You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1016 lines
32KB

  1. /*
  2. * Copyright (c) 2003 The FFmpeg Project.
  3. *
  4. * This file is part of FFmpeg.
  5. *
  6. * FFmpeg is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * FFmpeg is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with FFmpeg; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. *
  20. *
  21. * How to use this decoder:
  22. * SVQ3 data is transported within Apple Quicktime files. Quicktime files
  23. * have stsd atoms to describe media trak properties. A stsd atom for a
  24. * video trak contains 1 or more ImageDescription atoms. These atoms begin
  25. * with the 4-byte length of the atom followed by the codec fourcc. Some
  26. * decoders need information in this atom to operate correctly. Such
  27. * is the case with SVQ3. In order to get the best use out of this decoder,
  28. * the calling app must make the SVQ3 ImageDescription atom available
  29. * via the AVCodecContext's extradata[_size] field:
  30. *
  31. * AVCodecContext.extradata = pointer to ImageDescription, first characters
  32. * are expected to be 'S', 'V', 'Q', and '3', NOT the 4-byte atom length
  33. * AVCodecContext.extradata_size = size of ImageDescription atom memory
  34. * buffer (which will be the same as the ImageDescription atom size field
  35. * from the QT file, minus 4 bytes since the length is missing)
  36. *
  37. * You will know you have these parameters passed correctly when the decoder
  38. * correctly decodes this file:
  39. * ftp://ftp.mplayerhq.hu/MPlayer/samples/V-codecs/SVQ3/Vertical400kbit.sorenson3.mov
  40. *
  41. */
  42. /**
  43. * @file svq3.c
  44. * svq3 decoder.
  45. */
  46. #define FULLPEL_MODE 1
  47. #define HALFPEL_MODE 2
  48. #define THIRDPEL_MODE 3
  49. #define PREDICT_MODE 4
  50. /* dual scan (from some older h264 draft)
  51. o-->o-->o o
  52. | /|
  53. o o o / o
  54. | / | |/ |
  55. o o o o
  56. /
  57. o-->o-->o-->o
  58. */
  59. static const uint8_t svq3_scan[16]={
  60. 0+0*4, 1+0*4, 2+0*4, 2+1*4,
  61. 2+2*4, 3+0*4, 3+1*4, 3+2*4,
  62. 0+1*4, 0+2*4, 1+1*4, 1+2*4,
  63. 0+3*4, 1+3*4, 2+3*4, 3+3*4,
  64. };
  65. static const uint8_t svq3_pred_0[25][2] = {
  66. { 0, 0 },
  67. { 1, 0 }, { 0, 1 },
  68. { 0, 2 }, { 1, 1 }, { 2, 0 },
  69. { 3, 0 }, { 2, 1 }, { 1, 2 }, { 0, 3 },
  70. { 0, 4 }, { 1, 3 }, { 2, 2 }, { 3, 1 }, { 4, 0 },
  71. { 4, 1 }, { 3, 2 }, { 2, 3 }, { 1, 4 },
  72. { 2, 4 }, { 3, 3 }, { 4, 2 },
  73. { 4, 3 }, { 3, 4 },
  74. { 4, 4 }
  75. };
  76. static const int8_t svq3_pred_1[6][6][5] = {
  77. { { 2,-1,-1,-1,-1 }, { 2, 1,-1,-1,-1 }, { 1, 2,-1,-1,-1 },
  78. { 2, 1,-1,-1,-1 }, { 1, 2,-1,-1,-1 }, { 1, 2,-1,-1,-1 } },
  79. { { 0, 2,-1,-1,-1 }, { 0, 2, 1, 4, 3 }, { 0, 1, 2, 4, 3 },
  80. { 0, 2, 1, 4, 3 }, { 2, 0, 1, 3, 4 }, { 0, 4, 2, 1, 3 } },
  81. { { 2, 0,-1,-1,-1 }, { 2, 1, 0, 4, 3 }, { 1, 2, 4, 0, 3 },
  82. { 2, 1, 0, 4, 3 }, { 2, 1, 4, 3, 0 }, { 1, 2, 4, 0, 3 } },
  83. { { 2, 0,-1,-1,-1 }, { 2, 0, 1, 4, 3 }, { 1, 2, 0, 4, 3 },
  84. { 2, 1, 0, 4, 3 }, { 2, 1, 3, 4, 0 }, { 2, 4, 1, 0, 3 } },
  85. { { 0, 2,-1,-1,-1 }, { 0, 2, 1, 3, 4 }, { 1, 2, 3, 0, 4 },
  86. { 2, 0, 1, 3, 4 }, { 2, 1, 3, 0, 4 }, { 2, 0, 4, 3, 1 } },
  87. { { 0, 2,-1,-1,-1 }, { 0, 2, 4, 1, 3 }, { 1, 4, 2, 0, 3 },
  88. { 4, 2, 0, 1, 3 }, { 2, 0, 1, 4, 3 }, { 4, 2, 1, 0, 3 } },
  89. };
  90. static const struct { uint8_t run; uint8_t level; } svq3_dct_tables[2][16] = {
  91. { { 0, 0 }, { 0, 1 }, { 1, 1 }, { 2, 1 }, { 0, 2 }, { 3, 1 }, { 4, 1 }, { 5, 1 },
  92. { 0, 3 }, { 1, 2 }, { 2, 2 }, { 6, 1 }, { 7, 1 }, { 8, 1 }, { 9, 1 }, { 0, 4 } },
  93. { { 0, 0 }, { 0, 1 }, { 1, 1 }, { 0, 2 }, { 2, 1 }, { 0, 3 }, { 0, 4 }, { 0, 5 },
  94. { 3, 1 }, { 4, 1 }, { 1, 2 }, { 1, 3 }, { 0, 6 }, { 0, 7 }, { 0, 8 }, { 0, 9 } }
  95. };
  96. static const uint32_t svq3_dequant_coeff[32] = {
