.slice_sample_adaptive_offset_flag[0] ||
  790. s->sh.slice_sample_adaptive_offset_flag[1]) {
  791. if (rx > 0) {
  792. if (lc->ctb_left_flag)
  793. sao_merge_left_flag = ff_hevc_sao_merge_flag_decode(s);
  794. }
  795. if (ry > 0 && !sao_merge_left_flag) {
  796. if (lc->ctb_up_flag)
  797. sao_merge_up_flag = ff_hevc_sao_merge_flag_decode(s);
  798. }
  799. }
  800. for (c_idx = 0; c_idx < (s->ps.sps->chroma_format_idc ? 3 : 1); c_idx++) {
  801. int log2_sao_offset_scale = c_idx == 0 ? s->ps.pps->log2_sao_offset_scale_luma :
  802. s->ps.pps->log2_sao_offset_scale_chroma;
  803. if (!s->sh.slice_sample_adaptive_offset_flag[c_idx]) {
  804. sao->type_idx[c_idx] = SAO_NOT_APPLIED;
  805. continue;
  806. }
  807. if (c_idx == 2) {
  808. sao->type_idx[2] = sao->type_idx[1];
  809. sao->eo_class[2] = sao->eo_class[1];
  810. } else {
  811. SET_SAO(type_idx[c_idx], ff_hevc_sao_type_idx_decode(s));
  812. }
  813. if (sao->type_idx[c_idx] == SAO_NOT_APPLIED)
  814. continue;
  815. for (i = 0; i < 4; i++)
  816. SET_SAO(offset_abs[c_idx][i], ff_hevc_sao_offset_abs_decode(s));
  817. if (sao->type_idx[c_idx] == SAO_BAND) {
  818. for (i = 0; i < 4; i++) {
  819. if (sao->offset_abs[c_idx][i]) {
  820. SET_SAO(offset_sign[c_idx][i],
  821. ff_hevc_sao_offset_sign_decode(s));
  822. } else {
  823. sao->offset_sign[c_idx][i] = 0;
  824. }
  825. }
  826. SET_SAO(band_position[c_idx], ff_hevc_sao_band_position_decode(s));
  827. } else if (c_idx != 2) {
  828. SET_SAO(eo_class[c_idx], ff_hevc_sao_eo_class_decode(s));
  829. }
  830. // Inferred parameters
  831. sao->offset_val[c_idx][0] = 0;
  832. for (i = 0; i < 4; i++) {
  833. sao->offset_val[c_idx][i + 1] = sao->offset_abs[c_idx][i];
  834. if (sao->type_idx[c_idx] == SAO_EDGE) {
  835. if (i > 1)
  836. sao->offset_val[c_idx][i + 1] = -sao->offset_val[c_idx][i + 1];
  837. } else if (sao->offset_sign[c_idx][i]) {
  838. sao->offset_val[c_idx][i + 1] = -sao->offset_val[c_idx][i + 1];
  839. }
  840. sao->offset_val[c_idx][i + 1] *= 1 << log2_sao_offset_scale;
  841. }
  842. }
  843. }
  844. #undef SET_SAO
  845. #undef CTB
  846. static int hls_cross_component_pred(HEVCContext *s, int idx) {
  847. HEVCLocalContext *lc = s->HEVClc;
  848. int log2_res_scale_abs_plus1 = ff_hevc_log2_res_scale_abs(s, idx);
  849. if (log2_res_scale_abs_plus1 != 0) {
  850. int res_scale_sign_flag = ff_hevc_res_scale_sign_flag(s, idx);
  851. lc->tu.res_scale_val = (1 << (log2_res_scale_abs_plus1 - 1)) *
  852. (1 - 2 * res_scale_sign_flag);
  853. } else {
  854. lc->tu.res_scale_val = 0;
  855. }
  856. return 0;
  857. }
  858. static int hls_transform_unit(HEVCContext *s, int x0, int y0,
  859. int xBase, int yBase, int cb_xBase, int cb_yBase,
  860. int log2_cb_size, int log2_trafo_size,
  861. int blk_idx, int cbf_luma, int *cbf_cb, int *cbf_cr)
  862. {
  863. HEVCLocalContext *lc = s->HEVClc;
  864. const int log2_trafo_size_c = log2_trafo_size - s->ps.sps->hshift[1];
  865. int i;
  866. if (lc->cu.pred_mode == MODE_INTRA) {
  867. int trafo_size = 1 << log2_trafo_size;
  868. ff_hevc_set_neighbour_available(s, x0, y0, trafo_size, trafo_size);
  869. s->hpc.intra_pred[log2_trafo_size - 2](s, x0, y0, 0);
  870. }
  871. if (cbf_luma || cbf_cb[0] || cbf_cr[0] ||
  872. (s->ps.sps->chroma_format_idc == 2 && (cbf_cb[1] || cbf_cr[1]))) {
  873. int scan_idx = SCAN_DIAG;
  874. int scan_idx_c = SCAN_DIAG;
  875. int cbf_chroma = cbf_cb[0] || cbf_cr[0] ||
  876. (s->ps.sps->chroma_format_idc == 2 &&
  877. (cbf_cb[1] || cbf_cr[1]));
  878. if (s->ps.pps->cu_qp_delta_enabled_flag && !lc->tu.is_cu_qp_delta_coded) {
  879. lc->tu.cu_qp_delta = ff_hevc_cu_qp_delta_abs(s);
  880. if (lc->tu.cu_qp_delta != 0)
  881. if (ff_hevc_cu_qp_delta_sign_flag(s) == 1)
  882. lc->tu.cu_qp_delta = -lc->tu.cu_qp_delta;
  883. lc->tu.is_cu_qp_delta_coded = 1;
  884. if (lc->tu.cu_qp_delta < -(26 + s->ps.sps->qp_bd_offset / 2) ||
  885. lc->tu.cu_qp_delta > (25 + s->ps.sps->qp_bd_offset / 2)) {
  886. av_log(s->avctx, AV_LOG_ERROR,
  887. "The cu_qp_delta %d is outside the valid range "
  888. "[%d, %d].\n",
  889. lc->tu.cu_qp_delta,
  890. -(26 + s->ps.sps->qp_bd_offset / 2),
  891. (25 + s->ps.sps->qp_bd_offset / 2));
  892. return AVERROR_INVALIDDATA;
  893. }
  894. ff_hevc_set_qPy(s, cb_xBase, cb_yBase, log2_cb_size);
  895. }
  896. if (s->sh.cu_chroma_qp_offset_enabled_flag && cbf_chroma &&
  897. !lc->cu.cu_transquant_bypass_flag && !lc->tu.is_cu_chroma_qp_offset_coded) {
  898. int cu_chroma_qp_offset_flag = ff_hevc_cu_chroma_qp_offset_flag(s);
  899. if (cu_chroma_qp_offset_flag) {
  900. int cu_chroma_qp_offset_idx = 0;
  901. if (s->ps.pps->chroma_qp_offset_list_len_minus1 > 0) {
  902. cu_chroma_qp_offset_idx = ff_hevc_cu_chroma_qp_offset_idx(s);
  903. av_log(s->avctx, AV_LOG_ERROR,
  904. "cu_chroma_qp_offset_idx not yet tested.\n");
  905. }
  906. lc->tu.cu_qp_offset_cb = s->ps.pps->cb_qp_offset_list[cu_chroma_qp_offset_idx];
  907. lc->tu.cu_qp_offset_cr = s->ps.pps->cr_qp_offset_list[cu_chroma_qp_offset_idx];
  908. } else {
  909. lc->tu.cu_qp_offset_cb = 0;
  910. lc->tu.cu_qp_offset_cr = 0;
  911. }
  912. lc->tu.is_cu_chroma_qp_offset_coded = 1;
  913. }
  914. if (lc->cu.pred_mode == MODE_INTRA && log2_trafo_size < 4) {
  915. if (lc->tu.intra_pred_mode >= 6 &&
  916. lc->tu.intra_pred_mode <= 14) {
  917. scan_idx = SCAN_VERT;
  918. } else if (lc->tu.intra_pred_mode >= 22 &&
  919. lc->tu.intra_pred_mode <= 30) {
  920. scan_idx = SCAN_HORIZ;
  921. }
  922. if (lc->tu.intra_pred_mode_c >= 6 &&
  923. lc->tu.intra_pred_mode_c <= 14) {
  924. scan_idx_c = SCAN_VERT;
  925. } else if (lc->tu.intra_pred_mode_c >= 22 &&
  926. lc->tu.intra_pred_mode_c <= 30) {
  927. scan_idx_c = SCAN_HORIZ;
  928. }
  929. }
  930. lc->tu.cross_pf = 0;
  931. if (cbf_luma)
  932. ff_hevc_hls_residual_coding(s, x0, y0, log2_trafo_size, scan_idx, 0);
  933. if (s->ps.sps->chroma_format_idc && (log2_trafo_size > 2 || s->ps.sps->chroma_format_idc == 3)) {
  934. int trafo_size_h = 1 << (log2_trafo_size_c + s->ps.sps->hshift[1]);
  935. int trafo_size_v = 1 << (log2_trafo_size_c + s->ps.sps->vshift[1]);
  936. lc->tu.cross_pf = (s->ps.pps->cross_component_prediction_enabled_flag && cbf_luma &&
  937. (lc->cu.pred_mode == MODE_INTER ||
  938. (lc->tu.chroma_mode_c == 4)));
  939. if (lc->tu.cross_pf) {
  940. hls_cross_component_pred(s, 0);
  941. }
  942. for (i = 0; i < (s->ps.sps->chroma_format_idc == 2 ? 2 : 1); i++) {
  943. if (lc->cu.pred_mode == MODE_INTRA) {
  944. ff_hevc_set_neighbour_available(s, x0, y0 + (i << log2_trafo_size_c), trafo_size_h, trafo_size_v);
  945. s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0 + (i << log2_trafo_size_c), 1);
  946. }
  947. if (cbf_cb[i])
  948. ff_hevc_hls_residual_coding(s, x0, y0 + (i << log2_trafo_size_c),
  949. log2_trafo_size_c, scan_idx_c, 1);
  950. else
  951. if (lc->tu.cross_pf) {
  952. ptrdiff_t stride = s->frame->linesize[1];
  953. int hshift = s->ps.sps->hshift[1];
  954. int vshift = s->ps.sps->vshift[1];
  955. int16_t *coeffs_y = (int16_t*)lc->edge_emu_buffer;
  956. int16_t *coeffs = (int16_t*)lc->edge_emu_buffer2;
  957. int size = 1 << log2_trafo_size_c;
  958. uint8_t *dst = &s->frame->data[1][(y0 >> vshift) * stride +
  959. ((x0 >> hshift) << s->ps.sps->pixel_shift)];
  960. for (i = 0; i < (size * size); i++) {
  961. coeffs[i] = ((lc->tu.res_scale_val * coeffs_y[i]) >> 3);
  962. }
  963. s->hevcdsp.add_residual[log2_trafo_size_c-2](dst, coeffs, stride);
  964. }
  965. }
  966. if (lc->tu.cross_pf) {
  967. hls_cross_component_pred(s, 1);
  968. }
  969. for (i = 0; i < (s->ps.sps->chroma_format_idc == 2 ? 2 : 1); i++) {
  970. if (lc->cu.pred_mode == MODE_INTRA) {
  971. ff_hevc_set_neighbour_available(s, x0, y0 + (i << log2_trafo_size_c), trafo_size_h, trafo_size_v);
  972. s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0 + (i << log2_trafo_size_c), 2);
  973. }
  974. if (cbf_cr[i])
  975. ff_hevc_hls_residual_coding(s, x0, y0 + (i << log2_trafo_size_c),
  976. log2_trafo_size_c, scan_idx_c, 2);
  977. else
  978. if (lc->tu.cross_pf) {
  979. ptrdiff_t stride = s->frame->linesize[2];
  980. int hshift = s->ps.sps->hshift[2];
  981. int vshift = s->ps.sps->vshift[2];
  982. int16_t *coeffs_y = (int16_t*)lc->edge_emu_buffer;
  983. int16_t *coeffs = (int16_t*)lc->edge_emu_buffer2;
  984. int size = 1 << log2_trafo_size_c;
  985. uint8_t *dst = &s->frame->data[2][(y0 >> vshift) * stride +
  986. ((x0 >> hshift) << s->ps.sps->pixel_shift)];
  987. for (i = 0; i < (size * size); i++) {
  988. coeffs[i] = ((lc->tu.res_scale_val * coeffs_y[i]) >> 3);
  989. }
  990. s->hevcdsp.add_residual[log2_trafo_size_c-2](dst, coeffs, stride);
  991. }
  992. }
  993. } else if (s->ps.sps->chroma_format_idc && blk_idx == 3) {
  994. int trafo_size_h = 1 << (log2_trafo_size + 1);
  995. int trafo_size_v = 1 << (log2_trafo_size + s->ps.sps->vshift[1]);
  996. for (i = 0; i < (s->ps.sps->chroma_format_idc == 2 ? 2 : 1); i++) {
  997. if (lc->cu.pred_mode == MODE_INTRA) {
  998. ff_hevc_set_neighbour_available(s, xBase, yBase + (i << log2_trafo_size),
  999. trafo_size_h, trafo_size_v);
  1000. s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase + (i << log2_trafo_size), 1);
  1001. }
  1002. if (cbf_cb[i])
  1003. ff_hevc_hls_residual_coding(s, xBase, yBase + (i << log2_trafo_size),
  1004. log2_trafo_size, scan_idx_c, 1);
  1005. }
  1006. for (i = 0; i < (s->ps.sps->chroma_format_idc == 2 ? 2 : 1); i++) {
  1007. if (lc->cu.pred_mode == MODE_INTRA) {
  1008. ff_hevc_set_neighbour_available(s, xBase, yBase + (i << log2_trafo_size),
  1009. trafo_size_h, trafo_size_v);
  1010. s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase + (i << log2_trafo_size), 2);
  1011. }
  1012. if (cbf_cr[i])
  1013. ff_hevc_hls_residual_coding(s, xBase, yBase + (i << log2_trafo_size),
  1014. log2_trafo_size, scan_idx_c, 2);
  1015. }
  1016. }
  1017. } else if (s->ps.sps->chroma_format_idc && lc->cu.pred_mode == MODE_INTRA) {
  1018. if (log2_trafo_size > 2 || s->ps.sps->chroma_format_idc == 3) {
  1019. int trafo_size_h = 1 << (log2_trafo_size_c + s->ps.sps->hshift[1]);
  1020. int trafo_size_v = 1 << (log2_trafo_size_c + s->ps.sps->vshift[1]);
  1021. ff_hevc_set_neighbour_available(s, x0, y0, trafo_size_h, trafo_size_v);
  1022. s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0, 1);
  1023. s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0, 2);
  1024. if (s->ps.sps->chroma_format_idc == 2) {
  1025. ff_hevc_set_neighbour_available(s, x0, y0 + (1 << log2_trafo_size_c),
  1026. trafo_size_h, trafo_size_v);
  1027. s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0 + (1 << log2_trafo_size_c), 1);
  1028. s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0 + (1 << log2_trafo_size_c), 2);
  1029. }
  1030. } else if (blk_idx == 3) {
  1031. int trafo_size_h = 1 << (log2_trafo_size + 1);
  1032. int trafo_size_v = 1 << (log2_trafo_size + s->ps.sps->vshift[1]);
  1033. ff_hevc_set_neighbour_available(s, xBase, yBase,
  1034. trafo_size_h, trafo_size_v);
  1035. s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase, 1);
  1036. s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase, 2);
  1037. if (s->ps.sps->chroma_format_idc == 2) {
  1038. ff_hevc_set_neighbour_available(s, xBase, yBase + (1 << (log2_trafo_size)),
  1039. trafo_size_h, trafo_size_v);
  1040. s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase + (1 << (log2_trafo_size)), 1);
  1041. s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase + (1 << (log2_trafo_size)), 2);
  1042. }
  1043. }
  1044. }
  1045. return 0;
  1046. }
  1047. static void set_deblocking_bypass(HEVCContext *s, int x0, int y0, int log2_cb_size)
  1048. {
  1049. int cb_size = 1 << log2_cb_size;
  1050. int log2_min_pu_size = s->ps.sps->log2_min_pu_size;
  1051. int min_pu_width = s->ps.sps->min_pu_width;
  1052. int x_end = FFMIN(x0 + cb_size, s->ps.sps->width);
  1053. int y_end = FFMIN(y0 + cb_size, s->ps.sps->height);
