You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

894 lines
25KB

  1. /*
  2. * yuv2rgb.c, Software YUV to RGB coverter
  3. *
  4. * Copyright (C) 1999, Aaron Holtzman <aholtzma@ess.engr.uvic.ca>
  5. * All Rights Reserved.
  6. *
  7. * Functions broken out from display_x11.c and several new modes
  8. * added by HÃ¥kan Hjort <d95hjort@dtek.chalmers.se>
  9. *
  10. * 15 & 16 bpp support by Franck Sicard <Franck.Sicard@solsoft.fr>
  11. *
  12. * This file is part of mpeg2dec, a free MPEG-2 video decoder
  13. *
  14. * mpeg2dec is free software; you can redistribute it and/or modify
  15. * it under the terms of the GNU General Public License as published by
  16. * the Free Software Foundation; either version 2, or (at your option)
  17. * any later version.
  18. *
  19. * mpeg2dec is distributed in the hope that it will be useful,
  20. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  21. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  22. * GNU General Public License for more details.
  23. *
  24. * You should have received a copy of the GNU General Public License
  25. * along with mpeg2dec; if not, write to the Free Software
  26. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  27. *
  28. * MMX/MMX2 Template stuff from Michael Niedermayer (michaelni@gmx.at) (needed for fast movntq support)
  29. * 1,4,8bpp support by Michael Niedermayer (michaelni@gmx.at)
  30. * context / deglobalize stuff by Michael Niedermayer
  31. */
  32. #include <stdio.h>
  33. #include <stdlib.h>
  34. #include <inttypes.h>
  35. #include <assert.h>
  36. #include "config.h"
  37. #include "rgb2rgb.h"
  38. #include "swscale.h"
  39. #include "swscale_internal.h"
  40. #ifdef HAVE_MLIB
  41. #include "yuv2rgb_mlib.c"
  42. #endif
  43. #define DITHER1XBPP // only for mmx
  44. const uint8_t __attribute__((aligned(8))) dither_2x2_4[2][8]={
  45. { 1, 3, 1, 3, 1, 3, 1, 3, },
  46. { 2, 0, 2, 0, 2, 0, 2, 0, },
  47. };
  48. const uint8_t __attribute__((aligned(8))) dither_2x2_8[2][8]={
  49. { 6, 2, 6, 2, 6, 2, 6, 2, },
  50. { 0, 4, 0, 4, 0, 4, 0, 4, },
  51. };
  52. const uint8_t __attribute__((aligned(8))) dither_8x8_32[8][8]={
  53. { 17, 9, 23, 15, 16, 8, 22, 14, },
  54. { 5, 29, 3, 27, 4, 28, 2, 26, },
  55. { 21, 13, 19, 11, 20, 12, 18, 10, },
  56. { 0, 24, 6, 30, 1, 25, 7, 31, },
  57. { 16, 8, 22, 14, 17, 9, 23, 15, },
  58. { 4, 28, 2, 26, 5, 29, 3, 27, },
  59. { 20, 12, 18, 10, 21, 13, 19, 11, },
  60. { 1, 25, 7, 31, 0, 24, 6, 30, },
  61. };
  62. #if 0
  63. const uint8_t __attribute__((aligned(8))) dither_8x8_64[8][8]={
  64. { 0, 48, 12, 60, 3, 51, 15, 63, },
  65. { 32, 16, 44, 28, 35, 19, 47, 31, },
  66. { 8, 56, 4, 52, 11, 59, 7, 55, },
  67. { 40, 24, 36, 20, 43, 27, 39, 23, },
  68. { 2, 50, 14, 62, 1, 49, 13, 61, },
  69. { 34, 18, 46, 30, 33, 17, 45, 29, },
  70. { 10, 58, 6, 54, 9, 57, 5, 53, },
  71. { 42, 26, 38, 22, 41, 25, 37, 21, },
  72. };
  73. #endif
  74. const uint8_t __attribute__((aligned(8))) dither_8x8_73[8][8]={
  75. { 0, 55, 14, 68, 3, 58, 17, 72, },
  76. { 37, 18, 50, 32, 40, 22, 54, 35, },
  77. { 9, 64, 5, 59, 13, 67, 8, 63, },