  97. 3881, 4351, 4890, 5481, 6154, 6914, 7761, 8718,
  98. 9781, 10987, 12339, 13828, 15523, 17435, 19561, 21873,
  99. 24552, 27656, 30847, 34870, 38807, 43747, 49103, 54683,
  100. 61694, 68745, 77615, 89113,100253,109366,126635,141533
  101. };
  102. static void svq3_luma_dc_dequant_idct_c(DCTELEM *block, int qp){
  103. const int qmul= svq3_dequant_coeff[qp];
  104. #define stride 16
  105. int i;
  106. int temp[16];
  107. static const int x_offset[4]={0, 1*stride, 4* stride, 5*stride};
  108. static const int y_offset[4]={0, 2*stride, 8* stride, 10*stride};
  109. for(i=0; i<4; i++){
  110. const int offset= y_offset[i];
  111. const int z0= 13*(block[offset+stride*0] + block[offset+stride*4]);
  112. const int z1= 13*(block[offset+stride*0] - block[offset+stride*4]);
  113. const int z2= 7* block[offset+stride*1] - 17*block[offset+stride*5];
  114. const int z3= 17* block[offset+stride*1] + 7*block[offset+stride*5];
  115. temp[4*i+0]= z0+z3;
  116. temp[4*i+1]= z1+z2;
  117. temp[4*i+2]= z1-z2;
  118. temp[4*i+3]= z0-z3;
  119. }
  120. for(i=0; i<4; i++){
  121. const int offset= x_offset[i];
  122. const int z0= 13*(temp[4*0+i] + temp[4*2+i]);
  123. const int z1= 13*(temp[4*0+i] - temp[4*2+i]);
  124. const int z2= 7* temp[4*1+i] - 17*temp[4*3+i];
  125. const int z3= 17* temp[4*1+i] + 7*temp[4*3+i];
  126. block[stride*0 +offset]= ((z0 + z3)*qmul + 0x80000)>>20;
  127. block[stride*2 +offset]= ((z1 + z2)*qmul + 0x80000)>>20;
  128. block[stride*8 +offset]= ((z1 - z2)*qmul + 0x80000)>>20;
  129. block[stride*10+offset]= ((z0 - z3)*qmul + 0x80000)>>20;
  130. }
  131. }
  132. #undef stride
  133. static void svq3_add_idct_c (uint8_t *dst, DCTELEM *block, int stride, int qp, int dc){
  134. const int qmul= svq3_dequant_coeff[qp];
  135. int i;
  136. uint8_t *cm = ff_cropTbl + MAX_NEG_CROP;
  137. if (dc) {
  138. dc = 13*13*((dc == 1) ? 1538*block[0] : ((qmul*(block[0] >> 3)) / 2));
  139. block[0] = 0;
  140. }
  141. for (i=0; i < 4; i++) {
  142. const int z0= 13*(block[0 + 4*i] + block[2 + 4*i]);
  143. const int z1= 13*(block[0 + 4*i] - block[2 + 4*i]);
  144. const int z2= 7* block[1 + 4*i] - 17*block[3 + 4*i];
  145. const int z3= 17* block[1 + 4*i] + 7*block[3 + 4*i];
  146. block[0 + 4*i]= z0 + z3;
  147. block[1 + 4*i]= z1 + z2;
  148. block[2 + 4*i]= z1 - z2;
  149. block[3 + 4*i]= z0 - z3;
  150. }
  151. for (i=0; i < 4; i++) {
  152. const int z0= 13*(block[i + 4*0] + block[i + 4*2]);
  153. const int z1= 13*(block[i + 4*0] - block[i + 4*2]);
  154. const int z2= 7* block[i + 4*1] - 17*block[i + 4*3];
  155. const int z3= 17* block[i + 4*1] + 7*block[i + 4*3];
  156. const int rr= (dc + 0x80000);
  157. dst[i + stride*0]= cm[ dst[i + stride*0] + (((z0 + z3)*qmul + rr) >> 20) ];
  158. dst[i + stride*1]= cm[ dst[i + stride*1] + (((z1 + z2)*qmul + rr) >> 20) ];
  159. dst[i + stride*2]= cm[ dst[i + stride*2] + (((z1 - z2)*qmul + rr) >> 20) ];
  160. dst[i + stride*3]= cm[ dst[i + stride*3] + (((z0 - z3)*qmul + rr) >> 20) ];
  161. }
  162. }
  163. static void pred4x4_down_left_svq3_c(uint8_t *src, uint8_t *topright, int stride){
  164. LOAD_TOP_EDGE
  165. LOAD_LEFT_EDGE
  166. const av_unused int unu0= t0;
  167. const av_unused int unu1= l0;
  168. src[0+0*stride]=(l1 + t1)>>1;
  169. src[1+0*stride]=
  170. src[0+1*stride]=(l2 + t2)>>1;
  171. src[2+0*stride]=
  172. src[1+1*stride]=
  173. src[0+2*stride]=
  174. src[3+0*stride]=
  175. src[2+1*stride]=
  176. src[1+2*stride]=
  177. src[0+3*stride]=
  178. src[3+1*stride]=
  179. src[2+2*stride]=
  180. src[1+3*stride]=
  181. src[3+2*stride]=
  182. src[2+3*stride]=
  183. src[3+3*stride]=(l3 + t3)>>1;
  184. }
  185. static void pred16x16_plane_svq3_c(uint8_t *src, int stride){
  186. pred16x16_plane_compat_c(src, stride, 1);
  187. }
  188. static inline int svq3_decode_block (GetBitContext *gb, DCTELEM *block,
  189. int index, const int type) {
