You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

4157 lines
143KB

  1. /*
  2. * VC-1 and WMV3 decoder
  3. * Copyright (c) 2006-2007 Konstantin Shishkov
  4. * Partly based on vc9.c (c) 2005 Anonymous, Alex Beregszaszi, Michael Niedermayer
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file vc1.c
  24. * VC-1 and WMV3 decoder
  25. *
  26. */
  27. #include "dsputil.h"
  28. #include "avcodec.h"
  29. #include "mpegvideo.h"
  30. #include "vc1.h"
  31. #include "vc1data.h"
  32. #include "vc1acdata.h"
  33. #include "msmpeg4data.h"
  34. #include "unary.h"
  35. #include "simple_idct.h"
  36. #undef NDEBUG
  37. #include <assert.h>
  38. #define MB_INTRA_VLC_BITS 9
  39. #define DC_VLC_BITS 9
  40. #define AC_VLC_BITS 9
  41. static const uint16_t table_mb_intra[64][2];
  42. static inline int decode210(GetBitContext *gb){
  43. if (get_bits1(gb))
  44. return 0;
  45. else
  46. return 2 - get_bits1(gb);
  47. }
  48. /**
  49. * Init VC-1 specific tables and VC1Context members
  50. * @param v The VC1Context to initialize
  51. * @return Status
  52. */
  53. static int vc1_init_common(VC1Context *v)
  54. {
  55. static int done = 0;
  56. int i = 0;
  57. v->hrd_rate = v->hrd_buffer = NULL;
  58. /* VLC tables */
  59. if(!done)
  60. {
  61. done = 1;
  62. init_vlc(&ff_vc1_bfraction_vlc, VC1_BFRACTION_VLC_BITS, 23,
  63. ff_vc1_bfraction_bits, 1, 1,
  64. ff_vc1_bfraction_codes, 1, 1, 1);
  65. init_vlc(&ff_vc1_norm2_vlc, VC1_NORM2_VLC_BITS, 4,
  66. ff_vc1_norm2_bits, 1, 1,
  67. ff_vc1_norm2_codes, 1, 1, 1);
  68. init_vlc(&ff_vc1_norm6_vlc, VC1_NORM6_VLC_BITS, 64,
  69. ff_vc1_norm6_bits, 1, 1,
  70. ff_vc1_norm6_codes, 2, 2, 1);
  71. init_vlc(&ff_vc1_imode_vlc, VC1_IMODE_VLC_BITS, 7,
  72. ff_vc1_imode_bits, 1, 1,
  73. ff_vc1_imode_codes, 1, 1, 1);
  74. for (i=0; i<3; i++)
  75. {
  76. init_vlc(&ff_vc1_ttmb_vlc[i], VC1_TTMB_VLC_BITS, 16,
  77. ff_vc1_ttmb_bits[i], 1, 1,
  78. ff_vc1_ttmb_codes[i], 2, 2, 1);
  79. init_vlc(&ff_vc1_ttblk_vlc[i], VC1_TTBLK_VLC_BITS, 8,
  80. ff_vc1_ttblk_bits[i], 1, 1,
  81. ff_vc1_ttblk_codes[i], 1, 1, 1);
  82. init_vlc(&ff_vc1_subblkpat_vlc[i], VC1_SUBBLKPAT_VLC_BITS, 15,
  83. ff_vc1_subblkpat_bits[i], 1, 1,
  84. ff_vc1_subblkpat_codes[i], 1, 1, 1);
  85. }
  86. for(i=0; i<4; i++)
  87. {
  88. init_vlc(&ff_vc1_4mv_block_pattern_vlc[i], VC1_4MV_BLOCK_PATTERN_VLC_BITS, 16,
  89. ff_vc1_4mv_block_pattern_bits[i], 1, 1,
  90. ff_vc1_4mv_block_pattern_codes[i], 1, 1, 1);
  91. init_vlc(&ff_vc1_cbpcy_p_vlc[i], VC1_CBPCY_P_VLC_BITS, 64,
  92. ff_vc1_cbpcy_p_bits[i], 1, 1,
  93. ff_vc1_cbpcy_p_codes[i], 2, 2, 1);
  94. init_vlc(&ff_vc1_mv_diff_vlc[i], VC1_MV_DIFF_VLC_BITS, 73,
  95. ff_vc1_mv_diff_bits[i], 1, 1,
  96. ff_vc1_mv_diff_codes[i], 2, 2, 1);
  97. }
  98. for(i=0; i<8; i++)
  99. init_vlc(&ff_vc1_ac_coeff_table[i], AC_VLC_BITS, vc1_ac_sizes[i],
  100. &vc1_ac_tables[i][0][1], 8, 4,
  101. &vc1_ac_tables[i][0][0], 8, 4, 1);
  102. init_vlc(&ff_msmp4_mb_i_vlc, MB_INTRA_VLC_BITS, 64,
  103. &ff_msmp4_mb_i_table[0][1], 4, 2,
  104. &ff_msmp4_mb_i_table[0][0], 4, 2, 1);
  105. }
  106. /* Other defaults */
  107. v->pq = -1;
  108. v->mvrange = 0; /* 7.1.1.18, p80 */
  109. return 0;
  110. }
  111. /***********************************************************************/
  112. /**
  113. * @defgroup bitplane VC9 Bitplane decoding
  114. * @see 8.7, p56
  115. * @{
  116. */
  117. /** @addtogroup bitplane
  118. * Imode types
  119. * @{
  120. */
  121. enum Imode {
  122. IMODE_RAW,
  123. IMODE_NORM2,
  124. IMODE_DIFF2,
  125. IMODE_NORM6,
  126. IMODE_DIFF6,
  127. IMODE_ROWSKIP,
  128. IMODE_COLSKIP
  129. };
  130. /** @} */ //imode defines
  131. /** Decode rows by checking if they are skipped
  132. * @param plane Buffer to store decoded bits
  133. * @param[in] width Width of this buffer
  134. * @param[in] height Height of this buffer
  135. * @param[in] stride of this buffer
  136. */
  137. static void decode_rowskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
  138. int x, y;
  139. for (y=0; y<height; y++){
  140. if (!get_bits1(gb)) //rowskip
  141. memset(plane, 0, width);
  142. else
  143. for (x=0; x<width; x++)
  144. plane[x] = get_bits1(gb);
  145. plane += stride;
  146. }
  147. }
  148. /** Decode columns by checking if they are skipped
  149. * @param plane Buffer to store decoded bits
  150. * @param[in] width Width of this buffer
  151. * @param[in] height Height of this buffer
  152. * @param[in] stride of this buffer
  153. * @todo FIXME: Optimize
  154. */
  155. static void decode_colskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
  156. int x, y;
  157. for (x=0; x<width; x++){
  158. if (!get_bits1(gb)) //colskip
  159. for (y=0; y<height; y++)
  160. plane[y*stride] = 0;
  161. else
  162. for (y=0; y<height; y++)
  163. plane[y*stride] = get_bits1(gb);
  164. plane ++;
  165. }
  166. }
  167. /** Decode a bitplane's bits
  168. * @param bp Bitplane where to store the decode bits
  169. * @param v VC-1 context for bit reading and logging
  170. * @return Status
  171. * @todo FIXME: Optimize
  172. */
  173. static int bitplane_decoding(uint8_t* data, int *raw_flag, VC1Context *v)
  174. {
  175. GetBitContext *gb = &v->s.gb;
  176. int imode, x, y, code, offset;
  177. uint8_t invert, *planep = data;
  178. int width, height, stride;
  179. width = v->s.mb_width;
  180. height = v->s.mb_height;
  181. stride = v->s.mb_stride;
  182. invert = get_bits1(gb);
  183. imode = get_vlc2(gb, ff_vc1_imode_vlc.table, VC1_IMODE_VLC_BITS, 1);
  184. *raw_flag = 0;
  185. switch (imode)
  186. {
  187. case IMODE_RAW:
  188. //Data is actually read in the MB layer (same for all tests == "raw")
  189. *raw_flag = 1; //invert ignored
  190. return invert;
  191. case IMODE_DIFF2:
  192. case IMODE_NORM2:
  193. if ((height * width) & 1)
  194. {
  195. *planep++ = get_bits1(gb);
  196. offset = 1;
  197. }
  198. else offset = 0;
  199. // decode bitplane as one long line
  200. for (y = offset; y < height * width; y += 2) {
  201. code = get_vlc2(gb, ff_vc1_norm2_vlc.table, VC1_NORM2_VLC_BITS, 1);
  202. *planep++ = code & 1;
  203. offset++;
  204. if(offset == width) {
  205. offset = 0;
  206. planep += stride - width;
  207. }
  208. *planep++ = code >> 1;
  209. offset++;
  210. if(offset == width) {
  211. offset = 0;
  212. planep += stride - width;
  213. }
  214. }
  215. break;
  216. case IMODE_DIFF6:
  217. case IMODE_NORM6:
  218. if(!(height % 3) && (width % 3)) { // use 2x3 decoding
  219. for(y = 0; y < height; y+= 3) {
  220. for(x = width & 1; x < width; x += 2) {
  221. code = get_vlc2(gb, ff_vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
  222. if(code < 0){
  223. av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
  224. return -1;
  225. }
  226. planep[x + 0] = (code >> 0) & 1;
  227. planep[x + 1] = (code >> 1) & 1;
  228. planep[x + 0 + stride] = (code >> 2) & 1;
  229. planep[x + 1 + stride] = (code >> 3) & 1;
  230. planep[x + 0 + stride * 2] = (code >> 4) & 1;
  231. planep[x + 1 + stride * 2] = (code >> 5) & 1;
  232. }
  233. planep += stride * 3;
  234. }
  235. if(width & 1) decode_colskip(data, 1, height, stride, &v->s.gb);
  236. } else { // 3x2
  237. planep += (height & 1) * stride;
  238. for(y = height & 1; y < height; y += 2) {
  239. for(x = width % 3; x < width; x += 3) {
  240. code = get_vlc2(gb, ff_vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
  241. if(code < 0){
  242. av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
  243. return -1;
  244. }
  245. planep[x + 0] = (code >> 0) & 1;
  246. planep[x + 1] = (code >> 1) & 1;
  247. planep[x + 2] = (code >> 2) & 1;
  248. planep[x + 0 + stride] = (code >> 3) & 1;
  249. planep[x + 1 + stride] = (code >> 4) & 1;
  250. planep[x + 2 + stride] = (code >> 5) & 1;
  251. }
  252. planep += stride * 2;
  253. }
  254. x = width % 3;
  255. if(x) decode_colskip(data , x, height , stride, &v->s.gb);
  256. if(height & 1) decode_rowskip(data+x, width - x, 1, stride, &v->s.gb);
  257. }
  258. break;
  259. case IMODE_ROWSKIP:
  260. decode_rowskip(data, width, height, stride, &v->s.gb);
  261. break;
  262. case IMODE_COLSKIP:
  263. decode_colskip(data, width, height, stride, &v->s.gb);
  264. break;
  265. default: break;
  266. }
  267. /* Applying diff operator */
  268. if (imode == IMODE_DIFF2 || imode == IMODE_DIFF6)
  269. {
  270. planep = data;
  271. planep[0] ^= invert;
  272. for (x=1; x<width; x++)
  273. planep[x] ^= planep[x-1];
  274. for (y=1; y<height; y++)
  275. {
  276. planep += stride;
  277. planep[0] ^= planep[-stride];
  278. for (x=1; x<width; x++)
  279. {
  280. if (planep[x-1] != planep[x-stride]) planep[x] ^= invert;
  281. else planep[x] ^= planep[x-1];
  282. }
  283. }
  284. }
  285. else if (invert)
  286. {
  287. planep = data;
  288. for (x=0; x<stride*height; x++) planep[x] = !planep[x]; //FIXME stride
  289. }
  290. return (imode<<1) + invert;
  291. }
  292. /** @} */ //Bitplane group
  293. /***********************************************************************/
  294. /** VOP Dquant decoding
  295. * @param v VC-1 Context
  296. */
  297. static int vop_dquant_decoding(VC1Context *v)
  298. {
  299. GetBitContext *gb = &v->s.gb;
  300. int pqdiff;
  301. //variable size
  302. if (v->dquant == 2)
  303. {
  304. pqdiff = get_bits(gb, 3);
  305. if (pqdiff == 7) v->altpq = get_bits(gb, 5);
  306. else v->altpq = v->pq + pqdiff + 1;
  307. }
  308. else
  309. {
  310. v->dquantfrm = get_bits1(gb);
  311. if ( v->dquantfrm )
  312. {
  313. v->dqprofile = get_bits(gb, 2);
  314. switch (v->dqprofile)
  315. {
  316. case DQPROFILE_SINGLE_EDGE:
  317. case DQPROFILE_DOUBLE_EDGES:
  318. v->dqsbedge = get_bits(gb, 2);
  319. break;
  320. case DQPROFILE_ALL_MBS:
  321. v->dqbilevel = get_bits1(gb);
  322. if(!v->dqbilevel)
  323. v->halfpq = 0;
  324. default: break; //Forbidden ?
  325. }
  326. if (v->dqbilevel || v->dqprofile != DQPROFILE_ALL_MBS)
  327. {
  328. pqdiff = get_bits(gb, 3);
  329. if (pqdiff == 7) v->altpq = get_bits(gb, 5);
  330. else v->altpq = v->pq + pqdiff + 1;
  331. }
  332. }
  333. }
  334. return 0;
  335. }
  336. /** Put block onto picture
  337. */
  338. static void vc1_put_block(VC1Context *v, DCTELEM block[6][64])
  339. {
  340. uint8_t *Y;
  341. int ys, us, vs;
  342. DSPContext *dsp = &v->s.dsp;
  343. if(v->rangeredfrm) {
  344. int i, j, k;
  345. for(k = 0; k < 6; k++)
  346. for(j = 0; j < 8; j++)
  347. for(i = 0; i < 8; i++)
  348. block[k][i + j*8] = ((block[k][i + j*8] - 128) << 1) + 128;
  349. }
  350. ys = v->s.current_picture.linesize[0];
  351. us = v->s.current_picture.linesize[1];
  352. vs = v->s.current_picture.linesize[2];
  353. Y = v->s.dest[0];
  354. dsp->put_pixels_clamped(block[0], Y, ys);
  355. dsp->put_pixels_clamped(block[1], Y + 8, ys);
  356. Y += ys * 8;
  357. dsp->put_pixels_clamped(block[2], Y, ys);
  358. dsp->put_pixels_clamped(block[3], Y + 8, ys);
  359. if(!(v->s.flags & CODEC_FLAG_GRAY)) {
  360. dsp->put_pixels_clamped(block[4], v->s.dest[1], us);
  361. dsp->put_pixels_clamped(block[5], v->s.dest[2], vs);
  362. }
  363. }
  364. /** Do motion compensation over 1 macroblock
  365. * Mostly adapted hpel_motion and qpel_motion from mpegvideo.c
  366. */
  367. static void vc1_mc_1mv(VC1Context *v, int dir)
  368. {
  369. MpegEncContext *s = &v->s;
  370. DSPContext *dsp = &v->s.dsp;
  371. uint8_t *srcY, *srcU, *srcV;
  372. int dxy, uvdxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  373. if(!v->s.last_picture.data[0])return;
  374. mx = s->mv[dir][0][0];
  375. my = s->mv[dir][0][1];
  376. // store motion vectors for further use in B frames
  377. if(s->pict_type == P_TYPE) {
  378. s->current_picture.motion_val[1][s->block_index[0]][0] = mx;
  379. s->current_picture.motion_val[1][s->block_index[0]][1] = my;
  380. }
  381. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  382. uvmy = (my + ((my & 3) == 3)) >> 1;
  383. if(v->fastuvmc) {
  384. uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
  385. uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
  386. }
  387. if(!dir) {
  388. srcY = s->last_picture.data[0];
  389. srcU = s->last_picture.data[1];
  390. srcV = s->last_picture.data[2];
  391. } else {
  392. srcY = s->next_picture.data[0];
  393. srcU = s->next_picture.data[1];
  394. srcV = s->next_picture.data[2];
  395. }
  396. src_x = s->mb_x * 16 + (mx >> 2);
  397. src_y = s->mb_y * 16 + (my >> 2);
  398. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  399. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  400. if(v->profile != PROFILE_ADVANCED){
  401. src_x = av_clip( src_x, -16, s->mb_width * 16);
  402. src_y = av_clip( src_y, -16, s->mb_height * 16);
  403. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  404. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  405. }else{
  406. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  407. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  408. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  409. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  410. }
  411. srcY += src_y * s->linesize + src_x;
  412. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  413. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  414. /* for grayscale we should not try to read from unknown area */
  415. if(s->flags & CODEC_FLAG_GRAY) {
  416. srcU = s->edge_emu_buffer + 18 * s->linesize;
  417. srcV = s->edge_emu_buffer + 18 * s->linesize;
  418. }
  419. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  420. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 16 - s->mspel*3
  421. || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 16 - s->mspel*3){
  422. uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
  423. srcY -= s->mspel * (1 + s->linesize);
  424. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
  425. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  426. srcY = s->edge_emu_buffer;
  427. ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
  428. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  429. ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
  430. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  431. srcU = uvbuf;
  432. srcV = uvbuf + 16;
  433. /* if we deal with range reduction we need to scale source blocks */
  434. if(v->rangeredfrm) {
  435. int i, j;
  436. uint8_t *src, *src2;
  437. src = srcY;
  438. for(j = 0; j < 17 + s->mspel*2; j++) {
  439. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  440. src += s->linesize;
  441. }
  442. src = srcU; src2 = srcV;
  443. for(j = 0; j < 9; j++) {
  444. for(i = 0; i < 9; i++) {
  445. src[i] = ((src[i] - 128) >> 1) + 128;
  446. src2[i] = ((src2[i] - 128) >> 1) + 128;
  447. }
  448. src += s->uvlinesize;
  449. src2 += s->uvlinesize;
  450. }
  451. }
  452. /* if we deal with intensity compensation we need to scale source blocks */
  453. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  454. int i, j;
  455. uint8_t *src, *src2;
  456. src = srcY;
  457. for(j = 0; j < 17 + s->mspel*2; j++) {
  458. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = v->luty[src[i]];
  459. src += s->linesize;
  460. }
  461. src = srcU; src2 = srcV;
  462. for(j = 0; j < 9; j++) {
  463. for(i = 0; i < 9; i++) {
  464. src[i] = v->lutuv[src[i]];
  465. src2[i] = v->lutuv[src2[i]];
  466. }
  467. src += s->uvlinesize;
  468. src2 += s->uvlinesize;
  469. }
  470. }
  471. srcY += s->mspel * (1 + s->linesize);
  472. }
  473. if(s->mspel) {
  474. dxy = ((my & 3) << 2) | (mx & 3);
  475. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] , srcY , s->linesize, v->rnd);
  476. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8, srcY + 8, s->linesize, v->rnd);
  477. srcY += s->linesize * 8;