  78. { 46, 27, 41, 23, 49, 31, 44, 26, },
  79. { 2, 57, 16, 71, 1, 56, 15, 70, },
  80. { 39, 21, 52, 34, 38, 19, 51, 33, },
  81. { 11, 66, 7, 62, 10, 65, 6, 60, },
  82. { 48, 30, 43, 25, 47, 29, 42, 24, },
  83. };
  84. #if 0
  85. const uint8_t __attribute__((aligned(8))) dither_8x8_128[8][8]={
  86. { 68, 36, 92, 60, 66, 34, 90, 58, },
  87. { 20, 116, 12, 108, 18, 114, 10, 106, },
  88. { 84, 52, 76, 44, 82, 50, 74, 42, },
  89. { 0, 96, 24, 120, 6, 102, 30, 126, },
  90. { 64, 32, 88, 56, 70, 38, 94, 62, },
  91. { 16, 112, 8, 104, 22, 118, 14, 110, },
  92. { 80, 48, 72, 40, 86, 54, 78, 46, },
  93. { 4, 100, 28, 124, 2, 98, 26, 122, },
  94. };
  95. #endif
  96. #if 1
  97. const uint8_t __attribute__((aligned(8))) dither_8x8_220[8][8]={
  98. {117, 62, 158, 103, 113, 58, 155, 100, },
  99. { 34, 199, 21, 186, 31, 196, 17, 182, },
  100. {144, 89, 131, 76, 141, 86, 127, 72, },
  101. { 0, 165, 41, 206, 10, 175, 52, 217, },
  102. {110, 55, 151, 96, 120, 65, 162, 107, },
  103. { 28, 193, 14, 179, 38, 203, 24, 189, },
  104. {138, 83, 124, 69, 148, 93, 134, 79, },
  105. { 7, 172, 48, 213, 3, 168, 45, 210, },
  106. };
  107. #elif 1
  108. // tries to correct a gamma of 1.5
  109. const uint8_t __attribute__((aligned(8))) dither_8x8_220[8][8]={
  110. { 0, 143, 18, 200, 2, 156, 25, 215, },
  111. { 78, 28, 125, 64, 89, 36, 138, 74, },
  112. { 10, 180, 3, 161, 16, 195, 8, 175, },
  113. {109, 51, 93, 38, 121, 60, 105, 47, },
  114. { 1, 152, 23, 210, 0, 147, 20, 205, },
  115. { 85, 33, 134, 71, 81, 30, 130, 67, },
  116. { 14, 190, 6, 171, 12, 185, 5, 166, },
  117. {117, 57, 101, 44, 113, 54, 97, 41, },
  118. };
  119. #elif 1
  120. // tries to correct a gamma of 2.0
  121. const uint8_t __attribute__((aligned(8))) dither_8x8_220[8][8]={
  122. { 0, 124, 8, 193, 0, 140, 12, 213, },
  123. { 55, 14, 104, 42, 66, 19, 119, 52, },
  124. { 3, 168, 1, 145, 6, 187, 3, 162, },
  125. { 86, 31, 70, 21, 99, 39, 82, 28, },
  126. { 0, 134, 11, 206, 0, 129, 9, 200, },
  127. { 62, 17, 114, 48, 58, 16, 109, 45, },
  128. { 5, 181, 2, 157, 4, 175, 1, 151, },
  129. { 95, 36, 78, 26, 90, 34, 74, 24, },
  130. };
  131. #else
  132. // tries to correct a gamma of 2.5
  133. const uint8_t __attribute__((aligned(8))) dither_8x8_220[8][8]={
  134. { 0, 107, 3, 187, 0, 125, 6, 212, },
  135. { 39, 7, 86, 28, 49, 11, 102, 36, },
  136. { 1, 158, 0, 131, 3, 180, 1, 151, },
  137. { 68, 19, 52, 12, 81, 25, 64, 17, },
  138. { 0, 119, 5, 203, 0, 113, 4, 195, },
  139. { 45, 9, 96, 33, 42, 8, 91, 30, },
  140. { 2, 172, 1, 144, 2, 165, 0, 137, },
  141. { 77, 23, 60, 15, 72, 21, 56, 14, },
  142. };
  143. #endif
  144. #ifdef HAVE_MMX
  145. /* hope these constant values are cache line aligned */
  146. static uint64_t attribute_used __attribute__((aligned(8))) mmx_00ffw = 0x00ff00ff00ff00ffULL;
  147. static uint64_t attribute_used __attribute__((aligned(8))) mmx_redmask = 0xf8f8f8f8f8f8f8f8ULL;
  148. static uint64_t attribute_used __attribute__((aligned(8))) mmx_grnmask = 0xfcfcfcfcfcfcfcfcULL;
  149. static uint64_t attribute_used __attribute__((aligned(8))) M24A= 0x00FF0000FF0000FFULL;