  190. static const uint8_t *const scan_patterns[4] =
  191. { luma_dc_zigzag_scan, zigzag_scan, svq3_scan, chroma_dc_scan };
  192. int run, level, sign, vlc, limit;
  193. const int intra = (3 * type) >> 2;
  194. const uint8_t *const scan = scan_patterns[type];
  195. for (limit=(16 >> intra); index < 16; index=limit, limit+=8) {
  196. for (; (vlc = svq3_get_ue_golomb (gb)) != 0; index++) {
  197. if (vlc == INVALID_VLC)
  198. return -1;
  199. sign = (vlc & 0x1) - 1;
  200. vlc = (vlc + 1) >> 1;
  201. if (type == 3) {
  202. if (vlc < 3) {
  203. run = 0;
  204. level = vlc;
  205. } else if (vlc < 4) {
  206. run = 1;
  207. level = 1;
  208. } else {
  209. run = (vlc & 0x3);
  210. level = ((vlc + 9) >> 2) - run;
  211. }
  212. } else {
  213. if (vlc < 16) {
  214. run = svq3_dct_tables[intra][vlc].run;
  215. level = svq3_dct_tables[intra][vlc].level;
  216. } else if (intra) {
  217. run = (vlc & 0x7);
  218. level = (vlc >> 3) + ((run == 0) ? 8 : ((run < 2) ? 2 : ((run < 5) ? 0 : -1)));
  219. } else {
  220. run = (vlc & 0xF);
  221. level = (vlc >> 4) + ((run == 0) ? 4 : ((run < 3) ? 2 : ((run < 10) ? 1 : 0)));
  222. }
  223. }
  224. if ((index += run) >= limit)
  225. return -1;
  226. block[scan[index]] = (level ^ sign) - sign;
  227. }
  228. if (type != 2) {
  229. break;
  230. }
  231. }
  232. return 0;
  233. }
  234. static inline void svq3_mc_dir_part (MpegEncContext *s,
  235. int x, int y, int width, int height,
  236. int mx, int my, int dxy,
  237. int thirdpel, int dir, int avg) {
  238. const Picture *pic = (dir == 0) ? &s->last_picture : &s->next_picture;
  239. uint8_t *src, *dest;
  240. int i, emu = 0;
  241. int blocksize= 2 - (width>>3); //16->0, 8->1, 4->2
  242. mx += x;
  243. my += y;
  244. if (mx < 0 || mx >= (s->h_edge_pos - width - 1) ||
  245. my < 0 || my >= (s->v_edge_pos - height - 1)) {
  246. if ((s->flags & CODEC_FLAG_EMU_EDGE)) {
  247. emu = 1;
  248. }
  249. mx = av_clip (mx, -16, (s->h_edge_pos - width + 15));
  250. my = av_clip (my, -16, (s->v_edge_pos - height + 15));
  251. }
  252. /* form component predictions */
  253. dest = s->current_picture.data[0] + x + y*s->linesize;
  254. src = pic->data[0] + mx + my*s->linesize;
  255. if (emu) {
  256. ff_emulated_edge_mc (s->edge_emu_buffer, src, s->linesize, (width + 1), (height + 1),
  257. mx, my, s->h_edge_pos, s->v_edge_pos);
  258. src = s->edge_emu_buffer;
  259. }
  260. if(thirdpel)
  261. (avg ? s->dsp.avg_tpel_pixels_tab : s->dsp.put_tpel_pixels_tab)[dxy](dest, src, s->linesize, width, height);
  262. else
  263. (avg ? s->dsp.avg_pixels_tab : s->dsp.put_pixels_tab)[blocksize][dxy](dest, src, s->linesize, height);
  264. if (!(s->flags & CODEC_FLAG_GRAY)) {
  265. mx = (mx + (mx < (int) x)) >> 1;
  266. my = (my + (my < (int) y)) >> 1;
  267. width = (width >> 1);
  268. height = (height >> 1);
  269. blocksize++;
  270. for (i=1; i < 3; i++) {
  271. dest = s->current_picture.data[i] + (x >> 1) + (y >> 1)*s->uvlinesize;
  272. src = pic->data[i] + mx + my*s->uvlinesize;
  273. if (emu) {
  274. ff_emulated_edge_mc (s->edge_emu_buffer, src, s->uvlinesize, (width + 1), (height + 1),
  275. mx, my, (s->h_edge_pos >> 1), (s->v_edge_pos >> 1));
  276. src = s->edge_emu_buffer;
  277. }
  278. if(thirdpel)
  279. (avg ? s->dsp.avg_tpel_pixels_tab : s->dsp.put_tpel_pixels_tab)[dxy](dest, src, s->uvlinesize, width, height);
  280. else
  281. (avg ? s->dsp.avg_pixels_tab : s->dsp.put_pixels_tab)[blocksize][dxy](dest, src, s->uvlinesize, height);
  282. }
  283. }
  284. }
  285. static inline int svq3_mc_dir (H264Context *h, int size, int mode, int dir, int avg) {
  286. int i, j, k, mx, my, dx, dy, x, y;
  287. MpegEncContext *const s = (MpegEncContext *) h;
  288. const int part_width = ((size & 5) == 4) ? 4 : 16 >> (size & 1);
  289. const int part_height = 16 >> ((unsigned) (size + 1) / 3);
