You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

200 lines
5.0KB

  1. /*
  2. * MDCT/IMDCT transforms
  3. * Copyright (c) 2002 Fabrice Bellard.
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. #include "dsputil.h"
  22. /**
  23. * @file mdct.c
  24. * MDCT/IMDCT transforms.
  25. */
  26. // Generate a Kaiser-Bessel Derived Window.
  27. void ff_kbd_window_init(float *window)
  28. {
  29. int i, j;
  30. double sum = 0.0, bessel, tmp;
  31. double local_window[256];
  32. double alpha2 = (5.0 * M_PI / 256.0) * (5.0 * M_PI / 256.0);
  33. for (i = 0; i < 256; i++) {
  34. tmp = i * (256 - i) * alpha2;
  35. bessel = 1.0;
  36. for (j = 100; j > 0; j--) /* default to 100 iterations */
  37. bessel = bessel * tmp / (j * j) + 1;
  38. sum += bessel;
  39. local_window[i] = sum;
  40. }
  41. sum++;
  42. for (i = 0; i < 256; i++)
  43. window[i] = sqrt(local_window[i] / sum);
  44. }
  45. /**
  46. * init MDCT or IMDCT computation.
  47. */
  48. int ff_mdct_init(MDCTContext *s, int nbits, int inverse)
  49. {
  50. int n, n4, i;
  51. float alpha;
  52. memset(s, 0, sizeof(*s));
  53. n = 1 << nbits;
  54. s->nbits = nbits;
  55. s->n = n;
  56. n4 = n >> 2;
  57. s->tcos = av_malloc(n4 * sizeof(FFTSample));
  58. if (!s->tcos)
  59. goto fail;
  60. s->tsin = av_malloc(n4 * sizeof(FFTSample));
  61. if (!s->tsin)
  62. goto fail;
  63. for(i=0;i<n4;i++) {
  64. alpha = 2 * M_PI * (i + 1.0 / 8.0) / n;
  65. s->tcos[i] = -cos(alpha);
  66. s->tsin[i] = -sin(alpha);
  67. }
  68. if (ff_fft_init(&s->fft, s->nbits - 2, inverse) < 0)
  69. goto fail;
  70. return 0;
  71. fail:
  72. av_freep(&s->tcos);
  73. av_freep(&s->tsin);
  74. return -1;
  75. }
  76. /* complex multiplication: p = a * b */
  77. #define CMUL(pre, pim, are, aim, bre, bim) \
  78. {\
  79. float _are = (are);\
  80. float _aim = (aim);\
  81. float _bre = (bre);\
  82. float _bim = (bim);\
  83. (pre) = _are * _bre - _aim * _bim;\
  84. (pim) = _are * _bim + _aim * _bre;\
  85. }
  86. /**
  87. * Compute inverse MDCT of size N = 2^nbits
  88. * @param output N samples
  89. * @param input N/2 samples
  90. * @param tmp N/2 samples
  91. */
  92. void ff_imdct_calc(MDCTContext *s, FFTSample *output,
  93. const FFTSample *input, FFTSample *tmp)
  94. {
  95. int k, n8, n4, n2, n, j;
  96. const uint16_t *revtab = s->fft.revtab;
  97. const FFTSample *tcos = s->tcos;
  98. const FFTSample *tsin = s->tsin;
  99. const FFTSample *in1, *in2;
  100. FFTComplex *z = (FFTComplex *)tmp;
  101. n = 1 << s->nbits;
  102. n2 = n >> 1;
  103. n4 = n >> 2;
  104. n8 = n >> 3;
  105. /* pre rotation */
  106. in1 = input;
  107. in2 = input + n2 - 1;
  108. for(k = 0; k < n4; k++) {
  109. j=revtab[k];
  110. CMUL(z[j].re, z[j].im, *in2, *in1, tcos[k], tsin[k]);
  111. in1 += 2;
  112. in2 -= 2;
  113. }
  114. ff_fft_calc(&s->fft, z);
  115. /* post rotation + reordering */
  116. /* XXX: optimize */
  117. for(k = 0; k < n4; k++) {
  118. CMUL(z[k].re, z[k].im, z[k].re, z[k].im, tcos[k], tsin[k]);
  119. }
  120. for(k = 0; k < n8; k++) {
  121. output[2*k] = -z[n8 + k].im;
  122. output[n2-1-2*k] = z[n8 + k].im;
  123. output[2*k+1] = z[n8-1-k].re;
  124. output[n2-1-2*k-1] = -z[n8-1-k].re;
  125. output[n2 + 2*k]=-z[k+n8].re;
  126. output[n-1- 2*k]=-z[k+n8].re;
  127. output[n2 + 2*k+1]=z[n8-k-1].im;
  128. output[n-2 - 2 * k] = z[n8-k-1].im;
  129. }
  130. }
  131. /**
  132. * Compute MDCT of size N = 2^nbits
  133. * @param input N samples
  134. * @param out N/2 samples
  135. * @param tmp temporary storage of N/2 samples
  136. */
  137. void ff_mdct_calc(MDCTContext *s, FFTSample *out,
  138. const FFTSample *input, FFTSample *tmp)
  139. {
  140. int i, j, n, n8, n4, n2, n3;
  141. FFTSample re, im, re1, im1;
  142. const uint16_t *revtab = s->fft.revtab;
  143. const FFTSample *tcos = s->tcos;
  144. const FFTSample *tsin = s->tsin;
  145. FFTComplex *x = (FFTComplex *)tmp;
  146. n = 1 << s->nbits;
  147. n2 = n >> 1;
  148. n4 = n >> 2;
  149. n8 = n >> 3;
  150. n3 = 3 * n4;
  151. /* pre rotation */
  152. for(i=0;i<n8;i++) {
  153. re = -input[2*i+3*n4] - input[n3-1-2*i];
  154. im = -input[n4+2*i] + input[n4-1-2*i];
  155. j = revtab[i];
  156. CMUL(x[j].re, x[j].im, re, im, -tcos[i], tsin[i]);
  157. re = input[2*i] - input[n2-1-2*i];
  158. im = -(input[n2+2*i] + input[n-1-2*i]);
  159. j = revtab[n8 + i];
  160. CMUL(x[j].re, x[j].im, re, im, -tcos[n8 + i], tsin[n8 + i]);
  161. }
  162. ff_fft_calc(&s->fft, x);
  163. /* post rotation */
  164. for(i=0;i<n4;i++) {
  165. re = x[i].re;
  166. im = x[i].im;
  167. CMUL(re1, im1, re, im, -tsin[i], -tcos[i]);
  168. out[2*i] = im1;
  169. out[n2-1-2*i] = re1;
  170. }
  171. }
  172. void ff_mdct_end(MDCTContext *s)
  173. {
  174. av_freep(&s->tcos);
  175. av_freep(&s->tsin);
  176. ff_fft_end(&s->fft);
  177. }