  1054. int i, j;
  1055. for (j = (y0 >> log2_min_pu_size); j < (y_end >> log2_min_pu_size); j++)
  1056. for (i = (x0 >> log2_min_pu_size); i < (x_end >> log2_min_pu_size); i++)
  1057. s->is_pcm[i + j * min_pu_width] = 2;
  1058. }
  1059. static int hls_transform_tree(HEVCContext *s, int x0, int y0,
  1060. int xBase, int yBase, int cb_xBase, int cb_yBase,
  1061. int log2_cb_size, int log2_trafo_size,
  1062. int trafo_depth, int blk_idx,
  1063. const int *base_cbf_cb, const int *base_cbf_cr)
  1064. {
  1065. HEVCLocalContext *lc = s->HEVClc;
  1066. uint8_t split_transform_flag;
  1067. int cbf_cb[2];
  1068. int cbf_cr[2];
  1069. int ret;
  1070. cbf_cb[0] = base_cbf_cb[0];
  1071. cbf_cb[1] = base_cbf_cb[1];
  1072. cbf_cr[0] = base_cbf_cr[0];
  1073. cbf_cr[1] = base_cbf_cr[1];
  1074. if (lc->cu.intra_split_flag) {
  1075. if (trafo_depth == 1) {
  1076. lc->tu.intra_pred_mode = lc->pu.intra_pred_mode[blk_idx];
  1077. if (s->ps.sps->chroma_format_idc == 3) {
  1078. lc->tu.intra_pred_mode_c = lc->pu.intra_pred_mode_c[blk_idx];
  1079. lc->tu.chroma_mode_c = lc->pu.chroma_mode_c[blk_idx];
  1080. } else {
  1081. lc->tu.intra_pred_mode_c = lc->pu.intra_pred_mode_c[0];
  1082. lc->tu.chroma_mode_c = lc->pu.chroma_mode_c[0];
  1083. }
  1084. }
  1085. } else {
  1086. lc->tu.intra_pred_mode = lc->pu.intra_pred_mode[0];
  1087. lc->tu.intra_pred_mode_c = lc->pu.intra_pred_mode_c[0];
  1088. lc->tu.chroma_mode_c = lc->pu.chroma_mode_c[0];
  1089. }
  1090. if (log2_trafo_size <= s->ps.sps->log2_max_trafo_size &&
  1091. log2_trafo_size > s->ps.sps->log2_min_tb_size &&
  1092. trafo_depth < lc->cu.max_trafo_depth &&
  1093. !(lc->cu.intra_split_flag && trafo_depth == 0)) {
  1094. split_transform_flag = ff_hevc_split_transform_flag_decode(s, log2_trafo_size);
  1095. } else {
  1096. int inter_split = s->ps.sps->max_transform_hierarchy_depth_inter == 0 &&
  1097. lc->cu.pred_mode == MODE_INTER &&
  1098. lc->cu.part_mode != PART_2Nx2N &&
  1099. trafo_depth == 0;
  1100. split_transform_flag = log2_trafo_size > s->ps.sps->log2_max_trafo_size ||
  1101. (lc->cu.intra_split_flag && trafo_depth == 0) ||
  1102. inter_split;
  1103. }
  1104. if (s->ps.sps->chroma_format_idc && (log2_trafo_size > 2 || s->ps.sps->chroma_format_idc == 3)) {
  1105. if (trafo_depth == 0 || cbf_cb[0]) {
  1106. cbf_cb[0] = ff_hevc_cbf_cb_cr_decode(s, trafo_depth);
  1107. if (s->ps.sps->chroma_format_idc == 2 && (!split_transform_flag || log2_trafo_size == 3)) {
  1108. cbf_cb[1] = ff_hevc_cbf_cb_cr_decode(s, trafo_depth);
  1109. }
  1110. }
  1111. if (trafo_depth == 0 || cbf_cr[0]) {
  1112. cbf_cr[0] = ff_hevc_cbf_cb_cr_decode(s, trafo_depth);
  1113. if (s->ps.sps->chroma_format_idc == 2 && (!split_transform_flag || log2_trafo_size == 3)) {
  1114. cbf_cr[1] = ff_hevc_cbf_cb_cr_decode(s, trafo_depth);
  1115. }
  1116. }
  1117. }
  1118. if (split_transform_flag) {
  1119. const int trafo_size_split = 1 << (log2_trafo_size - 1);
  1120. const int x1 = x0 + trafo_size_split;
  1121. const int y1 = y0 + trafo_size_split;
  1122. #define SUBDIVIDE(x, y, idx) \
  1123. do { \
  1124. ret = hls_transform_tree(s, x, y, x0, y0, cb_xBase, cb_yBase, log2_cb_size, \
  1125. log2_trafo_size - 1, trafo_depth + 1, idx, \
  1126. cbf_cb, cbf_cr); \
  1127. if (ret < 0) \
  1128. return ret; \
  1129. } while (0)
  1130. SUBDIVIDE(x0, y0, 0);
  1131. SUBDIVIDE(x1, y0, 1);
  1132. SUBDIVIDE(x0, y1, 2);
  1133. SUBDIVIDE(x1, y1, 3);
  1134. #undef SUBDIVIDE
  1135. } else {
  1136. int min_tu_size = 1 << s->ps.sps->log2_min_tb_size;
  1137. int log2_min_tu_size = s->ps.sps->log2_min_tb_size;
  1138. int min_tu_width = s->ps.sps->min_tb_width;
  1139. int cbf_luma = 1;
  1140. if (lc->cu.pred_mode == MODE_INTRA || trafo_depth != 0 ||
  1141. cbf_cb[0] || cbf_cr[0] ||
  1142. (s->ps.sps->chroma_format_idc == 2 && (cbf_cb[1] || cbf_cr[1]))) {
  1143. cbf_luma = ff_hevc_cbf_luma_decode(s, trafo_depth);
  1144. }
  1145. ret = hls_transform_unit(s, x0, y0, xBase, yBase, cb_xBase, cb_yBase,
  1146. log2_cb_size, log2_trafo_size,
  1147. blk_idx, cbf_luma, cbf_cb, cbf_cr);
  1148. if (ret < 0)
  1149. return ret;
  1150. // TODO: store cbf_luma somewhere else
  1151. if (cbf_luma) {
  1152. int i, j;
  1153. for (i = 0; i < (1 << log2_trafo_size); i += min_tu_size)
  1154. for (j = 0; j < (1 << log2_trafo_size); j += min_tu_size) {
  1155. int x_tu = (x0 + j) >> log2_min_tu_size;
  1156. int y_tu = (y0 + i) >> log2_min_tu_size;
  1157. s->cbf_luma[y_tu * min_tu_width + x_tu] = 1;
  1158. }
  1159. }
  1160. if (!s->sh.disable_deblocking_filter_flag) {
  1161. ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_trafo_size);
  1162. if (s->ps.pps->transquant_bypass_enable_flag &&
  1163. lc->cu.cu_transquant_bypass_flag)
  1164. set_deblocking_bypass(s, x0, y0, log2_trafo_size);
  1165. }
  1166. }
  1167. return 0;
  1168. }
  1169. static int hls_pcm_sample(HEVCContext *s, int x0, int y0, int log2_cb_size)
  1170. {
  1171. HEVCLocalContext *lc = s->HEVClc;
  1172. GetBitContext gb;
  1173. int cb_size = 1 << log2_cb_size;
  1174. ptrdiff_t stride0 = s->frame->linesize[0];
  1175. ptrdiff_t stride1 = s->frame->linesize[1];
  1176. ptrdiff_t stride2 = s->frame->linesize[2];
  1177. uint8_t *dst0 = &s->frame->data[0][y0 * stride0 + (x0 << s->ps.sps->pixel_shift)];
  1178. uint8_t *dst1 = &s->frame->data[1][(y0 >> s->ps.sps->vshift[1]) * stride1 + ((x0 >> s->ps.sps->hshift[1]) << s->ps.sps->pixel_shift)];
  1179. uint8_t *dst2 = &s->frame->data[2][(y0 >> s->ps.sps->vshift[2]) * stride2 + ((x0 >> s->ps.sps->hshift[2]) << s->ps.sps->pixel_shift)];
  1180. int length = cb_size * cb_size * s->ps.sps->pcm.bit_depth +
  1181. (((cb_size >> s->ps.sps->hshift[1]) * (cb_size >> s->ps.sps->vshift[1])) +
  1182. ((cb_size >> s->ps.sps->hshift[2]) * (cb_size >> s->ps.sps->vshift[2]))) *
  1183. s->ps.sps->pcm.bit_depth_chroma;
  1184. const uint8_t *pcm = skip_bytes(&lc->cc, (length + 7) >> 3);
  1185. int ret;
  1186. if (!s->sh.disable_deblocking_filter_flag)
  1187. ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_cb_size);
  1188. ret = init_get_bits(&gb, pcm, length);
  1189. if (ret < 0)
  1190. return ret;
  1191. s->hevcdsp.put_pcm(dst0, stride0, cb_size, cb_size, &gb, s->ps.sps->pcm.bit_depth);
  1192. if (s->ps.sps->chroma_format_idc) {
  1193. s->hevcdsp.put_pcm(dst1, stride1,
  1194. cb_size >> s->ps.sps->hshift[1],
  1195. cb_size >> s->ps.sps->vshift[1],
  1196. &gb, s->ps.sps->pcm.bit_depth_chroma);
  1197. s->hevcdsp.put_pcm(dst2, stride2,
  1198. cb_size >> s->ps.sps->hshift[2],
  1199. cb_size >> s->ps.sps->vshift[2],
  1200. &gb, s->ps.sps->pcm.bit_depth_chroma);
  1201. }
  1202. return 0;
  1203. }
  1204. /**
  1205. * 8.5.3.2.2.1 Luma sample unidirectional interpolation process
  1206. *
  1207. * @param s HEVC decoding context
  1208. * @param dst target buffer for block data at block position
  1209. * @param dststride stride of the dst buffer
  1210. * @param ref reference picture buffer at origin (0, 0)
  1211. * @param mv motion vector (relative to block position) to get pixel data from
  1212. * @param x_off horizontal position of block from origin (0, 0)
  1213. * @param y_off vertical position of block from origin (0, 0)
  1214. * @param block_w width of block
  1215. * @param block_h height of block
  1216. * @param luma_weight weighting factor applied to the luma prediction
  1217. * @param luma_offset additive offset applied to the luma prediction value
  1218. */
  1219. static void luma_mc_uni(HEVCContext *s, uint8_t *dst, ptrdiff_t dststride,
  1220. AVFrame *ref, const Mv *mv, int x_off, int y_off,
  1221. int block_w, int block_h, int luma_weight, int luma_offset)
  1222. {
  1223. HEVCLocalContext *lc = s->HEVClc;
  1224. uint8_t *src = ref->data[0];
  1225. ptrdiff_t srcstride = ref->linesize[0];
  1226. int pic_width = s->ps.sps->width;
  1227. int pic_height = s->ps.sps->height;
  1228. int mx = mv->x & 3;
  1229. int my = mv->y & 3;
  1230. int weight_flag = (s->sh.slice_type == HEVC_SLICE_P && s->ps.pps->weighted_pred_flag) ||
  1231. (s->sh.slice_type == HEVC_SLICE_B && s->ps.pps->weighted_bipred_flag);
  1232. int idx = ff_hevc_pel_weight[block_w];
  1233. x_off += mv->x >> 2;
  1234. y_off += mv->y >> 2;
  1235. src += y_off * srcstride + (x_off * (1 << s->ps.sps->pixel_shift));
  1236. if (x_off < QPEL_EXTRA_BEFORE || y_off < QPEL_EXTRA_AFTER ||
  1237. x_off >= pic_width - block_w - QPEL_EXTRA_AFTER ||
  1238. y_off >= pic_height - block_h - QPEL_EXTRA_AFTER) {
  1239. const ptrdiff_t edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->ps.sps->pixel_shift;
  1240. int offset = QPEL_EXTRA_BEFORE * srcstride + (QPEL_EXTRA_BEFORE << s->ps.sps->pixel_shift);
  1241. int buf_offset = QPEL_EXTRA_BEFORE * edge_emu_stride + (QPEL_EXTRA_BEFORE << s->ps.sps->pixel_shift);
  1242. s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src - offset,
  1243. edge_emu_stride, srcstride,
  1244. block_w + QPEL_EXTRA,
  1245. block_h + QPEL_EXTRA,
  1246. x_off - QPEL_EXTRA_BEFORE, y_off - QPEL_EXTRA_BEFORE,
  1247. pic_width, pic_height);
  1248. src = lc->edge_emu_buffer + buf_offset;
  1249. srcstride = edge_emu_stride;
  1250. }
  1251. if (!weight_flag)
  1252. s->hevcdsp.put_hevc_qpel_uni[idx][!!my][!!mx](dst, dststride, src, srcstride,
  1253. block_h, mx, my, block_w);
  1254. else
  1255. s->hevcdsp.put_hevc_qpel_uni_w[idx][!!my][!!mx](dst, dststride, src, srcstride,
  1256. block_h, s->sh.luma_log2_weight_denom,
  1257. luma_weight, luma_offset, mx, my, block_w);
  1258. }
  1259. /**
  1260. * 8.5.3.2.2.1 Luma sample bidirectional interpolation process
  1261. *
  1262. * @param s HEVC decoding context
  1263. * @param dst target buffer for block data at block position
  1264. * @param dststride stride of the dst buffer
  1265. * @param ref0 reference picture0 buffer at origin (0, 0)
  1266. * @param mv0 motion vector0 (relative to block position) to get pixel data from
  1267. * @param x_off horizontal position of block from origin (0, 0)
  1268. * @param y_off vertical position of block from origin (0, 0)
  1269. * @param block_w width of block
  1270. * @param block_h height of block
  1271. * @param ref1 reference picture1 buffer at origin (0, 0)
  1272. * @param mv1 motion vector1 (relative to block position) to get pixel data from
  1273. * @param current_mv current motion vector structure
  1274. */
  1275. static void luma_mc_bi(HEVCContext *s, uint8_t *dst, ptrdiff_t dststride,
  1276. AVFrame *ref0, const Mv *mv0, int x_off, int y_off,
  1277. int block_w, int block_h, AVFrame *ref1, const Mv *mv1, struct MvField *current_mv)
  1278. {
  1279. HEVCLocalContext *lc = s->HEVClc;
  1280. ptrdiff_t src0stride = ref0->linesize[0];
  1281. ptrdiff_t src1stride = ref1->linesize[0];
  1282. int pic_width = s->ps.sps->width;
  1283. int pic_height = s->ps.sps->height;
  1284. int mx0 = mv0->x & 3;
  1285. int my0 = mv0->y & 3;
  1286. int mx1 = mv1->x & 3;
  1287. int my1 = mv1->y & 3;
  1288. int weight_flag = (s->sh.slice_type == HEVC_SLICE_P && s->ps.pps->weighted_pred_flag) ||
  1289. (s->sh.slice_type == HEVC_SLICE_B && s->ps.pps->weighted_bipred_flag);
  1290. int x_off0 = x_off + (mv0->x >> 2);
  1291. int y_off0 = y_off + (mv0->y >> 2);
  1292. int x_off1 = x_off + (mv1->x >> 2);
  1293. int y_off1 = y_off + (mv1->y >> 2);
  1294. int idx = ff_hevc_pel_weight[block_w];
  1295. uint8_t *src0 = ref0->data[0] + y_off0 * src0stride + (int)((unsigned)x_off0 << s->ps.sps->pixel_shift);
  1296. uint8_t *src1 = ref1->data[0] + y_off1 * src1stride + (int)((unsigned)x_off1 << s->ps.sps->pixel_shift);
  1297. if (x_off0 < QPEL_EXTRA_BEFORE || y_off0 < QPEL_EXTRA_AFTER ||
  1298. x_off0 >= pic_width - block_w - QPEL_EXTRA_AFTER ||
  1299. y_off0 >= pic_height - block_h - QPEL_EXTRA_AFTER) {
  1300. const ptrdiff_t edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->ps.sps->pixel_shift;
  1301. int offset = QPEL_EXTRA_BEFORE * src0stride + (QPEL_EXTRA_BEFORE << s->ps.sps->pixel_shift);