  290. const int extra_width = (mode == PREDICT_MODE) ? -16*6 : 0;
  291. const int h_edge_pos = 6*(s->h_edge_pos - part_width ) - extra_width;
  292. const int v_edge_pos = 6*(s->v_edge_pos - part_height) - extra_width;
  293. for (i=0; i < 16; i+=part_height) {
  294. for (j=0; j < 16; j+=part_width) {
  295. const int b_xy = (4*s->mb_x+(j>>2)) + (4*s->mb_y+(i>>2))*h->b_stride;
  296. int dxy;
  297. x = 16*s->mb_x + j;
  298. y = 16*s->mb_y + i;
  299. k = ((j>>2)&1) + ((i>>1)&2) + ((j>>1)&4) + (i&8);
  300. if (mode != PREDICT_MODE) {
  301. pred_motion (h, k, (part_width >> 2), dir, 1, &mx, &my);
  302. } else {
  303. mx = s->next_picture.motion_val[0][b_xy][0]<<1;
  304. my = s->next_picture.motion_val[0][b_xy][1]<<1;
  305. if (dir == 0) {
  306. mx = ((mx * h->frame_num_offset) / h->prev_frame_num_offset + 1)>>1;
  307. my = ((my * h->frame_num_offset) / h->prev_frame_num_offset + 1)>>1;
  308. } else {
  309. mx = ((mx * (h->frame_num_offset - h->prev_frame_num_offset)) / h->prev_frame_num_offset + 1)>>1;
  310. my = ((my * (h->frame_num_offset - h->prev_frame_num_offset)) / h->prev_frame_num_offset + 1)>>1;
  311. }
  312. }
  313. /* clip motion vector prediction to frame border */
  314. mx = av_clip (mx, extra_width - 6*x, h_edge_pos - 6*x);
  315. my = av_clip (my, extra_width - 6*y, v_edge_pos - 6*y);
  316. /* get (optional) motion vector differential */
  317. if (mode == PREDICT_MODE) {
  318. dx = dy = 0;
  319. } else {
  320. dy = svq3_get_se_golomb (&s->gb);
  321. dx = svq3_get_se_golomb (&s->gb);
  322. if (dx == INVALID_VLC || dy == INVALID_VLC) {
  323. av_log(h->s.avctx, AV_LOG_ERROR, "invalid MV vlc\n");
  324. return -1;
  325. }
  326. }
  327. /* compute motion vector */
  328. if (mode == THIRDPEL_MODE) {
  329. int fx, fy;
  330. mx = ((mx + 1)>>1) + dx;
  331. my = ((my + 1)>>1) + dy;
  332. fx= ((unsigned)(mx + 0x3000))/3 - 0x1000;
  333. fy= ((unsigned)(my + 0x3000))/3 - 0x1000;
  334. dxy= (mx - 3*fx) + 4*(my - 3*fy);
  335. svq3_mc_dir_part (s, x, y, part_width, part_height, fx, fy, dxy, 1, dir, avg);
  336. mx += mx;
  337. my += my;
  338. } else if (mode == HALFPEL_MODE || mode == PREDICT_MODE) {
  339. mx = ((unsigned)(mx + 1 + 0x3000))/3 + dx - 0x1000;
  340. my = ((unsigned)(my + 1 + 0x3000))/3 + dy - 0x1000;
  341. dxy= (mx&1) + 2*(my&1);
  342. svq3_mc_dir_part (s, x, y, part_width, part_height, mx>>1, my>>1, dxy, 0, dir, avg);
  343. mx *= 3;
  344. my *= 3;
  345. } else {
  346. mx = ((unsigned)(mx + 3 + 0x6000))/6 + dx - 0x1000;
  347. my = ((unsigned)(my + 3 + 0x6000))/6 + dy - 0x1000;
  348. svq3_mc_dir_part (s, x, y, part_width, part_height, mx, my, 0, 0, dir, avg);
  349. mx *= 6;
  350. my *= 6;
  351. }
  352. /* update mv_cache */
  353. if (mode != PREDICT_MODE) {
  354. int32_t mv = pack16to32(mx,my);
  355. if (part_height == 8 && i < 8) {
  356. *(int32_t *) h->mv_cache[dir][scan8[k] + 1*8] = mv;
  357. if (part_width == 8 && j < 8) {
  358. *(int32_t *) h->mv_cache[dir][scan8[k] + 1 + 1*8] = mv;
  359. }
  360. }
  361. if (part_width == 8 && j < 8) {
  362. *(int32_t *) h->mv_cache[dir][scan8[k] + 1] = mv;
  363. }
  364. if (part_width == 4 || part_height == 4) {
  365. *(int32_t *) h->mv_cache[dir][scan8[k]] = mv;
  366. }
  367. }
  368. /* write back motion vectors */
  369. fill_rectangle(s->current_picture.motion_val[dir][b_xy], part_width>>2, part_height>>2, h->b_stride, pack16to32(mx,my), 4);
  370. }
  371. }
  372. return 0;
  373. }
  374. static int svq3_decode_mb (H264Context *h, unsigned int mb_type) {
  375. int i, j, k, m, dir, mode;
  376. int cbp = 0;
  377. uint32_t vlc;
  378. int8_t *top, *left;
  379. MpegEncContext *const s = (MpegEncContext *) h;
  380. const int mb_xy = s->mb_x + s->mb_y*s->mb_stride;
  381. const int b_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride;
  382. h->top_samples_available = (s->mb_y == 0) ? 0x33FF : 0xFFFF;