  150. static uint64_t attribute_used __attribute__((aligned(8))) M24B= 0xFF0000FF0000FF00ULL;
  151. static uint64_t attribute_used __attribute__((aligned(8))) M24C= 0x0000FF0000FF0000ULL;
  152. // the volatile is required because gcc otherwise optimizes some writes away not knowing that these
  153. // are read in the asm block
  154. static volatile uint64_t attribute_used __attribute__((aligned(8))) b5Dither;
  155. static volatile uint64_t attribute_used __attribute__((aligned(8))) g5Dither;
  156. static volatile uint64_t attribute_used __attribute__((aligned(8))) g6Dither;
  157. static volatile uint64_t attribute_used __attribute__((aligned(8))) r5Dither;
  158. static uint64_t __attribute__((aligned(8))) dither4[2]={
  159. 0x0103010301030103LL,
  160. 0x0200020002000200LL,};
  161. static uint64_t __attribute__((aligned(8))) dither8[2]={
  162. 0x0602060206020602LL,
  163. 0x0004000400040004LL,};
  164. #undef HAVE_MMX
  165. //MMX versions
  166. #undef RENAME
  167. #define HAVE_MMX
  168. #undef HAVE_MMX2
  169. #undef HAVE_3DNOW
  170. #define RENAME(a) a ## _MMX
  171. #include "yuv2rgb_template.c"
  172. //MMX2 versions
  173. #undef RENAME
  174. #define HAVE_MMX
  175. #define HAVE_MMX2
  176. #undef HAVE_3DNOW
  177. #define RENAME(a) a ## _MMX2
  178. #include "yuv2rgb_template.c"
  179. #endif /* defined(ARCH_X86) */
  180. const int32_t Inverse_Table_6_9[8][4] = {
  181. {117504, 138453, 13954, 34903}, /* no sequence_display_extension */
  182. {117504, 138453, 13954, 34903}, /* ITU-R Rec. 709 (1990) */
  183. {104597, 132201, 25675, 53279}, /* unspecified */
  184. {104597, 132201, 25675, 53279}, /* reserved */
  185. {104448, 132798, 24759, 53109}, /* FCC */
  186. {104597, 132201, 25675, 53279}, /* ITU-R Rec. 624-4 System B, G */
  187. {104597, 132201, 25675, 53279}, /* SMPTE 170M */
  188. {117579, 136230, 16907, 35559} /* SMPTE 240M (1987) */
  189. };
  190. #define RGB(i) \
  191. U = pu[i]; \
  192. V = pv[i]; \
  193. r = (void *)c->table_rV[V]; \
  194. g = (void *)(c->table_gU[U] + c->table_gV[V]); \
  195. b = (void *)c->table_bU[U];
  196. #define DST1(i) \
  197. Y = py_1[2*i]; \
  198. dst_1[2*i] = r[Y] + g[Y] + b[Y]; \
  199. Y = py_1[2*i+1]; \
  200. dst_1[2*i+1] = r[Y] + g[Y] + b[Y];
  201. #define DST2(i) \
  202. Y = py_2[2*i]; \
  203. dst_2[2*i] = r[Y] + g[Y] + b[Y]; \
  204. Y = py_2[2*i+1]; \
  205. dst_2[2*i+1] = r[Y] + g[Y] + b[Y];
  206. #define DST1RGB(i) \
  207. Y = py_1[2*i]; \
  208. dst_1[6*i] = r[Y]; dst_1[6*i+1] = g[Y]; dst_1[6*i+2] = b[Y]; \
  209. Y = py_1[2*i+1]; \
  210. dst_1[6*i+3] = r[Y]; dst_1[6*i+4] = g[Y]; dst_1[6*i+5] = b[Y];
  211. #define DST2RGB(i) \
  212. Y = py_2[2*i]; \
  213. dst_2[6*i] = r[Y]; dst_2[6*i+1] = g[Y]; dst_2[6*i+2] = b[Y]; \
  214. Y = py_2[2*i+1]; \
  215. dst_2[6*i+3] = r[Y]; dst_2[6*i+4] = g[Y]; dst_2[6*i+5] = b[Y];
  216. #define DST1BGR(i) \
  217. Y = py_1[2*i]; \
  218. dst_1[6*i] = b[Y]; dst_1[6*i+1] = g[Y]; dst_1[6*i+2] = r[Y]; \
  219. Y = py_1[2*i+1]; \
  220. dst_1[6*i+3] = b[Y]; dst_1[6*i+4] = g[Y]; dst_1[6*i+5] = r[Y];
  221. #define DST2BGR(i) \
  222. Y = py_2[2*i]; \