  1302. int buf_offset = QPEL_EXTRA_BEFORE * edge_emu_stride + (QPEL_EXTRA_BEFORE << s->ps.sps->pixel_shift);
  1303. s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src0 - offset,
  1304. edge_emu_stride, src0stride,
  1305. block_w + QPEL_EXTRA,
  1306. block_h + QPEL_EXTRA,
  1307. x_off0 - QPEL_EXTRA_BEFORE, y_off0 - QPEL_EXTRA_BEFORE,
  1308. pic_width, pic_height);
  1309. src0 = lc->edge_emu_buffer + buf_offset;
  1310. src0stride = edge_emu_stride;
  1311. }
  1312. if (x_off1 < QPEL_EXTRA_BEFORE || y_off1 < QPEL_EXTRA_AFTER ||
  1313. x_off1 >= pic_width - block_w - QPEL_EXTRA_AFTER ||
  1314. y_off1 >= pic_height - block_h - QPEL_EXTRA_AFTER) {
  1315. const ptrdiff_t edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->ps.sps->pixel_shift;
  1316. int offset = QPEL_EXTRA_BEFORE * src1stride + (QPEL_EXTRA_BEFORE << s->ps.sps->pixel_shift);
  1317. int buf_offset = QPEL_EXTRA_BEFORE * edge_emu_stride + (QPEL_EXTRA_BEFORE << s->ps.sps->pixel_shift);
  1318. s->vdsp.emulated_edge_mc(lc->edge_emu_buffer2, src1 - offset,
  1319. edge_emu_stride, src1stride,
  1320. block_w + QPEL_EXTRA,
  1321. block_h + QPEL_EXTRA,
  1322. x_off1 - QPEL_EXTRA_BEFORE, y_off1 - QPEL_EXTRA_BEFORE,
  1323. pic_width, pic_height);
  1324. src1 = lc->edge_emu_buffer2 + buf_offset;
  1325. src1stride = edge_emu_stride;
  1326. }
  1327. s->hevcdsp.put_hevc_qpel[idx][!!my0][!!mx0](lc->tmp, src0, src0stride,
  1328. block_h, mx0, my0, block_w);
  1329. if (!weight_flag)
  1330. s->hevcdsp.put_hevc_qpel_bi[idx][!!my1][!!mx1](dst, dststride, src1, src1stride, lc->tmp,
  1331. block_h, mx1, my1, block_w);
  1332. else
  1333. s->hevcdsp.put_hevc_qpel_bi_w[idx][!!my1][!!mx1](dst, dststride, src1, src1stride, lc->tmp,
  1334. block_h, s->sh.luma_log2_weight_denom,
  1335. s->sh.luma_weight_l0[current_mv->ref_idx[0]],
  1336. s->sh.luma_weight_l1[current_mv->ref_idx[1]],
  1337. s->sh.luma_offset_l0[current_mv->ref_idx[0]],
  1338. s->sh.luma_offset_l1[current_mv->ref_idx[1]],
  1339. mx1, my1, block_w);
  1340. }
  1341. /**
  1342. * 8.5.3.2.2.2 Chroma sample uniprediction interpolation process
  1343. *
  1344. * @param s HEVC decoding context
  1345. * @param dst1 target buffer for block data at block position (U plane)
  1346. * @param dst2 target buffer for block data at block position (V plane)
  1347. * @param dststride stride of the dst1 and dst2 buffers
  1348. * @param ref reference picture buffer at origin (0, 0)
  1349. * @param mv motion vector (relative to block position) to get pixel data from
  1350. * @param x_off horizontal position of block from origin (0, 0)
  1351. * @param y_off vertical position of block from origin (0, 0)
  1352. * @param block_w width of block
  1353. * @param block_h height of block
  1354. * @param chroma_weight weighting factor applied to the chroma prediction
  1355. * @param chroma_offset additive offset applied to the chroma prediction value
  1356. */
  1357. static void chroma_mc_uni(HEVCContext *s, uint8_t *dst0,
  1358. ptrdiff_t dststride, uint8_t *src0, ptrdiff_t srcstride, int reflist,
  1359. int x_off, int y_off, int block_w, int block_h, struct MvField *current_mv, int chroma_weight, int chroma_offset)
  1360. {
  1361. HEVCLocalContext *lc = s->HEVClc;
  1362. int pic_width = s->ps.sps->width >> s->ps.sps->hshift[1];
  1363. int pic_height = s->ps.sps->height >> s->ps.sps->vshift[1];
  1364. const Mv *mv = &current_mv->mv[reflist];
  1365. int weight_flag = (s->sh.slice_type == HEVC_SLICE_P && s->ps.pps->weighted_pred_flag) ||
  1366. (s->sh.slice_type == HEVC_SLICE_B && s->ps.pps->weighted_bipred_flag);
  1367. int idx = ff_hevc_pel_weight[block_w];
  1368. int hshift = s->ps.sps->hshift[1];
  1369. int vshift = s->ps.sps->vshift[1];
  1370. intptr_t mx = av_mod_uintp2(mv->x, 2 + hshift);
  1371. intptr_t my = av_mod_uintp2(mv->y, 2 + vshift);
  1372. intptr_t _mx = mx << (1 - hshift);
  1373. intptr_t _my = my << (1 - vshift);
  1374. x_off += mv->x >> (2 + hshift);
  1375. y_off += mv->y >> (2 + vshift);
  1376. src0 += y_off * srcstride + (x_off * (1 << s->ps.sps->pixel_shift));
  1377. if (x_off < EPEL_EXTRA_BEFORE || y_off < EPEL_EXTRA_AFTER ||
  1378. x_off >= pic_width - block_w - EPEL_EXTRA_AFTER ||
  1379. y_off >= pic_height - block_h - EPEL_EXTRA_AFTER) {
  1380. const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->ps.sps->pixel_shift;
  1381. int offset0 = EPEL_EXTRA_BEFORE * (srcstride + (1 << s->ps.sps->pixel_shift));
  1382. int buf_offset0 = EPEL_EXTRA_BEFORE *
  1383. (edge_emu_stride + (1 << s->ps.sps->pixel_shift));
  1384. s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src0 - offset0,
  1385. edge_emu_stride, srcstride,
  1386. block_w + EPEL_EXTRA, block_h + EPEL_EXTRA,
  1387. x_off - EPEL_EXTRA_BEFORE,
  1388. y_off - EPEL_EXTRA_BEFORE,
  1389. pic_width, pic_height);
  1390. src0 = lc->edge_emu_buffer + buf_offset0;
  1391. srcstride = edge_emu_stride;
  1392. }
  1393. if (!weight_flag)
  1394. s->hevcdsp.put_hevc_epel_uni[idx][!!my][!!mx](dst0, dststride, src0, srcstride,
  1395. block_h, _mx, _my, block_w);
  1396. else
  1397. s->hevcdsp.put_hevc_epel_uni_w[idx][!!my][!!mx](dst0, dststride, src0, srcstride,
  1398. block_h, s->sh.chroma_log2_weight_denom,
  1399. chroma_weight, chroma_offset, _mx, _my, block_w);
  1400. }
  1401. /**
  1402. * 8.5.3.2.2.2 Chroma sample bidirectional interpolation process
  1403. *
  1404. * @param s HEVC decoding context
  1405. * @param dst target buffer for block data at block position
  1406. * @param dststride stride of the dst buffer
  1407. * @param ref0 reference picture0 buffer at origin (0, 0)
  1408. * @param mv0 motion vector0 (relative to block position) to get pixel data from
  1409. * @param x_off horizontal position of block from origin (0, 0)
  1410. * @param y_off vertical position of block from origin (0, 0)
  1411. * @param block_w width of block
  1412. * @param block_h height of block
  1413. * @param ref1 reference picture1 buffer at origin (0, 0)
  1414. * @param mv1 motion vector1 (relative to block position) to get pixel data from
  1415. * @param current_mv current motion vector structure
  1416. * @param cidx chroma component(cb, cr)
  1417. */
  1418. static void chroma_mc_bi(HEVCContext *s, uint8_t *dst0, ptrdiff_t dststride, AVFrame *ref0, AVFrame *ref1,
  1419. int x_off, int y_off, int block_w, int block_h, struct MvField *current_mv, int cidx)
  1420. {
  1421. HEVCLocalContext *lc = s->HEVClc;
  1422. uint8_t *src1 = ref0->data[cidx+1];
  1423. uint8_t *src2 = ref1->data[cidx+1];
  1424. ptrdiff_t src1stride = ref0->linesize[cidx+1];
  1425. ptrdiff_t src2stride = ref1->linesize[cidx+1];
  1426. int weight_flag = (s->sh.slice_type == HEVC_SLICE_P && s->ps.pps->weighted_pred_flag) ||
  1427. (s->sh.slice_type == HEVC_SLICE_B && s->ps.pps->weighted_bipred_flag);
  1428. int pic_width = s->ps.sps->width >> s->ps.sps->hshift[1];
  1429. int pic_height = s->ps.sps->height >> s->ps.sps->vshift[1];
  1430. Mv *mv0 = &current_mv->mv[0];
  1431. Mv *mv1 = &current_mv->mv[1];
  1432. int hshift = s->ps.sps->hshift[1];
  1433. int vshift = s->ps.sps->vshift[1];
  1434. intptr_t mx0 = av_mod_uintp2(mv0->x, 2 + hshift);
  1435. intptr_t my0 = av_mod_uintp2(mv0->y, 2 + vshift);
  1436. intptr_t mx1 = av_mod_uintp2(mv1->x, 2 + hshift);
  1437. intptr_t my1 = av_mod_uintp2(mv1->y, 2 + vshift);
  1438. intptr_t _mx0 = mx0 << (1 - hshift);
  1439. intptr_t _my0 = my0 << (1 - vshift);
  1440. intptr_t _mx1 = mx1 << (1 - hshift);
  1441. intptr_t _my1 = my1 << (1 - vshift);
  1442. int x_off0 = x_off + (mv0->x >> (2 + hshift));
  1443. int y_off0 = y_off + (mv0->y >> (2 + vshift));
  1444. int x_off1 = x_off + (mv1->x >> (2 + hshift));
  1445. int y_off1 = y_off + (mv1->y >> (2 + vshift));
  1446. int idx = ff_hevc_pel_weight[block_w];
  1447. src1 += y_off0 * src1stride + (int)((unsigned)x_off0 << s->ps.sps->pixel_shift);
  1448. src2 += y_off1 * src2stride + (int)((unsigned)x_off1 << s->ps.sps->pixel_shift);
  1449. if (x_off0 < EPEL_EXTRA_BEFORE || y_off0 < EPEL_EXTRA_AFTER ||
  1450. x_off0 >= pic_width - block_w - EPEL_EXTRA_AFTER ||
  1451. y_off0 >= pic_height - block_h - EPEL_EXTRA_AFTER) {
  1452. const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->ps.sps->pixel_shift;
  1453. int offset1 = EPEL_EXTRA_BEFORE * (src1stride + (1 << s->ps.sps->pixel_shift));
  1454. int buf_offset1 = EPEL_EXTRA_BEFORE *
  1455. (edge_emu_stride + (1 << s->ps.sps->pixel_shift));
  1456. s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src1 - offset1,
  1457. edge_emu_stride, src1stride,
  1458. block_w + EPEL_EXTRA, block_h + EPEL_EXTRA,
  1459. x_off0 - EPEL_EXTRA_BEFORE,
  1460. y_off0 - EPEL_EXTRA_BEFORE,
  1461. pic_width, pic_height);
  1462. src1 = lc->edge_emu_buffer + buf_offset1;
  1463. src1stride = edge_emu_stride;
  1464. }
  1465. if (x_off1 < EPEL_EXTRA_BEFORE || y_off1 < EPEL_EXTRA_AFTER ||
  1466. x_off1 >= pic_width - block_w - EPEL_EXTRA_AFTER ||
  1467. y_off1 >= pic_height - block_h - EPEL_EXTRA_AFTER) {
  1468. const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->ps.sps->pixel_shift;
  1469. int offset1 = EPEL_EXTRA_BEFORE * (src2stride + (1 << s->ps.sps->pixel_shift));
  1470. int buf_offset1 = EPEL_EXTRA_BEFORE *
  1471. (edge_emu_stride + (1 << s->ps.sps->pixel_shift));
  1472. s->vdsp.emulated_edge_mc(lc->edge_emu_buffer2, src2 - offset1,
  1473. edge_emu_stride, src2stride,
  1474. block_w + EPEL_EXTRA, block_h + EPEL_EXTRA,
  1475. x_off1 - EPEL_EXTRA_BEFORE,
  1476. y_off1 - EPEL_EXTRA_BEFORE,
  1477. pic_width, pic_height);
  1478. src2 = lc->edge_emu_buffer2 + buf_offset1;
  1479. src2stride = edge_emu_stride;
  1480. }
  1481. s->hevcdsp.put_hevc_epel[idx][!!my0][!!mx0](lc->tmp, src1, src1stride,
  1482. block_h, _mx0, _my0, block_w);
  1483. if (!weight_flag)
  1484. s->hevcdsp.put_hevc_epel_bi[idx][!!my1][!!mx1](dst0, s->frame->linesize[cidx+1],
  1485. src2, src2stride, lc->tmp,
  1486. block_h, _mx1, _my1, block_w);
  1487. else
  1488. s->hevcdsp.put_hevc_epel_bi_w[idx][!!my1][!!mx1](dst0, s->frame->linesize[cidx+1],
  1489. src2, src2stride, lc->tmp,
  1490. block_h,
  1491. s->sh.chroma_log2_weight_denom,
  1492. s->sh.chroma_weight_l0[current_mv->ref_idx[0]][cidx],
  1493. s->sh.chroma_weight_l1[current_mv->ref_idx[1]][cidx],
  1494. s->sh.chroma_offset_l0[current_mv->ref_idx[0]][cidx],
  1495. s->sh.chroma_offset_l1[current_mv->ref_idx[1]][cidx],
  1496. _mx1, _my1, block_w);
  1497. }
  1498. static void hevc_await_progress(HEVCContext *s, HEVCFrame *ref,
  1499. const Mv *mv, int y0, int height)
  1500. {
  1501. if (s->threads_type == FF_THREAD_FRAME ) {
  1502. int y = FFMAX(0, (mv->y >> 2) + y0 + height + 9);
  1503. ff_thread_await_progress(&ref->tf, y, 0);
  1504. }
  1505. }
  1506. static void hevc_luma_mv_mvp_mode(HEVCContext *s, int x0, int y0, int nPbW,
  1507. int nPbH, int log2_cb_size, int part_idx,
  1508. int merge_idx, MvField *mv)
  1509. {
  1510. HEVCLocalContext *lc = s->HEVClc;
  1511. enum InterPredIdc inter_pred_idc = PRED_L0;
  1512. int mvp_flag;
  1513. ff_hevc_set_neighbour_available(s, x0, y0, nPbW, nPbH);
  1514. mv->pred_flag = 0;
  1515. if (s->sh.slice_type == HEVC_SLICE_B)
  1516. inter_pred_idc = ff_hevc_inter_pred_idc_decode(s, nPbW, nPbH);
  1517. if (inter_pred_idc != PRED_L1) {
  1518. if (s->sh.nb_refs[L0])
  1519. mv->ref_idx[0]= ff_hevc_ref_idx_lx_decode(s, s->sh.nb_refs[L0]);
  1520. mv->pred_flag = PF_L0;
  1521. ff_hevc_hls_mvd_coding(s, x0, y0, 0);
  1522. mvp_flag = ff_hevc_mvp_lx_flag_decode(s);
  1523. ff_hevc_luma_mv_mvp_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
  1524. part_idx, merge_idx, mv, mvp_flag, 0);
  1525. mv->mv[0].x += lc->pu.mvd.x;
  1526. mv->mv[0].y += lc->pu.mvd.y;
  1527. }
  1528. if (inter_pred_idc != PRED_L0) {
  1529. if (s->sh.nb_refs[L1])
  1530. mv->ref_idx[1]= ff_hevc_ref_idx_lx_decode(s, s->sh.nb_refs[L1]);
  1531. if (s->sh.mvd_l1_zero_flag == 1 && inter_pred_idc == PRED_BI) {
  1532. AV_ZERO32(&lc->pu.mvd);
  1533. } else {