  383. h->left_samples_available = (s->mb_x == 0) ? 0x5F5F : 0xFFFF;
  384. h->topright_samples_available = 0xFFFF;
  385. if (mb_type == 0) { /* SKIP */
  386. if (s->pict_type == P_TYPE || s->next_picture.mb_type[mb_xy] == -1) {
  387. svq3_mc_dir_part (s, 16*s->mb_x, 16*s->mb_y, 16, 16, 0, 0, 0, 0, 0, 0);
  388. if (s->pict_type == B_TYPE) {
  389. svq3_mc_dir_part (s, 16*s->mb_x, 16*s->mb_y, 16, 16, 0, 0, 0, 0, 1, 1);
  390. }
  391. mb_type = MB_TYPE_SKIP;
  392. } else {
  393. mb_type= FFMIN(s->next_picture.mb_type[mb_xy], 6);
  394. if(svq3_mc_dir (h, mb_type, PREDICT_MODE, 0, 0) < 0)
  395. return -1;
  396. if(svq3_mc_dir (h, mb_type, PREDICT_MODE, 1, 1) < 0)
  397. return -1;
  398. mb_type = MB_TYPE_16x16;
  399. }
  400. } else if (mb_type < 8) { /* INTER */
  401. if (h->thirdpel_flag && h->halfpel_flag == !get_bits (&s->gb, 1)) {
  402. mode = THIRDPEL_MODE;
  403. } else if (h->halfpel_flag && h->thirdpel_flag == !get_bits (&s->gb, 1)) {
  404. mode = HALFPEL_MODE;
  405. } else {
  406. mode = FULLPEL_MODE;
  407. }
  408. /* fill caches */
  409. /* note ref_cache should contain here:
  410. ????????
  411. ???11111
  412. N??11111
  413. N??11111
  414. N??11111
  415. */
  416. for (m=0; m < 2; m++) {
  417. if (s->mb_x > 0 && h->intra4x4_pred_mode[mb_xy - 1][0] != -1) {
  418. for (i=0; i < 4; i++) {
  419. *(uint32_t *) h->mv_cache[m][scan8[0] - 1 + i*8] = *(uint32_t *) s->current_picture.motion_val[m][b_xy - 1 + i*h->b_stride];
  420. }
  421. } else {
  422. for (i=0; i < 4; i++) {
  423. *(uint32_t *) h->mv_cache[m][scan8[0] - 1 + i*8] = 0;
  424. }
  425. }
  426. if (s->mb_y > 0) {
  427. memcpy (h->mv_cache[m][scan8[0] - 1*8], s->current_picture.motion_val[m][b_xy - h->b_stride], 4*2*sizeof(int16_t));
  428. memset (&h->ref_cache[m][scan8[0] - 1*8], (h->intra4x4_pred_mode[mb_xy - s->mb_stride][4] == -1) ? PART_NOT_AVAILABLE : 1, 4);
  429. if (s->mb_x < (s->mb_width - 1)) {
  430. *(uint32_t *) h->mv_cache[m][scan8[0] + 4 - 1*8] = *(uint32_t *) s->current_picture.motion_val[m][b_xy - h->b_stride + 4];
  431. h->ref_cache[m][scan8[0] + 4 - 1*8] =
  432. (h->intra4x4_pred_mode[mb_xy - s->mb_stride + 1][0] == -1 ||
  433. h->intra4x4_pred_mode[mb_xy - s->mb_stride][4] == -1) ? PART_NOT_AVAILABLE : 1;
  434. }else
  435. h->ref_cache[m][scan8[0] + 4 - 1*8] = PART_NOT_AVAILABLE;
  436. if (s->mb_x > 0) {
  437. *(uint32_t *) h->mv_cache[m][scan8[0] - 1 - 1*8] = *(uint32_t *) s->current_picture.motion_val[m][b_xy - h->b_stride - 1];
  438. h->ref_cache[m][scan8[0] - 1 - 1*8] = (h->intra4x4_pred_mode[mb_xy - s->mb_stride - 1][3] == -1) ? PART_NOT_AVAILABLE : 1;
  439. }else
  440. h->ref_cache[m][scan8[0] - 1 - 1*8] = PART_NOT_AVAILABLE;
  441. }else
  442. memset (&h->ref_cache[m][scan8[0] - 1*8 - 1], PART_NOT_AVAILABLE, 8);
  443. if (s->pict_type != B_TYPE)
  444. break;
  445. }
  446. /* decode motion vector(s) and form prediction(s) */
  447. if (s->pict_type == P_TYPE) {
  448. if(svq3_mc_dir (h, (mb_type - 1), mode, 0, 0) < 0)
  449. return -1;
  450. } else { /* B_TYPE */
  451. if (mb_type != 2) {
  452. if(svq3_mc_dir (h, 0, mode, 0, 0) < 0)
  453. return -1;
  454. } else {
  455. for (i=0; i < 4; i++) {
  456. memset (s->current_picture.motion_val[0][b_xy + i*h->b_stride], 0, 4*2*sizeof(int16_t));
  457. }
  458. }
  459. if (mb_type != 1) {
  460. if(svq3_mc_dir (h, 0, mode, 1, (mb_type == 3)) < 0)
  461. return -1;
  462. } else {
  463. for (i=0; i < 4; i++) {
  464. memset (s->current_picture.motion_val[1][b_xy + i*h->b_stride], 0, 4*2*sizeof(int16_t));
  465. }
  466. }
  467. }
  468. mb_type = MB_TYPE_16x16;
  469. } else if (mb_type == 8 || mb_type == 33) { /* INTRA4x4 */
  470. memset (h->intra4x4_pred_mode_cache, -1, 8*5*sizeof(int8_t));
  471. if (mb_type == 8) {
  472. if (s->mb_x > 0) {
  473. for (i=0; i < 4; i++) {
  474. h->intra4x4_pred_mode_cache[scan8[0] - 1 + i*8] = h->intra4x4_pred_mode[mb_xy - 1][i];