  223. dst_2[6*i] = b[Y]; dst_2[6*i+1] = g[Y]; dst_2[6*i+2] = r[Y]; \
  224. Y = py_2[2*i+1]; \
  225. dst_2[6*i+3] = b[Y]; dst_2[6*i+4] = g[Y]; dst_2[6*i+5] = r[Y];
  226. #define PROLOG(func_name, dst_type) \
  227. static int func_name(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY, \
  228. int srcSliceH, uint8_t* dst[], int dstStride[]){\
  229. int y;\
  230. \
  231. if (c->srcFormat == PIX_FMT_YUV422P){\
  232. srcStride[1] *= 2;\
  233. srcStride[2] *= 2;\
  234. }\
  235. for (y=0; y<srcSliceH; y+=2){\
  236. dst_type *dst_1= (dst_type*)(dst[0] + (y+srcSliceY )*dstStride[0]);\
  237. dst_type *dst_2= (dst_type*)(dst[0] + (y+srcSliceY+1)*dstStride[0]);\
  238. dst_type av_unused *r, *b;\
  239. dst_type *g;\
  240. uint8_t *py_1= src[0] + y*srcStride[0];\
  241. uint8_t *py_2= py_1 + srcStride[0];\
  242. uint8_t *pu= src[1] + (y>>1)*srcStride[1];\
  243. uint8_t *pv= src[2] + (y>>1)*srcStride[2];\
  244. unsigned int h_size= c->dstW>>3;\
  245. while (h_size--) {\
  246. int av_unused U, V;\
  247. int Y;\
  248. #define EPILOG1(dst_delta)\
  249. pu += 4;\
  250. pv += 4;\
  251. py_1 += 8;\
  252. py_2 += 8;\
  253. dst_1 += dst_delta;\
  254. dst_2 += dst_delta;\
  255. }\
  256. if (c->dstW & 4) {\
  257. int av_unused U, V;\
  258. int Y;\
  259. #define EPILOG2()\
  260. }\
  261. }\
  262. return srcSliceH;\
  263. }
  264. #define EPILOG(dst_delta)\
  265. EPILOG1(dst_delta)\
  266. EPILOG2()
  267. PROLOG(yuv2rgb_c_32, uint32_t)
  268. RGB(0);
  269. DST1(0);
  270. DST2(0);
  271. RGB(1);
  272. DST2(1);
  273. DST1(1);
  274. RGB(2);
  275. DST1(2);
  276. DST2(2);
  277. RGB(3);
  278. DST2(3);
  279. DST1(3);
  280. EPILOG1(8)
  281. RGB(0);
  282. DST1(0);
  283. DST2(0);
  284. RGB(1);
  285. DST2(1);
  286. DST1(1);
  287. EPILOG2()
  288. PROLOG(yuv2rgb_c_24_rgb, uint8_t)
  289. RGB(0);
  290. DST1RGB(0);
  291. DST2RGB(0);
  292. RGB(1);
  293. DST2RGB(1);
  294. DST1RGB(1);
  295. RGB(2);
  296. DST1RGB(2);
  297. DST2RGB(2);
  298. RGB(3);
  299. DST2RGB(3);
  300. DST1RGB(3);
  301. EPILOG1(24)
  302. RGB(0);
  303. DST1RGB(0);
  304. DST2RGB(0);
  305. RGB(1);
  306. DST2RGB(1);
  307. DST1RGB(1);
  308. EPILOG2()
  309. // only trivial mods from yuv2rgb_c_24_rgb
  310. PROLOG(yuv2rgb_c_24_bgr, uint8_t)
  311. RGB(0);
  312. DST1BGR(0);
  313. DST2BGR(0);
  314. RGB(1);
  315. DST2BGR(1);
  316. DST1BGR(1);
  317. RGB(2);
  318. DST1BGR(2);
  319. DST2BGR(2);
  320. RGB(3);
  321. DST2BGR(3);
  322. DST1BGR(3);
  323. EPILOG1(24)
  324. RGB(0);
  325. DST1BGR(0);
  326. DST2BGR(0);
  327. RGB(1);
  328. DST2BGR(1);
  329. DST1BGR(1);
  330. EPILOG2()
  331. // This is exactly the same code as yuv2rgb_c_32 except for the types of
  332. // r, g, b, dst_1, dst_2
  333. PROLOG(yuv2rgb_c_16, uint16_t)
  334. RGB(0);
  335. DST1(0);
  336. DST2(0);
  337. RGB(1);
  338. DST2(1);
  339. DST1(1);
  340. RGB(2);
  341. DST1(2);
  342. DST2(2);
  343. RGB(3);
  344. DST2(3);
  345. DST1(3);
  346. EPILOG(8)
  347. // This is exactly the same code as yuv2rgb_c_32 except for the types of
  348. // r, g, b, dst_1, dst_2
  349. PROLOG(yuv2rgb_c_8, uint8_t)
  350. RGB(0);
  351. DST1(0);