  1534. ff_hevc_hls_mvd_coding(s, x0, y0, 1);
  1535. }
  1536. mv->pred_flag += PF_L1;
  1537. mvp_flag = ff_hevc_mvp_lx_flag_decode(s);
  1538. ff_hevc_luma_mv_mvp_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
  1539. part_idx, merge_idx, mv, mvp_flag, 1);
  1540. mv->mv[1].x += lc->pu.mvd.x;
  1541. mv->mv[1].y += lc->pu.mvd.y;
  1542. }
  1543. }
  1544. static void hls_prediction_unit(HEVCContext *s, int x0, int y0,
  1545. int nPbW, int nPbH,
  1546. int log2_cb_size, int partIdx, int idx)
  1547. {
  1548. #define POS(c_idx, x, y) \
  1549. &s->frame->data[c_idx][((y) >> s->ps.sps->vshift[c_idx]) * s->frame->linesize[c_idx] + \
  1550. (((x) >> s->ps.sps->hshift[c_idx]) << s->ps.sps->pixel_shift)]
  1551. HEVCLocalContext *lc = s->HEVClc;
  1552. int merge_idx = 0;
  1553. struct MvField current_mv = {{{ 0 }}};
  1554. int min_pu_width = s->ps.sps->min_pu_width;
  1555. MvField *tab_mvf = s->ref->tab_mvf;
  1556. RefPicList *refPicList = s->ref->refPicList;
  1557. HEVCFrame *ref0 = NULL, *ref1 = NULL;
  1558. uint8_t *dst0 = POS(0, x0, y0);
  1559. uint8_t *dst1 = POS(1, x0, y0);
  1560. uint8_t *dst2 = POS(2, x0, y0);
  1561. int log2_min_cb_size = s->ps.sps->log2_min_cb_size;
  1562. int min_cb_width = s->ps.sps->min_cb_width;
  1563. int x_cb = x0 >> log2_min_cb_size;
  1564. int y_cb = y0 >> log2_min_cb_size;
  1565. int x_pu, y_pu;
  1566. int i, j;
  1567. int skip_flag = SAMPLE_CTB(s->skip_flag, x_cb, y_cb);
  1568. if (!skip_flag)
  1569. lc->pu.merge_flag = ff_hevc_merge_flag_decode(s);
  1570. if (skip_flag || lc->pu.merge_flag) {
  1571. if (s->sh.max_num_merge_cand > 1)
  1572. merge_idx = ff_hevc_merge_idx_decode(s);
  1573. else
  1574. merge_idx = 0;
  1575. ff_hevc_luma_mv_merge_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
  1576. partIdx, merge_idx, &current_mv);
  1577. } else {
  1578. hevc_luma_mv_mvp_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
  1579. partIdx, merge_idx, &current_mv);
  1580. }
  1581. x_pu = x0 >> s->ps.sps->log2_min_pu_size;
  1582. y_pu = y0 >> s->ps.sps->log2_min_pu_size;
  1583. for (j = 0; j < nPbH >> s->ps.sps->log2_min_pu_size; j++)
  1584. for (i = 0; i < nPbW >> s->ps.sps->log2_min_pu_size; i++)
  1585. tab_mvf[(y_pu + j) * min_pu_width + x_pu + i] = current_mv;
  1586. if (current_mv.pred_flag & PF_L0) {
  1587. ref0 = refPicList[0].ref[current_mv.ref_idx[0]];
  1588. if (!ref0)
  1589. return;
  1590. hevc_await_progress(s, ref0, &current_mv.mv[0], y0, nPbH);
  1591. }
  1592. if (current_mv.pred_flag & PF_L1) {
  1593. ref1 = refPicList[1].ref[current_mv.ref_idx[1]];
  1594. if (!ref1)
  1595. return;
  1596. hevc_await_progress(s, ref1, &current_mv.mv[1], y0, nPbH);
  1597. }
  1598. if (current_mv.pred_flag == PF_L0) {
  1599. int x0_c = x0 >> s->ps.sps->hshift[1];
  1600. int y0_c = y0 >> s->ps.sps->vshift[1];
  1601. int nPbW_c = nPbW >> s->ps.sps->hshift[1];
  1602. int nPbH_c = nPbH >> s->ps.sps->vshift[1];
  1603. luma_mc_uni(s, dst0, s->frame->linesize[0], ref0->frame,
  1604. &current_mv.mv[0], x0, y0, nPbW, nPbH,
  1605. s->sh.luma_weight_l0[current_mv.ref_idx[0]],
  1606. s->sh.luma_offset_l0[current_mv.ref_idx[0]]);
  1607. if (s->ps.sps->chroma_format_idc) {
  1608. chroma_mc_uni(s, dst1, s->frame->linesize[1], ref0->frame->data[1], ref0->frame->linesize[1],
  1609. 0, x0_c, y0_c, nPbW_c, nPbH_c, &current_mv,
  1610. s->sh.chroma_weight_l0[current_mv.ref_idx[0]][0], s->sh.chroma_offset_l0[current_mv.ref_idx[0]][0]);
  1611. chroma_mc_uni(s, dst2, s->frame->linesize[2], ref0->frame->data[2], ref0->frame->linesize[2],
  1612. 0, x0_c, y0_c, nPbW_c, nPbH_c, &current_mv,
  1613. s->sh.chroma_weight_l0[current_mv.ref_idx[0]][1], s->sh.chroma_offset_l0[current_mv.ref_idx[0]][1]);
  1614. }
  1615. } else if (current_mv.pred_flag == PF_L1) {
  1616. int x0_c = x0 >> s->ps.sps->hshift[1];
  1617. int y0_c = y0 >> s->ps.sps->vshift[1];
  1618. int nPbW_c = nPbW >> s->ps.sps->hshift[1];
  1619. int nPbH_c = nPbH >> s->ps.sps->vshift[1];
  1620. luma_mc_uni(s, dst0, s->frame->linesize[0], ref1->frame,
  1621. &current_mv.mv[1], x0, y0, nPbW, nPbH,
  1622. s->sh.luma_weight_l1[current_mv.ref_idx[1]],
  1623. s->sh.luma_offset_l1[current_mv.ref_idx[1]]);
  1624. if (s->ps.sps->chroma_format_idc) {
  1625. chroma_mc_uni(s, dst1, s->frame->linesize[1], ref1->frame->data[1], ref1->frame->linesize[1],
  1626. 1, x0_c, y0_c, nPbW_c, nPbH_c, &current_mv,
  1627. s->sh.chroma_weight_l1[current_mv.ref_idx[1]][0], s->sh.chroma_offset_l1[current_mv.ref_idx[1]][0]);
  1628. chroma_mc_uni(s, dst2, s->frame->linesize[2], ref1->frame->data[2], ref1->frame->linesize[2],
  1629. 1, x0_c, y0_c, nPbW_c, nPbH_c, &current_mv,
  1630. s->sh.chroma_weight_l1[current_mv.ref_idx[1]][1], s->sh.chroma_offset_l1[current_mv.ref_idx[1]][1]);
  1631. }
  1632. } else if (current_mv.pred_flag == PF_BI) {
  1633. int x0_c = x0 >> s->ps.sps->hshift[1];
  1634. int y0_c = y0 >> s->ps.sps->vshift[1];
  1635. int nPbW_c = nPbW >> s->ps.sps->hshift[1];
  1636. int nPbH_c = nPbH >> s->ps.sps->vshift[1];
  1637. luma_mc_bi(s, dst0, s->frame->linesize[0], ref0->frame,
  1638. &current_mv.mv[0], x0, y0, nPbW, nPbH,
  1639. ref1->frame, &current_mv.mv[1], &current_mv);
  1640. if (s->ps.sps->chroma_format_idc) {
  1641. chroma_mc_bi(s, dst1, s->frame->linesize[1], ref0->frame, ref1->frame,
  1642. x0_c, y0_c, nPbW_c, nPbH_c, &current_mv, 0);
  1643. chroma_mc_bi(s, dst2, s->frame->linesize[2], ref0->frame, ref1->frame,
  1644. x0_c, y0_c, nPbW_c, nPbH_c, &current_mv, 1);
  1645. }
  1646. }
  1647. }
  1648. /**
  1649. * 8.4.1
  1650. */
  1651. static int luma_intra_pred_mode(HEVCContext *s, int x0, int y0, int pu_size,
  1652. int prev_intra_luma_pred_flag)
  1653. {
  1654. HEVCLocalContext *lc = s->HEVClc;
  1655. int x_pu = x0 >> s->ps.sps->log2_min_pu_size;
  1656. int y_pu = y0 >> s->ps.sps->log2_min_pu_size;
  1657. int min_pu_width = s->ps.sps->min_pu_width;
  1658. int size_in_pus = pu_size >> s->ps.sps->log2_min_pu_size;
  1659. int x0b = av_mod_uintp2(x0, s->ps.sps->log2_ctb_size);
  1660. int y0b = av_mod_uintp2(y0, s->ps.sps->log2_ctb_size);
  1661. int cand_up = (lc->ctb_up_flag || y0b) ?
  1662. s->tab_ipm[(y_pu - 1) * min_pu_width + x_pu] : INTRA_DC;
  1663. int cand_left = (lc->ctb_left_flag || x0b) ?
  1664. s->tab_ipm[y_pu * min_pu_width + x_pu - 1] : INTRA_DC;
  1665. int y_ctb = (y0 >> (s->ps.sps->log2_ctb_size)) << (s->ps.sps->log2_ctb_size);
  1666. MvField *tab_mvf = s->ref->tab_mvf;
  1667. int intra_pred_mode;
  1668. int candidate[3];
  1669. int i, j;
  1670. // intra_pred_mode prediction does not cross vertical CTB boundaries
  1671. if ((y0 - 1) < y_ctb)
  1672. cand_up = INTRA_DC;
  1673. if (cand_left == cand_up) {
  1674. if (cand_left < 2) {
  1675. candidate[0] = INTRA_PLANAR;
  1676. candidate[1] = INTRA_DC;
  1677. candidate[2] = INTRA_ANGULAR_26;
  1678. } else {
  1679. candidate[0] = cand_left;
  1680. candidate[1] = 2 + ((cand_left - 2 - 1 + 32) & 31);
  1681. candidate[2] = 2 + ((cand_left - 2 + 1) & 31);
  1682. }
  1683. } else {
  1684. candidate[0] = cand_left;
  1685. candidate[1] = cand_up;
  1686. if (candidate[0] != INTRA_PLANAR && candidate[1] != INTRA_PLANAR) {
  1687. candidate[2] = INTRA_PLANAR;
  1688. } else if (candidate[0] != INTRA_DC && candidate[1] != INTRA_DC) {
  1689. candidate[2] = INTRA_DC;
  1690. } else {
  1691. candidate[2] = INTRA_ANGULAR_26;
  1692. }
  1693. }
  1694. if (prev_intra_luma_pred_flag) {
  1695. intra_pred_mode = candidate[lc->pu.mpm_idx];
  1696. } else {
  1697. if (candidate[0] > candidate[1])
  1698. FFSWAP(uint8_t, candidate[0], candidate[1]);
  1699. if (candidate[0] > candidate[2])
  1700. FFSWAP(uint8_t, candidate[0], candidate[2]);
  1701. if (candidate[1] > candidate[2])
  1702. FFSWAP(uint8_t, candidate[1], candidate[2]);
  1703. intra_pred_mode = lc->pu.rem_intra_luma_pred_mode;
  1704. for (i = 0; i < 3; i++)
  1705. if (intra_pred_mode >= candidate[i])
  1706. intra_pred_mode++;
  1707. }
  1708. /* write the intra prediction units into the mv array */
  1709. if (!size_in_pus)
  1710. size_in_pus = 1;
  1711. for (i = 0; i < size_in_pus; i++) {
  1712. memset(&s->tab_ipm[(y_pu + i) * min_pu_width + x_pu],
  1713. intra_pred_mode, size_in_pus);
  1714. for (j = 0; j < size_in_pus; j++) {
  1715. tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].pred_flag = PF_INTRA;
  1716. }
  1717. }
  1718. return intra_pred_mode;
  1719. }
  1720. static av_always_inline void set_ct_depth(HEVCContext *s, int x0, int y0,
  1721. int log2_cb_size, int ct_depth)
  1722. {
  1723. int length = (1 << log2_cb_size) >> s->ps.sps->log2_min_cb_size;
  1724. int x_cb = x0 >> s->ps.sps->log2_min_cb_size;
  1725. int y_cb = y0 >> s->ps.sps->log2_min_cb_size;
  1726. int y;
  1727. for (y = 0; y < length; y++)
  1728. memset(&s->tab_ct_depth[(y_cb + y) * s->ps.sps->min_cb_width + x_cb],
  1729. ct_depth, length);
  1730. }
  1731. static const uint8_t tab_mode_idx[] = {
  1732. 0, 1, 2, 2, 2, 2, 3, 5, 7, 8, 10, 12, 13, 15, 17, 18, 19, 20,
  1733. 21, 22, 23, 23, 24, 24, 25, 25, 26, 27, 27, 28, 28, 29, 29, 30, 31};
  1734. static void intra_prediction_unit(HEVCContext *s, int x0, int y0,
  1735. int log2_cb_size)
  1736. {
  1737. HEVCLocalContext *lc = s->HEVClc;
  1738. static const uint8_t intra_chroma_table[4] = { 0, 26, 10, 1 };
  1739. uint8_t prev_intra_luma_pred_flag[4];
  1740. int split = lc->cu.part_mode == PART_NxN;
  1741. int pb_size = (1 << log2_cb_size) >> split;
  1742. int side = split + 1;
  1743. int chroma_mode;
  1744. int i, j;
  1745. for (i = 0; i < side; i++)
  1746. for (j = 0; j < side; j++)
  1747. prev_intra_luma_pred_flag[2 * i + j] = ff_hevc_prev_intra_luma_pred_flag_decode(s);
  1748. for (i = 0; i < side; i++) {
  1749. for (j = 0; j < side; j++) {
  1750. if (prev_intra_luma_pred_flag[2 * i + j])
  1751. lc->pu.mpm_idx = ff_hevc_mpm_idx_decode(s);
  1752. else
  1753. lc->pu.rem_intra_luma_pred_mode = ff_hevc_rem_intra_luma_pred_mode_decode(s);
  1754. lc->pu.intra_pred_mode[2 * i + j] =
  1755. luma_intra_pred_mode(s, x0 + pb_size * j, y0 + pb_size * i, pb_size,
  1756. prev_intra_luma_pred_flag[2 * i + j]);
  1757. }
  1758. }
  1759. if (s->ps.sps->chroma_format_idc == 3) {
  1760. for (i = 0; i < side; i++) {
  1761. for (j = 0; j < side; j++) {
  1762. lc->pu.chroma_mode_c[2 * i + j] = chroma_mode = ff_hevc_intra_chroma_pred_mode_decode(s);
  1763. if (chroma_mode != 4) {
  1764. if (lc->pu.intra_pred_mode[2 * i + j] == intra_chroma_table[chroma_mode])
  1765. lc->pu.intra_pred_mode_c[2 * i + j] = 34;
  1766. else
  1767. lc->pu.intra_pred_mode_c[2 * i + j] = intra_chroma_table[chroma_mode];
  1768. } else {
  1769. lc->pu.intra_pred_mode_c[2 * i + j] = lc->pu.intra_pred_mode[2 * i + j];
  1770. }
  1771. }
  1772. }
  1773. } else if (s->ps.sps->chroma_format_idc == 2) {
  1774. int mode_idx;
  1775. lc->pu.chroma_mode_c[0] = chroma_mode = ff_hevc_intra_chroma_pred_mode_decode(s);
  1776. if (chroma_mode != 4) {
  1777. if (lc->pu.intra_pred_mode[0] == intra_chroma_table[chroma_mode])
  1778. mode_idx = 34;
  1779. else
  1780. mode_idx = intra_chroma_table[chroma_mode];
  1781. } else {
  1782. mode_idx = lc->pu.intra_pred_mode[0];
  1783. }
  1784. lc->pu.intra_pred_mode_c[0] = tab_mode_idx[mode_idx];
  1785. } else if (s->ps.sps->chroma_format_idc != 0) {
  1786. chroma_mode = ff_hevc_intra_chroma_pred_mode_decode(s);
  1787. if (chroma_mode != 4) {
  1788. if (lc->pu.intra_pred_mode[0] == intra_chroma_table[chroma_mode])
  1789. lc->pu.intra_pred_mode_c[0] = 34;
  1790. else
  1791. lc->pu.intra_pred_mode_c[0] = intra_chroma_table[chroma_mode];
  1792. } else {
  1793. lc->pu.intra_pred_mode_c[0] = lc->pu.intra_pred_mode[0];
  1794. }
  1795. }
  1796. }
  1797. static void intra_prediction_unit_default_value(HEVCContext *s,
  1798. int x0, int y0,
  1799. int log2_cb_size)
  1800. {
  1801. HEVCLocalContext *lc = s->HEVClc;
  1802. int pb_size = 1 << log2_cb_size;
  1803. int size_in_pus = pb_size >> s->ps.sps->log2_min_pu_size;