  475. }
  476. if (h->intra4x4_pred_mode_cache[scan8[0] - 1] == -1) {
  477. h->left_samples_available = 0x5F5F;
  478. }
  479. }
  480. if (s->mb_y > 0) {
  481. h->intra4x4_pred_mode_cache[4+8*0] = h->intra4x4_pred_mode[mb_xy - s->mb_stride][4];
  482. h->intra4x4_pred_mode_cache[5+8*0] = h->intra4x4_pred_mode[mb_xy - s->mb_stride][5];
  483. h->intra4x4_pred_mode_cache[6+8*0] = h->intra4x4_pred_mode[mb_xy - s->mb_stride][6];
  484. h->intra4x4_pred_mode_cache[7+8*0] = h->intra4x4_pred_mode[mb_xy - s->mb_stride][3];
  485. if (h->intra4x4_pred_mode_cache[4+8*0] == -1) {
  486. h->top_samples_available = 0x33FF;
  487. }
  488. }
  489. /* decode prediction codes for luma blocks */
  490. for (i=0; i < 16; i+=2) {
  491. vlc = svq3_get_ue_golomb (&s->gb);
  492. if (vlc >= 25){
  493. av_log(h->s.avctx, AV_LOG_ERROR, "luma prediction:%d\n", vlc);
  494. return -1;
  495. }
  496. left = &h->intra4x4_pred_mode_cache[scan8[i] - 1];
  497. top = &h->intra4x4_pred_mode_cache[scan8[i] - 8];
  498. left[1] = svq3_pred_1[top[0] + 1][left[0] + 1][svq3_pred_0[vlc][0]];
  499. left[2] = svq3_pred_1[top[1] + 1][left[1] + 1][svq3_pred_0[vlc][1]];
  500. if (left[1] == -1 || left[2] == -1){
  501. av_log(h->s.avctx, AV_LOG_ERROR, "weird prediction\n");
  502. return -1;
  503. }
  504. }
  505. } else { /* mb_type == 33, DC_128_PRED block type */
  506. for (i=0; i < 4; i++) {
  507. memset (&h->intra4x4_pred_mode_cache[scan8[0] + 8*i], DC_PRED, 4);
  508. }
  509. }
  510. write_back_intra_pred_mode (h);
  511. if (mb_type == 8) {
  512. check_intra4x4_pred_mode (h);
  513. h->top_samples_available = (s->mb_y == 0) ? 0x33FF : 0xFFFF;
  514. h->left_samples_available = (s->mb_x == 0) ? 0x5F5F : 0xFFFF;
  515. } else {
  516. for (i=0; i < 4; i++) {
  517. memset (&h->intra4x4_pred_mode_cache[scan8[0] + 8*i], DC_128_PRED, 4);
  518. }
  519. h->top_samples_available = 0x33FF;
  520. h->left_samples_available = 0x5F5F;
  521. }
  522. mb_type = MB_TYPE_INTRA4x4;
  523. } else { /* INTRA16x16 */
  524. dir = i_mb_type_info[mb_type - 8].pred_mode;
  525. dir = (dir >> 1) ^ 3*(dir & 1) ^ 1;
  526. if ((h->intra16x16_pred_mode = check_intra_pred_mode (h, dir)) == -1){
  527. av_log(h->s.avctx, AV_LOG_ERROR, "check_intra_pred_mode = -1\n");
  528. return -1;
  529. }
  530. cbp = i_mb_type_info[mb_type - 8].cbp;
  531. mb_type = MB_TYPE_INTRA16x16;
  532. }
  533. if (!IS_INTER(mb_type) && s->pict_type != I_TYPE) {
  534. for (i=0; i < 4; i++) {
  535. memset (s->current_picture.motion_val[0][b_xy + i*h->b_stride], 0, 4*2*sizeof(int16_t));
  536. }
  537. if (s->pict_type == B_TYPE) {
  538. for (i=0; i < 4; i++) {
  539. memset (s->current_picture.motion_val[1][b_xy + i*h->b_stride], 0, 4*2*sizeof(int16_t));
  540. }
  541. }
  542. }
  543. if (!IS_INTRA4x4(mb_type)) {
  544. memset (h->intra4x4_pred_mode[mb_xy], DC_PRED, 8);
  545. }
  546. if (!IS_SKIP(mb_type) || s->pict_type == B_TYPE) {
  547. memset (h->non_zero_count_cache + 8, 0, 4*9*sizeof(uint8_t));
  548. s->dsp.clear_blocks(h->mb);
  549. }
  550. if (!IS_INTRA16x16(mb_type) && (!IS_SKIP(mb_type) || s->pict_type == B_TYPE)) {
  551. if ((vlc = svq3_get_ue_golomb (&s->gb)) >= 48){
  552. av_log(h->s.avctx, AV_LOG_ERROR, "cbp_vlc=%d\n", vlc);
  553. return -1;
  554. }
  555. cbp = IS_INTRA(mb_type) ? golomb_to_intra4x4_cbp[vlc] : golomb_to_inter_cbp[vlc];
  556. }
  557. if (IS_INTRA16x16(mb_type) || (s->pict_type != I_TYPE && s->adaptive_quant && cbp)) {
  558. s->qscale += svq3_get_se_golomb (&s->gb);
  559. if (s->qscale > 31){
  560. av_log(h->s.avctx, AV_LOG_ERROR, "qscale:%d\n", s->qscale);
  561. return -1;
  562. }
  563. }
  564. if (IS_INTRA16x16(mb_type)) {
  565. if (svq3_decode_block (&s->gb, h->mb, 0, 0)){
  566. av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding intra luma dc\n");
  567. return -1;
  568. }
  569. }