  352. DST2(0);
  353. RGB(1);
  354. DST2(1);
  355. DST1(1);
  356. RGB(2);
  357. DST1(2);
  358. DST2(2);
  359. RGB(3);
  360. DST2(3);
  361. DST1(3);
  362. EPILOG(8)
  363. // r, g, b, dst_1, dst_2
  364. PROLOG(yuv2rgb_c_8_ordered_dither, uint8_t)
  365. const uint8_t *d32= dither_8x8_32[y&7];
  366. const uint8_t *d64= dither_8x8_73[y&7];
  367. #define DST1bpp8(i,o) \
  368. Y = py_1[2*i]; \
  369. dst_1[2*i] = r[Y+d32[0+o]] + g[Y+d32[0+o]] + b[Y+d64[0+o]]; \
  370. Y = py_1[2*i+1]; \
  371. dst_1[2*i+1] = r[Y+d32[1+o]] + g[Y+d32[1+o]] + b[Y+d64[1+o]];
  372. #define DST2bpp8(i,o) \
  373. Y = py_2[2*i]; \
  374. dst_2[2*i] = r[Y+d32[8+o]] + g[Y+d32[8+o]] + b[Y+d64[8+o]]; \
  375. Y = py_2[2*i+1]; \
  376. dst_2[2*i+1] = r[Y+d32[9+o]] + g[Y+d32[9+o]] + b[Y+d64[9+o]];
  377. RGB(0);
  378. DST1bpp8(0,0);
  379. DST2bpp8(0,0);
  380. RGB(1);
  381. DST2bpp8(1,2);
  382. DST1bpp8(1,2);
  383. RGB(2);
  384. DST1bpp8(2,4);
  385. DST2bpp8(2,4);
  386. RGB(3);
  387. DST2bpp8(3,6);
  388. DST1bpp8(3,6);
  389. EPILOG(8)
  390. // This is exactly the same code as yuv2rgb_c_32 except for the types of
  391. // r, g, b, dst_1, dst_2
  392. PROLOG(yuv2rgb_c_4, uint8_t)
  393. int acc;
  394. #define DST1_4(i) \
  395. Y = py_1[2*i]; \
  396. acc = r[Y] + g[Y] + b[Y]; \
  397. Y = py_1[2*i+1]; \
  398. acc |= (r[Y] + g[Y] + b[Y])<<4; \
  399. dst_1[i] = acc;
  400. #define DST2_4(i) \
  401. Y = py_2[2*i]; \
  402. acc = r[Y] + g[Y] + b[Y]; \
  403. Y = py_2[2*i+1]; \
  404. acc |= (r[Y] + g[Y] + b[Y])<<4; \
  405. dst_2[i] = acc;
  406. RGB(0);
  407. DST1_4(0);
  408. DST2_4(0);
  409. RGB(1);
  410. DST2_4(1);
  411. DST1_4(1);
  412. RGB(2);
  413. DST1_4(2);
  414. DST2_4(2);
  415. RGB(3);
  416. DST2_4(3);
  417. DST1_4(3);
  418. EPILOG(4)
  419. PROLOG(yuv2rgb_c_4_ordered_dither, uint8_t)
  420. const uint8_t *d64= dither_8x8_73[y&7];
  421. const uint8_t *d128=dither_8x8_220[y&7];
  422. int acc;
  423. #define DST1bpp4(i,o) \
  424. Y = py_1[2*i]; \
  425. acc = r[Y+d128[0+o]] + g[Y+d64[0+o]] + b[Y+d128[0+o]]; \
  426. Y = py_1[2*i+1]; \
  427. acc |= (r[Y+d128[1+o]] + g[Y+d64[1+o]] + b[Y+d128[1+o]])<<4; \
  428. dst_1[i]= acc;
  429. #define DST2bpp4(i,o) \
  430. Y = py_2[2*i]; \
  431. acc = r[Y+d128[8+o]] + g[Y+d64[8+o]] + b[Y+d128[8+o]]; \
  432. Y = py_2[2*i+1]; \
  433. acc |= (r[Y+d128[9+o]] + g[Y+d64[9+o]] + b[Y+d128[9+o]])<<4; \
  434. dst_2[i]= acc;
  435. RGB(0);
  436. DST1bpp4(0,0);
  437. DST2bpp4(0,0);
  438. RGB(1);
  439. DST2bpp4(1,2);
  440. DST1bpp4(1,2);
  441. RGB(2);
  442. DST1bpp4(2,4);
  443. DST2bpp4(2,4);
  444. RGB(3);
  445. DST2bpp4(3,6);
  446. DST1bpp4(3,6);
  447. EPILOG(4)
  448. // This is exactly the same code as yuv2rgb_c_32 except for the types of
  449. // r, g, b, dst_1, dst_2
  450. PROLOG(yuv2rgb_c_4b, uint8_t)
  451. RGB(0);
  452. DST1(0);
  453. DST2(0);
  454. RGB(1);
  455. DST2(1);
  456. DST1(1);
  457. RGB(2);
  458. DST1(2);
  459. DST2(2);
  460. RGB(3);
  461. DST2(3);
  462. DST1(3);
  463. EPILOG(8)
  464. PROLOG(yuv2rgb_c_4b_ordered_dither, uint8_t)
  465. const uint8_t *d64= dither_8x8_73[y&7];