  478. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize , srcY , s->linesize, v->rnd);
  479. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize + 8, srcY + 8, s->linesize, v->rnd);
  480. } else { // hpel mc - always used for luma
  481. dxy = (my & 2) | ((mx & 2) >> 1);
  482. if(!v->rnd)
  483. dsp->put_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  484. else
  485. dsp->put_no_rnd_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  486. }
  487. if(s->flags & CODEC_FLAG_GRAY) return;
  488. /* Chroma MC always uses qpel bilinear */
  489. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  490. uvmx = (uvmx&3)<<1;
  491. uvmy = (uvmy&3)<<1;
  492. if(!v->rnd){
  493. dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  494. dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  495. }else{
  496. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  497. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  498. }
  499. }
  500. /** Do motion compensation for 4-MV macroblock - luminance block
  501. */
  502. static void vc1_mc_4mv_luma(VC1Context *v, int n)
  503. {
  504. MpegEncContext *s = &v->s;
  505. DSPContext *dsp = &v->s.dsp;
  506. uint8_t *srcY;
  507. int dxy, mx, my, src_x, src_y;
  508. int off;
  509. if(!v->s.last_picture.data[0])return;
  510. mx = s->mv[0][n][0];
  511. my = s->mv[0][n][1];
  512. srcY = s->last_picture.data[0];
  513. off = s->linesize * 4 * (n&2) + (n&1) * 8;
  514. src_x = s->mb_x * 16 + (n&1) * 8 + (mx >> 2);
  515. src_y = s->mb_y * 16 + (n&2) * 4 + (my >> 2);
  516. if(v->profile != PROFILE_ADVANCED){
  517. src_x = av_clip( src_x, -16, s->mb_width * 16);
  518. src_y = av_clip( src_y, -16, s->mb_height * 16);
  519. }else{
  520. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  521. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  522. }
  523. srcY += src_y * s->linesize + src_x;
  524. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  525. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 8 - s->mspel*2
  526. || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 8 - s->mspel*2){
  527. srcY -= s->mspel * (1 + s->linesize);
  528. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 9+s->mspel*2, 9+s->mspel*2,
  529. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  530. srcY = s->edge_emu_buffer;
  531. /* if we deal with range reduction we need to scale source blocks */
  532. if(v->rangeredfrm) {
  533. int i, j;
  534. uint8_t *src;
  535. src = srcY;
  536. for(j = 0; j < 9 + s->mspel*2; j++) {
  537. for(i = 0; i < 9 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  538. src += s->linesize;
  539. }
  540. }
  541. /* if we deal with intensity compensation we need to scale source blocks */
  542. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  543. int i, j;
  544. uint8_t *src;
  545. src = srcY;
  546. for(j = 0; j < 9 + s->mspel*2; j++) {
  547. for(i = 0; i < 9 + s->mspel*2; i++) src[i] = v->luty[src[i]];
  548. src += s->linesize;
  549. }
  550. }
  551. srcY += s->mspel * (1 + s->linesize);
  552. }
  553. if(s->mspel) {
  554. dxy = ((my & 3) << 2) | (mx & 3);
  555. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + off, srcY, s->linesize, v->rnd);
  556. } else { // hpel mc - always used for luma
  557. dxy = (my & 2) | ((mx & 2) >> 1);
  558. if(!v->rnd)
  559. dsp->put_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  560. else
  561. dsp->put_no_rnd_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  562. }
  563. }
  564. static inline int median4(int a, int b, int c, int d)
  565. {
  566. if(a < b) {
  567. if(c < d) return (FFMIN(b, d) + FFMAX(a, c)) / 2;
  568. else return (FFMIN(b, c) + FFMAX(a, d)) / 2;
  569. } else {
  570. if(c < d) return (FFMIN(a, d) + FFMAX(b, c)) / 2;
  571. else return (FFMIN(a, c) + FFMAX(b, d)) / 2;
  572. }
  573. }
  574. /** Do motion compensation for 4-MV macroblock - both chroma blocks
  575. */
  576. static void vc1_mc_4mv_chroma(VC1Context *v)
  577. {
  578. MpegEncContext *s = &v->s;
  579. DSPContext *dsp = &v->s.dsp;
  580. uint8_t *srcU, *srcV;
  581. int uvdxy, uvmx, uvmy, uvsrc_x, uvsrc_y;
  582. int i, idx, tx = 0, ty = 0;
  583. int mvx[4], mvy[4], intra[4];
  584. static const int count[16] = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
  585. if(!v->s.last_picture.data[0])return;
  586. if(s->flags & CODEC_FLAG_GRAY) return;
  587. for(i = 0; i < 4; i++) {
  588. mvx[i] = s->mv[0][i][0];
  589. mvy[i] = s->mv[0][i][1];
  590. intra[i] = v->mb_type[0][s->block_index[i]];
  591. }
  592. /* calculate chroma MV vector from four luma MVs */
  593. idx = (intra[3] << 3) | (intra[2] << 2) | (intra[1] << 1) | intra[0];
  594. if(!idx) { // all blocks are inter
  595. tx = median4(mvx[0], mvx[1], mvx[2], mvx[3]);
  596. ty = median4(mvy[0], mvy[1], mvy[2], mvy[3]);
  597. } else if(count[idx] == 1) { // 3 inter blocks
  598. switch(idx) {
  599. case 0x1:
  600. tx = mid_pred(mvx[1], mvx[2], mvx[3]);
  601. ty = mid_pred(mvy[1], mvy[2], mvy[3]);
  602. break;
  603. case 0x2:
  604. tx = mid_pred(mvx[0], mvx[2], mvx[3]);
  605. ty = mid_pred(mvy[0], mvy[2], mvy[3]);
  606. break;
  607. case 0x4:
  608. tx = mid_pred(mvx[0], mvx[1], mvx[3]);
  609. ty = mid_pred(mvy[0], mvy[1], mvy[3]);
  610. break;
  611. case 0x8:
  612. tx = mid_pred(mvx[0], mvx[1], mvx[2]);
  613. ty = mid_pred(mvy[0], mvy[1], mvy[2]);
  614. break;
  615. }
  616. } else if(count[idx] == 2) {
  617. int t1 = 0, t2 = 0;
  618. for(i=0; i<3;i++) if(!intra[i]) {t1 = i; break;}
  619. for(i= t1+1; i<4; i++)if(!intra[i]) {t2 = i; break;}
  620. tx = (mvx[t1] + mvx[t2]) / 2;
  621. ty = (mvy[t1] + mvy[t2]) / 2;
  622. } else {
  623. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  624. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  625. return; //no need to do MC for inter blocks
  626. }
  627. s->current_picture.motion_val[1][s->block_index[0]][0] = tx;
  628. s->current_picture.motion_val[1][s->block_index[0]][1] = ty;
  629. uvmx = (tx + ((tx&3) == 3)) >> 1;
  630. uvmy = (ty + ((ty&3) == 3)) >> 1;
  631. if(v->fastuvmc) {
  632. uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
  633. uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
  634. }
  635. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  636. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  637. if(v->profile != PROFILE_ADVANCED){
  638. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  639. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  640. }else{
  641. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  642. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  643. }
  644. srcU = s->last_picture.data[1] + uvsrc_y * s->uvlinesize + uvsrc_x;
  645. srcV = s->last_picture.data[2] + uvsrc_y * s->uvlinesize + uvsrc_x;
  646. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  647. || (unsigned)uvsrc_x > (s->h_edge_pos >> 1) - 9
  648. || (unsigned)uvsrc_y > (s->v_edge_pos >> 1) - 9){
  649. ff_emulated_edge_mc(s->edge_emu_buffer , srcU, s->uvlinesize, 8+1, 8+1,
  650. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  651. ff_emulated_edge_mc(s->edge_emu_buffer + 16, srcV, s->uvlinesize, 8+1, 8+1,
  652. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  653. srcU = s->edge_emu_buffer;
  654. srcV = s->edge_emu_buffer + 16;
  655. /* if we deal with range reduction we need to scale source blocks */
  656. if(v->rangeredfrm) {
  657. int i, j;
  658. uint8_t *src, *src2;
  659. src = srcU; src2 = srcV;
  660. for(j = 0; j < 9; j++) {
  661. for(i = 0; i < 9; i++) {
  662. src[i] = ((src[i] - 128) >> 1) + 128;
  663. src2[i] = ((src2[i] - 128) >> 1) + 128;
  664. }
  665. src += s->uvlinesize;
  666. src2 += s->uvlinesize;
  667. }
  668. }
  669. /* if we deal with intensity compensation we need to scale source blocks */
  670. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  671. int i, j;
  672. uint8_t *src, *src2;
  673. src = srcU; src2 = srcV;
  674. for(j = 0; j < 9; j++) {
  675. for(i = 0; i < 9; i++) {
  676. src[i] = v->lutuv[src[i]];
  677. src2[i] = v->lutuv[src2[i]];
  678. }
  679. src += s->uvlinesize;
  680. src2 += s->uvlinesize;
  681. }
  682. }
  683. }
  684. /* Chroma MC always uses qpel bilinear */
  685. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  686. uvmx = (uvmx&3)<<1;
  687. uvmy = (uvmy&3)<<1;
  688. if(!v->rnd){
  689. dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  690. dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  691. }else{
  692. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  693. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  694. }
  695. }
  696. static int decode_sequence_header_adv(VC1Context *v, GetBitContext *gb);
  697. /**
  698. * Decode Simple/Main Profiles sequence header
  699. * @see Figure 7-8, p16-17
  700. * @param avctx Codec context
  701. * @param gb GetBit context initialized from Codec context extra_data
  702. * @return Status
  703. */
  704. static int decode_sequence_header(AVCodecContext *avctx, GetBitContext *gb)
  705. {
  706. VC1Context *v = avctx->priv_data;
  707. av_log(avctx, AV_LOG_DEBUG, "Header: %0X\n", show_bits(gb, 32));
  708. v->profile = get_bits(gb, 2);
  709. if (v->profile == PROFILE_COMPLEX)
  710. {
  711. av_log(avctx, AV_LOG_ERROR, "WMV3 Complex Profile is not fully supported\n");
  712. }
  713. if (v->profile == PROFILE_ADVANCED)
  714. {
  715. return decode_sequence_header_adv(v, gb);
  716. }
  717. else
  718. {
  719. v->res_sm = get_bits(gb, 2); //reserved
  720. if (v->res_sm)
  721. {
  722. av_log(avctx, AV_LOG_ERROR,
  723. "Reserved RES_SM=%i is forbidden\n", v->res_sm);
  724. return -1;
  725. }
  726. }
  727. // (fps-2)/4 (->30)
  728. v->frmrtq_postproc = get_bits(gb, 3); //common
  729. // (bitrate-32kbps)/64kbps
  730. v->bitrtq_postproc = get_bits(gb, 5); //common
  731. v->s.loop_filter = get_bits1(gb); //common
  732. if(v->s.loop_filter == 1 && v->profile == PROFILE_SIMPLE)
  733. {
  734. av_log(avctx, AV_LOG_ERROR,
  735. "LOOPFILTER shell not be enabled in simple profile\n");
  736. }
  737. v->res_x8 = get_bits1(gb); //reserved
  738. v->multires = get_bits1(gb);
  739. v->res_fasttx = get_bits1(gb);
  740. if (!v->res_fasttx)
  741. {
  742. v->s.dsp.vc1_inv_trans_8x8 = simple_idct;
  743. }
  744. v->fastuvmc = get_bits1(gb); //common
  745. if (!v->profile && !v->fastuvmc)
  746. {
  747. av_log(avctx, AV_LOG_ERROR,
  748. "FASTUVMC unavailable in Simple Profile\n");
  749. return -1;
  750. }
  751. v->extended_mv = get_bits1(gb); //common
  752. if (!v->profile && v->extended_mv)
  753. {
  754. av_log(avctx, AV_LOG_ERROR,
  755. "Extended MVs unavailable in Simple Profile\n");
  756. return -1;
  757. }
  758. v->dquant = get_bits(gb, 2); //common
  759. v->vstransform = get_bits1(gb); //common
  760. v->res_transtab = get_bits1(gb);
  761. if (v->res_transtab)
  762. {
  763. av_log(avctx, AV_LOG_ERROR,
  764. "1 for reserved RES_TRANSTAB is forbidden\n");
  765. return -1;
  766. }
  767. v->overlap = get_bits1(gb); //common
  768. v->s.resync_marker = get_bits1(gb);
  769. v->rangered = get_bits1(gb);
  770. if (v->rangered && v->profile == PROFILE_SIMPLE)
  771. {
  772. av_log(avctx, AV_LOG_INFO,
  773. "RANGERED should be set to 0 in simple profile\n");
  774. }
  775. v->s.max_b_frames = avctx->max_b_frames = get_bits(gb, 3); //common
  776. v->quantizer_mode = get_bits(gb, 2); //common
  777. v->finterpflag = get_bits1(gb); //common
  778. v->res_rtm_flag = get_bits1(gb); //reserved
  779. if (!v->res_rtm_flag)
  780. {
  781. // av_log(avctx, AV_LOG_ERROR,
  782. // "0 for reserved RES_RTM_FLAG is forbidden\n");
  783. av_log(avctx, AV_LOG_ERROR,
  784. "Old WMV3 version detected, only I-frames will be decoded\n");
  785. //return -1;
  786. }
  787. //TODO: figure out what they mean (always 0x402F)
  788. if(!v->res_fasttx) skip_bits(gb, 16);
  789. av_log(avctx, AV_LOG_DEBUG,
  790. "Profile %i:\nfrmrtq_postproc=%i, bitrtq_postproc=%i\n"
  791. "LoopFilter=%i, MultiRes=%i, FastUVMC=%i, Extended MV=%i\n"
  792. "Rangered=%i, VSTransform=%i, Overlap=%i, SyncMarker=%i\n"
  793. "DQuant=%i, Quantizer mode=%i, Max B frames=%i\n",
  794. v->profile, v->frmrtq_postproc, v->bitrtq_postproc,
  795. v->s.loop_filter, v->multires, v->fastuvmc, v->extended_mv,
  796. v->rangered, v->vstransform, v->overlap, v->s.resync_marker,
  797. v->dquant, v->quantizer_mode, avctx->max_b_frames
  798. );
  799. return 0;
  800. }
  801. static int decode_sequence_header_adv(VC1Context *v, GetBitContext *gb)
  802. {
  803. v->res_rtm_flag = 1;
  804. v->level = get_bits(gb, 3);
  805. if(v->level >= 5)
  806. {
  807. av_log(v->s.avctx, AV_LOG_ERROR, "Reserved LEVEL %i\n",v->level);
  808. }
  809. v->chromaformat = get_bits(gb, 2);
  810. if (v->chromaformat != 1)
  811. {
  812. av_log(v->s.avctx, AV_LOG_ERROR,
  813. "Only 4:2:0 chroma format supported\n");
  814. return -1;
  815. }
  816. // (fps-2)/4 (->30)
  817. v->frmrtq_postproc = get_bits(gb, 3); //common
  818. // (bitrate-32kbps)/64kbps
  819. v->bitrtq_postproc = get_bits(gb, 5); //common
  820. v->postprocflag = get_bits1(gb); //common
  821. v->s.avctx->coded_width = (get_bits(gb, 12) + 1) << 1;
  822. v->s.avctx->coded_height = (get_bits(gb, 12) + 1) << 1;
  823. v->s.avctx->width = v->s.avctx->coded_width;
  824. v->s.avctx->height = v->s.avctx->coded_height;
  825. v->broadcast = get_bits1(gb);
  826. v->interlace = get_bits1(gb);
  827. v->tfcntrflag = get_bits1(gb);
  828. v->finterpflag = get_bits1(gb);
  829. skip_bits1(gb); // reserved
  830. v->s.h_edge_pos = v->s.avctx->coded_width;
  831. v->s.v_edge_pos = v->s.avctx->coded_height;
  832. av_log(v->s.avctx, AV_LOG_DEBUG,
  833. "Advanced Profile level %i:\nfrmrtq_postproc=%i, bitrtq_postproc=%i\n"
  834. "LoopFilter=%i, ChromaFormat=%i, Pulldown=%i, Interlace: %i\n"
  835. "TFCTRflag=%i, FINTERPflag=%i\n",
  836. v->level, v->frmrtq_postproc, v->bitrtq_postproc,
  837. v->s.loop_filter, v->chromaformat, v->broadcast, v->interlace,
  838. v->tfcntrflag, v->finterpflag
  839. );
  840. v->psf = get_bits1(gb);
  841. if(v->psf) { //PsF, 6.1.13
  842. av_log(v->s.avctx, AV_LOG_ERROR, "Progressive Segmented Frame mode: not supported (yet)\n");
  843. return -1;
  844. }
  845. v->s.max_b_frames = v->s.avctx->max_b_frames = 7;
  846. if(get_bits1(gb)) { //Display Info - decoding is not affected by it
  847. int w, h, ar = 0;
  848. av_log(v->s.avctx, AV_LOG_DEBUG, "Display extended info:\n");
  849. v->s.avctx->width = v->s.width = w = get_bits(gb, 14) + 1;
  850. v->s.avctx->height = v->s.height = h = get_bits(gb, 14) + 1;
  851. av_log(v->s.avctx, AV_LOG_DEBUG, "Display dimensions: %ix%i\n", w, h);
  852. if(get_bits1(gb))
  853. ar = get_bits(gb, 4);
  854. if(ar && ar < 14){
  855. v->s.avctx->sample_aspect_ratio = ff_vc1_pixel_aspect[ar];
  856. }else if(ar == 15){
  857. w = get_bits(gb, 8);
  858. h = get_bits(gb, 8);
  859. v->s.avctx->sample_aspect_ratio = (AVRational){w, h};
  860. }
  861. if(get_bits1(gb)){ //framerate stuff
  862. if(get_bits1(gb)) {
  863. v->s.avctx->time_base.num = 32;
  864. v->s.avctx->time_base.den = get_bits(gb, 16) + 1;
  865. } else {
  866. int nr, dr;
  867. nr = get_bits(gb, 8);
  868. dr = get_bits(gb, 4);
  869. if(nr && nr < 8 && dr && dr < 3){
  870. v->s.avctx->time_base.num = ff_vc1_fps_dr[dr - 1];
  871. v->s.avctx->time_base.den = ff_vc1_fps_nr[nr - 1] * 1000;
  872. }
  873. }
  874. }
  875. if(get_bits1(gb)){
  876. v->color_prim = get_bits(gb, 8);
  877. v->transfer_char = get_bits(gb, 8);
  878. v->matrix_coef = get_bits(gb, 8);
  879. }
  880. }
  881. v->hrd_param_flag = get_bits1(gb);
  882. if(v->hrd_param_flag) {
  883. int i;
  884. v->hrd_num_leaky_buckets = get_bits(gb, 5);
  885. skip_bits(gb, 4); //bitrate exponent