  570. if (cbp) {
  571. const int index = IS_INTRA16x16(mb_type) ? 1 : 0;
  572. const int type = ((s->qscale < 24 && IS_INTRA4x4(mb_type)) ? 2 : 1);
  573. for (i=0; i < 4; i++) {
  574. if ((cbp & (1 << i))) {
  575. for (j=0; j < 4; j++) {
  576. k = index ? ((j&1) + 2*(i&1) + 2*(j&2) + 4*(i&2)) : (4*i + j);
  577. h->non_zero_count_cache[ scan8[k] ] = 1;
  578. if (svq3_decode_block (&s->gb, &h->mb[16*k], index, type)){
  579. av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding block\n");
  580. return -1;
  581. }
  582. }
  583. }
  584. }
  585. if ((cbp & 0x30)) {
  586. for (i=0; i < 2; ++i) {
  587. if (svq3_decode_block (&s->gb, &h->mb[16*(16 + 4*i)], 0, 3)){
  588. av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding chroma dc block\n");
  589. return -1;
  590. }
  591. }
  592. if ((cbp & 0x20)) {
  593. for (i=0; i < 8; i++) {
  594. h->non_zero_count_cache[ scan8[16+i] ] = 1;
  595. if (svq3_decode_block (&s->gb, &h->mb[16*(16 + i)], 1, 1)){
  596. av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding chroma ac block\n");
  597. return -1;
  598. }
  599. }
  600. }
  601. }
  602. }
  603. s->current_picture.mb_type[mb_xy] = mb_type;
  604. if (IS_INTRA(mb_type)) {
  605. h->chroma_pred_mode = check_intra_pred_mode (h, DC_PRED8x8);
  606. }
  607. return 0;
  608. }
  609. static int svq3_decode_slice_header (H264Context *h) {
  610. MpegEncContext *const s = (MpegEncContext *) h;
  611. const int mb_xy = s->mb_x + s->mb_y*s->mb_stride;
  612. int i, header;
  613. header = get_bits (&s->gb, 8);
  614. if (((header & 0x9F) != 1 && (header & 0x9F) != 2) || (header & 0x60) == 0) {
  615. /* TODO: what? */
  616. av_log(h->s.avctx, AV_LOG_ERROR, "unsupported slice header (%02X)\n", header);
  617. return -1;
  618. } else {
  619. int length = (header >> 5) & 3;
  620. h->next_slice_index = get_bits_count(&s->gb) + 8*show_bits (&s->gb, 8*length) + 8*length;
  621. if (h->next_slice_index > s->gb.size_in_bits){
  622. av_log(h->s.avctx, AV_LOG_ERROR, "slice after bitstream end\n");
  623. return -1;
  624. }
  625. s->gb.size_in_bits = h->next_slice_index - 8*(length - 1);
  626. skip_bits(&s->gb, 8);
  627. if (length > 0) {
  628. memcpy ((uint8_t *) &s->gb.buffer[get_bits_count(&s->gb) >> 3],
  629. &s->gb.buffer[s->gb.size_in_bits >> 3], (length - 1));
  630. }
  631. }
  632. if ((i = svq3_get_ue_golomb (&s->gb)) == INVALID_VLC || i >= 3){
  633. av_log(h->s.avctx, AV_LOG_ERROR, "illegal slice type %d \n", i);
  634. return -1;
  635. }
  636. h->slice_type = golomb_to_pict_type[i];
  637. if ((header & 0x9F) == 2) {
  638. i = (s->mb_num < 64) ? 6 : (1 + av_log2 (s->mb_num - 1));
  639. s->mb_skip_run = get_bits (&s->gb, i) - (s->mb_x + (s->mb_y * s->mb_width));
  640. } else {
  641. get_bits1 (&s->gb);
  642. s->mb_skip_run = 0;
  643. }
  644. h->slice_num = get_bits (&s->gb, 8);
  645. s->qscale = get_bits (&s->gb, 5);
  646. s->adaptive_quant = get_bits1 (&s->gb);
  647. /* unknown fields */
  648. get_bits1 (&s->gb);
  649. if (h->unknown_svq3_flag) {
  650. get_bits1 (&s->gb);
  651. }
  652. get_bits1 (&s->gb);
  653. get_bits (&s->gb, 2);
  654. while (get_bits1 (&s->gb)) {
  655. get_bits (&s->gb, 8);
  656. }
  657. /* reset intra predictors and invalidate motion vector references */
  658. if (s->mb_x > 0) {
  659. memset (h->intra4x4_pred_mode[mb_xy - 1], -1, 4*sizeof(int8_t));
  660. memset (h->intra4x4_pred_mode[mb_xy - s->mb_x], -1, 8*sizeof(int8_t)*s->mb_x);
  661. }
  662. if (s->mb_y > 0) {
  663. memset (h->intra4x4_pred_mode[mb_xy - s->mb_stride], -1, 8*sizeof(int8_t)*(s->mb_width - s->mb_x));
  664. if (s->mb_x > 0) {
  665. h->intra4x4_pred_mode[mb_xy - s->mb_stride - 1][3] = -1;
  666. }
  667. }
  668. return 0;
  669. }
  670. static int svq3_decode_frame (AVCodecContext *avctx,
  671. void *data, int *data_size,
  672. uint8_t *buf, int buf_size) {