  1804. int min_pu_width = s->ps.sps->min_pu_width;
  1805. MvField *tab_mvf = s->ref->tab_mvf;
  1806. int x_pu = x0 >> s->ps.sps->log2_min_pu_size;
  1807. int y_pu = y0 >> s->ps.sps->log2_min_pu_size;
  1808. int j, k;
  1809. if (size_in_pus == 0)
  1810. size_in_pus = 1;
  1811. for (j = 0; j < size_in_pus; j++)
  1812. memset(&s->tab_ipm[(y_pu + j) * min_pu_width + x_pu], INTRA_DC, size_in_pus);
  1813. if (lc->cu.pred_mode == MODE_INTRA)
  1814. for (j = 0; j < size_in_pus; j++)
  1815. for (k = 0; k < size_in_pus; k++)
  1816. tab_mvf[(y_pu + j) * min_pu_width + x_pu + k].pred_flag = PF_INTRA;
  1817. }
  1818. static int hls_coding_unit(HEVCContext *s, int x0, int y0, int log2_cb_size)
  1819. {
  1820. int cb_size = 1 << log2_cb_size;
  1821. HEVCLocalContext *lc = s->HEVClc;
  1822. int log2_min_cb_size = s->ps.sps->log2_min_cb_size;
  1823. int length = cb_size >> log2_min_cb_size;
  1824. int min_cb_width = s->ps.sps->min_cb_width;
  1825. int x_cb = x0 >> log2_min_cb_size;
  1826. int y_cb = y0 >> log2_min_cb_size;
  1827. int idx = log2_cb_size - 2;
  1828. int qp_block_mask = (1<<(s->ps.sps->log2_ctb_size - s->ps.pps->diff_cu_qp_delta_depth)) - 1;
  1829. int x, y, ret;
  1830. lc->cu.x = x0;
  1831. lc->cu.y = y0;
  1832. lc->cu.pred_mode = MODE_INTRA;
  1833. lc->cu.part_mode = PART_2Nx2N;
  1834. lc->cu.intra_split_flag = 0;
  1835. SAMPLE_CTB(s->skip_flag, x_cb, y_cb) = 0;
  1836. for (x = 0; x < 4; x++)
  1837. lc->pu.intra_pred_mode[x] = 1;
  1838. if (s->ps.pps->transquant_bypass_enable_flag) {
  1839. lc->cu.cu_transquant_bypass_flag = ff_hevc_cu_transquant_bypass_flag_decode(s);
  1840. if (lc->cu.cu_transquant_bypass_flag)
  1841. set_deblocking_bypass(s, x0, y0, log2_cb_size);
  1842. } else
  1843. lc->cu.cu_transquant_bypass_flag = 0;
  1844. if (s->sh.slice_type != HEVC_SLICE_I) {
  1845. uint8_t skip_flag = ff_hevc_skip_flag_decode(s, x0, y0, x_cb, y_cb);
  1846. x = y_cb * min_cb_width + x_cb;
  1847. for (y = 0; y < length; y++) {
  1848. memset(&s->skip_flag[x], skip_flag, length);
  1849. x += min_cb_width;
  1850. }
  1851. lc->cu.pred_mode = skip_flag ? MODE_SKIP : MODE_INTER;
  1852. } else {
  1853. x = y_cb * min_cb_width + x_cb;
  1854. for (y = 0; y < length; y++) {
  1855. memset(&s->skip_flag[x], 0, length);
  1856. x += min_cb_width;
  1857. }
  1858. }
  1859. if (SAMPLE_CTB(s->skip_flag, x_cb, y_cb)) {
  1860. hls_prediction_unit(s, x0, y0, cb_size, cb_size, log2_cb_size, 0, idx);
  1861. intra_prediction_unit_default_value(s, x0, y0, log2_cb_size);
  1862. if (!s->sh.disable_deblocking_filter_flag)
  1863. ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_cb_size);
  1864. } else {
  1865. int pcm_flag = 0;
  1866. if (s->sh.slice_type != HEVC_SLICE_I)
  1867. lc->cu.pred_mode = ff_hevc_pred_mode_decode(s);
  1868. if (lc->cu.pred_mode != MODE_INTRA ||
  1869. log2_cb_size == s->ps.sps->log2_min_cb_size) {
  1870. lc->cu.part_mode = ff_hevc_part_mode_decode(s, log2_cb_size);
  1871. lc->cu.intra_split_flag = lc->cu.part_mode == PART_NxN &&
  1872. lc->cu.pred_mode == MODE_INTRA;
  1873. }
  1874. if (lc->cu.pred_mode == MODE_INTRA) {
  1875. if (lc->cu.part_mode == PART_2Nx2N && s->ps.sps->pcm_enabled_flag &&
  1876. log2_cb_size >= s->ps.sps->pcm.log2_min_pcm_cb_size &&
  1877. log2_cb_size <= s->ps.sps->pcm.log2_max_pcm_cb_size) {
  1878. pcm_flag = ff_hevc_pcm_flag_decode(s);
  1879. }
  1880. if (pcm_flag) {
  1881. intra_prediction_unit_default_value(s, x0, y0, log2_cb_size);
  1882. ret = hls_pcm_sample(s, x0, y0, log2_cb_size);
  1883. if (s->ps.sps->pcm.loop_filter_disable_flag)
  1884. set_deblocking_bypass(s, x0, y0, log2_cb_size);
  1885. if (ret < 0)
  1886. return ret;
  1887. } else {
  1888. intra_prediction_unit(s, x0, y0, log2_cb_size);
  1889. }
  1890. } else {
  1891. intra_prediction_unit_default_value(s, x0, y0, log2_cb_size);
  1892. switch (lc->cu.part_mode) {
  1893. case PART_2Nx2N:
  1894. hls_prediction_unit(s, x0, y0, cb_size, cb_size, log2_cb_size, 0, idx);
  1895. break;
  1896. case PART_2NxN:
  1897. hls_prediction_unit(s, x0, y0, cb_size, cb_size / 2, log2_cb_size, 0, idx);
  1898. hls_prediction_unit(s, x0, y0 + cb_size / 2, cb_size, cb_size / 2, log2_cb_size, 1, idx);
  1899. break;
  1900. case PART_Nx2N:
  1901. hls_prediction_unit(s, x0, y0, cb_size / 2, cb_size, log2_cb_size, 0, idx - 1);
  1902. hls_prediction_unit(s, x0 + cb_size / 2, y0, cb_size / 2, cb_size, log2_cb_size, 1, idx - 1);
  1903. break;
  1904. case PART_2NxnU:
  1905. hls_prediction_unit(s, x0, y0, cb_size, cb_size / 4, log2_cb_size, 0, idx);
  1906. hls_prediction_unit(s, x0, y0 + cb_size / 4, cb_size, cb_size * 3 / 4, log2_cb_size, 1, idx);
  1907. break;
  1908. case PART_2NxnD:
  1909. hls_prediction_unit(s, x0, y0, cb_size, cb_size * 3 / 4, log2_cb_size, 0, idx);
  1910. hls_prediction_unit(s, x0, y0 + cb_size * 3 / 4, cb_size, cb_size / 4, log2_cb_size, 1, idx);
  1911. break;
  1912. case PART_nLx2N:
  1913. hls_prediction_unit(s, x0, y0, cb_size / 4, cb_size, log2_cb_size, 0, idx - 2);
  1914. hls_prediction_unit(s, x0 + cb_size / 4, y0, cb_size * 3 / 4, cb_size, log2_cb_size, 1, idx - 2);
  1915. break;
  1916. case PART_nRx2N:
  1917. hls_prediction_unit(s, x0, y0, cb_size * 3 / 4, cb_size, log2_cb_size, 0, idx - 2);
  1918. hls_prediction_unit(s, x0 + cb_size * 3 / 4, y0, cb_size / 4, cb_size, log2_cb_size, 1, idx - 2);
  1919. break;
  1920. case PART_NxN:
  1921. hls_prediction_unit(s, x0, y0, cb_size / 2, cb_size / 2, log2_cb_size, 0, idx - 1);
  1922. hls_prediction_unit(s, x0 + cb_size / 2, y0, cb_size / 2, cb_size / 2, log2_cb_size, 1, idx - 1);
  1923. hls_prediction_unit(s, x0, y0 + cb_size / 2, cb_size / 2, cb_size / 2, log2_cb_size, 2, idx - 1);
  1924. hls_prediction_unit(s, x0 + cb_size / 2, y0 + cb_size / 2, cb_size / 2, cb_size / 2, log2_cb_size, 3, idx - 1);
  1925. break;
  1926. }
  1927. }
  1928. if (!pcm_flag) {
  1929. int rqt_root_cbf = 1;
  1930. if (lc->cu.pred_mode != MODE_INTRA &&
  1931. !(lc->cu.part_mode == PART_2Nx2N && lc->pu.merge_flag)) {
  1932. rqt_root_cbf = ff_hevc_no_residual_syntax_flag_decode(s);
  1933. }
  1934. if (rqt_root_cbf) {
  1935. const static int cbf[2] = { 0 };
  1936. lc->cu.max_trafo_depth = lc->cu.pred_mode == MODE_INTRA ?
  1937. s->ps.sps->max_transform_hierarchy_depth_intra + lc->cu.intra_split_flag :
  1938. s->ps.sps->max_transform_hierarchy_depth_inter;
  1939. ret = hls_transform_tree(s, x0, y0, x0, y0, x0, y0,
  1940. log2_cb_size,
  1941. log2_cb_size, 0, 0, cbf, cbf);
  1942. if (ret < 0)
  1943. return ret;
  1944. } else {
  1945. if (!s->sh.disable_deblocking_filter_flag)
  1946. ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_cb_size);
  1947. }
  1948. }
  1949. }
  1950. if (s->ps.pps->cu_qp_delta_enabled_flag && lc->tu.is_cu_qp_delta_coded == 0)
  1951. ff_hevc_set_qPy(s, x0, y0, log2_cb_size);
  1952. x = y_cb * min_cb_width + x_cb;
  1953. for (y = 0; y < length; y++) {
  1954. memset(&s->qp_y_tab[x], lc->qp_y, length);
  1955. x += min_cb_width;
  1956. }
  1957. if(((x0 + (1<<log2_cb_size)) & qp_block_mask) == 0 &&
  1958. ((y0 + (1<<log2_cb_size)) & qp_block_mask) == 0) {
  1959. lc->qPy_pred = lc->qp_y;
  1960. }
  1961. set_ct_depth(s, x0, y0, log2_cb_size, lc->ct_depth);
  1962. return 0;
  1963. }
  1964. static int hls_coding_quadtree(HEVCContext *s, int x0, int y0,
  1965. int log2_cb_size, int cb_depth)
  1966. {
  1967. HEVCLocalContext *lc = s->HEVClc;
  1968. const int cb_size = 1 << log2_cb_size;
  1969. int ret;
  1970. int split_cu;
  1971. lc->ct_depth = cb_depth;
  1972. if (x0 + cb_size <= s->ps.sps->width &&
  1973. y0 + cb_size <= s->ps.sps->height &&
  1974. log2_cb_size > s->ps.sps->log2_min_cb_size) {
  1975. split_cu = ff_hevc_split_coding_unit_flag_decode(s, cb_depth, x0, y0);
  1976. } else {
  1977. split_cu = (log2_cb_size > s->ps.sps->log2_min_cb_size);
  1978. }
  1979. if (s->ps.pps->cu_qp_delta_enabled_flag &&
  1980. log2_cb_size >= s->ps.sps->log2_ctb_size - s->ps.pps->diff_cu_qp_delta_depth) {
  1981. lc->tu.is_cu_qp_delta_coded = 0;
  1982. lc->tu.cu_qp_delta = 0;
  1983. }
  1984. if (s->sh.cu_chroma_qp_offset_enabled_flag &&
  1985. log2_cb_size >= s->ps.sps->log2_ctb_size - s->ps.pps->diff_cu_chroma_qp_offset_depth) {
  1986. lc->tu.is_cu_chroma_qp_offset_coded = 0;
  1987. }
  1988. if (split_cu) {
  1989. int qp_block_mask = (1<<(s->ps.sps->log2_ctb_size - s->ps.pps->diff_cu_qp_delta_depth)) - 1;
  1990. const int cb_size_split = cb_size >> 1;
  1991. const int x1 = x0 + cb_size_split;
  1992. const int y1 = y0 + cb_size_split;
  1993. int more_data = 0;
  1994. more_data = hls_coding_quadtree(s, x0, y0, log2_cb_size - 1, cb_depth + 1);
  1995. if (more_data < 0)
  1996. return more_data;
  1997. if (more_data && x1 < s->ps.sps->width) {
  1998. more_data = hls_coding_quadtree(s, x1, y0, log2_cb_size - 1, cb_depth + 1);
  1999. if (more_data < 0)
  2000. return more_data;
  2001. }
  2002. if (more_data && y1 < s->ps.sps->height) {
  2003. more_data = hls_coding_quadtree(s, x0, y1, log2_cb_size - 1, cb_depth + 1);
  2004. if (more_data < 0)
  2005. return more_data;
  2006. }
  2007. if (more_data && x1 < s->ps.sps->width &&
  2008. y1 < s->ps.sps->height) {
  2009. more_data = hls_coding_quadtree(s, x1, y1, log2_cb_size - 1, cb_depth + 1);
  2010. if (more_data < 0)
  2011. return more_data;
  2012. }
  2013. if(((x0 + (1<<log2_cb_size)) & qp_block_mask) == 0 &&
  2014. ((y0 + (1<<log2_cb_size)) & qp_block_mask) == 0)
  2015. lc->qPy_pred = lc->qp_y;
  2016. if (more_data)
  2017. return ((x1 + cb_size_split) < s->ps.sps->width ||
  2018. (y1 + cb_size_split) < s->ps.sps->height);
  2019. else
  2020. return 0;
  2021. } else {
  2022. ret = hls_coding_unit(s, x0, y0, log2_cb_size);
  2023. if (ret < 0)
  2024. return ret;
  2025. if ((!((x0 + cb_size) %
  2026. (1 << (s->ps.sps->log2_ctb_size))) ||
  2027. (x0 + cb_size >= s->ps.sps->width)) &&
  2028. (!((y0 + cb_size) %
  2029. (1 << (s->ps.sps->log2_ctb_size))) ||
  2030. (y0 + cb_size >= s->ps.sps->height))) {
  2031. int end_of_slice_flag = ff_hevc_end_of_slice_flag_decode(s);
  2032. return !end_of_slice_flag;
  2033. } else {
  2034. return 1;
  2035. }
  2036. }
  2037. return 0;
  2038. }
  2039. static void hls_decode_neighbour(HEVCContext *s, int x_ctb, int y_ctb,
  2040. int ctb_addr_ts)
  2041. {
  2042. HEVCLocalContext *lc = s->HEVClc;
  2043. int ctb_size = 1 << s->ps.sps->log2_ctb_size;
  2044. int ctb_addr_rs = s->ps.pps->ctb_addr_ts_to_rs[ctb_addr_ts];
  2045. int ctb_addr_in_slice = ctb_addr_rs - s->sh.slice_addr;
  2046. s->tab_slice_address[ctb_addr_rs] = s->sh.slice_addr;
  2047. if (s->ps.pps->entropy_coding_sync_enabled_flag) {
  2048. if (x_ctb == 0 && (y_ctb & (ctb_size - 1)) == 0)
  2049. lc->first_qp_group = 1;
  2050. lc->end_of_tiles_x = s->ps.sps->width;
  2051. } else if (s->ps.pps->tiles_enabled_flag) {
  2052. if (ctb_addr_ts && s->ps.pps->tile_id[ctb_addr_ts] != s->ps.pps->tile_id[ctb_addr_ts - 1]) {
  2053. int idxX = s->ps.pps->col_idxX[x_ctb >> s->ps.sps->log2_ctb_size];
  2054. lc->end_of_tiles_x = x_ctb + (s->ps.pps->column_width[idxX] << s->ps.sps->log2_ctb_size);
  2055. lc->first_qp_group = 1;
  2056. }
  2057. } else {
  2058. lc->end_of_tiles_x = s->ps.sps->width;
  2059. }
  2060. lc->end_of_tiles_y = FFMIN(y_ctb + ctb_size, s->ps.sps->height);
  2061. lc->boundary_flags = 0;
  2062. if (s->ps.pps->tiles_enabled_flag) {
  2063. if (x_ctb > 0 && s->ps.pps->tile_id[ctb_addr_ts] != s->ps.pps->tile_id[s->ps.pps->ctb_addr_rs_to_ts[ctb_addr_rs - 1]])
  2064. lc->boundary_flags |= BOUNDARY_LEFT_TILE;
  2065. if (x_ctb > 0 && s->tab_slice_address[ctb_addr_rs] != s->tab_slice_address[ctb_addr_rs - 1])
  2066. lc->boundary_flags |= BOUNDARY_LEFT_SLICE;
  2067. if (y_ctb > 0 && s->ps.pps->tile_id[ctb_addr_ts] != s->ps.pps->tile_id[s->ps.pps->ctb_addr_rs_to_ts[ctb_addr_rs - s->ps.sps->ctb_width]])
  2068. lc->boundary_flags |= BOUNDARY_UPPER_TILE;