  886. skip_bits(gb, 4); //buffer size exponent
  887. for(i = 0; i < v->hrd_num_leaky_buckets; i++) {
  888. skip_bits(gb, 16); //hrd_rate[n]
  889. skip_bits(gb, 16); //hrd_buffer[n]
  890. }
  891. }
  892. return 0;
  893. }
  894. static int decode_entry_point(AVCodecContext *avctx, GetBitContext *gb)
  895. {
  896. VC1Context *v = avctx->priv_data;
  897. int i, blink, clentry, refdist;
  898. av_log(avctx, AV_LOG_DEBUG, "Entry point: %08X\n", show_bits_long(gb, 32));
  899. blink = get_bits1(gb); // broken link
  900. clentry = get_bits1(gb); // closed entry
  901. v->panscanflag = get_bits1(gb);
  902. refdist = get_bits1(gb); // refdist flag
  903. v->s.loop_filter = get_bits1(gb);
  904. v->fastuvmc = get_bits1(gb);
  905. v->extended_mv = get_bits1(gb);
  906. v->dquant = get_bits(gb, 2);
  907. v->vstransform = get_bits1(gb);
  908. v->overlap = get_bits1(gb);
  909. v->quantizer_mode = get_bits(gb, 2);
  910. if(v->hrd_param_flag){
  911. for(i = 0; i < v->hrd_num_leaky_buckets; i++) {
  912. skip_bits(gb, 8); //hrd_full[n]
  913. }
  914. }
  915. if(get_bits1(gb)){
  916. avctx->coded_width = (get_bits(gb, 12)+1)<<1;
  917. avctx->coded_height = (get_bits(gb, 12)+1)<<1;
  918. }
  919. if(v->extended_mv)
  920. v->extended_dmv = get_bits1(gb);
  921. if(get_bits1(gb)) {
  922. av_log(avctx, AV_LOG_ERROR, "Luma scaling is not supported, expect wrong picture\n");
  923. skip_bits(gb, 3); // Y range, ignored for now
  924. }
  925. if(get_bits1(gb)) {
  926. av_log(avctx, AV_LOG_ERROR, "Chroma scaling is not supported, expect wrong picture\n");
  927. skip_bits(gb, 3); // UV range, ignored for now
  928. }
  929. av_log(avctx, AV_LOG_DEBUG, "Entry point info:\n"
  930. "BrokenLink=%i, ClosedEntry=%i, PanscanFlag=%i\n"
  931. "RefDist=%i, Postproc=%i, FastUVMC=%i, ExtMV=%i\n"
  932. "DQuant=%i, VSTransform=%i, Overlap=%i, Qmode=%i\n",
  933. blink, clentry, v->panscanflag, refdist, v->s.loop_filter,
  934. v->fastuvmc, v->extended_mv, v->dquant, v->vstransform, v->overlap, v->quantizer_mode);
  935. return 0;
  936. }
  937. static int vc1_parse_frame_header(VC1Context *v, GetBitContext* gb)
  938. {
  939. int pqindex, lowquant, status;
  940. if(v->finterpflag) v->interpfrm = get_bits1(gb);
  941. skip_bits(gb, 2); //framecnt unused
  942. v->rangeredfrm = 0;
  943. if (v->rangered) v->rangeredfrm = get_bits1(gb);
  944. v->s.pict_type = get_bits1(gb);
  945. if (v->s.avctx->max_b_frames) {
  946. if (!v->s.pict_type) {
  947. if (get_bits1(gb)) v->s.pict_type = I_TYPE;
  948. else v->s.pict_type = B_TYPE;
  949. } else v->s.pict_type = P_TYPE;
  950. } else v->s.pict_type = v->s.pict_type ? P_TYPE : I_TYPE;
  951. v->bi_type = 0;
  952. if(v->s.pict_type == B_TYPE) {
  953. v->bfraction = get_vlc2(gb, ff_vc1_bfraction_vlc.table, VC1_BFRACTION_VLC_BITS, 1);
  954. v->bfraction = ff_vc1_bfraction_lut[v->bfraction];
  955. if(v->bfraction == 0) {
  956. v->s.pict_type = BI_TYPE;
  957. }
  958. }
  959. if(v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  960. skip_bits(gb, 7); // skip buffer fullness
  961. /* calculate RND */
  962. if(v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  963. v->rnd = 1;
  964. if(v->s.pict_type == P_TYPE)
  965. v->rnd ^= 1;
  966. /* Quantizer stuff */
  967. pqindex = get_bits(gb, 5);
  968. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  969. v->pq = ff_vc1_pquant_table[0][pqindex];
  970. else
  971. v->pq = ff_vc1_pquant_table[1][pqindex];
  972. v->pquantizer = 1;
  973. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  974. v->pquantizer = pqindex < 9;
  975. if (v->quantizer_mode == QUANT_NON_UNIFORM)
  976. v->pquantizer = 0;
  977. v->pqindex = pqindex;
  978. if (pqindex < 9) v->halfpq = get_bits1(gb);
  979. else v->halfpq = 0;
  980. if (v->quantizer_mode == QUANT_FRAME_EXPLICIT)
  981. v->pquantizer = get_bits1(gb);
  982. v->dquantfrm = 0;
  983. if (v->extended_mv == 1) v->mvrange = get_unary(gb, 0, 3);
  984. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  985. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  986. v->range_x = 1 << (v->k_x - 1);
  987. v->range_y = 1 << (v->k_y - 1);
  988. if (v->profile == PROFILE_ADVANCED)
  989. {
  990. if (v->postprocflag) v->postproc = get_bits1(gb);
  991. }
  992. else
  993. if (v->multires && v->s.pict_type != B_TYPE) v->respic = get_bits(gb, 2);
  994. if(v->res_x8 && (v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)){
  995. v->x8_type = get_bits1(gb);
  996. }else v->x8_type = 0;
  997. //av_log(v->s.avctx, AV_LOG_INFO, "%c Frame: QP=[%i]%i (+%i/2) %i\n",
  998. // (v->s.pict_type == P_TYPE) ? 'P' : ((v->s.pict_type == I_TYPE) ? 'I' : 'B'), pqindex, v->pq, v->halfpq, v->rangeredfrm);
  999. if(v->s.pict_type == I_TYPE || v->s.pict_type == P_TYPE) v->use_ic = 0;
  1000. switch(v->s.pict_type) {
  1001. case P_TYPE:
  1002. if (v->pq < 5) v->tt_index = 0;
  1003. else if(v->pq < 13) v->tt_index = 1;
  1004. else v->tt_index = 2;
  1005. lowquant = (v->pq > 12) ? 0 : 1;
  1006. v->mv_mode = ff_vc1_mv_pmode_table[lowquant][get_unary(gb, 1, 4)];
  1007. if (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  1008. {
  1009. int scale, shift, i;
  1010. v->mv_mode2 = ff_vc1_mv_pmode_table2[lowquant][get_unary(gb, 1, 3)];
  1011. v->lumscale = get_bits(gb, 6);
  1012. v->lumshift = get_bits(gb, 6);
  1013. v->use_ic = 1;
  1014. /* fill lookup tables for intensity compensation */
  1015. if(!v->lumscale) {
  1016. scale = -64;
  1017. shift = (255 - v->lumshift * 2) << 6;
  1018. if(v->lumshift > 31)
  1019. shift += 128 << 6;
  1020. } else {
  1021. scale = v->lumscale + 32;
  1022. if(v->lumshift > 31)
  1023. shift = (v->lumshift - 64) << 6;
  1024. else
  1025. shift = v->lumshift << 6;
  1026. }
  1027. for(i = 0; i < 256; i++) {
  1028. v->luty[i] = av_clip_uint8((scale * i + shift + 32) >> 6);
  1029. v->lutuv[i] = av_clip_uint8((scale * (i - 128) + 128*64 + 32) >> 6);
  1030. }
  1031. }
  1032. if(v->mv_mode == MV_PMODE_1MV_HPEL || v->mv_mode == MV_PMODE_1MV_HPEL_BILIN)
  1033. v->s.quarter_sample = 0;
  1034. else if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  1035. if(v->mv_mode2 == MV_PMODE_1MV_HPEL || v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN)
  1036. v->s.quarter_sample = 0;
  1037. else
  1038. v->s.quarter_sample = 1;
  1039. } else
  1040. v->s.quarter_sample = 1;
  1041. v->s.mspel = !(v->mv_mode == MV_PMODE_1MV_HPEL_BILIN || (v->mv_mode == MV_PMODE_INTENSITY_COMP && v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN));
  1042. if ((v->mv_mode == MV_PMODE_INTENSITY_COMP &&
  1043. v->mv_mode2 == MV_PMODE_MIXED_MV)
  1044. || v->mv_mode == MV_PMODE_MIXED_MV)
  1045. {
  1046. status = bitplane_decoding(v->mv_type_mb_plane, &v->mv_type_is_raw, v);
  1047. if (status < 0) return -1;
  1048. av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: "
  1049. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1050. } else {
  1051. v->mv_type_is_raw = 0;
  1052. memset(v->mv_type_mb_plane, 0, v->s.mb_stride * v->s.mb_height);
  1053. }
  1054. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1055. if (status < 0) return -1;
  1056. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1057. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1058. /* Hopefully this is correct for P frames */
  1059. v->s.mv_table_index = get_bits(gb, 2); //but using ff_vc1_ tables
  1060. v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1061. if (v->dquant)
  1062. {
  1063. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1064. vop_dquant_decoding(v);
  1065. }
  1066. v->ttfrm = 0; //FIXME Is that so ?
  1067. if (v->vstransform)
  1068. {
  1069. v->ttmbf = get_bits1(gb);
  1070. if (v->ttmbf)
  1071. {
  1072. v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
  1073. }
  1074. } else {
  1075. v->ttmbf = 1;
  1076. v->ttfrm = TT_8X8;
  1077. }
  1078. break;
  1079. case B_TYPE:
  1080. if (v->pq < 5) v->tt_index = 0;
  1081. else if(v->pq < 13) v->tt_index = 1;
  1082. else v->tt_index = 2;
  1083. lowquant = (v->pq > 12) ? 0 : 1;
  1084. v->mv_mode = get_bits1(gb) ? MV_PMODE_1MV : MV_PMODE_1MV_HPEL_BILIN;
  1085. v->s.quarter_sample = (v->mv_mode == MV_PMODE_1MV);
  1086. v->s.mspel = v->s.quarter_sample;
  1087. status = bitplane_decoding(v->direct_mb_plane, &v->dmb_is_raw, v);
  1088. if (status < 0) return -1;
  1089. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Direct Type plane encoding: "
  1090. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1091. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1092. if (status < 0) return -1;
  1093. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1094. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1095. v->s.mv_table_index = get_bits(gb, 2);
  1096. v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1097. if (v->dquant)
  1098. {
  1099. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1100. vop_dquant_decoding(v);
  1101. }
  1102. v->ttfrm = 0;
  1103. if (v->vstransform)
  1104. {
  1105. v->ttmbf = get_bits1(gb);
  1106. if (v->ttmbf)
  1107. {
  1108. v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
  1109. }
  1110. } else {
  1111. v->ttmbf = 1;
  1112. v->ttfrm = TT_8X8;
  1113. }
  1114. break;
  1115. }
  1116. if(!v->x8_type)
  1117. {
  1118. /* AC Syntax */
  1119. v->c_ac_table_index = decode012(gb);
  1120. if (v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  1121. {
  1122. v->y_ac_table_index = decode012(gb);
  1123. }
  1124. /* DC Syntax */
  1125. v->s.dc_table_index = get_bits1(gb);
  1126. }
  1127. if(v->s.pict_type == BI_TYPE) {
  1128. v->s.pict_type = B_TYPE;
  1129. v->bi_type = 1;
  1130. }
  1131. return 0;
  1132. }
  1133. static int vc1_parse_frame_header_adv(VC1Context *v, GetBitContext* gb)
  1134. {
  1135. int pqindex, lowquant;
  1136. int status;
  1137. v->p_frame_skipped = 0;
  1138. if(v->interlace){
  1139. v->fcm = decode012(gb);
  1140. if(v->fcm) return -1; // interlaced frames/fields are not implemented
  1141. }
  1142. switch(get_unary(gb, 0, 4)) {
  1143. case 0:
  1144. v->s.pict_type = P_TYPE;
  1145. break;
  1146. case 1:
  1147. v->s.pict_type = B_TYPE;
  1148. break;
  1149. case 2:
  1150. v->s.pict_type = I_TYPE;
  1151. break;
  1152. case 3:
  1153. v->s.pict_type = BI_TYPE;
  1154. break;
  1155. case 4:
  1156. v->s.pict_type = P_TYPE; // skipped pic
  1157. v->p_frame_skipped = 1;
  1158. return 0;
  1159. }
  1160. if(v->tfcntrflag)
  1161. skip_bits(gb, 8);
  1162. if(v->broadcast) {
  1163. if(!v->interlace || v->psf) {
  1164. v->rptfrm = get_bits(gb, 2);
  1165. } else {
  1166. v->tff = get_bits1(gb);
  1167. v->rptfrm = get_bits1(gb);
  1168. }
  1169. }
  1170. if(v->panscanflag) {
  1171. //...
  1172. }
  1173. v->rnd = get_bits1(gb);
  1174. if(v->interlace)
  1175. v->uvsamp = get_bits1(gb);
  1176. if(v->finterpflag) v->interpfrm = get_bits1(gb);
  1177. if(v->s.pict_type == B_TYPE) {
  1178. v->bfraction = get_vlc2(gb, ff_vc1_bfraction_vlc.table, VC1_BFRACTION_VLC_BITS, 1);
  1179. v->bfraction = ff_vc1_bfraction_lut[v->bfraction];
  1180. if(v->bfraction == 0) {
  1181. v->s.pict_type = BI_TYPE; /* XXX: should not happen here */
  1182. }
  1183. }
  1184. pqindex = get_bits(gb, 5);
  1185. v->pqindex = pqindex;
  1186. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1187. v->pq = ff_vc1_pquant_table[0][pqindex];
  1188. else
  1189. v->pq = ff_vc1_pquant_table[1][pqindex];
  1190. v->pquantizer = 1;
  1191. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1192. v->pquantizer = pqindex < 9;
  1193. if (v->quantizer_mode == QUANT_NON_UNIFORM)
  1194. v->pquantizer = 0;
  1195. v->pqindex = pqindex;
  1196. if (pqindex < 9) v->halfpq = get_bits1(gb);
  1197. else v->halfpq = 0;
  1198. if (v->quantizer_mode == QUANT_FRAME_EXPLICIT)
  1199. v->pquantizer = get_bits1(gb);
  1200. if(v->s.pict_type == I_TYPE || v->s.pict_type == P_TYPE) v->use_ic = 0;
  1201. switch(v->s.pict_type) {
  1202. case I_TYPE:
  1203. case BI_TYPE:
  1204. status = bitplane_decoding(v->acpred_plane, &v->acpred_is_raw, v);
  1205. if (status < 0) return -1;
  1206. av_log(v->s.avctx, AV_LOG_DEBUG, "ACPRED plane encoding: "
  1207. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1208. v->condover = CONDOVER_NONE;
  1209. if(v->overlap && v->pq <= 8) {
  1210. v->condover = decode012(gb);
  1211. if(v->condover == CONDOVER_SELECT) {
  1212. status = bitplane_decoding(v->over_flags_plane, &v->overflg_is_raw, v);
  1213. if (status < 0) return -1;
  1214. av_log(v->s.avctx, AV_LOG_DEBUG, "CONDOVER plane encoding: "
  1215. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1216. }
  1217. }
  1218. break;
  1219. case P_TYPE:
  1220. if(v->postprocflag)
  1221. v->postproc = get_bits1(gb);
  1222. if (v->extended_mv) v->mvrange = get_unary(gb, 0, 3);
  1223. else v->mvrange = 0;
  1224. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  1225. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  1226. v->range_x = 1 << (v->k_x - 1);
  1227. v->range_y = 1 << (v->k_y - 1);
  1228. if (v->pq < 5) v->tt_index = 0;
  1229. else if(v->pq < 13) v->tt_index = 1;
  1230. else v->tt_index = 2;
  1231. lowquant = (v->pq > 12) ? 0 : 1;
  1232. v->mv_mode = ff_vc1_mv_pmode_table[lowquant][get_unary(gb, 1, 4)];
  1233. if (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  1234. {
  1235. int scale, shift, i;
  1236. v->mv_mode2 = ff_vc1_mv_pmode_table2[lowquant][get_unary(gb, 1, 3)];
  1237. v->lumscale = get_bits(gb, 6);
  1238. v->lumshift = get_bits(gb, 6);
  1239. /* fill lookup tables for intensity compensation */
  1240. if(!v->lumscale) {
  1241. scale = -64;
  1242. shift = (255 - v->lumshift * 2) << 6;
  1243. if(v->lumshift > 31)
  1244. shift += 128 << 6;
  1245. } else {
  1246. scale = v->lumscale + 32;
  1247. if(v->lumshift > 31)
  1248. shift = (v->lumshift - 64) << 6;
  1249. else
  1250. shift = v->lumshift << 6;
  1251. }
  1252. for(i = 0; i < 256; i++) {
  1253. v->luty[i] = av_clip_uint8((scale * i + shift + 32) >> 6);
  1254. v->lutuv[i] = av_clip_uint8((scale * (i - 128) + 128*64 + 32) >> 6);
  1255. }
  1256. v->use_ic = 1;
  1257. }
  1258. if(v->mv_mode == MV_PMODE_1MV_HPEL || v->mv_mode == MV_PMODE_1MV_HPEL_BILIN)
  1259. v->s.quarter_sample = 0;
  1260. else if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  1261. if(v->mv_mode2 == MV_PMODE_1MV_HPEL || v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN)
  1262. v->s.quarter_sample = 0;
  1263. else
  1264. v->s.quarter_sample = 1;
  1265. } else
  1266. v->s.quarter_sample = 1;
  1267. v->s.mspel = !(v->mv_mode == MV_PMODE_1MV_HPEL_BILIN || (v->mv_mode == MV_PMODE_INTENSITY_COMP && v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN));
  1268. if ((v->mv_mode == MV_PMODE_INTENSITY_COMP &&
  1269. v->mv_mode2 == MV_PMODE_MIXED_MV)
  1270. || v->mv_mode == MV_PMODE_MIXED_MV)
  1271. {
  1272. status = bitplane_decoding(v->mv_type_mb_plane, &v->mv_type_is_raw, v);
  1273. if (status < 0) return -1;
  1274. av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: "
  1275. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1276. } else {
  1277. v->mv_type_is_raw = 0;
  1278. memset(v->mv_type_mb_plane, 0, v->s.mb_stride * v->s.mb_height);
  1279. }
  1280. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1281. if (status < 0) return -1;
  1282. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1283. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1284. /* Hopefully this is correct for P frames */
  1285. v->s.mv_table_index = get_bits(gb, 2); //but using ff_vc1_ tables
  1286. v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1287. if (v->dquant)
  1288. {
  1289. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1290. vop_dquant_decoding(v);
  1291. }
  1292. v->ttfrm = 0; //FIXME Is that so ?