  466. const uint8_t *d128=dither_8x8_220[y&7];
  467. #define DST1bpp4b(i,o) \
  468. Y = py_1[2*i]; \
  469. dst_1[2*i] = r[Y+d128[0+o]] + g[Y+d64[0+o]] + b[Y+d128[0+o]]; \
  470. Y = py_1[2*i+1]; \
  471. dst_1[2*i+1] = r[Y+d128[1+o]] + g[Y+d64[1+o]] + b[Y+d128[1+o]];
  472. #define DST2bpp4b(i,o) \
  473. Y = py_2[2*i]; \
  474. dst_2[2*i] = r[Y+d128[8+o]] + g[Y+d64[8+o]] + b[Y+d128[8+o]]; \
  475. Y = py_2[2*i+1]; \
  476. dst_2[2*i+1] = r[Y+d128[9+o]] + g[Y+d64[9+o]] + b[Y+d128[9+o]];
  477. RGB(0);
  478. DST1bpp4b(0,0);
  479. DST2bpp4b(0,0);
  480. RGB(1);
  481. DST2bpp4b(1,2);
  482. DST1bpp4b(1,2);
  483. RGB(2);
  484. DST1bpp4b(2,4);
  485. DST2bpp4b(2,4);
  486. RGB(3);
  487. DST2bpp4b(3,6);
  488. DST1bpp4b(3,6);
  489. EPILOG(8)
  490. PROLOG(yuv2rgb_c_1_ordered_dither, uint8_t)
  491. const uint8_t *d128=dither_8x8_220[y&7];
  492. char out_1=0, out_2=0;
  493. g= c->table_gU[128] + c->table_gV[128];
  494. #define DST1bpp1(i,o) \
  495. Y = py_1[2*i]; \
  496. out_1+= out_1 + g[Y+d128[0+o]]; \
  497. Y = py_1[2*i+1]; \
  498. out_1+= out_1 + g[Y+d128[1+o]];
  499. #define DST2bpp1(i,o) \
  500. Y = py_2[2*i]; \
  501. out_2+= out_2 + g[Y+d128[8+o]]; \
  502. Y = py_2[2*i+1]; \
  503. out_2+= out_2 + g[Y+d128[9+o]];
  504. DST1bpp1(0,0);
  505. DST2bpp1(0,0);
  506. DST2bpp1(1,2);
  507. DST1bpp1(1,2);
  508. DST1bpp1(2,4);
  509. DST2bpp1(2,4);
  510. DST2bpp1(3,6);
  511. DST1bpp1(3,6);
  512. dst_1[0]= out_1;
  513. dst_2[0]= out_2;
  514. EPILOG(1)
  515. SwsFunc yuv2rgb_get_func_ptr (SwsContext *c)
  516. {
  517. #if defined(HAVE_MMX2) || defined(HAVE_MMX)
  518. if (c->flags & SWS_CPU_CAPS_MMX2){
  519. switch(c->dstFormat){
  520. case PIX_FMT_RGB32: return yuv420_rgb32_MMX2;
  521. case PIX_FMT_BGR24: return yuv420_rgb24_MMX2;
  522. case PIX_FMT_BGR565: return yuv420_rgb16_MMX2;
  523. case PIX_FMT_BGR555: return yuv420_rgb15_MMX2;
  524. }
  525. }
  526. if (c->flags & SWS_CPU_CAPS_MMX){
  527. switch(c->dstFormat){
  528. case PIX_FMT_RGB32: return yuv420_rgb32_MMX;
  529. case PIX_FMT_BGR24: return yuv420_rgb24_MMX;
  530. case PIX_FMT_BGR565: return yuv420_rgb16_MMX;
  531. case PIX_FMT_BGR555: return yuv420_rgb15_MMX;
  532. }
  533. }
  534. #endif
  535. #ifdef HAVE_MLIB
  536. {
  537. SwsFunc t= yuv2rgb_init_mlib(c);
  538. if (t) return t;
  539. }
  540. #endif
  541. #ifdef HAVE_ALTIVEC
  542. if (c->flags & SWS_CPU_CAPS_ALTIVEC)
  543. {
  544. SwsFunc t = yuv2rgb_init_altivec(c);
  545. if (t) return t;
  546. }
  547. #endif
  548. #ifdef ARCH_BFIN
  549. if (c->flags & SWS_CPU_CAPS_BFIN)
  550. {
  551. SwsFunc t = ff_bfin_yuv2rgb_get_func_ptr (c);
  552. if (t) return t;
  553. }
  554. #endif
  555. av_log(c, AV_LOG_WARNING, "No accelerated colorspace conversion found\n");
  556. switch(c->dstFormat){
  557. case PIX_FMT_BGR32:
  558. case PIX_FMT_RGB32: return yuv2rgb_c_32;
  559. case PIX_FMT_RGB24: return yuv2rgb_c_24_rgb;
  560. case PIX_FMT_BGR24: return yuv2rgb_c_24_bgr;
  561. case PIX_FMT_RGB565:
  562. case PIX_FMT_BGR565:
  563. case PIX_FMT_RGB555:
  564. case PIX_FMT_BGR555: return yuv2rgb_c_16;
  565. case PIX_FMT_RGB8:
  566. case PIX_FMT_BGR8: return yuv2rgb_c_8_ordered_dither;
  567. case PIX_FMT_RGB4:
  568. case PIX_FMT_BGR4: return yuv2rgb_c_4_ordered_dither;
  569. case PIX_FMT_RGB4_BYTE:
  570. case PIX_FMT_BGR4_BYTE: return yuv2rgb_c_4b_ordered_dither;
  571. case PIX_FMT_MONOBLACK: return yuv2rgb_c_1_ordered_dither;
  572. default:
  573. assert(0);
  574. }
  575. return NULL;
  576. }
  577. static int div_round (int dividend, int divisor)
  578. {
  579. if (dividend > 0)
  580. return (dividend + (divisor>>1)) / divisor;
  581. else
  582. return -((-dividend + (divisor>>1)) / divisor);
  583. }
  584. int yuv2rgb_c_init_tables (SwsContext *c, const int inv_table[4], int fullRange, int brightness, int contrast, int saturation)
  585. {
  586. const int isRgb = isBGR(c->dstFormat);
  587. const int bpp = fmt_depth(c->dstFormat);
  588. int i;
  589. uint8_t table_Y[1024];
  590. uint32_t *table_32 = 0;
  591. uint16_t *table_16 = 0;
  592. uint8_t *table_8 = 0;
  593. uint8_t *table_332 = 0;
  594. uint8_t *table_121 = 0;
  595. uint8_t *table_1 = 0;
  596. int entry_size = 0;
  597. void *table_r = 0, *table_g = 0, *table_b = 0;
  598. void *table_start;
  599. int64_t crv = inv_table[0];
  600. int64_t cbu = inv_table[1];
  601. int64_t cgu = -inv_table[2];
  602. int64_t cgv = -inv_table[3];
  603. int64_t cy = 1<<16;
  604. int64_t oy = 0;
  605. //printf("%lld %lld %lld %lld %lld\n", cy, crv, cbu, cgu, cgv);
  606. if (!fullRange){
  607. cy= (cy*255) / 219;
  608. oy= 16<<16;
  609. }else{
  610. crv= (crv*224) / 255;
  611. cbu= (cbu*224) / 255;
  612. cgu= (cgu*224) / 255;
  613. cgv= (cgv*224) / 255;
  614. }
  615. cy = (cy *contrast )>>16;
  616. crv= (crv*contrast * saturation)>>32;
  617. cbu= (cbu*contrast * saturation)>>32;
  618. cgu= (cgu*contrast * saturation)>>32;
  619. cgv= (cgv*contrast * saturation)>>32;
  620. //printf("%lld %lld %lld %lld %lld\n", cy, crv, cbu, cgu, cgv);
  621. oy -= 256*brightness;
  622. for (i = 0; i < 1024; i++) {
  623. int j;
  624. j= (cy*(((i - 384)<<16) - oy) + (1<<31))>>32;
  625. j = (j < 0) ? 0 : ((j > 255) ? 255 : j);
  626. table_Y[i] = j;
  627. }
  628. switch (bpp) {
  629. case 32:
  630. table_start= table_32 = av_malloc ((197 + 2*682 + 256 + 132) * sizeof (uint32_t));
  631. entry_size = sizeof (uint32_t);
  632. table_r = table_32 + 197;
  633. table_b = table_32 + 197 + 685;
  634. table_g = table_32 + 197 + 2*682;
  635. for (i = -197; i < 256+197; i++)
  636. ((uint32_t *)table_r)[i] = table_Y[i+384] << (isRgb ? 16 : 0);
  637. for (i = -132; i < 256+132; i++)
  638. ((uint32_t *)table_g)[i] = table_Y[i+384] << 8;
  639. for (i = -232; i < 256+232; i++)
  640. ((uint32_t *)table_b)[i] = table_Y[i+384] << (isRgb ? 0 : 16);
  641. break;
  642. case 24:
  643. table_start= table_8 = av_malloc ((256 + 2*232) * sizeof (uint8_t));
  644. entry_size = sizeof (uint8_t);
  645. table_r = table_g = table_b = table_8 + 232;
  646. for (i = -232; i < 256+232; i++)
  647. ((uint8_t * )table_b)[i] = table_Y[i+384];
  648. break;
  649. case 15:
  650. case 16:
  651. table_start= table_16 = av_malloc ((197 + 2*682 + 256 + 132) * sizeof (uint16_t));