  2069. if (y_ctb > 0 && s->tab_slice_address[ctb_addr_rs] != s->tab_slice_address[ctb_addr_rs - s->ps.sps->ctb_width])
  2070. lc->boundary_flags |= BOUNDARY_UPPER_SLICE;
  2071. } else {
  2072. if (ctb_addr_in_slice <= 0)
  2073. lc->boundary_flags |= BOUNDARY_LEFT_SLICE;
  2074. if (ctb_addr_in_slice < s->ps.sps->ctb_width)
  2075. lc->boundary_flags |= BOUNDARY_UPPER_SLICE;
  2076. }
  2077. lc->ctb_left_flag = ((x_ctb > 0) && (ctb_addr_in_slice > 0) && !(lc->boundary_flags & BOUNDARY_LEFT_TILE));
  2078. lc->ctb_up_flag = ((y_ctb > 0) && (ctb_addr_in_slice >= s->ps.sps->ctb_width) && !(lc->boundary_flags & BOUNDARY_UPPER_TILE));
  2079. lc->ctb_up_right_flag = ((y_ctb > 0) && (ctb_addr_in_slice+1 >= s->ps.sps->ctb_width) && (s->ps.pps->tile_id[ctb_addr_ts] == s->ps.pps->tile_id[s->ps.pps->ctb_addr_rs_to_ts[ctb_addr_rs+1 - s->ps.sps->ctb_width]]));
  2080. lc->ctb_up_left_flag = ((x_ctb > 0) && (y_ctb > 0) && (ctb_addr_in_slice-1 >= s->ps.sps->ctb_width) && (s->ps.pps->tile_id[ctb_addr_ts] == s->ps.pps->tile_id[s->ps.pps->ctb_addr_rs_to_ts[ctb_addr_rs-1 - s->ps.sps->ctb_width]]));
  2081. }
  2082. static int hls_decode_entry(AVCodecContext *avctxt, void *isFilterThread)
  2083. {
  2084. HEVCContext *s = avctxt->priv_data;
  2085. int ctb_size = 1 << s->ps.sps->log2_ctb_size;
  2086. int more_data = 1;
  2087. int x_ctb = 0;
  2088. int y_ctb = 0;
  2089. int ctb_addr_ts = s->ps.pps->ctb_addr_rs_to_ts[s->sh.slice_ctb_addr_rs];
  2090. int ret;
  2091. if (!ctb_addr_ts && s->sh.dependent_slice_segment_flag) {
  2092. av_log(s->avctx, AV_LOG_ERROR, "Impossible initial tile.\n");
  2093. return AVERROR_INVALIDDATA;
  2094. }
  2095. if (s->sh.dependent_slice_segment_flag) {
  2096. int prev_rs = s->ps.pps->ctb_addr_ts_to_rs[ctb_addr_ts - 1];
  2097. if (s->tab_slice_address[prev_rs] != s->sh.slice_addr) {
  2098. av_log(s->avctx, AV_LOG_ERROR, "Previous slice segment missing\n");
  2099. return AVERROR_INVALIDDATA;
  2100. }
  2101. }
  2102. while (more_data && ctb_addr_ts < s->ps.sps->ctb_size) {
  2103. int ctb_addr_rs = s->ps.pps->ctb_addr_ts_to_rs[ctb_addr_ts];
  2104. x_ctb = (ctb_addr_rs % ((s->ps.sps->width + ctb_size - 1) >> s->ps.sps->log2_ctb_size)) << s->ps.sps->log2_ctb_size;
  2105. y_ctb = (ctb_addr_rs / ((s->ps.sps->width + ctb_size - 1) >> s->ps.sps->log2_ctb_size)) << s->ps.sps->log2_ctb_size;
  2106. hls_decode_neighbour(s, x_ctb, y_ctb, ctb_addr_ts);
  2107. ret = ff_hevc_cabac_init(s, ctb_addr_ts);
  2108. if (ret < 0) {
  2109. s->tab_slice_address[ctb_addr_rs] = -1;
  2110. return ret;
  2111. }
  2112. hls_sao_param(s, x_ctb >> s->ps.sps->log2_ctb_size, y_ctb >> s->ps.sps->log2_ctb_size);
  2113. s->deblock[ctb_addr_rs].beta_offset = s->sh.beta_offset;
  2114. s->deblock[ctb_addr_rs].tc_offset = s->sh.tc_offset;
  2115. s->filter_slice_edges[ctb_addr_rs] = s->sh.slice_loop_filter_across_slices_enabled_flag;
  2116. more_data = hls_coding_quadtree(s, x_ctb, y_ctb, s->ps.sps->log2_ctb_size, 0);
  2117. if (more_data < 0) {
  2118. s->tab_slice_address[ctb_addr_rs] = -1;
  2119. return more_data;
  2120. }
  2121. ctb_addr_ts++;
  2122. ff_hevc_save_states(s, ctb_addr_ts);
  2123. ff_hevc_hls_filters(s, x_ctb, y_ctb, ctb_size);
  2124. }
  2125. if (x_ctb + ctb_size >= s->ps.sps->width &&
  2126. y_ctb + ctb_size >= s->ps.sps->height)
  2127. ff_hevc_hls_filter(s, x_ctb, y_ctb, ctb_size);
  2128. return ctb_addr_ts;
  2129. }
  2130. static int hls_slice_data(HEVCContext *s)
  2131. {
  2132. int arg[2];
  2133. int ret[2];
  2134. arg[0] = 0;
  2135. arg[1] = 1;
  2136. s->avctx->execute(s->avctx, hls_decode_entry, arg, ret , 1, sizeof(int));
  2137. return ret[0];
  2138. }
  2139. static int hls_decode_entry_wpp(AVCodecContext *avctxt, void *input_ctb_row, int job, int self_id)
  2140. {
  2141. HEVCContext *s1 = avctxt->priv_data, *s;
  2142. HEVCLocalContext *lc;
  2143. int ctb_size = 1<< s1->ps.sps->log2_ctb_size;
  2144. int more_data = 1;
  2145. int *ctb_row_p = input_ctb_row;
  2146. int ctb_row = ctb_row_p[job];
  2147. int ctb_addr_rs = s1->sh.slice_ctb_addr_rs + ctb_row * ((s1->ps.sps->width + ctb_size - 1) >> s1->ps.sps->log2_ctb_size);
  2148. int ctb_addr_ts = s1->ps.pps->ctb_addr_rs_to_ts[ctb_addr_rs];
  2149. int thread = ctb_row % s1->threads_number;
  2150. int ret;
  2151. s = s1->sList[self_id];
  2152. lc = s->HEVClc;
  2153. if(ctb_row) {
  2154. ret = init_get_bits8(&lc->gb, s->data + s->sh.offset[ctb_row - 1], s->sh.size[ctb_row - 1]);
  2155. if (ret < 0)
  2156. goto error;
  2157. ff_init_cabac_decoder(&lc->cc, s->data + s->sh.offset[(ctb_row)-1], s->sh.size[ctb_row - 1]);
  2158. }
  2159. while(more_data && ctb_addr_ts < s->ps.sps->ctb_size) {
  2160. int x_ctb = (ctb_addr_rs % s->ps.sps->ctb_width) << s->ps.sps->log2_ctb_size;
  2161. int y_ctb = (ctb_addr_rs / s->ps.sps->ctb_width) << s->ps.sps->log2_ctb_size;
  2162. hls_decode_neighbour(s, x_ctb, y_ctb, ctb_addr_ts);
  2163. ff_thread_await_progress2(s->avctx, ctb_row, thread, SHIFT_CTB_WPP);
  2164. if (atomic_load(&s1->wpp_err)) {
  2165. ff_thread_report_progress2(s->avctx, ctb_row , thread, SHIFT_CTB_WPP);
  2166. return 0;
  2167. }
  2168. ret = ff_hevc_cabac_init(s, ctb_addr_ts);
  2169. if (ret < 0)
  2170. goto error;
  2171. hls_sao_param(s, x_ctb >> s->ps.sps->log2_ctb_size, y_ctb >> s->ps.sps->log2_ctb_size);
  2172. more_data = hls_coding_quadtree(s, x_ctb, y_ctb, s->ps.sps->log2_ctb_size, 0);
  2173. if (more_data < 0) {
  2174. ret = more_data;
  2175. goto error;
  2176. }
  2177. ctb_addr_ts++;
  2178. ff_hevc_save_states(s, ctb_addr_ts);
  2179. ff_thread_report_progress2(s->avctx, ctb_row, thread, 1);
  2180. ff_hevc_hls_filters(s, x_ctb, y_ctb, ctb_size);
  2181. if (!more_data && (x_ctb+ctb_size) < s->ps.sps->width && ctb_row != s->sh.num_entry_point_offsets) {
  2182. atomic_store(&s1->wpp_err, 1);
  2183. ff_thread_report_progress2(s->avctx, ctb_row ,thread, SHIFT_CTB_WPP);
  2184. return 0;
  2185. }
  2186. if ((x_ctb+ctb_size) >= s->ps.sps->width && (y_ctb+ctb_size) >= s->ps.sps->height ) {
  2187. ff_hevc_hls_filter(s, x_ctb, y_ctb, ctb_size);
  2188. ff_thread_report_progress2(s->avctx, ctb_row , thread, SHIFT_CTB_WPP);
  2189. return ctb_addr_ts;
  2190. }
  2191. ctb_addr_rs = s->ps.pps->ctb_addr_ts_to_rs[ctb_addr_ts];
  2192. x_ctb+=ctb_size;
  2193. if(x_ctb >= s->ps.sps->width) {
  2194. break;
  2195. }
  2196. }
  2197. ff_thread_report_progress2(s->avctx, ctb_row ,thread, SHIFT_CTB_WPP);
  2198. return 0;
  2199. error:
  2200. s->tab_slice_address[ctb_addr_rs] = -1;
  2201. atomic_store(&s1->wpp_err, 1);
  2202. ff_thread_report_progress2(s->avctx, ctb_row ,thread, SHIFT_CTB_WPP);
  2203. return ret;
  2204. }
  2205. static int hls_slice_data_wpp(HEVCContext *s, const H2645NAL *nal)
  2206. {
  2207. const uint8_t *data = nal->data;
  2208. int length = nal->size;
  2209. HEVCLocalContext *lc = s->HEVClc;
  2210. int *ret = av_malloc_array(s->sh.num_entry_point_offsets + 1, sizeof(int));
  2211. int *arg = av_malloc_array(s->sh.num_entry_point_offsets + 1, sizeof(int));
  2212. int64_t offset;
  2213. int64_t startheader, cmpt = 0;
  2214. int i, j, res = 0;
  2215. if (!ret || !arg) {
  2216. av_free(ret);
  2217. av_free(arg);
  2218. return AVERROR(ENOMEM);
  2219. }
  2220. if (s->sh.slice_ctb_addr_rs + s->sh.num_entry_point_offsets * s->ps.sps->ctb_width >= s->ps.sps->ctb_width * s->ps.sps->ctb_height) {
  2221. av_log(s->avctx, AV_LOG_ERROR, "WPP ctb addresses are wrong (%d %d %d %d)\n",
  2222. s->sh.slice_ctb_addr_rs, s->sh.num_entry_point_offsets,
  2223. s->ps.sps->ctb_width, s->ps.sps->ctb_height
  2224. );
  2225. res = AVERROR_INVALIDDATA;
  2226. goto error;
  2227. }
  2228. ff_alloc_entries(s->avctx, s->sh.num_entry_point_offsets + 1);
  2229. if (!s->sList[1]) {
  2230. for (i = 1; i < s->threads_number; i++) {
  2231. s->sList[i] = av_malloc(sizeof(HEVCContext));
  2232. memcpy(s->sList[i], s, sizeof(HEVCContext));
  2233. s->HEVClcList[i] = av_mallocz(sizeof(HEVCLocalContext));
  2234. s->sList[i]->HEVClc = s->HEVClcList[i];
  2235. }
  2236. }
  2237. offset = (lc->gb.index >> 3);
  2238. for (j = 0, cmpt = 0, startheader = offset + s->sh.entry_point_offset[0]; j < nal->skipped_bytes; j++) {
  2239. if (nal->skipped_bytes_pos[j] >= offset && nal->skipped_bytes_pos[j] < startheader) {
  2240. startheader--;
  2241. cmpt++;
  2242. }
  2243. }
  2244. for (i = 1; i < s->sh.num_entry_point_offsets; i++) {
  2245. offset += (s->sh.entry_point_offset[i - 1] - cmpt);
  2246. for (j = 0, cmpt = 0, startheader = offset
  2247. + s->sh.entry_point_offset[i]; j < nal->skipped_bytes; j++) {
  2248. if (nal->skipped_bytes_pos[j] >= offset && nal->skipped_bytes_pos[j] < startheader) {
  2249. startheader--;
  2250. cmpt++;
  2251. }
  2252. }
  2253. s->sh.size[i - 1] = s->sh.entry_point_offset[i] - cmpt;
  2254. s->sh.offset[i - 1] = offset;
  2255. }
  2256. if (s->sh.num_entry_point_offsets != 0) {
  2257. offset += s->sh.entry_point_offset[s->sh.num_entry_point_offsets - 1] - cmpt;
  2258. if (length < offset) {
  2259. av_log(s->avctx, AV_LOG_ERROR, "entry_point_offset table is corrupted\n");
  2260. res = AVERROR_INVALIDDATA;
  2261. goto error;
  2262. }
  2263. s->sh.size[s->sh.num_entry_point_offsets - 1] = length - offset;
  2264. s->sh.offset[s->sh.num_entry_point_offsets - 1] = offset;
  2265. }
  2266. s->data = data;
  2267. for (i = 1; i < s->threads_number; i++) {
  2268. s->sList[i]->HEVClc->first_qp_group = 1;
  2269. s->sList[i]->HEVClc->qp_y = s->sList[0]->HEVClc->qp_y;
  2270. memcpy(s->sList[i], s, sizeof(HEVCContext));
  2271. s->sList[i]->HEVClc = s->HEVClcList[i];
  2272. }
  2273. atomic_store(&s->wpp_err, 0);
  2274. ff_reset_entries(s->avctx);
  2275. for (i = 0; i <= s->sh.num_entry_point_offsets; i++) {
  2276. arg[i] = i;
  2277. ret[i] = 0;
  2278. }
  2279. if (s->ps.pps->entropy_coding_sync_enabled_flag)
  2280. s->avctx->execute2(s->avctx, hls_decode_entry_wpp, arg, ret, s->sh.num_entry_point_offsets + 1);
  2281. for (i = 0; i <= s->sh.num_entry_point_offsets; i++)
  2282. res += ret[i];
  2283. error:
  2284. av_free(ret);
  2285. av_free(arg);
  2286. return res;
  2287. }
  2288. static int set_side_data(HEVCContext *s)
  2289. {
  2290. AVFrame *out = s->ref->frame;
  2291. if (s->sei.frame_packing.present &&
  2292. s->sei.frame_packing.arrangement_type >= 3 &&
  2293. s->sei.frame_packing.arrangement_type <= 5 &&
  2294. s->sei.frame_packing.content_interpretation_type > 0 &&
  2295. s->sei.frame_packing.content_interpretation_type < 3) {
  2296. AVStereo3D *stereo = av_stereo3d_create_side_data(out);
  2297. if (!stereo)
  2298. return AVERROR(ENOMEM);
  2299. switch (s->sei.frame_packing.arrangement_type) {
  2300. case 3:
  2301. if (s->sei.frame_packing.quincunx_subsampling)
  2302. stereo->type = AV_STEREO3D_SIDEBYSIDE_QUINCUNX;
  2303. else
  2304. stereo->type = AV_STEREO3D_SIDEBYSIDE;
  2305. break;
  2306. case 4:
  2307. stereo->type = AV_STEREO3D_TOPBOTTOM;
  2308. break;
  2309. case 5:
  2310. stereo->type = AV_STEREO3D_FRAMESEQUENCE;
  2311. break;
  2312. }
  2313. if (s->sei.frame_packing.content_interpretation_type == 2)
  2314. stereo->flags = AV_STEREO3D_FLAG_INVERT;
  2315. }
  2316. if (s->sei.display_orientation.present &&
  2317. (s->sei.display_orientation.anticlockwise_rotation ||
  2318. s->sei.display_orientation.hflip || s->sei.display_orientation.vflip)) {
  2319. double angle = s->sei.display_orientation.anticlockwise_rotation * 360 / (double) (1 << 16);
  2320. AVFrameSideData *rotation = av_frame_new_side_data(out,
  2321. AV_FRAME_DATA_DISPLAYMATRIX,
  2322. sizeof(int32_t) * 9);
  2323. if (!rotation)
  2324. return AVERROR(ENOMEM);
  2325. av_display_rotation_set((int32_t *)rotation->data, angle);
  2326. av_display_matrix_flip((int32_t *)rotation->data,
  2327. s->sei.display_orientation.hflip,
  2328. s->sei.display_orientation.vflip);
  2329. }
  2330. // Decrement the mastering display flag when IRAP frame has no_rasl_output_flag=1
  2331. // so the side data persists for the entire coded video sequence.