  1293. if (v->vstransform)
  1294. {
  1295. v->ttmbf = get_bits1(gb);
  1296. if (v->ttmbf)
  1297. {
  1298. v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
  1299. }
  1300. } else {
  1301. v->ttmbf = 1;
  1302. v->ttfrm = TT_8X8;
  1303. }
  1304. break;
  1305. case B_TYPE:
  1306. if(v->postprocflag)
  1307. v->postproc = get_bits1(gb);
  1308. if (v->extended_mv) v->mvrange = get_unary(gb, 0, 3);
  1309. else v->mvrange = 0;
  1310. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  1311. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  1312. v->range_x = 1 << (v->k_x - 1);
  1313. v->range_y = 1 << (v->k_y - 1);
  1314. if (v->pq < 5) v->tt_index = 0;
  1315. else if(v->pq < 13) v->tt_index = 1;
  1316. else v->tt_index = 2;
  1317. lowquant = (v->pq > 12) ? 0 : 1;
  1318. v->mv_mode = get_bits1(gb) ? MV_PMODE_1MV : MV_PMODE_1MV_HPEL_BILIN;
  1319. v->s.quarter_sample = (v->mv_mode == MV_PMODE_1MV);
  1320. v->s.mspel = v->s.quarter_sample;
  1321. status = bitplane_decoding(v->direct_mb_plane, &v->dmb_is_raw, v);
  1322. if (status < 0) return -1;
  1323. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Direct Type plane encoding: "
  1324. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1325. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1326. if (status < 0) return -1;
  1327. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1328. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1329. v->s.mv_table_index = get_bits(gb, 2);
  1330. v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1331. if (v->dquant)
  1332. {
  1333. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1334. vop_dquant_decoding(v);
  1335. }
  1336. v->ttfrm = 0;
  1337. if (v->vstransform)
  1338. {
  1339. v->ttmbf = get_bits1(gb);
  1340. if (v->ttmbf)
  1341. {
  1342. v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
  1343. }
  1344. } else {
  1345. v->ttmbf = 1;
  1346. v->ttfrm = TT_8X8;
  1347. }
  1348. break;
  1349. }
  1350. /* AC Syntax */
  1351. v->c_ac_table_index = decode012(gb);
  1352. if (v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  1353. {
  1354. v->y_ac_table_index = decode012(gb);
  1355. }
  1356. /* DC Syntax */
  1357. v->s.dc_table_index = get_bits1(gb);
  1358. if ((v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE) && v->dquant) {
  1359. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1360. vop_dquant_decoding(v);
  1361. }
  1362. v->bi_type = 0;
  1363. if(v->s.pict_type == BI_TYPE) {
  1364. v->s.pict_type = B_TYPE;
  1365. v->bi_type = 1;
  1366. }
  1367. return 0;
  1368. }
  1369. /***********************************************************************/
  1370. /**
  1371. * @defgroup block VC-1 Block-level functions
  1372. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  1373. * @{
  1374. */
  1375. /**
  1376. * @def GET_MQUANT
  1377. * @brief Get macroblock-level quantizer scale
  1378. */
  1379. #define GET_MQUANT() \
  1380. if (v->dquantfrm) \
  1381. { \
  1382. int edges = 0; \
  1383. if (v->dqprofile == DQPROFILE_ALL_MBS) \
  1384. { \
  1385. if (v->dqbilevel) \
  1386. { \
  1387. mquant = (get_bits1(gb)) ? v->altpq : v->pq; \
  1388. } \
  1389. else \
  1390. { \
  1391. mqdiff = get_bits(gb, 3); \
  1392. if (mqdiff != 7) mquant = v->pq + mqdiff; \
  1393. else mquant = get_bits(gb, 5); \
  1394. } \
  1395. } \
  1396. if(v->dqprofile == DQPROFILE_SINGLE_EDGE) \
  1397. edges = 1 << v->dqsbedge; \
  1398. else if(v->dqprofile == DQPROFILE_DOUBLE_EDGES) \
  1399. edges = (3 << v->dqsbedge) % 15; \
  1400. else if(v->dqprofile == DQPROFILE_FOUR_EDGES) \
  1401. edges = 15; \
  1402. if((edges&1) && !s->mb_x) \
  1403. mquant = v->altpq; \
  1404. if((edges&2) && s->first_slice_line) \
  1405. mquant = v->altpq; \
  1406. if((edges&4) && s->mb_x == (s->mb_width - 1)) \
  1407. mquant = v->altpq; \
  1408. if((edges&8) && s->mb_y == (s->mb_height - 1)) \
  1409. mquant = v->altpq; \
  1410. }
  1411. /**
  1412. * @def GET_MVDATA(_dmv_x, _dmv_y)
  1413. * @brief Get MV differentials
  1414. * @see MVDATA decoding from 8.3.5.2, p(1)20
  1415. * @param _dmv_x Horizontal differential for decoded MV
  1416. * @param _dmv_y Vertical differential for decoded MV
  1417. */
  1418. #define GET_MVDATA(_dmv_x, _dmv_y) \
  1419. index = 1 + get_vlc2(gb, ff_vc1_mv_diff_vlc[s->mv_table_index].table,\
  1420. VC1_MV_DIFF_VLC_BITS, 2); \
  1421. if (index > 36) \
  1422. { \
  1423. mb_has_coeffs = 1; \
  1424. index -= 37; \
  1425. } \
  1426. else mb_has_coeffs = 0; \
  1427. s->mb_intra = 0; \
  1428. if (!index) { _dmv_x = _dmv_y = 0; } \
  1429. else if (index == 35) \
  1430. { \
  1431. _dmv_x = get_bits(gb, v->k_x - 1 + s->quarter_sample); \
  1432. _dmv_y = get_bits(gb, v->k_y - 1 + s->quarter_sample); \
  1433. } \
  1434. else if (index == 36) \
  1435. { \
  1436. _dmv_x = 0; \
  1437. _dmv_y = 0; \
  1438. s->mb_intra = 1; \
  1439. } \
  1440. else \
  1441. { \
  1442. index1 = index%6; \
  1443. if (!s->quarter_sample && index1 == 5) val = 1; \
  1444. else val = 0; \
  1445. if(size_table[index1] - val > 0) \
  1446. val = get_bits(gb, size_table[index1] - val); \
  1447. else val = 0; \
  1448. sign = 0 - (val&1); \
  1449. _dmv_x = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  1450. \
  1451. index1 = index/6; \
  1452. if (!s->quarter_sample && index1 == 5) val = 1; \
  1453. else val = 0; \
  1454. if(size_table[index1] - val > 0) \
  1455. val = get_bits(gb, size_table[index1] - val); \
  1456. else val = 0; \
  1457. sign = 0 - (val&1); \
  1458. _dmv_y = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  1459. }
  1460. /** Predict and set motion vector
  1461. */
  1462. static inline void vc1_pred_mv(MpegEncContext *s, int n, int dmv_x, int dmv_y, int mv1, int r_x, int r_y, uint8_t* is_intra)
  1463. {
  1464. int xy, wrap, off = 0;
  1465. int16_t *A, *B, *C;
  1466. int px, py;
  1467. int sum;
  1468. /* scale MV difference to be quad-pel */
  1469. dmv_x <<= 1 - s->quarter_sample;
  1470. dmv_y <<= 1 - s->quarter_sample;
  1471. wrap = s->b8_stride;
  1472. xy = s->block_index[n];
  1473. if(s->mb_intra){
  1474. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = 0;
  1475. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = 0;
  1476. s->current_picture.motion_val[1][xy][0] = 0;
  1477. s->current_picture.motion_val[1][xy][1] = 0;
  1478. if(mv1) { /* duplicate motion data for 1-MV block */
  1479. s->current_picture.motion_val[0][xy + 1][0] = 0;
  1480. s->current_picture.motion_val[0][xy + 1][1] = 0;
  1481. s->current_picture.motion_val[0][xy + wrap][0] = 0;
  1482. s->current_picture.motion_val[0][xy + wrap][1] = 0;
  1483. s->current_picture.motion_val[0][xy + wrap + 1][0] = 0;
  1484. s->current_picture.motion_val[0][xy + wrap + 1][1] = 0;
  1485. s->current_picture.motion_val[1][xy + 1][0] = 0;
  1486. s->current_picture.motion_val[1][xy + 1][1] = 0;
  1487. s->current_picture.motion_val[1][xy + wrap][0] = 0;
  1488. s->current_picture.motion_val[1][xy + wrap][1] = 0;
  1489. s->current_picture.motion_val[1][xy + wrap + 1][0] = 0;
  1490. s->current_picture.motion_val[1][xy + wrap + 1][1] = 0;
  1491. }
  1492. return;
  1493. }
  1494. C = s->current_picture.motion_val[0][xy - 1];
  1495. A = s->current_picture.motion_val[0][xy - wrap];
  1496. if(mv1)
  1497. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 2;
  1498. else {
  1499. //in 4-MV mode different blocks have different B predictor position
  1500. switch(n){
  1501. case 0:
  1502. off = (s->mb_x > 0) ? -1 : 1;
  1503. break;
  1504. case 1:
  1505. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 1;
  1506. break;
  1507. case 2:
  1508. off = 1;
  1509. break;
  1510. case 3:
  1511. off = -1;
  1512. }
  1513. }
  1514. B = s->current_picture.motion_val[0][xy - wrap + off];
  1515. if(!s->first_slice_line || (n==2 || n==3)) { // predictor A is not out of bounds
  1516. if(s->mb_width == 1) {
  1517. px = A[0];
  1518. py = A[1];
  1519. } else {
  1520. px = mid_pred(A[0], B[0], C[0]);
  1521. py = mid_pred(A[1], B[1], C[1]);
  1522. }
  1523. } else if(s->mb_x || (n==1 || n==3)) { // predictor C is not out of bounds
  1524. px = C[0];
  1525. py = C[1];
  1526. } else {
  1527. px = py = 0;
  1528. }
  1529. /* Pullback MV as specified in 8.3.5.3.4 */
  1530. {
  1531. int qx, qy, X, Y;
  1532. qx = (s->mb_x << 6) + ((n==1 || n==3) ? 32 : 0);
  1533. qy = (s->mb_y << 6) + ((n==2 || n==3) ? 32 : 0);
  1534. X = (s->mb_width << 6) - 4;
  1535. Y = (s->mb_height << 6) - 4;
  1536. if(mv1) {
  1537. if(qx + px < -60) px = -60 - qx;
  1538. if(qy + py < -60) py = -60 - qy;
  1539. } else {
  1540. if(qx + px < -28) px = -28 - qx;
  1541. if(qy + py < -28) py = -28 - qy;
  1542. }
  1543. if(qx + px > X) px = X - qx;
  1544. if(qy + py > Y) py = Y - qy;
  1545. }
  1546. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  1547. if((!s->first_slice_line || (n==2 || n==3)) && (s->mb_x || (n==1 || n==3))) {
  1548. if(is_intra[xy - wrap])
  1549. sum = FFABS(px) + FFABS(py);
  1550. else
  1551. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  1552. if(sum > 32) {
  1553. if(get_bits1(&s->gb)) {
  1554. px = A[0];
  1555. py = A[1];
  1556. } else {
  1557. px = C[0];
  1558. py = C[1];
  1559. }
  1560. } else {
  1561. if(is_intra[xy - 1])
  1562. sum = FFABS(px) + FFABS(py);
  1563. else
  1564. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  1565. if(sum > 32) {
  1566. if(get_bits1(&s->gb)) {
  1567. px = A[0];
  1568. py = A[1];
  1569. } else {
  1570. px = C[0];
  1571. py = C[1];
  1572. }
  1573. }
  1574. }
  1575. }
  1576. /* store MV using signed modulus of MV range defined in 4.11 */
  1577. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = ((px + dmv_x + r_x) & ((r_x << 1) - 1)) - r_x;
  1578. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = ((py + dmv_y + r_y) & ((r_y << 1) - 1)) - r_y;
  1579. if(mv1) { /* duplicate motion data for 1-MV block */
  1580. s->current_picture.motion_val[0][xy + 1][0] = s->current_picture.motion_val[0][xy][0];
  1581. s->current_picture.motion_val[0][xy + 1][1] = s->current_picture.motion_val[0][xy][1];
  1582. s->current_picture.motion_val[0][xy + wrap][0] = s->current_picture.motion_val[0][xy][0];
  1583. s->current_picture.motion_val[0][xy + wrap][1] = s->current_picture.motion_val[0][xy][1];
  1584. s->current_picture.motion_val[0][xy + wrap + 1][0] = s->current_picture.motion_val[0][xy][0];
  1585. s->current_picture.motion_val[0][xy + wrap + 1][1] = s->current_picture.motion_val[0][xy][1];
  1586. }
  1587. }
  1588. /** Motion compensation for direct or interpolated blocks in B-frames
  1589. */
  1590. static void vc1_interp_mc(VC1Context *v)
  1591. {
  1592. MpegEncContext *s = &v->s;
  1593. DSPContext *dsp = &v->s.dsp;
  1594. uint8_t *srcY, *srcU, *srcV;
  1595. int dxy, uvdxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  1596. if(!v->s.next_picture.data[0])return;
  1597. mx = s->mv[1][0][0];
  1598. my = s->mv[1][0][1];
  1599. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  1600. uvmy = (my + ((my & 3) == 3)) >> 1;
  1601. if(v->fastuvmc) {
  1602. uvmx = uvmx + ((uvmx<0)?-(uvmx&1):(uvmx&1));
  1603. uvmy = uvmy + ((uvmy<0)?-(uvmy&1):(uvmy&1));
  1604. }
  1605. srcY = s->next_picture.data[0];
  1606. srcU = s->next_picture.data[1];
  1607. srcV = s->next_picture.data[2];
  1608. src_x = s->mb_x * 16 + (mx >> 2);
  1609. src_y = s->mb_y * 16 + (my >> 2);
  1610. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  1611. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  1612. if(v->profile != PROFILE_ADVANCED){
  1613. src_x = av_clip( src_x, -16, s->mb_width * 16);
  1614. src_y = av_clip( src_y, -16, s->mb_height * 16);
  1615. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  1616. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  1617. }else{
  1618. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  1619. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  1620. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  1621. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  1622. }
  1623. srcY += src_y * s->linesize + src_x;
  1624. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  1625. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  1626. /* for grayscale we should not try to read from unknown area */
  1627. if(s->flags & CODEC_FLAG_GRAY) {
  1628. srcU = s->edge_emu_buffer + 18 * s->linesize;
  1629. srcV = s->edge_emu_buffer + 18 * s->linesize;
  1630. }
  1631. if(v->rangeredfrm
  1632. || (unsigned)src_x > s->h_edge_pos - (mx&3) - 16
  1633. || (unsigned)src_y > s->v_edge_pos - (my&3) - 16){
  1634. uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
  1635. srcY -= s->mspel * (1 + s->linesize);
  1636. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
  1637. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  1638. srcY = s->edge_emu_buffer;
  1639. ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
  1640. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  1641. ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
  1642. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  1643. srcU = uvbuf;
  1644. srcV = uvbuf + 16;
  1645. /* if we deal with range reduction we need to scale source blocks */
  1646. if(v->rangeredfrm) {
  1647. int i, j;
  1648. uint8_t *src, *src2;
  1649. src = srcY;
  1650. for(j = 0; j < 17 + s->mspel*2; j++) {
  1651. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  1652. src += s->linesize;
  1653. }
  1654. src = srcU; src2 = srcV;
  1655. for(j = 0; j < 9; j++) {
  1656. for(i = 0; i < 9; i++) {
  1657. src[i] = ((src[i] - 128) >> 1) + 128;
  1658. src2[i] = ((src2[i] - 128) >> 1) + 128;
  1659. }
  1660. src += s->uvlinesize;
  1661. src2 += s->uvlinesize;
  1662. }
  1663. }
  1664. srcY += s->mspel * (1 + s->linesize);
  1665. }
  1666. mx >>= 1;
  1667. my >>= 1;
  1668. dxy = ((my & 1) << 1) | (mx & 1);
  1669. dsp->avg_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  1670. if(s->flags & CODEC_FLAG_GRAY) return;
  1671. /* Chroma MC always uses qpel blilinear */
  1672. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  1673. uvmx = (uvmx&3)<<1;
  1674. uvmy = (uvmy&3)<<1;
  1675. dsp->avg_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  1676. dsp->avg_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  1677. }
  1678. static av_always_inline int scale_mv(int value, int bfrac, int inv, int qs)
  1679. {
  1680. int n = bfrac;
  1681. #if B_FRACTION_DEN==256
  1682. if(inv)
  1683. n -= 256;
  1684. if(!qs)
  1685. return 2 * ((value * n + 255) >> 9);
  1686. return (value * n + 128) >> 8;
  1687. #else
  1688. if(inv)
  1689. n -= B_FRACTION_DEN;
  1690. if(!qs)
  1691. return 2 * ((value * n + B_FRACTION_DEN - 1) / (2 * B_FRACTION_DEN));
  1692. return (value * n + B_FRACTION_DEN/2) / B_FRACTION_DEN;
  1693. #endif
  1694. }
  1695. /** Reconstruct motion vector for B-frame and do motion compensation
  1696. */
  1697. static inline void vc1_b_mc(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mode)
  1698. {
  1699. if(v->use_ic) {
  1700. v->mv_mode2 = v->mv_mode;
  1701. v->mv_mode = MV_PMODE_INTENSITY_COMP;
  1702. }
  1703. if(direct) {
  1704. vc1_mc_1mv(v, 0);
  1705. vc1_interp_mc(v);
  1706. if(v->use_ic) v->mv_mode = v->mv_mode2;
  1707. return;
  1708. }
  1709. if(mode == BMV_TYPE_INTERPOLATED) {
  1710. vc1_mc_1mv(v, 0);
  1711. vc1_interp_mc(v);
  1712. if(v->use_ic) v->mv_mode = v->mv_mode2;
  1713. return;
  1714. }
  1715. if(v->use_ic && (mode == BMV_TYPE_BACKWARD)) v->mv_mode = v->mv_mode2;
  1716. vc1_mc_1mv(v, (mode == BMV_TYPE_BACKWARD));
  1717. if(v->use_ic) v->mv_mode = v->mv_mode2;
  1718. }
  1719. static inline void vc1_pred_b_mv(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mvtype)
  1720. {
  1721. MpegEncContext *s = &v->s;
  1722. int xy, wrap, off = 0;
  1723. int16_t *A, *B, *C;
  1724. int px, py;
  1725. int sum;
  1726. int r_x, r_y;
  1727. const uint8_t *is_intra = v->mb_type[0];
  1728. r_x = v->range_x;
  1729. r_y = v->range_y;
  1730. /* scale MV difference to be quad-pel */
  1731. dmv_x[0] <<= 1 - s->quarter_sample;
  1732. dmv_y[0] <<= 1 - s->quarter_sample;
  1733. dmv_x[1] <<= 1 - s->quarter_sample;
  1734. dmv_y[1] <<= 1 - s->quarter_sample;
  1735. wrap = s->b8_stride;
  1736. xy = s->block_index[0];
  1737. if(s->mb_intra) {
  1738. s->current_picture.motion_val[0][xy][0] =
  1739. s->current_picture.motion_val[0][xy][1] =
  1740. s->current_picture.motion_val[1][xy][0] =
  1741. s->current_picture.motion_val[1][xy][1] = 0;
  1742. return;
  1743. }
  1744. s->mv[0][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 0, s->quarter_sample);
  1745. s->mv[0][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 0, s->quarter_sample);
  1746. s->mv[1][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 1, s->quarter_sample);
  1747. s->mv[1][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 1, s->quarter_sample);
  1748. /* Pullback predicted motion vectors as specified in 8.4.5.4 */
  1749. s->mv[0][0][0] = av_clip(s->mv[0][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
  1750. s->mv[0][0][1] = av_clip(s->mv[0][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
  1751. s->mv[1][0][0] = av_clip(s->mv[1][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
  1752. s->mv[1][0][1] = av_clip(s->mv[1][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
  1753. if(direct) {
  1754. s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
  1755. s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
  1756. s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