  652. entry_size = sizeof (uint16_t);
  653. table_r = table_16 + 197;
  654. table_b = table_16 + 197 + 685;
  655. table_g = table_16 + 197 + 2*682;
  656. for (i = -197; i < 256+197; i++) {
  657. int j = table_Y[i+384] >> 3;
  658. if (isRgb)
  659. j <<= ((bpp==16) ? 11 : 10);
  660. ((uint16_t *)table_r)[i] = j;
  661. }
  662. for (i = -132; i < 256+132; i++) {
  663. int j = table_Y[i+384] >> ((bpp==16) ? 2 : 3);
  664. ((uint16_t *)table_g)[i] = j << 5;
  665. }
  666. for (i = -232; i < 256+232; i++) {
  667. int j = table_Y[i+384] >> 3;
  668. if (!isRgb)
  669. j <<= ((bpp==16) ? 11 : 10);
  670. ((uint16_t *)table_b)[i] = j;
  671. }
  672. break;
  673. case 8:
  674. table_start= table_332 = av_malloc ((197 + 2*682 + 256 + 132) * sizeof (uint8_t));
  675. entry_size = sizeof (uint8_t);
  676. table_r = table_332 + 197;
  677. table_b = table_332 + 197 + 685;
  678. table_g = table_332 + 197 + 2*682;
  679. for (i = -197; i < 256+197; i++) {
  680. int j = (table_Y[i+384 - 16] + 18)/36;
  681. if (isRgb)
  682. j <<= 5;
  683. ((uint8_t *)table_r)[i] = j;
  684. }
  685. for (i = -132; i < 256+132; i++) {
  686. int j = (table_Y[i+384 - 16] + 18)/36;
  687. if (!isRgb)
  688. j <<= 1;
  689. ((uint8_t *)table_g)[i] = j << 2;
  690. }
  691. for (i = -232; i < 256+232; i++) {
  692. int j = (table_Y[i+384 - 37] + 43)/85;
  693. if (!isRgb)
  694. j <<= 6;
  695. ((uint8_t *)table_b)[i] = j;
  696. }
  697. break;
  698. case 4:
  699. case 4|128:
  700. table_start= table_121 = av_malloc ((197 + 2*682 + 256 + 132) * sizeof (uint8_t));
  701. entry_size = sizeof (uint8_t);
  702. table_r = table_121 + 197;
  703. table_b = table_121 + 197 + 685;
  704. table_g = table_121 + 197 + 2*682;
  705. for (i = -197; i < 256+197; i++) {
  706. int j = table_Y[i+384 - 110] >> 7;
  707. if (isRgb)
  708. j <<= 3;
  709. ((uint8_t *)table_r)[i] = j;
  710. }
  711. for (i = -132; i < 256+132; i++) {
  712. int j = (table_Y[i+384 - 37]+ 43)/85;
  713. ((uint8_t *)table_g)[i] = j << 1;
  714. }
  715. for (i = -232; i < 256+232; i++) {
  716. int j =table_Y[i+384 - 110] >> 7;
  717. if (!isRgb)
  718. j <<= 3;
  719. ((uint8_t *)table_b)[i] = j;
  720. }
  721. break;
  722. case 1:
  723. table_start= table_1 = av_malloc (256*2 * sizeof (uint8_t));
  724. entry_size = sizeof (uint8_t);
  725. table_g = table_1;
  726. table_r = table_b = NULL;
  727. for (i = 0; i < 256+256; i++) {
  728. int j = table_Y[i + 384 - 110]>>7;
  729. ((uint8_t *)table_g)[i] = j;
  730. }
  731. break;
  732. default:
  733. table_start= NULL;
  734. av_log(c, AV_LOG_ERROR, "%ibpp not supported by yuv2rgb\n", bpp);
  735. //free mem?
  736. return -1;
  737. }
  738. for (i = 0; i < 256; i++) {
  739. c->table_rV[i] = (uint8_t *)table_r + entry_size * div_round (crv * (i-128), 76309);
  740. c->table_gU[i] = (uint8_t *)table_g + entry_size * div_round (cgu * (i-128), 76309);
  741. c->table_gV[i] = entry_size * div_round (cgv * (i-128), 76309);
  742. c->table_bU[i] = (uint8_t *)table_b + entry_size * div_round (cbu * (i-128), 76309);
  743. }
  744. av_free(c->yuvTable);
  745. c->yuvTable= table_start;
  746. return 0;
  747. }