  2332. if (s->sei.mastering_display.present > 0 &&
  2333. IS_IRAP(s) && s->no_rasl_output_flag) {
  2334. s->sei.mastering_display.present--;
  2335. }
  2336. if (s->sei.mastering_display.present) {
  2337. // HEVC uses a g,b,r ordering, which we convert to a more natural r,g,b
  2338. const int mapping[3] = {2, 0, 1};
  2339. const int chroma_den = 50000;
  2340. const int luma_den = 10000;
  2341. int i;
  2342. AVMasteringDisplayMetadata *metadata =
  2343. av_mastering_display_metadata_create_side_data(out);
  2344. if (!metadata)
  2345. return AVERROR(ENOMEM);
  2346. for (i = 0; i < 3; i++) {
  2347. const int j = mapping[i];
  2348. metadata->display_primaries[i][0].num = s->sei.mastering_display.display_primaries[j][0];
  2349. metadata->display_primaries[i][0].den = chroma_den;
  2350. metadata->display_primaries[i][1].num = s->sei.mastering_display.display_primaries[j][1];
  2351. metadata->display_primaries[i][1].den = chroma_den;
  2352. }
  2353. metadata->white_point[0].num = s->sei.mastering_display.white_point[0];
  2354. metadata->white_point[0].den = chroma_den;
  2355. metadata->white_point[1].num = s->sei.mastering_display.white_point[1];
  2356. metadata->white_point[1].den = chroma_den;
  2357. metadata->max_luminance.num = s->sei.mastering_display.max_luminance;
  2358. metadata->max_luminance.den = luma_den;
  2359. metadata->min_luminance.num = s->sei.mastering_display.min_luminance;
  2360. metadata->min_luminance.den = luma_den;
  2361. metadata->has_luminance = 1;
  2362. metadata->has_primaries = 1;
  2363. av_log(s->avctx, AV_LOG_DEBUG, "Mastering Display Metadata:\n");
  2364. av_log(s->avctx, AV_LOG_DEBUG,
  2365. "r(%5.4f,%5.4f) g(%5.4f,%5.4f) b(%5.4f %5.4f) wp(%5.4f, %5.4f)\n",
  2366. av_q2d(metadata->display_primaries[0][0]),
  2367. av_q2d(metadata->display_primaries[0][1]),
  2368. av_q2d(metadata->display_primaries[1][0]),
  2369. av_q2d(metadata->display_primaries[1][1]),
  2370. av_q2d(metadata->display_primaries[2][0]),
  2371. av_q2d(metadata->display_primaries[2][1]),
  2372. av_q2d(metadata->white_point[0]), av_q2d(metadata->white_point[1]));
  2373. av_log(s->avctx, AV_LOG_DEBUG,
  2374. "min_luminance=%f, max_luminance=%f\n",
  2375. av_q2d(metadata->min_luminance), av_q2d(metadata->max_luminance));
  2376. }
  2377. // Decrement the mastering display flag when IRAP frame has no_rasl_output_flag=1
  2378. // so the side data persists for the entire coded video sequence.
  2379. if (s->sei.content_light.present > 0 &&
  2380. IS_IRAP(s) && s->no_rasl_output_flag) {
  2381. s->sei.content_light.present--;
  2382. }
  2383. if (s->sei.content_light.present) {
  2384. AVContentLightMetadata *metadata =
  2385. av_content_light_metadata_create_side_data(out);
  2386. if (!metadata)
  2387. return AVERROR(ENOMEM);
  2388. metadata->MaxCLL = s->sei.content_light.max_content_light_level;
  2389. metadata->MaxFALL = s->sei.content_light.max_pic_average_light_level;
  2390. av_log(s->avctx, AV_LOG_DEBUG, "Content Light Level Metadata:\n");
  2391. av_log(s->avctx, AV_LOG_DEBUG, "MaxCLL=%d, MaxFALL=%d\n",
  2392. metadata->MaxCLL, metadata->MaxFALL);
  2393. }
  2394. if (s->sei.a53_caption.a53_caption) {
  2395. AVFrameSideData* sd = av_frame_new_side_data(out,
  2396. AV_FRAME_DATA_A53_CC,
  2397. s->sei.a53_caption.a53_caption_size);
  2398. if (sd)
  2399. memcpy(sd->data, s->sei.a53_caption.a53_caption, s->sei.a53_caption.a53_caption_size);
  2400. av_freep(&s->sei.a53_caption.a53_caption);
  2401. s->sei.a53_caption.a53_caption_size = 0;
  2402. s->avctx->properties |= FF_CODEC_PROPERTY_CLOSED_CAPTIONS;
  2403. }
  2404. if (s->sei.alternative_transfer.present &&
  2405. av_color_transfer_name(s->sei.alternative_transfer.preferred_transfer_characteristics) &&
  2406. s->sei.alternative_transfer.preferred_transfer_characteristics != AVCOL_TRC_UNSPECIFIED) {
  2407. s->avctx->color_trc = out->color_trc = s->sei.alternative_transfer.preferred_transfer_characteristics;
  2408. }
  2409. return 0;
  2410. }
  2411. static int hevc_frame_start(HEVCContext *s)
  2412. {
  2413. HEVCLocalContext *lc = s->HEVClc;
  2414. int pic_size_in_ctb = ((s->ps.sps->width >> s->ps.sps->log2_min_cb_size) + 1) *
  2415. ((s->ps.sps->height >> s->ps.sps->log2_min_cb_size) + 1);
  2416. int ret;
  2417. memset(s->horizontal_bs, 0, s->bs_width * s->bs_height);
  2418. memset(s->vertical_bs, 0, s->bs_width * s->bs_height);
  2419. memset(s->cbf_luma, 0, s->ps.sps->min_tb_width * s->ps.sps->min_tb_height);
  2420. memset(s->is_pcm, 0, (s->ps.sps->min_pu_width + 1) * (s->ps.sps->min_pu_height + 1));
  2421. memset(s->tab_slice_address, -1, pic_size_in_ctb * sizeof(*s->tab_slice_address));
  2422. s->is_decoded = 0;
  2423. s->first_nal_type = s->nal_unit_type;
  2424. s->no_rasl_output_flag = IS_IDR(s) || IS_BLA(s) || (s->nal_unit_type == HEVC_NAL_CRA_NUT && s->last_eos);
  2425. if (s->ps.pps->tiles_enabled_flag)
  2426. lc->end_of_tiles_x = s->ps.pps->column_width[0] << s->ps.sps->log2_ctb_size;
  2427. ret = ff_hevc_set_new_ref(s, &s->frame, s->poc);
  2428. if (ret < 0)
  2429. goto fail;
  2430. ret = ff_hevc_frame_rps(s);
  2431. if (ret < 0) {
  2432. av_log(s->avctx, AV_LOG_ERROR, "Error constructing the frame RPS.\n");
  2433. goto fail;
  2434. }
  2435. s->ref->frame->key_frame = IS_IRAP(s);
  2436. ret = set_side_data(s);
  2437. if (ret < 0)
  2438. goto fail;
  2439. s->frame->pict_type = 3 - s->sh.slice_type;
  2440. if (!IS_IRAP(s))
  2441. ff_hevc_bump_frame(s);
  2442. av_frame_unref(s->output_frame);
  2443. ret = ff_hevc_output_frame(s, s->output_frame, 0);
  2444. if (ret < 0)
  2445. goto fail;
  2446. if (!s->avctx->hwaccel)
  2447. ff_thread_finish_setup(s->avctx);
  2448. return 0;
  2449. fail:
  2450. if (s->ref)
  2451. ff_hevc_unref_frame(s, s->ref, ~0);
  2452. s->ref = NULL;
  2453. return ret;
  2454. }
  2455. static int decode_nal_unit(HEVCContext *s, const H2645NAL *nal)
  2456. {
  2457. HEVCLocalContext *lc = s->HEVClc;
  2458. GetBitContext *gb = &lc->gb;
  2459. int ctb_addr_ts, ret;
  2460. *gb = nal->gb;
  2461. s->nal_unit_type = nal->type;
  2462. s->temporal_id = nal->temporal_id;
  2463. switch (s->nal_unit_type) {
  2464. case HEVC_NAL_VPS:
  2465. ret = ff_hevc_decode_nal_vps(gb, s->avctx, &s->ps);
  2466. if (ret < 0)
  2467. goto fail;
  2468. break;
  2469. case HEVC_NAL_SPS:
  2470. ret = ff_hevc_decode_nal_sps(gb, s->avctx, &s->ps,
  2471. s->apply_defdispwin);
  2472. if (ret < 0)
  2473. goto fail;
  2474. break;
  2475. case HEVC_NAL_PPS:
  2476. ret = ff_hevc_decode_nal_pps(gb, s->avctx, &s->ps);
  2477. if (ret < 0)
  2478. goto fail;
  2479. break;
  2480. case HEVC_NAL_SEI_PREFIX:
  2481. case HEVC_NAL_SEI_SUFFIX:
  2482. ret = ff_hevc_decode_nal_sei(gb, s->avctx, &s->sei, &s->ps, s->nal_unit_type);
  2483. if (ret < 0)
  2484. goto fail;
  2485. break;
  2486. case HEVC_NAL_TRAIL_R:
  2487. case HEVC_NAL_TRAIL_N:
  2488. case HEVC_NAL_TSA_N:
  2489. case HEVC_NAL_TSA_R:
  2490. case HEVC_NAL_STSA_N:
  2491. case HEVC_NAL_STSA_R:
  2492. case HEVC_NAL_BLA_W_LP:
  2493. case HEVC_NAL_BLA_W_RADL:
  2494. case HEVC_NAL_BLA_N_LP:
  2495. case HEVC_NAL_IDR_W_RADL:
  2496. case HEVC_NAL_IDR_N_LP:
  2497. case HEVC_NAL_CRA_NUT:
  2498. case HEVC_NAL_RADL_N:
  2499. case HEVC_NAL_RADL_R:
  2500. case HEVC_NAL_RASL_N:
  2501. case HEVC_NAL_RASL_R:
  2502. ret = hls_slice_header(s);
  2503. if (ret < 0)
  2504. return ret;
  2505. if (ret == 1) {
  2506. ret = AVERROR_INVALIDDATA;
  2507. goto fail;
  2508. }
  2509. if (s->sh.first_slice_in_pic_flag) {
  2510. if (s->max_ra == INT_MAX) {
  2511. if (s->nal_unit_type == HEVC_NAL_CRA_NUT || IS_BLA(s)) {
  2512. s->max_ra = s->poc;
  2513. } else {
  2514. if (IS_IDR(s))
  2515. s->max_ra = INT_MIN;
  2516. }
  2517. }
  2518. if ((s->nal_unit_type == HEVC_NAL_RASL_R || s->nal_unit_type == HEVC_NAL_RASL_N) &&
  2519. s->poc <= s->max_ra) {
  2520. s->is_decoded = 0;
  2521. break;
  2522. } else {
  2523. if (s->nal_unit_type == HEVC_NAL_RASL_R && s->poc > s->max_ra)
  2524. s->max_ra = INT_MIN;
  2525. }
  2526. ret = hevc_frame_start(s);
  2527. if (ret < 0)
  2528. return ret;
  2529. } else if (!s->ref) {
  2530. av_log(s->avctx, AV_LOG_ERROR, "First slice in a frame missing.\n");
  2531. goto fail;
  2532. }
  2533. if (s->nal_unit_type != s->first_nal_type) {
  2534. av_log(s->avctx, AV_LOG_ERROR,
  2535. "Non-matching NAL types of the VCL NALUs: %d %d\n",
  2536. s->first_nal_type, s->nal_unit_type);
  2537. return AVERROR_INVALIDDATA;
  2538. }
  2539. if (!s->sh.dependent_slice_segment_flag &&
  2540. s->sh.slice_type != HEVC_SLICE_I) {
  2541. ret = ff_hevc_slice_rpl(s);
  2542. if (ret < 0) {
  2543. av_log(s->avctx, AV_LOG_WARNING,
  2544. "Error constructing the reference lists for the current slice.\n");
  2545. goto fail;
  2546. }
  2547. }
  2548. if (s->sh.first_slice_in_pic_flag && s->avctx->hwaccel) {
  2549. ret = s->avctx->hwaccel->start_frame(s->avctx, NULL, 0);
  2550. if (ret < 0)
  2551. goto fail;
  2552. }
  2553. if (s->avctx->hwaccel) {
  2554. ret = s->avctx->hwaccel->decode_slice(s->avctx, nal->raw_data, nal->raw_size);
  2555. if (ret < 0)
  2556. goto fail;
  2557. } else {
  2558. if (s->threads_number > 1 && s->sh.num_entry_point_offsets > 0)
  2559. ctb_addr_ts = hls_slice_data_wpp(s, nal);
  2560. else
  2561. ctb_addr_ts = hls_slice_data(s);
  2562. if (ctb_addr_ts >= (s->ps.sps->ctb_width * s->ps.sps->ctb_height)) {
  2563. s->is_decoded = 1;
  2564. }
  2565. if (ctb_addr_ts < 0) {
  2566. ret = ctb_addr_ts;
  2567. goto fail;
  2568. }
  2569. }
  2570. break;
  2571. case HEVC_NAL_EOS_NUT:
  2572. case HEVC_NAL_EOB_NUT:
  2573. s->seq_decode = (s->seq_decode + 1) & 0xff;
  2574. s->max_ra = INT_MAX;
  2575. break;
  2576. case HEVC_NAL_AUD:
  2577. case HEVC_NAL_FD_NUT:
  2578. break;
  2579. default:
  2580. av_log(s->avctx, AV_LOG_INFO,
  2581. "Skipping NAL unit %d\n", s->nal_unit_type);
  2582. }
  2583. return 0;
  2584. fail:
  2585. if (s->avctx->err_recognition & AV_EF_EXPLODE)
  2586. return ret;
  2587. return 0;
  2588. }
  2589. static int decode_nal_units(HEVCContext *s, const uint8_t *buf, int length)
  2590. {
  2591. int i, ret = 0;
  2592. int eos_at_start = 1;
  2593. s->ref = NULL;
  2594. s->last_eos = s->eos;
  2595. s->eos = 0;
  2596. /* split the input packet into NAL units, so we know the upper bound on the
  2597. * number of slices in the frame */
  2598. ret = ff_h2645_packet_split(&s->pkt, buf, length, s->avctx, s->is_nalff,
  2599. s->nal_length_size, s->avctx->codec_id, 1);
  2600. if (ret < 0) {
  2601. av_log(s->avctx, AV_LOG_ERROR,
  2602. "Error splitting the input into NAL units.\n");
  2603. return ret;
  2604. }
  2605. for (i = 0; i < s->pkt.nb_nals; i++) {
  2606. if (s->pkt.nals[i].type == HEVC_NAL_EOB_NUT ||
  2607. s->pkt.nals[i].type == HEVC_NAL_EOS_NUT) {
  2608. if (eos_at_start) {
  2609. s->last_eos = 1;
  2610. } else {
  2611. s->eos = 1;
  2612. }
  2613. } else {
  2614. eos_at_start = 0;
  2615. }
  2616. }
  2617. /* decode the NAL units */
  2618. for (i = 0; i < s->pkt.nb_nals; i++) {
  2619. ret = decode_nal_unit(s, &s->pkt.nals[i]);
  2620. if (ret < 0) {
  2621. av_log(s->avctx, AV_LOG_WARNING,
  2622. "Error parsing NAL unit #%d.\n", i);
  2623. goto fail;
  2624. }
  2625. }
  2626. fail:
  2627. if (s->ref && s->threads_type == FF_THREAD_FRAME)
  2628. ff_thread_report_progress(&s->ref->tf, INT_MAX, 0);
  2629. return ret;
  2630. }
  2631. static void print_md5(void *log_ctx, int level, uint8_t md5[16])
  2632. {
  2633. int i;
  2634. for (i = 0; i < 16; i++)
  2635. av_log(log_ctx, level, "%02"PRIx8, md5[i]);
  2636. }
  2637. static int verify_md5(HEVCContext *s, AVFrame *frame)
  2638. {
  2639. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(frame->format);
  2640. int pixel_shift;
  2641. int i, j;
  2642. if (!desc)
  2643. return AVERROR(EINVAL);
  2644. pixel_shift = desc->comp[0].depth > 8;
  2645. av_log(s->avctx, AV_LOG_DEBUG, "Verifying checksum for frame with POC %d: ",
  2646. s->poc);
  2647. /* the checksums are LE, so we have to byteswap for >8bpp formats
  2648. * on BE arches */
  2649. #if HAVE_BIGENDIAN
  2650. if (pixel_shift && !s->checksum_buf) {
  2651. av_fast_malloc(&s->checksum_buf, &s->checksum_buf_size,
  2652. FFMAX3(frame->linesize[0], frame->linesize[1],
  2653. frame->linesize[2]));
  2654. if (!s->checksum_buf)
  2655. return AVERROR(ENOMEM);
  2656. }
  2657. #endif
  2658. for (i = 0; frame->data[i]; i++) {
  2659. int width = s->avctx->coded_width;
  2660. int height = s->avctx->coded_height;
  2661. int w = (i == 1 || i == 2) ? (width >> desc->log2_chroma_w) : width;