  1757. s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
  1758. return;
  1759. }
  1760. if((mvtype == BMV_TYPE_FORWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
  1761. C = s->current_picture.motion_val[0][xy - 2];
  1762. A = s->current_picture.motion_val[0][xy - wrap*2];
  1763. off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
  1764. B = s->current_picture.motion_val[0][xy - wrap*2 + off];
  1765. if(!s->mb_x) C[0] = C[1] = 0;
  1766. if(!s->first_slice_line) { // predictor A is not out of bounds
  1767. if(s->mb_width == 1) {
  1768. px = A[0];
  1769. py = A[1];
  1770. } else {
  1771. px = mid_pred(A[0], B[0], C[0]);
  1772. py = mid_pred(A[1], B[1], C[1]);
  1773. }
  1774. } else if(s->mb_x) { // predictor C is not out of bounds
  1775. px = C[0];
  1776. py = C[1];
  1777. } else {
  1778. px = py = 0;
  1779. }
  1780. /* Pullback MV as specified in 8.3.5.3.4 */
  1781. {
  1782. int qx, qy, X, Y;
  1783. if(v->profile < PROFILE_ADVANCED) {
  1784. qx = (s->mb_x << 5);
  1785. qy = (s->mb_y << 5);
  1786. X = (s->mb_width << 5) - 4;
  1787. Y = (s->mb_height << 5) - 4;
  1788. if(qx + px < -28) px = -28 - qx;
  1789. if(qy + py < -28) py = -28 - qy;
  1790. if(qx + px > X) px = X - qx;
  1791. if(qy + py > Y) py = Y - qy;
  1792. } else {
  1793. qx = (s->mb_x << 6);
  1794. qy = (s->mb_y << 6);
  1795. X = (s->mb_width << 6) - 4;
  1796. Y = (s->mb_height << 6) - 4;
  1797. if(qx + px < -60) px = -60 - qx;
  1798. if(qy + py < -60) py = -60 - qy;
  1799. if(qx + px > X) px = X - qx;
  1800. if(qy + py > Y) py = Y - qy;
  1801. }
  1802. }
  1803. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  1804. if(0 && !s->first_slice_line && s->mb_x) {
  1805. if(is_intra[xy - wrap])
  1806. sum = FFABS(px) + FFABS(py);
  1807. else
  1808. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  1809. if(sum > 32) {
  1810. if(get_bits1(&s->gb)) {
  1811. px = A[0];
  1812. py = A[1];
  1813. } else {
  1814. px = C[0];
  1815. py = C[1];
  1816. }
  1817. } else {
  1818. if(is_intra[xy - 2])
  1819. sum = FFABS(px) + FFABS(py);
  1820. else
  1821. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  1822. if(sum > 32) {
  1823. if(get_bits1(&s->gb)) {
  1824. px = A[0];
  1825. py = A[1];
  1826. } else {
  1827. px = C[0];
  1828. py = C[1];
  1829. }
  1830. }
  1831. }
  1832. }
  1833. /* store MV using signed modulus of MV range defined in 4.11 */
  1834. s->mv[0][0][0] = ((px + dmv_x[0] + r_x) & ((r_x << 1) - 1)) - r_x;
  1835. s->mv[0][0][1] = ((py + dmv_y[0] + r_y) & ((r_y << 1) - 1)) - r_y;
  1836. }
  1837. if((mvtype == BMV_TYPE_BACKWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
  1838. C = s->current_picture.motion_val[1][xy - 2];
  1839. A = s->current_picture.motion_val[1][xy - wrap*2];
  1840. off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
  1841. B = s->current_picture.motion_val[1][xy - wrap*2 + off];
  1842. if(!s->mb_x) C[0] = C[1] = 0;
  1843. if(!s->first_slice_line) { // predictor A is not out of bounds
  1844. if(s->mb_width == 1) {
  1845. px = A[0];
  1846. py = A[1];
  1847. } else {
  1848. px = mid_pred(A[0], B[0], C[0]);
  1849. py = mid_pred(A[1], B[1], C[1]);
  1850. }
  1851. } else if(s->mb_x) { // predictor C is not out of bounds
  1852. px = C[0];
  1853. py = C[1];
  1854. } else {
  1855. px = py = 0;
  1856. }
  1857. /* Pullback MV as specified in 8.3.5.3.4 */
  1858. {
  1859. int qx, qy, X, Y;
  1860. if(v->profile < PROFILE_ADVANCED) {
  1861. qx = (s->mb_x << 5);
  1862. qy = (s->mb_y << 5);
  1863. X = (s->mb_width << 5) - 4;
  1864. Y = (s->mb_height << 5) - 4;
  1865. if(qx + px < -28) px = -28 - qx;
  1866. if(qy + py < -28) py = -28 - qy;
  1867. if(qx + px > X) px = X - qx;
  1868. if(qy + py > Y) py = Y - qy;
  1869. } else {
  1870. qx = (s->mb_x << 6);
  1871. qy = (s->mb_y << 6);
  1872. X = (s->mb_width << 6) - 4;
  1873. Y = (s->mb_height << 6) - 4;
  1874. if(qx + px < -60) px = -60 - qx;
  1875. if(qy + py < -60) py = -60 - qy;
  1876. if(qx + px > X) px = X - qx;
  1877. if(qy + py > Y) py = Y - qy;
  1878. }
  1879. }
  1880. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  1881. if(0 && !s->first_slice_line && s->mb_x) {
  1882. if(is_intra[xy - wrap])
  1883. sum = FFABS(px) + FFABS(py);
  1884. else
  1885. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  1886. if(sum > 32) {
  1887. if(get_bits1(&s->gb)) {
  1888. px = A[0];
  1889. py = A[1];
  1890. } else {
  1891. px = C[0];
  1892. py = C[1];
  1893. }
  1894. } else {
  1895. if(is_intra[xy - 2])
  1896. sum = FFABS(px) + FFABS(py);
  1897. else
  1898. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  1899. if(sum > 32) {
  1900. if(get_bits1(&s->gb)) {
  1901. px = A[0];
  1902. py = A[1];
  1903. } else {
  1904. px = C[0];
  1905. py = C[1];
  1906. }
  1907. }
  1908. }
  1909. }
  1910. /* store MV using signed modulus of MV range defined in 4.11 */
  1911. s->mv[1][0][0] = ((px + dmv_x[1] + r_x) & ((r_x << 1) - 1)) - r_x;
  1912. s->mv[1][0][1] = ((py + dmv_y[1] + r_y) & ((r_y << 1) - 1)) - r_y;
  1913. }
  1914. s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
  1915. s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
  1916. s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
  1917. s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
  1918. }
  1919. /** Get predicted DC value for I-frames only
  1920. * prediction dir: left=0, top=1
  1921. * @param s MpegEncContext
  1922. * @param[in] n block index in the current MB
  1923. * @param dc_val_ptr Pointer to DC predictor
  1924. * @param dir_ptr Prediction direction for use in AC prediction
  1925. */
  1926. static inline int vc1_i_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  1927. int16_t **dc_val_ptr, int *dir_ptr)
  1928. {
  1929. int a, b, c, wrap, pred, scale;
  1930. int16_t *dc_val;
  1931. static const uint16_t dcpred[32] = {
  1932. -1, 1024, 512, 341, 256, 205, 171, 146, 128,
  1933. 114, 102, 93, 85, 79, 73, 68, 64,
  1934. 60, 57, 54, 51, 49, 47, 45, 43,
  1935. 41, 39, 38, 37, 35, 34, 33
  1936. };
  1937. /* find prediction - wmv3_dc_scale always used here in fact */
  1938. if (n < 4) scale = s->y_dc_scale;
  1939. else scale = s->c_dc_scale;
  1940. wrap = s->block_wrap[n];
  1941. dc_val= s->dc_val[0] + s->block_index[n];
  1942. /* B A
  1943. * C X
  1944. */
  1945. c = dc_val[ - 1];
  1946. b = dc_val[ - 1 - wrap];
  1947. a = dc_val[ - wrap];
  1948. if (pq < 9 || !overlap)
  1949. {
  1950. /* Set outer values */
  1951. if (s->first_slice_line && (n!=2 && n!=3)) b=a=dcpred[scale];
  1952. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=dcpred[scale];
  1953. }
  1954. else
  1955. {
  1956. /* Set outer values */
  1957. if (s->first_slice_line && (n!=2 && n!=3)) b=a=0;
  1958. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=0;
  1959. }
  1960. if (abs(a - b) <= abs(b - c)) {
  1961. pred = c;
  1962. *dir_ptr = 1;//left
  1963. } else {
  1964. pred = a;
  1965. *dir_ptr = 0;//top
  1966. }
  1967. /* update predictor */
  1968. *dc_val_ptr = &dc_val[0];
  1969. return pred;
  1970. }
  1971. /** Get predicted DC value
  1972. * prediction dir: left=0, top=1
  1973. * @param s MpegEncContext
  1974. * @param[in] n block index in the current MB
  1975. * @param dc_val_ptr Pointer to DC predictor
  1976. * @param dir_ptr Prediction direction for use in AC prediction
  1977. */
  1978. static inline int vc1_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  1979. int a_avail, int c_avail,
  1980. int16_t **dc_val_ptr, int *dir_ptr)
  1981. {
  1982. int a, b, c, wrap, pred, scale;
  1983. int16_t *dc_val;
  1984. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  1985. int q1, q2 = 0;
  1986. /* find prediction - wmv3_dc_scale always used here in fact */
  1987. if (n < 4) scale = s->y_dc_scale;
  1988. else scale = s->c_dc_scale;
  1989. wrap = s->block_wrap[n];
  1990. dc_val= s->dc_val[0] + s->block_index[n];
  1991. /* B A
  1992. * C X
  1993. */
  1994. c = dc_val[ - 1];
  1995. b = dc_val[ - 1 - wrap];
  1996. a = dc_val[ - wrap];
  1997. /* scale predictors if needed */
  1998. q1 = s->current_picture.qscale_table[mb_pos];
  1999. if(c_avail && (n!= 1 && n!=3)) {
  2000. q2 = s->current_picture.qscale_table[mb_pos - 1];
  2001. if(q2 && q2 != q1)
  2002. c = (c * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2003. }
  2004. if(a_avail && (n!= 2 && n!=3)) {
  2005. q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2006. if(q2 && q2 != q1)
  2007. a = (a * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2008. }
  2009. if(a_avail && c_avail && (n!=3)) {
  2010. int off = mb_pos;
  2011. if(n != 1) off--;
  2012. if(n != 2) off -= s->mb_stride;
  2013. q2 = s->current_picture.qscale_table[off];
  2014. if(q2 && q2 != q1)
  2015. b = (b * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2016. }
  2017. if(a_avail && c_avail) {
  2018. if(abs(a - b) <= abs(b - c)) {
  2019. pred = c;
  2020. *dir_ptr = 1;//left
  2021. } else {
  2022. pred = a;
  2023. *dir_ptr = 0;//top
  2024. }
  2025. } else if(a_avail) {
  2026. pred = a;
  2027. *dir_ptr = 0;//top
  2028. } else if(c_avail) {
  2029. pred = c;
  2030. *dir_ptr = 1;//left
  2031. } else {
  2032. pred = 0;
  2033. *dir_ptr = 1;//left
  2034. }
  2035. /* update predictor */
  2036. *dc_val_ptr = &dc_val[0];
  2037. return pred;
  2038. }
  2039. /**
  2040. * @defgroup std_mb VC1 Macroblock-level functions in Simple/Main Profiles
  2041. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  2042. * @{
  2043. */
  2044. static inline int vc1_coded_block_pred(MpegEncContext * s, int n, uint8_t **coded_block_ptr)
  2045. {
  2046. int xy, wrap, pred, a, b, c;
  2047. xy = s->block_index[n];
  2048. wrap = s->b8_stride;
  2049. /* B C
  2050. * A X
  2051. */
  2052. a = s->coded_block[xy - 1 ];
  2053. b = s->coded_block[xy - 1 - wrap];
  2054. c = s->coded_block[xy - wrap];
  2055. if (b == c) {
  2056. pred = a;
  2057. } else {
  2058. pred = c;
  2059. }
  2060. /* store value */
  2061. *coded_block_ptr = &s->coded_block[xy];
  2062. return pred;
  2063. }
  2064. /**
  2065. * Decode one AC coefficient
  2066. * @param v The VC1 context
  2067. * @param last Last coefficient
  2068. * @param skip How much zero coefficients to skip
  2069. * @param value Decoded AC coefficient value
  2070. * @see 8.1.3.4
  2071. */
  2072. static void vc1_decode_ac_coeff(VC1Context *v, int *last, int *skip, int *value, int codingset)
  2073. {
  2074. GetBitContext *gb = &v->s.gb;
  2075. int index, escape, run = 0, level = 0, lst = 0;
  2076. index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  2077. if (index != vc1_ac_sizes[codingset] - 1) {
  2078. run = vc1_index_decode_table[codingset][index][0];
  2079. level = vc1_index_decode_table[codingset][index][1];
  2080. lst = index >= vc1_last_decode_table[codingset];
  2081. if(get_bits1(gb))
  2082. level = -level;
  2083. } else {
  2084. escape = decode210(gb);
  2085. if (escape != 2) {
  2086. index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  2087. run = vc1_index_decode_table[codingset][index][0];
  2088. level = vc1_index_decode_table[codingset][index][1];
  2089. lst = index >= vc1_last_decode_table[codingset];
  2090. if(escape == 0) {
  2091. if(lst)
  2092. level += vc1_last_delta_level_table[codingset][run];
  2093. else
  2094. level += vc1_delta_level_table[codingset][run];
  2095. } else {
  2096. if(lst)
  2097. run += vc1_last_delta_run_table[codingset][level] + 1;
  2098. else
  2099. run += vc1_delta_run_table[codingset][level] + 1;
  2100. }
  2101. if(get_bits1(gb))
  2102. level = -level;
  2103. } else {
  2104. int sign;
  2105. lst = get_bits1(gb);
  2106. if(v->s.esc3_level_length == 0) {
  2107. if(v->pq < 8 || v->dquantfrm) { // table 59
  2108. v->s.esc3_level_length = get_bits(gb, 3);
  2109. if(!v->s.esc3_level_length)
  2110. v->s.esc3_level_length = get_bits(gb, 2) + 8;
  2111. } else { //table 60
  2112. v->s.esc3_level_length = get_unary(gb, 1, 6) + 2;
  2113. }
  2114. v->s.esc3_run_length = 3 + get_bits(gb, 2);
  2115. }
  2116. run = get_bits(gb, v->s.esc3_run_length);
  2117. sign = get_bits1(gb);
  2118. level = get_bits(gb, v->s.esc3_level_length);
  2119. if(sign)
  2120. level = -level;
  2121. }
  2122. }
  2123. *last = lst;
  2124. *skip = run;
  2125. *value = level;
  2126. }
  2127. /** Decode intra block in intra frames - should be faster than decode_intra_block
  2128. * @param v VC1Context
  2129. * @param block block to decode
  2130. * @param coded are AC coeffs present or not
  2131. * @param codingset set of VLC to decode data
  2132. */
  2133. static int vc1_decode_i_block(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset)
  2134. {
  2135. GetBitContext *gb = &v->s.gb;
  2136. MpegEncContext *s = &v->s;
  2137. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2138. int run_diff, i;
  2139. int16_t *dc_val;
  2140. int16_t *ac_val, *ac_val2;
  2141. int dcdiff;
  2142. /* Get DC differential */
  2143. if (n < 4) {
  2144. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2145. } else {
  2146. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2147. }
  2148. if (dcdiff < 0){
  2149. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2150. return -1;
  2151. }
  2152. if (dcdiff)
  2153. {
  2154. if (dcdiff == 119 /* ESC index value */)
  2155. {
  2156. /* TODO: Optimize */
  2157. if (v->pq == 1) dcdiff = get_bits(gb, 10);
  2158. else if (v->pq == 2) dcdiff = get_bits(gb, 9);
  2159. else dcdiff = get_bits(gb, 8);
  2160. }
  2161. else
  2162. {
  2163. if (v->pq == 1)
  2164. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2165. else if (v->pq == 2)
  2166. dcdiff = (dcdiff<<1) + get_bits1(gb) - 1;
  2167. }
  2168. if (get_bits1(gb))
  2169. dcdiff = -dcdiff;
  2170. }
  2171. /* Prediction */
  2172. dcdiff += vc1_i_pred_dc(&v->s, v->overlap, v->pq, n, &dc_val, &dc_pred_dir);
  2173. *dc_val = dcdiff;
  2174. /* Store the quantized DC coeff, used for prediction */
  2175. if (n < 4) {
  2176. block[0] = dcdiff * s->y_dc_scale;
  2177. } else {
  2178. block[0] = dcdiff * s->c_dc_scale;
  2179. }
  2180. /* Skip ? */
  2181. run_diff = 0;
  2182. i = 0;
  2183. if (!coded) {
  2184. goto not_coded;
  2185. }
  2186. //AC Decoding
  2187. i = 1;
  2188. {
  2189. int last = 0, skip, value;
  2190. const int8_t *zz_table;
  2191. int scale;
  2192. int k;
  2193. scale = v->pq * 2 + v->halfpq;
  2194. if(v->s.ac_pred) {
  2195. if(!dc_pred_dir)
  2196. zz_table = ff_vc1_horizontal_zz;
  2197. else
  2198. zz_table = ff_vc1_vertical_zz;
  2199. } else
  2200. zz_table = ff_vc1_normal_zz;
  2201. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2202. ac_val2 = ac_val;
  2203. if(dc_pred_dir) //left
  2204. ac_val -= 16;
  2205. else //top
  2206. ac_val -= 16 * s->block_wrap[n];
  2207. while (!last) {
  2208. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2209. i += skip;
  2210. if(i > 63)
  2211. break;
  2212. block[zz_table[i++]] = value;
  2213. }
  2214. /* apply AC prediction if needed */
  2215. if(s->ac_pred) {
  2216. if(dc_pred_dir) { //left
  2217. for(k = 1; k < 8; k++)
  2218. block[k << 3] += ac_val[k];
  2219. } else { //top
  2220. for(k = 1; k < 8; k++)
  2221. block[k] += ac_val[k + 8];
  2222. }
  2223. }
  2224. /* save AC coeffs for further prediction */
  2225. for(k = 1; k < 8; k++) {
  2226. ac_val2[k] = block[k << 3];
  2227. ac_val2[k + 8] = block[k];
  2228. }
  2229. /* scale AC coeffs */
  2230. for(k = 1; k < 64; k++)
  2231. if(block[k]) {
  2232. block[k] *= scale;
  2233. if(!v->pquantizer)
  2234. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  2235. }
  2236. if(s->ac_pred) i = 63;
  2237. }
  2238. not_coded:
  2239. if(!coded) {
  2240. int k, scale;
  2241. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2242. ac_val2 = ac_val;
  2243. scale = v->pq * 2 + v->halfpq;
  2244. memset(ac_val2, 0, 16 * 2);
  2245. if(dc_pred_dir) {//left
  2246. ac_val -= 16;
  2247. if(s->ac_pred)
  2248. memcpy(ac_val2, ac_val, 8 * 2);
  2249. } else {//top
  2250. ac_val -= 16 * s->block_wrap[n];
  2251. if(s->ac_pred)
  2252. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2253. }
  2254. /* apply AC prediction if needed */
  2255. if(s->ac_pred) {
  2256. if(dc_pred_dir) { //left
  2257. for(k = 1; k < 8; k++) {
  2258. block[k << 3] = ac_val[k] * scale;
  2259. if(!v->pquantizer && block[k << 3])
  2260. block[k << 3] += (block[k << 3] < 0) ? -v->pq : v->pq;
  2261. }
  2262. } else { //top
  2263. for(k = 1; k < 8; k++) {
  2264. block[k] = ac_val[k + 8] * scale;
  2265. if(!v->pquantizer && block[k])
  2266. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  2267. }
  2268. }
  2269. i = 63;
  2270. }
  2271. }
  2272. s->block_last_index[n] = i;
  2273. return 0;
  2274. }
  2275. /** Decode intra block in intra frames - should be faster than decode_intra_block
  2276. * @param v VC1Context
  2277. * @param block block to decode
  2278. * @param coded are AC coeffs present or not
  2279. * @param codingset set of VLC to decode data
  2280. */
  2281. static int vc1_decode_i_block_adv(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset, int mquant)
  2282. {
  2283. GetBitContext *gb = &v->s.gb;
  2284. MpegEncContext *s = &v->s;
  2285. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2286. int run_diff, i;
  2287. int16_t *dc_val;
  2288. int16_t *ac_val, *ac_val2;
  2289. int dcdiff;
  2290. int a_avail = v->a_avail, c_avail = v->c_avail;
  2291. int use_pred = s->ac_pred;
  2292. int scale;
  2293. int q1, q2 = 0;
  2294. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2295. /* Get DC differential */
  2296. if (n < 4) {
  2297. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2298. } else {
  2299. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2300. }
  2301. if (dcdiff < 0){
  2302. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2303. return -1;
  2304. }
  2305. if (dcdiff)
  2306. {
  2307. if (dcdiff == 119 /* ESC index value */)
  2308. {
  2309. /* TODO: Optimize */
  2310. if (mquant == 1) dcdiff = get_bits(gb, 10);
  2311. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  2312. else dcdiff = get_bits(gb, 8);
  2313. }
  2314. else
  2315. {
  2316. if (mquant == 1)
  2317. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2318. else if (mquant == 2)
  2319. dcdiff = (dcdiff<<1) + get_bits1(gb) - 1;
  2320. }
  2321. if (get_bits1(gb))
  2322. dcdiff = -dcdiff;
  2323. }
  2324. /* Prediction */
  2325. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, v->a_avail, v->c_avail, &dc_val, &dc_pred_dir);
  2326. *dc_val = dcdiff;
  2327. /* Store the quantized DC coeff, used for prediction */
  2328. if (n < 4) {
  2329. block[0] = dcdiff * s->y_dc_scale;
  2330. } else {
  2331. block[0] = dcdiff * s->c_dc_scale;
  2332. }
  2333. /* Skip ? */
  2334. run_diff = 0;
  2335. i = 0;
  2336. //AC Decoding
  2337. i = 1;
  2338. /* check if AC is needed at all */
  2339. if(!a_avail && !c_avail) use_pred = 0;
  2340. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2341. ac_val2 = ac_val;
  2342. scale = mquant * 2 + ((mquant == v->pq) ? v->halfpq : 0);
  2343. if(dc_pred_dir) //left
  2344. ac_val -= 16;
  2345. else //top
  2346. ac_val -= 16 * s->block_wrap[n];
  2347. q1 = s->current_picture.qscale_table[mb_pos];
  2348. if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1];
  2349. if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2350. if(dc_pred_dir && n==1) q2 = q1;
  2351. if(!dc_pred_dir && n==2) q2 = q1;
  2352. if(n==3) q2 = q1;
  2353. if(coded) {
  2354. int last = 0, skip, value;
  2355. const int8_t *zz_table;
  2356. int k;
  2357. if(v->s.ac_pred) {
  2358. if(!dc_pred_dir)
  2359. zz_table = ff_vc1_horizontal_zz;
  2360. else
  2361. zz_table = ff_vc1_vertical_zz;
  2362. } else
  2363. zz_table = ff_vc1_normal_zz;
  2364. while (!last) {
  2365. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2366. i += skip;
  2367. if(i > 63)
  2368. break;
  2369. block[zz_table[i++]] = value;
  2370. }
  2371. /* apply AC prediction if needed */
  2372. if(use_pred) {
  2373. /* scale predictors if needed*/
  2374. if(q2 && q1!=q2) {
  2375. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2376. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2377. if(dc_pred_dir) { //left
  2378. for(k = 1; k < 8; k++)
  2379. block[k << 3] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2380. } else { //top
  2381. for(k = 1; k < 8; k++)
  2382. block[k] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2383. }
  2384. } else {
  2385. if(dc_pred_dir) { //left
  2386. for(k = 1; k < 8; k++)
  2387. block[k << 3] += ac_val[k];
  2388. } else { //top
  2389. for(k = 1; k < 8; k++)
  2390. block[k] += ac_val[k + 8];
  2391. }
  2392. }
  2393. }
  2394. /* save AC coeffs for further prediction */
  2395. for(k = 1; k < 8; k++) {
  2396. ac_val2[k] = block[k << 3];
  2397. ac_val2[k + 8] = block[k];
  2398. }
  2399. /* scale AC coeffs */
  2400. for(k = 1; k < 64; k++)
  2401. if(block[k]) {
  2402. block[k] *= scale;
  2403. if(!v->pquantizer)
  2404. block[k] += (block[k] < 0) ? -mquant : mquant;
  2405. }
  2406. if(use_pred) i = 63;
  2407. } else { // no AC coeffs
  2408. int k;
  2409. memset(ac_val2, 0, 16 * 2);
  2410. if(dc_pred_dir) {//left
  2411. if(use_pred) {
  2412. memcpy(ac_val2, ac_val, 8 * 2);
  2413. if(q2 && q1!=q2) {
  2414. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2415. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2416. for(k = 1; k < 8; k++)
  2417. ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2418. }
  2419. }
  2420. } else {//top
  2421. if(use_pred) {
  2422. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2423. if(q2 && q1!=q2) {
  2424. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2425. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2426. for(k = 1; k < 8; k++)
  2427. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2428. }
  2429. }
  2430. }
  2431. /* apply AC prediction if needed */
  2432. if(use_pred) {
  2433. if(dc_pred_dir) { //left
  2434. for(k = 1; k < 8; k++) {
  2435. block[k << 3] = ac_val2[k] * scale;
  2436. if(!v->pquantizer && block[k << 3])
  2437. block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
  2438. }
  2439. } else { //top
  2440. for(k = 1; k < 8; k++) {
  2441. block[k] = ac_val2[k + 8] * scale;
  2442. if(!v->pquantizer && block[k])
  2443. block[k] += (block[k] < 0) ? -mquant : mquant;
  2444. }
  2445. }
  2446. i = 63;
  2447. }
  2448. }
  2449. s->block_last_index[n] = i;
  2450. return 0;
  2451. }
  2452. /** Decode intra block in inter frames - more generic version than vc1_decode_i_block
  2453. * @param v VC1Context
  2454. * @param block block to decode
  2455. * @param coded are AC coeffs present or not
  2456. * @param mquant block quantizer
  2457. * @param codingset set of VLC to decode data
  2458. */
  2459. static int vc1_decode_intra_block(VC1Context *v, DCTELEM block[64], int n, int coded, int mquant, int codingset)
  2460. {
  2461. GetBitContext *gb = &v->s.gb;
  2462. MpegEncContext *s = &v->s;
  2463. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2464. int run_diff, i;
  2465. int16_t *dc_val;
  2466. int16_t *ac_val, *ac_val2;
  2467. int dcdiff;
  2468. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2469. int a_avail = v->a_avail, c_avail = v->c_avail;
  2470. int use_pred = s->ac_pred;
  2471. int scale;
  2472. int q1, q2 = 0;
  2473. /* XXX: Guard against dumb values of mquant */
  2474. mquant = (mquant < 1) ? 0 : ( (mquant>31) ? 31 : mquant );
  2475. /* Set DC scale - y and c use the same */
  2476. s->y_dc_scale = s->y_dc_scale_table[mquant];
  2477. s->c_dc_scale = s->c_dc_scale_table[mquant];
  2478. /* Get DC differential */
  2479. if (n < 4) {
  2480. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2481. } else {
  2482. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2483. }
  2484. if (dcdiff < 0){
  2485. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2486. return -1;
  2487. }
  2488. if (dcdiff)
  2489. {
  2490. if (dcdiff == 119 /* ESC index value */)
  2491. {
  2492. /* TODO: Optimize */
  2493. if (mquant == 1) dcdiff = get_bits(gb, 10);
  2494. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  2495. else dcdiff = get_bits(gb, 8);
  2496. }
  2497. else
  2498. {
  2499. if (mquant == 1)
  2500. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2501. else if (mquant == 2)
  2502. dcdiff = (dcdiff<<1) + get_bits1(gb) - 1;
  2503. }
  2504. if (get_bits1(gb))
  2505. dcdiff = -dcdiff;
  2506. }
  2507. /* Prediction */
  2508. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, a_avail, c_avail, &dc_val, &dc_pred_dir);
  2509. *dc_val = dcdiff;
  2510. /* Store the quantized DC coeff, used for prediction */
  2511. if (n < 4) {
  2512. block[0] = dcdiff * s->y_dc_scale;
  2513. } else {
  2514. block[0] = dcdiff * s->c_dc_scale;
  2515. }
  2516. /* Skip ? */
  2517. run_diff = 0;
  2518. i = 0;
  2519. //AC Decoding
  2520. i = 1;
  2521. /* check if AC is needed at all and adjust direction if needed */
  2522. if(!a_avail) dc_pred_dir = 1;
  2523. if(!c_avail) dc_pred_dir = 0;
  2524. if(!a_avail && !c_avail) use_pred = 0;
  2525. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2526. ac_val2 = ac_val;
  2527. scale = mquant * 2 + v->halfpq;
  2528. if(dc_pred_dir) //left
  2529. ac_val -= 16;
  2530. else //top
  2531. ac_val -= 16 * s->block_wrap[n];
  2532. q1 = s->current_picture.qscale_table[mb_pos];
  2533. if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1];
  2534. if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2535. if(dc_pred_dir && n==1) q2 = q1;
  2536. if(!dc_pred_dir && n==2) q2 = q1;
  2537. if(n==3) q2 = q1;
  2538. if(coded) {
  2539. int last = 0, skip, value;
  2540. const int8_t *zz_table;
  2541. int k;
  2542. zz_table = ff_vc1_simple_progressive_8x8_zz;
  2543. while (!last) {
  2544. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2545. i += skip;
  2546. if(i > 63)
  2547. break;
  2548. block[zz_table[i++]] = value;
  2549. }
  2550. /* apply AC prediction if needed */
  2551. if(use_pred) {
  2552. /* scale predictors if needed*/
  2553. if(q2 && q1!=q2) {
  2554. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2555. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2556. if(dc_pred_dir) { //left
  2557. for(k = 1; k < 8; k++)
  2558. block[k << 3] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2559. } else { //top
  2560. for(k = 1; k < 8; k++)
  2561. block[k] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2562. }
  2563. } else {
  2564. if(dc_pred_dir) { //left
  2565. for(k = 1; k < 8; k++)
  2566. block[k << 3] += ac_val[k];
  2567. } else { //top
  2568. for(k = 1; k < 8; k++)
  2569. block[k] += ac_val[k + 8];
  2570. }
  2571. }
  2572. }
  2573. /* save AC coeffs for further prediction */
  2574. for(k = 1; k < 8; k++) {
  2575. ac_val2[k] = block[k << 3];
  2576. ac_val2[k + 8] = block[k];
  2577. }
  2578. /* scale AC coeffs */
  2579. for(k = 1; k < 64; k++)
  2580. if(block[k]) {
  2581. block[k] *= scale;
  2582. if(!v->pquantizer)
  2583. block[k] += (block[k] < 0) ? -mquant : mquant;
  2584. }
  2585. if(use_pred) i = 63;
  2586. } else { // no AC coeffs
  2587. int k;
  2588. memset(ac_val2, 0, 16 * 2);
  2589. if(dc_pred_dir) {//left
  2590. if(use_pred) {
  2591. memcpy(ac_val2, ac_val, 8 * 2);
  2592. if(q2 && q1!=q2) {
  2593. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2594. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2595. for(k = 1; k < 8; k++)
  2596. ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2597. }
  2598. }
  2599. } else {//top
  2600. if(use_pred) {
  2601. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2602. if(q2 && q1!=q2) {
  2603. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2604. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2605. for(k = 1; k < 8; k++)
  2606. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2607. }
  2608. }
  2609. }
  2610. /* apply AC prediction if needed */
  2611. if(use_pred) {
  2612. if(dc_pred_dir) { //left
  2613. for(k = 1; k < 8; k++) {
  2614. block[k << 3] = ac_val2[k] * scale;
  2615. if(!v->pquantizer && block[k << 3])
  2616. block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
  2617. }
  2618. } else { //top
  2619. for(k = 1; k < 8; k++) {
  2620. block[k] = ac_val2[k + 8] * scale;
  2621. if(!v->pquantizer && block[k])
  2622. block[k] += (block[k] < 0) ? -mquant : mquant;
  2623. }
  2624. }
  2625. i = 63;
  2626. }
  2627. }
  2628. s->block_last_index[n] = i;
  2629. return 0;
  2630. }
  2631. /** Decode P block
  2632. */
  2633. static int vc1_decode_p_block(VC1Context *v, DCTELEM block[64], int n, int mquant, int ttmb, int first_block)
  2634. {
  2635. MpegEncContext *s = &v->s;
  2636. GetBitContext *gb = &s->gb;
  2637. int i, j;
  2638. int subblkpat = 0;
  2639. int scale, off, idx, last, skip, value;
  2640. int ttblk = ttmb & 7;
  2641. if(ttmb == -1) {
  2642. ttblk = ff_vc1_ttblk_to_tt[v->tt_index][get_vlc2(gb, ff_vc1_ttblk_vlc[v->tt_index].table, VC1_TTBLK_VLC_BITS, 1)];
  2643. }
  2644. if(ttblk == TT_4X4) {
  2645. subblkpat = ~(get_vlc2(gb, ff_vc1_subblkpat_vlc[v->tt_index].table, VC1_SUBBLKPAT_VLC_BITS, 1) + 1);
  2646. }
  2647. if((ttblk != TT_8X8 && ttblk != TT_4X4) && (v->ttmbf || (ttmb != -1 && (ttmb & 8) && !first_block))) {
  2648. subblkpat = decode012(gb);
  2649. if(subblkpat) subblkpat ^= 3; //swap decoded pattern bits
  2650. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) ttblk = TT_8X4;
  2651. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) ttblk = TT_4X8;
  2652. }
  2653. scale = 2 * mquant + ((v->pq == mquant) ? v->halfpq : 0);
  2654. // convert transforms like 8X4_TOP to generic TT and SUBBLKPAT
  2655. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) {
  2656. subblkpat = 2 - (ttblk == TT_8X4_TOP);
  2657. ttblk = TT_8X4;
  2658. }
  2659. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) {
  2660. subblkpat = 2 - (ttblk == TT_4X8_LEFT);
  2661. ttblk = TT_4X8;
  2662. }
  2663. switch(ttblk) {
  2664. case TT_8X8:
  2665. i = 0;
  2666. last = 0;
  2667. while (!last) {
  2668. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2669. i += skip;
  2670. if(i > 63)
  2671. break;
  2672. idx = ff_vc1_simple_progressive_8x8_zz[i++];
  2673. block[idx] = value * scale;
  2674. if(!v->pquantizer)
  2675. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  2676. }
  2677. s->dsp.vc1_inv_trans_8x8(block);
  2678. break;
  2679. case TT_4X4:
  2680. for(j = 0; j < 4; j++) {
  2681. last = subblkpat & (1 << (3 - j));
  2682. i = 0;
  2683. off = (j & 1) * 4 + (j & 2) * 16;
  2684. while (!last) {
  2685. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2686. i += skip;
  2687. if(i > 15)
  2688. break;
  2689. idx = ff_vc1_simple_progressive_4x4_zz[i++];
  2690. block[idx + off] = value * scale;
  2691. if(!v->pquantizer)
  2692. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  2693. }
  2694. if(!(subblkpat & (1 << (3 - j))))
  2695. s->dsp.vc1_inv_trans_4x4(block, j);
  2696. }
  2697. break;
  2698. case TT_8X4:
  2699. for(j = 0; j < 2; j++) {
  2700. last = subblkpat & (1 << (1 - j));
  2701. i = 0;
  2702. off = j * 32;
  2703. while (!last) {
  2704. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2705. i += skip;
  2706. if(i > 31)
  2707. break;
  2708. if(v->profile < PROFILE_ADVANCED)
  2709. idx = ff_vc1_simple_progressive_8x4_zz[i++];
  2710. else
  2711. idx = ff_vc1_adv_progressive_8x4_zz[i++];
  2712. block[idx + off] = value * scale;
  2713. if(!v->pquantizer)
  2714. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  2715. }
  2716. if(!(subblkpat & (1 << (1 - j))))
  2717. s->dsp.vc1_inv_trans_8x4(block, j);
  2718. }
  2719. break;
  2720. case TT_4X8:
  2721. for(j = 0; j < 2; j++) {
  2722. last = subblkpat & (1 << (1 - j));
  2723. i = 0;
  2724. off = j * 4;
  2725. while (!last) {
  2726. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2727. i += skip;
  2728. if(i > 31)
  2729. break;
  2730. if(v->profile < PROFILE_ADVANCED)
  2731. idx = ff_vc1_simple_progressive_4x8_zz[i++];
  2732. else
  2733. idx = ff_vc1_adv_progressive_4x8_zz[i++];
  2734. block[idx + off] = value * scale;
  2735. if(!v->pquantizer)
  2736. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  2737. }
  2738. if(!(subblkpat & (1 << (1 - j))))
  2739. s->dsp.vc1_inv_trans_4x8(block, j);
  2740. }
  2741. break;
  2742. }
  2743. return 0;
  2744. }
  2745. /** Decode one P-frame MB (in Simple/Main profile)
  2746. */
  2747. static int vc1_decode_p_mb(VC1Context *v)
  2748. {
  2749. MpegEncContext *s = &v->s;
  2750. GetBitContext *gb = &s->gb;
  2751. int i, j;
  2752. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2753. int cbp; /* cbp decoding stuff */
  2754. int mqdiff, mquant; /* MB quantization */
  2755. int ttmb = v->ttfrm; /* MB Transform type */
  2756. int status;
  2757. static const int size_table[6] = { 0, 2, 3, 4, 5, 8 },
  2758. offset_table[6] = { 0, 1, 3, 7, 15, 31 };
  2759. int mb_has_coeffs = 1; /* last_flag */
  2760. int dmv_x, dmv_y; /* Differential MV components */
  2761. int index, index1; /* LUT indices */
  2762. int val, sign; /* temp values */
  2763. int first_block = 1;
  2764. int dst_idx, off;
  2765. int skipped, fourmv;
  2766. mquant = v->pq; /* Loosy initialization */
  2767. if (v->mv_type_is_raw)
  2768. fourmv = get_bits1(gb);
  2769. else
  2770. fourmv = v->mv_type_mb_plane[mb_pos];
  2771. if (v->skip_is_raw)
  2772. skipped = get_bits1(gb);
  2773. else
  2774. skipped = v->s.mbskip_table[mb_pos];
  2775. s->dsp.clear_blocks(s->block[0]);
  2776. if (!fourmv) /* 1MV mode */
  2777. {
  2778. if (!skipped)
  2779. {
  2780. GET_MVDATA(dmv_x, dmv_y);
  2781. if (s->mb_intra) {
  2782. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  2783. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  2784. }
  2785. s->current_picture.mb_type[mb_pos] = s->mb_intra ? MB_TYPE_INTRA : MB_TYPE_16x16;
  2786. vc1_pred_mv(s, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0]);
  2787. /* FIXME Set DC val for inter block ? */
  2788. if (s->mb_intra && !mb_has_coeffs)
  2789. {
  2790. GET_MQUANT();
  2791. s->ac_pred = get_bits1(gb);
  2792. cbp = 0;
  2793. }
  2794. else if (mb_has_coeffs)
  2795. {
  2796. if (s->mb_intra) s->ac_pred = get_bits1(gb);
  2797. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2798. GET_MQUANT();
  2799. }
  2800. else
  2801. {
  2802. mquant = v->pq;
  2803. cbp = 0;
  2804. }
  2805. s->current_picture.qscale_table[mb_pos] = mquant;
  2806. if (!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  2807. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table,
  2808. VC1_TTMB_VLC_BITS, 2);
  2809. if(!s->mb_intra) vc1_mc_1mv(v, 0);
  2810. dst_idx = 0;
  2811. for (i=0; i<6; i++)
  2812. {
  2813. s->dc_val[0][s->block_index[i]] = 0;
  2814. dst_idx += i >> 2;
  2815. val = ((cbp >> (5 - i)) & 1);
  2816. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  2817. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  2818. if(s->mb_intra) {