  2662. int h = (i == 1 || i == 2) ? (height >> desc->log2_chroma_h) : height;
  2663. uint8_t md5[16];
  2664. av_md5_init(s->sei.picture_hash.md5_ctx);
  2665. for (j = 0; j < h; j++) {
  2666. const uint8_t *src = frame->data[i] + j * frame->linesize[i];
  2667. #if HAVE_BIGENDIAN
  2668. if (pixel_shift) {
  2669. s->bdsp.bswap16_buf((uint16_t *) s->checksum_buf,
  2670. (const uint16_t *) src, w);
  2671. src = s->checksum_buf;
  2672. }
  2673. #endif
  2674. av_md5_update(s->sei.picture_hash.md5_ctx, src, w << pixel_shift);
  2675. }
  2676. av_md5_final(s->sei.picture_hash.md5_ctx, md5);
  2677. if (!memcmp(md5, s->sei.picture_hash.md5[i], 16)) {
  2678. av_log (s->avctx, AV_LOG_DEBUG, "plane %d - correct ", i);
  2679. print_md5(s->avctx, AV_LOG_DEBUG, md5);
  2680. av_log (s->avctx, AV_LOG_DEBUG, "; ");
  2681. } else {
  2682. av_log (s->avctx, AV_LOG_ERROR, "mismatching checksum of plane %d - ", i);
  2683. print_md5(s->avctx, AV_LOG_ERROR, md5);
  2684. av_log (s->avctx, AV_LOG_ERROR, " != ");
  2685. print_md5(s->avctx, AV_LOG_ERROR, s->sei.picture_hash.md5[i]);
  2686. av_log (s->avctx, AV_LOG_ERROR, "\n");
  2687. return AVERROR_INVALIDDATA;
  2688. }
  2689. }
  2690. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  2691. return 0;
  2692. }
  2693. static int hevc_decode_extradata(HEVCContext *s, uint8_t *buf, int length, int first)
  2694. {
  2695. int ret, i;
  2696. ret = ff_hevc_decode_extradata(buf, length, &s->ps, &s->sei, &s->is_nalff,
  2697. &s->nal_length_size, s->avctx->err_recognition,
  2698. s->apply_defdispwin, s->avctx);
  2699. if (ret < 0)
  2700. return ret;
  2701. /* export stream parameters from the first SPS */
  2702. for (i = 0; i < FF_ARRAY_ELEMS(s->ps.sps_list); i++) {
  2703. if (first && s->ps.sps_list[i]) {
  2704. const HEVCSPS *sps = (const HEVCSPS*)s->ps.sps_list[i]->data;
  2705. export_stream_params(s->avctx, &s->ps, sps);
  2706. break;
  2707. }
  2708. }
  2709. return 0;
  2710. }
  2711. static int hevc_decode_frame(AVCodecContext *avctx, void *data, int *got_output,
  2712. AVPacket *avpkt)
  2713. {
  2714. int ret;
  2715. int new_extradata_size;
  2716. uint8_t *new_extradata;
  2717. HEVCContext *s = avctx->priv_data;
  2718. if (!avpkt->size) {
  2719. ret = ff_hevc_output_frame(s, data, 1);
  2720. if (ret < 0)
  2721. return ret;
  2722. *got_output = ret;
  2723. return 0;
  2724. }
  2725. new_extradata = av_packet_get_side_data(avpkt, AV_PKT_DATA_NEW_EXTRADATA,
  2726. &new_extradata_size);
  2727. if (new_extradata && new_extradata_size > 0) {
  2728. ret = hevc_decode_extradata(s, new_extradata, new_extradata_size, 0);
  2729. if (ret < 0)
  2730. return ret;
  2731. }
  2732. s->ref = NULL;
  2733. ret = decode_nal_units(s, avpkt->data, avpkt->size);
  2734. if (ret < 0)
  2735. return ret;
  2736. if (avctx->hwaccel) {
  2737. if (s->ref && (ret = avctx->hwaccel->end_frame(avctx)) < 0) {
  2738. av_log(avctx, AV_LOG_ERROR,
  2739. "hardware accelerator failed to decode picture\n");
  2740. ff_hevc_unref_frame(s, s->ref, ~0);
  2741. return ret;
  2742. }
  2743. } else {
  2744. /* verify the SEI checksum */
  2745. if (avctx->err_recognition & AV_EF_CRCCHECK && s->is_decoded &&
  2746. s->sei.picture_hash.is_md5) {
  2747. ret = verify_md5(s, s->ref->frame);
  2748. if (ret < 0 && avctx->err_recognition & AV_EF_EXPLODE) {
  2749. ff_hevc_unref_frame(s, s->ref, ~0);
  2750. return ret;
  2751. }
  2752. }
  2753. }
  2754. s->sei.picture_hash.is_md5 = 0;
  2755. if (s->is_decoded) {
  2756. av_log(avctx, AV_LOG_DEBUG, "Decoded frame with POC %d.\n", s->poc);
  2757. s->is_decoded = 0;
  2758. }
  2759. if (s->output_frame->buf[0]) {
  2760. av_frame_move_ref(data, s->output_frame);
  2761. *got_output = 1;
  2762. }
  2763. return avpkt->size;
  2764. }
  2765. static int hevc_ref_frame(HEVCContext *s, HEVCFrame *dst, HEVCFrame *src)
  2766. {
  2767. int ret;
  2768. ret = ff_thread_ref_frame(&dst->tf, &src->tf);
  2769. if (ret < 0)
  2770. return ret;
  2771. dst->tab_mvf_buf = av_buffer_ref(src->tab_mvf_buf);
  2772. if (!dst->tab_mvf_buf)
  2773. goto fail;
  2774. dst->tab_mvf = src->tab_mvf;
  2775. dst->rpl_tab_buf = av_buffer_ref(src->rpl_tab_buf);
  2776. if (!dst->rpl_tab_buf)
  2777. goto fail;
  2778. dst->rpl_tab = src->rpl_tab;
  2779. dst->rpl_buf = av_buffer_ref(src->rpl_buf);
  2780. if (!dst->rpl_buf)
  2781. goto fail;
  2782. dst->poc = src->poc;
  2783. dst->ctb_count = src->ctb_count;
  2784. dst->flags = src->flags;
  2785. dst->sequence = src->sequence;
  2786. if (src->hwaccel_picture_private) {
  2787. dst->hwaccel_priv_buf = av_buffer_ref(src->hwaccel_priv_buf);
  2788. if (!dst->hwaccel_priv_buf)
  2789. goto fail;
  2790. dst->hwaccel_picture_private = dst->hwaccel_priv_buf->data;
  2791. }
  2792. return 0;
  2793. fail:
  2794. ff_hevc_unref_frame(s, dst, ~0);
  2795. return AVERROR(ENOMEM);
  2796. }
  2797. static av_cold int hevc_decode_free(AVCodecContext *avctx)
  2798. {
  2799. HEVCContext *s = avctx->priv_data;
  2800. int i;
  2801. pic_arrays_free(s);
  2802. av_freep(&s->sei.picture_hash.md5_ctx);
  2803. av_freep(&s->cabac_state);
  2804. for (i = 0; i < 3; i++) {
  2805. av_freep(&s->sao_pixel_buffer_h[i]);
  2806. av_freep(&s->sao_pixel_buffer_v[i]);
  2807. }
  2808. av_frame_free(&s->output_frame);
  2809. for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) {
  2810. ff_hevc_unref_frame(s, &s->DPB[i], ~0);
  2811. av_frame_free(&s->DPB[i].frame);
  2812. }
  2813. ff_hevc_ps_uninit(&s->ps);
  2814. av_freep(&s->sh.entry_point_offset);
  2815. av_freep(&s->sh.offset);
  2816. av_freep(&s->sh.size);
  2817. for (i = 1; i < s->threads_number; i++) {
  2818. HEVCLocalContext *lc = s->HEVClcList[i];
  2819. if (lc) {
  2820. av_freep(&s->HEVClcList[i]);
  2821. av_freep(&s->sList[i]);
  2822. }
  2823. }
  2824. if (s->HEVClc == s->HEVClcList[0])
  2825. s->HEVClc = NULL;
  2826. av_freep(&s->HEVClcList[0]);
  2827. ff_h2645_packet_uninit(&s->pkt);
  2828. return 0;
  2829. }
  2830. static av_cold int hevc_init_context(AVCodecContext *avctx)
  2831. {
  2832. HEVCContext *s = avctx->priv_data;
  2833. int i;
  2834. s->avctx = avctx;
  2835. s->HEVClc = av_mallocz(sizeof(HEVCLocalContext));
  2836. if (!s->HEVClc)
  2837. goto fail;
  2838. s->HEVClcList[0] = s->HEVClc;
  2839. s->sList[0] = s;
  2840. s->cabac_state = av_malloc(HEVC_CONTEXTS);
  2841. if (!s->cabac_state)
  2842. goto fail;
  2843. s->output_frame = av_frame_alloc();
  2844. if (!s->output_frame)
  2845. goto fail;
  2846. for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) {
  2847. s->DPB[i].frame = av_frame_alloc();
  2848. if (!s->DPB[i].frame)
  2849. goto fail;
  2850. s->DPB[i].tf.f = s->DPB[i].frame;
  2851. }
  2852. s->max_ra = INT_MAX;
  2853. s->sei.picture_hash.md5_ctx = av_md5_alloc();
  2854. if (!s->sei.picture_hash.md5_ctx)
  2855. goto fail;
  2856. ff_bswapdsp_init(&s->bdsp);
  2857. s->context_initialized = 1;
  2858. s->eos = 0;
  2859. ff_hevc_reset_sei(&s->sei);
  2860. return 0;
  2861. fail:
  2862. hevc_decode_free(avctx);
  2863. return AVERROR(ENOMEM);
  2864. }
  2865. static int hevc_update_thread_context(AVCodecContext *dst,
  2866. const AVCodecContext *src)
  2867. {
  2868. HEVCContext *s = dst->priv_data;
  2869. HEVCContext *s0 = src->priv_data;
  2870. int i, ret;
  2871. if (!s->context_initialized) {
  2872. ret = hevc_init_context(dst);
  2873. if (ret < 0)
  2874. return ret;
  2875. }
  2876. for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) {
  2877. ff_hevc_unref_frame(s, &s->DPB[i], ~0);
  2878. if (s0->DPB[i].frame->buf[0]) {
  2879. ret = hevc_ref_frame(s, &s->DPB[i], &s0->DPB[i]);
  2880. if (ret < 0)
  2881. return ret;
  2882. }
  2883. }
  2884. if (s->ps.sps != s0->ps.sps)
  2885. s->ps.sps = NULL;
  2886. for (i = 0; i < FF_ARRAY_ELEMS(s->ps.vps_list); i++) {
  2887. av_buffer_unref(&s->ps.vps_list[i]);
  2888. if (s0->ps.vps_list[i]) {
  2889. s->ps.vps_list[i] = av_buffer_ref(s0->ps.vps_list[i]);
  2890. if (!s->ps.vps_list[i])
  2891. return AVERROR(ENOMEM);
  2892. }
  2893. }
  2894. for (i = 0; i < FF_ARRAY_ELEMS(s->ps.sps_list); i++) {
  2895. av_buffer_unref(&s->ps.sps_list[i]);
  2896. if (s0->ps.sps_list[i]) {
  2897. s->ps.sps_list[i] = av_buffer_ref(s0->ps.sps_list[i]);
  2898. if (!s->ps.sps_list[i])
  2899. return AVERROR(ENOMEM);
  2900. }
  2901. }
  2902. for (i = 0; i < FF_ARRAY_ELEMS(s->ps.pps_list); i++) {
  2903. av_buffer_unref(&s->ps.pps_list[i]);
  2904. if (s0->ps.pps_list[i]) {
  2905. s->ps.pps_list[i] = av_buffer_ref(s0->ps.pps_list[i]);
  2906. if (!s->ps.pps_list[i])
  2907. return AVERROR(ENOMEM);
  2908. }
  2909. }
  2910. if (s->ps.sps != s0->ps.sps)
  2911. if ((ret = set_sps(s, s0->ps.sps, src->pix_fmt)) < 0)
  2912. return ret;
  2913. s->seq_decode = s0->seq_decode;
  2914. s->seq_output = s0->seq_output;
  2915. s->pocTid0 = s0->pocTid0;
  2916. s->max_ra = s0->max_ra;
  2917. s->eos = s0->eos;
  2918. s->no_rasl_output_flag = s0->no_rasl_output_flag;
  2919. s->is_nalff = s0->is_nalff;
  2920. s->nal_length_size = s0->nal_length_size;
  2921. s->threads_number = s0->threads_number;
  2922. s->threads_type = s0->threads_type;
  2923. if (s0->eos) {
  2924. s->seq_decode = (s->seq_decode + 1) & 0xff;
  2925. s->max_ra = INT_MAX;
  2926. }
  2927. s->sei.frame_packing = s0->sei.frame_packing;
  2928. s->sei.display_orientation = s0->sei.display_orientation;
  2929. s->sei.mastering_display = s0->sei.mastering_display;
  2930. s->sei.content_light = s0->sei.content_light;
  2931. s->sei.alternative_transfer = s0->sei.alternative_transfer;
  2932. return 0;
  2933. }
  2934. static av_cold int hevc_decode_init(AVCodecContext *avctx)
  2935. {
  2936. HEVCContext *s = avctx->priv_data;
  2937. int ret;
  2938. avctx->internal->allocate_progress = 1;
  2939. ret = hevc_init_context(avctx);
  2940. if (ret < 0)
  2941. return ret;
  2942. s->enable_parallel_tiles = 0;
  2943. s->sei.picture_timing.picture_struct = 0;
  2944. s->eos = 1;
  2945. atomic_init(&s->wpp_err, 0);
  2946. if(avctx->active_thread_type & FF_THREAD_SLICE)
  2947. s->threads_number = avctx->thread_count;
  2948. else
  2949. s->threads_number = 1;
  2950. if (avctx->extradata_size > 0 && avctx->extradata) {
  2951. ret = hevc_decode_extradata(s, avctx->extradata, avctx->extradata_size, 1);
  2952. if (ret < 0) {
  2953. hevc_decode_free(avctx);
  2954. return ret;
  2955. }
  2956. }
  2957. if((avctx->active_thread_type & FF_THREAD_FRAME) && avctx->thread_count > 1)
  2958. s->threads_type = FF_THREAD_FRAME;
  2959. else
  2960. s->threads_type = FF_THREAD_SLICE;
  2961. return 0;
  2962. }
  2963. static av_cold int hevc_init_thread_copy(AVCodecContext *avctx)
  2964. {
  2965. HEVCContext *s = avctx->priv_data;
  2966. int ret;
  2967. memset(s, 0, sizeof(*s));
  2968. ret = hevc_init_context(avctx);
  2969. if (ret < 0)
  2970. return ret;
  2971. return 0;
  2972. }
  2973. static void hevc_decode_flush(AVCodecContext *avctx)
  2974. {
  2975. HEVCContext *s = avctx->priv_data;
  2976. ff_hevc_flush_dpb(s);
  2977. s->max_ra = INT_MAX;
  2978. s->eos = 1;
  2979. }
  2980. #define OFFSET(x) offsetof(HEVCContext, x)
  2981. #define PAR (AV_OPT_FLAG_DECODING_PARAM | AV_OPT_FLAG_VIDEO_PARAM)
  2982. static const AVOption options[] = {
  2983. { "apply_defdispwin", "Apply default display window from VUI", OFFSET(apply_defdispwin),
  2984. AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, PAR },
  2985. { "strict-displaywin", "stricly apply default display window size", OFFSET(apply_defdispwin),
  2986. AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, PAR },
  2987. { NULL },
  2988. };
  2989. static const AVClass hevc_decoder_class = {
  2990. .class_name = "HEVC decoder",
  2991. .item_name = av_default_item_name,
  2992. .option = options,
  2993. .version = LIBAVUTIL_VERSION_INT,
  2994. };
  2995. AVCodec ff_hevc_decoder = {
  2996. .name = "hevc",
  2997. .long_name = NULL_IF_CONFIG_SMALL("HEVC (High Efficiency Video Coding)"),
  2998. .type = AVMEDIA_TYPE_VIDEO,
  2999. .id = AV_CODEC_ID_HEVC,
  3000. .priv_data_size = sizeof(HEVCContext),
  3001. .priv_class = &hevc_decoder_class,
  3002. .init = hevc_decode_init,
  3003. .close = hevc_decode_free,
  3004. .decode = hevc_decode_frame,
  3005. .flush = hevc_decode_flush,
  3006. .update_thread_context = hevc_update_thread_context,
  3007. .init_thread_copy = hevc_init_thread_copy,
  3008. .capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_DELAY |
  3009. AV_CODEC_CAP_SLICE_THREADS | AV_CODEC_CAP_FRAME_THREADS,
  3010. .caps_internal = FF_CODEC_CAP_INIT_THREADSAFE | FF_CODEC_CAP_EXPORTS_CROPPING,
  3011. .profiles = NULL_IF_CONFIG_SMALL(ff_hevc_profiles),
  3012. };