  2819. /* check if prediction blocks A and C are available */
  2820. v->a_avail = v->c_avail = 0;
  2821. if(i == 2 || i == 3 || !s->first_slice_line)
  2822. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  2823. if(i == 1 || i == 3 || s->mb_x)
  2824. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  2825. vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
  2826. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  2827. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  2828. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  2829. s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2830. if(v->pq >= 9 && v->overlap) {
  2831. if(v->c_avail)
  2832. s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2833. if(v->a_avail)
  2834. s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2835. }
  2836. } else if(val) {
  2837. vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block);
  2838. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  2839. first_block = 0;
  2840. if((i<4) || !(s->flags & CODEC_FLAG_GRAY))
  2841. s->dsp.add_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  2842. }
  2843. }
  2844. }
  2845. else //Skipped
  2846. {
  2847. s->mb_intra = 0;
  2848. for(i = 0; i < 6; i++) {
  2849. v->mb_type[0][s->block_index[i]] = 0;
  2850. s->dc_val[0][s->block_index[i]] = 0;
  2851. }
  2852. s->current_picture.mb_type[mb_pos] = MB_TYPE_SKIP;
  2853. s->current_picture.qscale_table[mb_pos] = 0;
  2854. vc1_pred_mv(s, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0]);
  2855. vc1_mc_1mv(v, 0);
  2856. return 0;
  2857. }
  2858. } //1MV mode
  2859. else //4MV mode
  2860. {
  2861. if (!skipped /* unskipped MB */)
  2862. {
  2863. int intra_count = 0, coded_inter = 0;
  2864. int is_intra[6], is_coded[6];
  2865. /* Get CBPCY */
  2866. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2867. for (i=0; i<6; i++)
  2868. {
  2869. val = ((cbp >> (5 - i)) & 1);
  2870. s->dc_val[0][s->block_index[i]] = 0;
  2871. s->mb_intra = 0;
  2872. if(i < 4) {
  2873. dmv_x = dmv_y = 0;
  2874. s->mb_intra = 0;
  2875. mb_has_coeffs = 0;
  2876. if(val) {
  2877. GET_MVDATA(dmv_x, dmv_y);
  2878. }
  2879. vc1_pred_mv(s, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0]);
  2880. if(!s->mb_intra) vc1_mc_4mv_luma(v, i);
  2881. intra_count += s->mb_intra;
  2882. is_intra[i] = s->mb_intra;
  2883. is_coded[i] = mb_has_coeffs;
  2884. }
  2885. if(i&4){
  2886. is_intra[i] = (intra_count >= 3);
  2887. is_coded[i] = val;
  2888. }
  2889. if(i == 4) vc1_mc_4mv_chroma(v);
  2890. v->mb_type[0][s->block_index[i]] = is_intra[i];
  2891. if(!coded_inter) coded_inter = !is_intra[i] & is_coded[i];
  2892. }
  2893. // if there are no coded blocks then don't do anything more
  2894. if(!intra_count && !coded_inter) return 0;
  2895. dst_idx = 0;
  2896. GET_MQUANT();
  2897. s->current_picture.qscale_table[mb_pos] = mquant;
  2898. /* test if block is intra and has pred */
  2899. {
  2900. int intrapred = 0;
  2901. for(i=0; i<6; i++)
  2902. if(is_intra[i]) {
  2903. if(((!s->first_slice_line || (i==2 || i==3)) && v->mb_type[0][s->block_index[i] - s->block_wrap[i]])
  2904. || ((s->mb_x || (i==1 || i==3)) && v->mb_type[0][s->block_index[i] - 1])) {
  2905. intrapred = 1;
  2906. break;
  2907. }
  2908. }
  2909. if(intrapred)s->ac_pred = get_bits1(gb);
  2910. else s->ac_pred = 0;
  2911. }
  2912. if (!v->ttmbf && coded_inter)
  2913. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  2914. for (i=0; i<6; i++)
  2915. {
  2916. dst_idx += i >> 2;
  2917. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  2918. s->mb_intra = is_intra[i];
  2919. if (is_intra[i]) {
  2920. /* check if prediction blocks A and C are available */
  2921. v->a_avail = v->c_avail = 0;
  2922. if(i == 2 || i == 3 || !s->first_slice_line)
  2923. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  2924. if(i == 1 || i == 3 || s->mb_x)
  2925. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  2926. vc1_decode_intra_block(v, s->block[i], i, is_coded[i], mquant, (i&4)?v->codingset2:v->codingset);
  2927. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  2928. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  2929. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  2930. s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  2931. if(v->pq >= 9 && v->overlap) {
  2932. if(v->c_avail)
  2933. s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2934. if(v->a_avail)
  2935. s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2936. }
  2937. } else if(is_coded[i]) {
  2938. status = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block);
  2939. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  2940. first_block = 0;
  2941. if((i<4) || !(s->flags & CODEC_FLAG_GRAY))
  2942. s->dsp.add_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  2943. }
  2944. }
  2945. return status;
  2946. }
  2947. else //Skipped MB
  2948. {
  2949. s->mb_intra = 0;
  2950. s->current_picture.qscale_table[mb_pos] = 0;
  2951. for (i=0; i<6; i++) {
  2952. v->mb_type[0][s->block_index[i]] = 0;
  2953. s->dc_val[0][s->block_index[i]] = 0;
  2954. }
  2955. for (i=0; i<4; i++)
  2956. {
  2957. vc1_pred_mv(s, i, 0, 0, 0, v->range_x, v->range_y, v->mb_type[0]);
  2958. vc1_mc_4mv_luma(v, i);
  2959. }
  2960. vc1_mc_4mv_chroma(v);
  2961. s->current_picture.qscale_table[mb_pos] = 0;
  2962. return 0;
  2963. }
  2964. }
  2965. /* Should never happen */
  2966. return -1;
  2967. }
  2968. /** Decode one B-frame MB (in Main profile)
  2969. */
  2970. static void vc1_decode_b_mb(VC1Context *v)
  2971. {
  2972. MpegEncContext *s = &v->s;
  2973. GetBitContext *gb = &s->gb;
  2974. int i, j;
  2975. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2976. int cbp = 0; /* cbp decoding stuff */
  2977. int mqdiff, mquant; /* MB quantization */
  2978. int ttmb = v->ttfrm; /* MB Transform type */
  2979. static const int size_table[6] = { 0, 2, 3, 4, 5, 8 },
  2980. offset_table[6] = { 0, 1, 3, 7, 15, 31 };
  2981. int mb_has_coeffs = 0; /* last_flag */
  2982. int index, index1; /* LUT indices */
  2983. int val, sign; /* temp values */
  2984. int first_block = 1;
  2985. int dst_idx, off;
  2986. int skipped, direct;
  2987. int dmv_x[2], dmv_y[2];
  2988. int bmvtype = BMV_TYPE_BACKWARD;
  2989. mquant = v->pq; /* Loosy initialization */
  2990. s->mb_intra = 0;
  2991. if (v->dmb_is_raw)
  2992. direct = get_bits1(gb);
  2993. else
  2994. direct = v->direct_mb_plane[mb_pos];
  2995. if (v->skip_is_raw)
  2996. skipped = get_bits1(gb);
  2997. else
  2998. skipped = v->s.mbskip_table[mb_pos];
  2999. s->dsp.clear_blocks(s->block[0]);
  3000. dmv_x[0] = dmv_x[1] = dmv_y[0] = dmv_y[1] = 0;
  3001. for(i = 0; i < 6; i++) {
  3002. v->mb_type[0][s->block_index[i]] = 0;
  3003. s->dc_val[0][s->block_index[i]] = 0;
  3004. }
  3005. s->current_picture.qscale_table[mb_pos] = 0;
  3006. if (!direct) {
  3007. if (!skipped) {
  3008. GET_MVDATA(dmv_x[0], dmv_y[0]);
  3009. dmv_x[1] = dmv_x[0];
  3010. dmv_y[1] = dmv_y[0];
  3011. }
  3012. if(skipped || !s->mb_intra) {
  3013. bmvtype = decode012(gb);
  3014. switch(bmvtype) {
  3015. case 0:
  3016. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_BACKWARD : BMV_TYPE_FORWARD;
  3017. break;
  3018. case 1:
  3019. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_FORWARD : BMV_TYPE_BACKWARD;
  3020. break;
  3021. case 2:
  3022. bmvtype = BMV_TYPE_INTERPOLATED;
  3023. dmv_x[0] = dmv_y[0] = 0;
  3024. }
  3025. }
  3026. }
  3027. for(i = 0; i < 6; i++)
  3028. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3029. if (skipped) {
  3030. if(direct) bmvtype = BMV_TYPE_INTERPOLATED;
  3031. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3032. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3033. return;
  3034. }
  3035. if (direct) {
  3036. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3037. GET_MQUANT();
  3038. s->mb_intra = 0;
  3039. mb_has_coeffs = 0;
  3040. s->current_picture.qscale_table[mb_pos] = mquant;
  3041. if(!v->ttmbf)
  3042. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3043. dmv_x[0] = dmv_y[0] = dmv_x[1] = dmv_y[1] = 0;
  3044. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3045. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3046. } else {
  3047. if(!mb_has_coeffs && !s->mb_intra) {
  3048. /* no coded blocks - effectively skipped */
  3049. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3050. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3051. return;
  3052. }
  3053. if(s->mb_intra && !mb_has_coeffs) {
  3054. GET_MQUANT();
  3055. s->current_picture.qscale_table[mb_pos] = mquant;
  3056. s->ac_pred = get_bits1(gb);
  3057. cbp = 0;
  3058. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3059. } else {
  3060. if(bmvtype == BMV_TYPE_INTERPOLATED) {
  3061. GET_MVDATA(dmv_x[0], dmv_y[0]);
  3062. if(!mb_has_coeffs) {
  3063. /* interpolated skipped block */
  3064. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3065. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3066. return;
  3067. }
  3068. }
  3069. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3070. if(!s->mb_intra) {
  3071. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3072. }
  3073. if(s->mb_intra)
  3074. s->ac_pred = get_bits1(gb);
  3075. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3076. GET_MQUANT();
  3077. s->current_picture.qscale_table[mb_pos] = mquant;
  3078. if(!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  3079. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3080. }
  3081. }
  3082. dst_idx = 0;
  3083. for (i=0; i<6; i++)
  3084. {
  3085. s->dc_val[0][s->block_index[i]] = 0;
  3086. dst_idx += i >> 2;
  3087. val = ((cbp >> (5 - i)) & 1);
  3088. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  3089. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3090. if(s->mb_intra) {
  3091. /* check if prediction blocks A and C are available */
  3092. v->a_avail = v->c_avail = 0;
  3093. if(i == 2 || i == 3 || !s->first_slice_line)
  3094. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  3095. if(i == 1 || i == 3 || s->mb_x)
  3096. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  3097. vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
  3098. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  3099. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  3100. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  3101. s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3102. } else if(val) {
  3103. vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block);
  3104. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  3105. first_block = 0;
  3106. if((i<4) || !(s->flags & CODEC_FLAG_GRAY))
  3107. s->dsp.add_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  3108. }
  3109. }
  3110. }
  3111. /** Decode blocks of I-frame
  3112. */
  3113. static void vc1_decode_i_blocks(VC1Context *v)
  3114. {
  3115. int k, j;
  3116. MpegEncContext *s = &v->s;
  3117. int cbp, val;
  3118. uint8_t *coded_val;
  3119. int mb_pos;
  3120. /* select codingmode used for VLC tables selection */
  3121. switch(v->y_ac_table_index){
  3122. case 0:
  3123. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3124. break;
  3125. case 1:
  3126. v->codingset = CS_HIGH_MOT_INTRA;
  3127. break;
  3128. case 2:
  3129. v->codingset = CS_MID_RATE_INTRA;
  3130. break;
  3131. }
  3132. switch(v->c_ac_table_index){
  3133. case 0:
  3134. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3135. break;
  3136. case 1:
  3137. v->codingset2 = CS_HIGH_MOT_INTER;
  3138. break;
  3139. case 2:
  3140. v->codingset2 = CS_MID_RATE_INTER;
  3141. break;
  3142. }
  3143. /* Set DC scale - y and c use the same */
  3144. s->y_dc_scale = s->y_dc_scale_table[v->pq];
  3145. s->c_dc_scale = s->c_dc_scale_table[v->pq];
  3146. //do frame decode
  3147. s->mb_x = s->mb_y = 0;
  3148. s->mb_intra = 1;
  3149. s->first_slice_line = 1;
  3150. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3151. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3152. ff_init_block_index(s);
  3153. ff_update_block_index(s);
  3154. s->dsp.clear_blocks(s->block[0]);
  3155. mb_pos = s->mb_x + s->mb_y * s->mb_width;
  3156. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  3157. s->current_picture.qscale_table[mb_pos] = v->pq;
  3158. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  3159. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  3160. // do actual MB decoding and displaying
  3161. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  3162. v->s.ac_pred = get_bits1(&v->s.gb);
  3163. for(k = 0; k < 6; k++) {
  3164. val = ((cbp >> (5 - k)) & 1);
  3165. if (k < 4) {
  3166. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  3167. val = val ^ pred;
  3168. *coded_val = val;
  3169. }
  3170. cbp |= val << (5 - k);
  3171. vc1_decode_i_block(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2);
  3172. s->dsp.vc1_inv_trans_8x8(s->block[k]);
  3173. if(v->pq >= 9 && v->overlap) {
  3174. for(j = 0; j < 64; j++) s->block[k][j] += 128;
  3175. }
  3176. }
  3177. vc1_put_block(v, s->block);
  3178. if(v->pq >= 9 && v->overlap) {
  3179. if(s->mb_x) {
  3180. s->dsp.vc1_h_overlap(s->dest[0], s->linesize);
  3181. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3182. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3183. s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
  3184. s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
  3185. }
  3186. }
  3187. s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
  3188. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3189. if(!s->first_slice_line) {
  3190. s->dsp.vc1_v_overlap(s->dest[0], s->linesize);
  3191. s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
  3192. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3193. s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
  3194. s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
  3195. }
  3196. }
  3197. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3198. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3199. }
  3200. if(get_bits_count(&s->gb) > v->bits) {
  3201. ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
  3202. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
  3203. return;
  3204. }
  3205. }
  3206. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3207. s->first_slice_line = 0;
  3208. }
  3209. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3210. }
  3211. /** Decode blocks of I-frame for advanced profile
  3212. */
  3213. static void vc1_decode_i_blocks_adv(VC1Context *v)
  3214. {
  3215. int k, j;
  3216. MpegEncContext *s = &v->s;
  3217. int cbp, val;
  3218. uint8_t *coded_val;
  3219. int mb_pos;
  3220. int mquant = v->pq;
  3221. int mqdiff;
  3222. int overlap;
  3223. GetBitContext *gb = &s->gb;
  3224. /* select codingmode used for VLC tables selection */
  3225. switch(v->y_ac_table_index){
  3226. case 0:
  3227. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3228. break;
  3229. case 1:
  3230. v->codingset = CS_HIGH_MOT_INTRA;
  3231. break;
  3232. case 2:
  3233. v->codingset = CS_MID_RATE_INTRA;
  3234. break;
  3235. }
  3236. switch(v->c_ac_table_index){
  3237. case 0:
  3238. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3239. break;
  3240. case 1:
  3241. v->codingset2 = CS_HIGH_MOT_INTER;
  3242. break;
  3243. case 2:
  3244. v->codingset2 = CS_MID_RATE_INTER;
  3245. break;
  3246. }
  3247. //do frame decode
  3248. s->mb_x = s->mb_y = 0;
  3249. s->mb_intra = 1;
  3250. s->first_slice_line = 1;
  3251. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3252. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3253. ff_init_block_index(s);
  3254. ff_update_block_index(s);
  3255. s->dsp.clear_blocks(s->block[0]);
  3256. mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  3257. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  3258. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  3259. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  3260. // do actual MB decoding and displaying
  3261. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  3262. if(v->acpred_is_raw)
  3263. v->s.ac_pred = get_bits1(&v->s.gb);
  3264. else
  3265. v->s.ac_pred = v->acpred_plane[mb_pos];
  3266. if(v->condover == CONDOVER_SELECT) {
  3267. if(v->overflg_is_raw)
  3268. overlap = get_bits1(&v->s.gb);
  3269. else
  3270. overlap = v->over_flags_plane[mb_pos];
  3271. } else
  3272. overlap = (v->condover == CONDOVER_ALL);
  3273. GET_MQUANT();
  3274. s->current_picture.qscale_table[mb_pos] = mquant;
  3275. /* Set DC scale - y and c use the same */
  3276. s->y_dc_scale = s->y_dc_scale_table[mquant];
  3277. s->c_dc_scale = s->c_dc_scale_table[mquant];
  3278. for(k = 0; k < 6; k++) {
  3279. val = ((cbp >> (5 - k)) & 1);
  3280. if (k < 4) {
  3281. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  3282. val = val ^ pred;
  3283. *coded_val = val;
  3284. }
  3285. cbp |= val << (5 - k);
  3286. v->a_avail = !s->first_slice_line || (k==2 || k==3);
  3287. v->c_avail = !!s->mb_x || (k==1 || k==3);
  3288. vc1_decode_i_block_adv(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2, mquant);
  3289. s->dsp.vc1_inv_trans_8x8(s->block[k]);
  3290. for(j = 0; j < 64; j++) s->block[k][j] += 128;
  3291. }
  3292. vc1_put_block(v, s->block);
  3293. if(overlap) {
  3294. if(s->mb_x) {
  3295. s->dsp.vc1_h_overlap(s->dest[0], s->linesize);
  3296. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3297. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3298. s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
  3299. s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
  3300. }
  3301. }
  3302. s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
  3303. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3304. if(!s->first_slice_line) {
  3305. s->dsp.vc1_v_overlap(s->dest[0], s->linesize);
  3306. s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
  3307. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3308. s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
  3309. s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
  3310. }
  3311. }
  3312. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3313. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3314. }
  3315. if(get_bits_count(&s->gb) > v->bits) {
  3316. ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
  3317. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
  3318. return;
  3319. }
  3320. }
  3321. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3322. s->first_slice_line = 0;
  3323. }
  3324. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3325. }
  3326. static void vc1_decode_p_blocks(VC1Context *v)
  3327. {
  3328. MpegEncContext *s = &v->s;
  3329. /* select codingmode used for VLC tables selection */
  3330. switch(v->c_ac_table_index){
  3331. case 0:
  3332. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3333. break;
  3334. case 1:
  3335. v->codingset = CS_HIGH_MOT_INTRA;
  3336. break;
  3337. case 2:
  3338. v->codingset = CS_MID_RATE_INTRA;
  3339. break;
  3340. }
  3341. switch(v->c_ac_table_index){
  3342. case 0:
  3343. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3344. break;
  3345. case 1:
  3346. v->codingset2 = CS_HIGH_MOT_INTER;
  3347. break;
  3348. case 2:
  3349. v->codingset2 = CS_MID_RATE_INTER;
  3350. break;
  3351. }
  3352. s->first_slice_line = 1;
  3353. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3354. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3355. ff_init_block_index(s);
  3356. ff_update_block_index(s);
  3357. s->dsp.clear_blocks(s->block[0]);
  3358. vc1_decode_p_mb(v);
  3359. if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  3360. ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
  3361. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
  3362. return;
  3363. }
  3364. }
  3365. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3366. s->first_slice_line = 0;
  3367. }
  3368. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3369. }
  3370. static void vc1_decode_b_blocks(VC1Context *v)
  3371. {
  3372. MpegEncContext *s = &v->s;
  3373. /* select codingmode used for VLC tables selection */
  3374. switch(v->c_ac_table_index){
  3375. case 0:
  3376. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3377. break;
  3378. case 1:
  3379. v->codingset = CS_HIGH_MOT_INTRA;
  3380. break;
  3381. case 2:
  3382. v->codingset = CS_MID_RATE_INTRA;
  3383. break;
  3384. }
  3385. switch(v->c_ac_table_index){
  3386. case 0:
  3387. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3388. break;
  3389. case 1:
  3390. v->codingset2 = CS_HIGH_MOT_INTER;
  3391. break;
  3392. case 2:
  3393. v->codingset2 = CS_MID_RATE_INTER;
  3394. break;
  3395. }
  3396. s->first_slice_line = 1;
  3397. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3398. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3399. ff_init_block_index(s);
  3400. ff_update_block_index(s);
  3401. s->dsp.clear_blocks(s->block[0]);
  3402. vc1_decode_b_mb(v);
  3403. if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  3404. ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
  3405. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
  3406. return;
  3407. }
  3408. }
  3409. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3410. s->first_slice_line = 0;
  3411. }
  3412. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3413. }
  3414. static void vc1_decode_skip_blocks(VC1Context *v)
  3415. {
  3416. MpegEncContext *s = &v->s;
  3417. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3418. s->first_slice_line = 1;
  3419. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3420. s->mb_x = 0;
  3421. ff_init_block_index(s);
  3422. ff_update_block_index(s);
  3423. memcpy(s->dest[0], s->last_picture.data[0] + s->mb_y * 16 * s->linesize, s->linesize * 16);
  3424. memcpy(s->dest[1], s->last_picture.data[1] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  3425. memcpy(s->dest[2], s->last_picture.data[2] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  3426. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3427. s->first_slice_line = 0;
  3428. }
  3429. s->pict_type = P_TYPE;
  3430. }
  3431. static void vc1_decode_blocks(VC1Context *v)
  3432. {
  3433. v->s.esc3_level_length = 0;
  3434. if(v->x8_type){
  3435. ff_intrax8_decode_picture(&v->x8, 2*v->pq+v->halfpq, v->pq*(!v->pquantizer) );
  3436. }else{
  3437. switch(v->s.pict_type) {
  3438. case I_TYPE:
  3439. if(v->profile == PROFILE_ADVANCED)
  3440. vc1_decode_i_blocks_adv(v);
  3441. else
  3442. vc1_decode_i_blocks(v);
  3443. break;
  3444. case P_TYPE:
  3445. if(v->p_frame_skipped)
  3446. vc1_decode_skip_blocks(v);
  3447. else
  3448. vc1_decode_p_blocks(v);
  3449. break;
  3450. case B_TYPE:
  3451. if(v->bi_type){
  3452. if(v->profile == PROFILE_ADVANCED)
  3453. vc1_decode_i_blocks_adv(v);
  3454. else
  3455. vc1_decode_i_blocks(v);
  3456. }else
  3457. vc1_decode_b_blocks(v);
  3458. break;
  3459. }
  3460. }
  3461. }
  3462. /** Find VC-1 marker in buffer
  3463. * @return position where next marker starts or end of buffer if no marker found
  3464. */
  3465. static av_always_inline uint8_t* find_next_marker(uint8_t *src, uint8_t *end)
  3466. {
  3467. uint32_t mrk = 0xFFFFFFFF;
  3468. if(end-src < 4) return end;
  3469. while(src < end){
  3470. mrk = (mrk << 8) | *src++;
  3471. if(IS_MARKER(mrk))
  3472. return src-4;
  3473. }
  3474. return end;
  3475. }
  3476. static av_always_inline int vc1_unescape_buffer(uint8_t *src, int size, uint8_t *dst)
  3477. {
  3478. int dsize = 0, i;
  3479. if(size < 4){
  3480. for(dsize = 0; dsize < size; dsize++) *dst++ = *src++;
  3481. return size;
  3482. }
  3483. for(i = 0; i < size; i++, src++) {
  3484. if(src[0] == 3 && i >= 2 && !src[-1] && !src[-2] && i < size-1 && src[1] < 4) {
  3485. dst[dsize++] = src[1];
  3486. src++;
  3487. i++;
  3488. } else
  3489. dst[dsize++] = *src;
  3490. }
  3491. return dsize;
  3492. }
  3493. /** Initialize a VC1/WMV3 decoder
  3494. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  3495. * @todo TODO: Decypher remaining bits in extra_data
  3496. */
  3497. static int vc1_decode_init(AVCodecContext *avctx)
  3498. {
  3499. VC1Context *v = avctx->priv_data;
  3500. MpegEncContext *s = &v->s;
  3501. GetBitContext gb;
  3502. if (!avctx->extradata_size || !avctx->extradata) return -1;
  3503. if (!(avctx->flags & CODEC_FLAG_GRAY))
  3504. avctx->pix_fmt = PIX_FMT_YUV420P;
  3505. else
  3506. avctx->pix_fmt = PIX_FMT_GRAY8;
  3507. v->s.avctx = avctx;
  3508. avctx->flags |= CODEC_FLAG_EMU_EDGE;
  3509. v->s.flags |= CODEC_FLAG_EMU_EDGE;
  3510. if(avctx->idct_algo==FF_IDCT_AUTO){
  3511. avctx->idct_algo=FF_IDCT_WMV2;
  3512. }
  3513. if(ff_h263_decode_init(avctx) < 0)
  3514. return -1;
  3515. if (vc1_init_common(v) < 0) return -1;
  3516. avctx->coded_width = avctx->width;
  3517. avctx->coded_height = avctx->height;
  3518. if (avctx->codec_id == CODEC_ID_WMV3)
  3519. {
  3520. int count = 0;
  3521. // looks like WMV3 has a sequence header stored in the extradata
  3522. // advanced sequence header may be before the first frame
  3523. // the last byte of the extradata is a version number, 1 for the
  3524. // samples we can decode
  3525. init_get_bits(&gb, avctx->extradata, avctx->extradata_size*8);
  3526. if (decode_sequence_header(avctx, &gb) < 0)
  3527. return -1;
  3528. count = avctx->extradata_size*8 - get_bits_count(&gb);
  3529. if (count>0)
  3530. {
  3531. av_log(avctx, AV_LOG_INFO, "Extra data: %i bits left, value: %X\n",
  3532. count, get_bits(&gb, count));
  3533. }
  3534. else if (count < 0)
  3535. {
  3536. av_log(avctx, AV_LOG_INFO, "Read %i bits in overflow\n", -count);
  3537. }
  3538. } else { // VC1/WVC1
  3539. uint8_t *start = avctx->extradata, *end = avctx->extradata + avctx->extradata_size;
  3540. uint8_t *next; int size, buf2_size;
  3541. uint8_t *buf2 = NULL;
  3542. int seq_inited = 0, ep_inited = 0;
  3543. if(avctx->extradata_size < 16) {
  3544. av_log(avctx, AV_LOG_ERROR, "Extradata size too small: %i\n", avctx->extradata_size);
  3545. return -1;
  3546. }
  3547. buf2 = av_mallocz(avctx->extradata_size + FF_INPUT_BUFFER_PADDING_SIZE);
  3548. if(start[0]) start++; // in WVC1 extradata first byte is its size
  3549. next = start;
  3550. for(; next < end; start = next){
  3551. next = find_next_marker(start + 4, end);
  3552. size = next - start - 4;
  3553. if(size <= 0) continue;
  3554. buf2_size = vc1_unescape_buffer(start + 4, size, buf2);
  3555. init_get_bits(&gb, buf2, buf2_size * 8);
  3556. switch(AV_RB32(start)){
  3557. case VC1_CODE_SEQHDR:
  3558. if(decode_sequence_header(avctx, &gb) < 0){
  3559. av_free(buf2);
  3560. return -1;
  3561. }
  3562. seq_inited = 1;
  3563. break;
  3564. case VC1_CODE_ENTRYPOINT:
  3565. if(decode_entry_point(avctx, &gb) < 0){
  3566. av_free(buf2);
  3567. return -1;
  3568. }
  3569. ep_inited = 1;
  3570. break;
  3571. }
  3572. }
  3573. av_free(buf2);
  3574. if(!seq_inited || !ep_inited){
  3575. av_log(avctx, AV_LOG_ERROR, "Incomplete extradata\n");
  3576. return -1;
  3577. }
  3578. }
  3579. avctx->has_b_frames= !!(avctx->max_b_frames);
  3580. s->low_delay = !avctx->has_b_frames;
  3581. s->mb_width = (avctx->coded_width+15)>>4;
  3582. s->mb_height = (avctx->coded_height+15)>>4;
  3583. /* Allocate mb bitplanes */
  3584. v->mv_type_mb_plane = av_malloc(s->mb_stride * s->mb_height);
  3585. v->direct_mb_plane = av_malloc(s->mb_stride * s->mb_height);
  3586. v->acpred_plane = av_malloc(s->mb_stride * s->mb_height);
  3587. v->over_flags_plane = av_malloc(s->mb_stride * s->mb_height);
  3588. /* allocate block type info in that way so it could be used with s->block_index[] */
  3589. v->mb_type_base = av_malloc(s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride * (s->mb_height + 1) * 2);
  3590. v->mb_type[0] = v->mb_type_base + s->b8_stride + 1;
  3591. v->mb_type[1] = v->mb_type_base + s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride + 1;
  3592. v->mb_type[2] = v->mb_type[1] + s->mb_stride * (s->mb_height + 1);
  3593. /* Init coded blocks info */
  3594. if (v->profile == PROFILE_ADVANCED)
  3595. {
  3596. // if (alloc_bitplane(&v->over_flags_plane, s->mb_width, s->mb_height) < 0)
  3597. // return -1;
  3598. // if (alloc_bitplane(&v->ac_pred_plane, s->mb_width, s->mb_height) < 0)
  3599. // return -1;
  3600. }
  3601. ff_intrax8_common_init(&v->x8,s);
  3602. return 0;
  3603. }
  3604. /** Decode a VC1/WMV3 frame
  3605. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  3606. */
  3607. static int vc1_decode_frame(AVCodecContext *avctx,
  3608. void *data, int *data_size,
  3609. uint8_t *buf, int buf_size)
  3610. {
  3611. VC1Context *v = avctx->priv_data;
  3612. MpegEncContext *s = &v->s;
  3613. AVFrame *pict = data;
  3614. uint8_t *buf2 = NULL;
  3615. /* no supplementary picture */
  3616. if (buf_size == 0) {
  3617. /* special case for last picture */
  3618. if (s->low_delay==0 && s->next_picture_ptr) {
  3619. *pict= *(AVFrame*)s->next_picture_ptr;
  3620. s->next_picture_ptr= NULL;
  3621. *data_size = sizeof(AVFrame);
  3622. }
  3623. return 0;
  3624. }
  3625. /* We need to set current_picture_ptr before reading the header,
  3626. * otherwise we cannot store anything in there. */
  3627. if(s->current_picture_ptr==NULL || s->current_picture_ptr->data[0]){
  3628. int i= ff_find_unused_picture(s, 0);
  3629. s->current_picture_ptr= &s->picture[i];
  3630. }
  3631. //for advanced profile we may need to parse and unescape data
  3632. if (avctx->codec_id == CODEC_ID_VC1) {
  3633. int buf_size2 = 0;
  3634. buf2 = av_mallocz(buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
  3635. if(IS_MARKER(AV_RB32(buf))){ /* frame starts with marker and needs to be parsed */
  3636. uint8_t *start, *end, *next;
  3637. int size;
  3638. next = buf;
  3639. for(start = buf, end = buf + buf_size; next < end; start = next){
  3640. next = find_next_marker(start + 4, end);
  3641. size = next - start - 4;
  3642. if(size <= 0) continue;
  3643. switch(AV_RB32(start)){
  3644. case VC1_CODE_FRAME:
  3645. buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
  3646. break;
  3647. case VC1_CODE_ENTRYPOINT: /* it should be before frame data */
  3648. buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
  3649. init_get_bits(&s->gb, buf2, buf_size2*8);
  3650. decode_entry_point(avctx, &s->gb);
  3651. break;
  3652. case VC1_CODE_SLICE:
  3653. av_log(avctx, AV_LOG_ERROR, "Sliced decoding is not implemented (yet)\n");
  3654. av_free(buf2);
  3655. return -1;
  3656. }
  3657. }
  3658. }else if(v->interlace && ((buf[0] & 0xC0) == 0xC0)){ /* WVC1 interlaced stores both fields divided by marker */
  3659. uint8_t *divider;
  3660. divider = find_next_marker(buf, buf + buf_size);
  3661. if((divider == (buf + buf_size)) || AV_RB32(divider) != VC1_CODE_FIELD){
  3662. av_log(avctx, AV_LOG_ERROR, "Error in WVC1 interlaced frame\n");
  3663. return -1;
  3664. }
  3665. buf_size2 = vc1_unescape_buffer(buf, divider - buf, buf2);
  3666. // TODO
  3667. av_free(buf2);return -1;
  3668. }else{
  3669. buf_size2 = vc1_unescape_buffer(buf, buf_size, buf2);
  3670. }
  3671. init_get_bits(&s->gb, buf2, buf_size2*8);
  3672. } else
  3673. init_get_bits(&s->gb, buf, buf_size*8);
  3674. // do parse frame header
  3675. if(v->profile < PROFILE_ADVANCED) {
  3676. if(vc1_parse_frame_header(v, &s->gb) == -1) {
  3677. av_free(buf2);
  3678. return -1;
  3679. }
  3680. } else {
  3681. if(vc1_parse_frame_header_adv(v, &s->gb) == -1) {
  3682. av_free(buf2);
  3683. return -1;
  3684. }
  3685. }
  3686. if(s->pict_type != I_TYPE && !v->res_rtm_flag){
  3687. av_free(buf2);
  3688. return -1;
  3689. }
  3690. // for hurry_up==5
  3691. s->current_picture.pict_type= s->pict_type;
  3692. s->current_picture.key_frame= s->pict_type == I_TYPE;
  3693. /* skip B-frames if we don't have reference frames */
  3694. if(s->last_picture_ptr==NULL && (s->pict_type==B_TYPE || s->dropable)){
  3695. av_free(buf2);
  3696. return -1;//buf_size;
  3697. }
  3698. /* skip b frames if we are in a hurry */
  3699. if(avctx->hurry_up && s->pict_type==B_TYPE) return -1;//buf_size;
  3700. if( (avctx->skip_frame >= AVDISCARD_NONREF && s->pict_type==B_TYPE)
  3701. || (avctx->skip_frame >= AVDISCARD_NONKEY && s->pict_type!=I_TYPE)
  3702. || avctx->skip_frame >= AVDISCARD_ALL) {
  3703. av_free(buf2);
  3704. return buf_size;
  3705. }
  3706. /* skip everything if we are in a hurry>=5 */
  3707. if(avctx->hurry_up>=5) {
  3708. av_free(buf2);
  3709. return -1;//buf_size;
  3710. }
  3711. if(s->next_p_frame_damaged){
  3712. if(s->pict_type==B_TYPE)
  3713. return buf_size;
  3714. else
  3715. s->next_p_frame_damaged=0;
  3716. }
  3717. if(MPV_frame_start(s, avctx) < 0) {
  3718. av_free(buf2);
  3719. return -1;
  3720. }
  3721. s->me.qpel_put= s->dsp.put_qpel_pixels_tab;
  3722. s->me.qpel_avg= s->dsp.avg_qpel_pixels_tab;
  3723. ff_er_frame_start(s);
  3724. v->bits = buf_size * 8;
  3725. vc1_decode_blocks(v);
  3726. //av_log(s->avctx, AV_LOG_INFO, "Consumed %i/%i bits\n", get_bits_count(&s->gb), buf_size*8);
  3727. // if(get_bits_count(&s->gb) > buf_size * 8)
  3728. // return -1;
  3729. ff_er_frame_end(s);
  3730. MPV_frame_end(s);
  3731. assert(s->current_picture.pict_type == s->current_picture_ptr->pict_type);
  3732. assert(s->current_picture.pict_type == s->pict_type);
  3733. if (s->pict_type == B_TYPE || s->low_delay) {
  3734. *pict= *(AVFrame*)s->current_picture_ptr;
  3735. } else if (s->last_picture_ptr != NULL) {
  3736. *pict= *(AVFrame*)s->last_picture_ptr;
  3737. }
  3738. if(s->last_picture_ptr || s->low_delay){
  3739. *data_size = sizeof(AVFrame);
  3740. ff_print_debug_info(s, pict);
  3741. }
  3742. /* Return the Picture timestamp as the frame number */
  3743. /* we substract 1 because it is added on utils.c */
  3744. avctx->frame_number = s->picture_number - 1;
  3745. av_free(buf2);
  3746. return buf_size;
  3747. }
  3748. /** Close a VC1/WMV3 decoder
  3749. * @warning Initial try at using MpegEncContext stuff
  3750. */
  3751. static int vc1_decode_end(AVCodecContext *avctx)
  3752. {
  3753. VC1Context *v = avctx->priv_data;
  3754. av_freep(&v->hrd_rate);
  3755. av_freep(&v->hrd_buffer);
  3756. MPV_common_end(&v->s);
  3757. av_freep(&v->mv_type_mb_plane);
  3758. av_freep(&v->direct_mb_plane);
  3759. av_freep(&v->acpred_plane);
  3760. av_freep(&v->over_flags_plane);
  3761. av_freep(&v->mb_type_base);
  3762. return 0;
  3763. }
  3764. AVCodec vc1_decoder = {
  3765. "vc1",
  3766. CODEC_TYPE_VIDEO,
  3767. CODEC_ID_VC1,
  3768. sizeof(VC1Context),
  3769. vc1_decode_init,
  3770. NULL,
  3771. vc1_decode_end,
  3772. vc1_decode_frame,
  3773. CODEC_CAP_DELAY,
  3774. NULL
  3775. };
  3776. AVCodec wmv3_decoder = {
  3777. "wmv3",
  3778. CODEC_TYPE_VIDEO,
  3779. CODEC_ID_WMV3,
  3780. sizeof(VC1Context),
  3781. vc1_decode_init,
  3782. NULL,
  3783. vc1_decode_end,
  3784. vc1_decode_frame,
  3785. CODEC_CAP_DELAY,
  3786. NULL
  3787. };