  673. MpegEncContext *const s = avctx->priv_data;
  674. H264Context *const h = avctx->priv_data;
  675. int m, mb_type;
  676. unsigned char *extradata;
  677. unsigned int size;
  678. s->flags = avctx->flags;
  679. s->flags2 = avctx->flags2;
  680. s->unrestricted_mv = 1;
  681. if (!s->context_initialized) {
  682. s->width = avctx->width;
  683. s->height = avctx->height;
  684. h->pred4x4[DIAG_DOWN_LEFT_PRED] = pred4x4_down_left_svq3_c;
  685. h->pred16x16[PLANE_PRED8x8] = pred16x16_plane_svq3_c;
  686. h->halfpel_flag = 1;
  687. h->thirdpel_flag = 1;
  688. h->unknown_svq3_flag = 0;
  689. h->chroma_qp = 4;
  690. if (MPV_common_init (s) < 0)
  691. return -1;
  692. h->b_stride = 4*s->mb_width;
  693. alloc_tables (h);
  694. /* prowl for the "SEQH" marker in the extradata */
  695. extradata = (unsigned char *)avctx->extradata;
  696. for (m = 0; m < avctx->extradata_size; m++) {
  697. if (!memcmp (extradata, "SEQH", 4))
  698. break;
  699. extradata++;
  700. }
  701. /* if a match was found, parse the extra data */
  702. if (extradata && !memcmp (extradata, "SEQH", 4)) {
  703. GetBitContext gb;
  704. size = AV_RB32(&extradata[4]);
  705. init_get_bits (&gb, extradata + 8, size*8);
  706. /* 'frame size code' and optional 'width, height' */
  707. if (get_bits (&gb, 3) == 7) {
  708. get_bits (&gb, 12);
  709. get_bits (&gb, 12);
  710. }
  711. h->halfpel_flag = get_bits1 (&gb);
  712. h->thirdpel_flag = get_bits1 (&gb);
  713. /* unknown fields */
  714. get_bits1 (&gb);
  715. get_bits1 (&gb);
  716. get_bits1 (&gb);
  717. get_bits1 (&gb);
  718. s->low_delay = get_bits1 (&gb);
  719. /* unknown field */
  720. get_bits1 (&gb);
  721. while (get_bits1 (&gb)) {
  722. get_bits (&gb, 8);
  723. }
  724. h->unknown_svq3_flag = get_bits1 (&gb);
  725. avctx->has_b_frames = !s->low_delay;
  726. }
  727. }
  728. /* special case for last picture */
  729. if (buf_size == 0) {
  730. if (s->next_picture_ptr && !s->low_delay) {
  731. *(AVFrame *) data = *(AVFrame *) &s->next_picture;
  732. *data_size = sizeof(AVFrame);
  733. }
  734. return 0;
  735. }
  736. init_get_bits (&s->gb, buf, 8*buf_size);
  737. s->mb_x = s->mb_y = 0;
  738. if (svq3_decode_slice_header (h))
  739. return -1;
  740. s->pict_type = h->slice_type;
  741. s->picture_number = h->slice_num;
  742. if(avctx->debug&FF_DEBUG_PICT_INFO){
  743. av_log(h->s.avctx, AV_LOG_DEBUG, "%c hpel:%d, tpel:%d aqp:%d qp:%d\n",
  744. av_get_pict_type_char(s->pict_type), h->halfpel_flag, h->thirdpel_flag,
  745. s->adaptive_quant, s->qscale
  746. );
  747. }
  748. /* for hurry_up==5 */
  749. s->current_picture.pict_type = s->pict_type;
  750. s->current_picture.key_frame = (s->pict_type == I_TYPE);
  751. /* Skip B-frames if we do not have reference frames. */
  752. if (s->last_picture_ptr == NULL && s->pict_type == B_TYPE) return 0;
  753. /* Skip B-frames if we are in a hurry. */
  754. if (avctx->hurry_up && s->pict_type == B_TYPE) return 0;
  755. /* Skip everything if we are in a hurry >= 5. */
  756. if (avctx->hurry_up >= 5) return 0;
  757. if( (avctx->skip_frame >= AVDISCARD_NONREF && s->pict_type==B_TYPE)
  758. ||(avctx->skip_frame >= AVDISCARD_NONKEY && s->pict_type!=I_TYPE)
  759. || avctx->skip_frame >= AVDISCARD_ALL)
  760. return 0;
  761. if (s->next_p_frame_damaged) {
  762. if (s->pict_type == B_TYPE)
  763. return 0;
  764. else
  765. s->next_p_frame_damaged = 0;
  766. }
  767. if (frame_start (h) < 0)
  768. return -1;
  769. if (s->pict_type == B_TYPE) {
  770. h->frame_num_offset = (h->slice_num - h->prev_frame_num);
  771. if (h->frame_num_offset < 0) {
  772. h->frame_num_offset += 256;
  773. }
  774. if (h->frame_num_offset == 0 || h->frame_num_offset >= h->prev_frame_num_offset) {
  775. av_log(h->s.avctx, AV_LOG_ERROR, "error in B-frame picture id\n");
  776. return -1;
  777. }
  778. } else {
  779. h->prev_frame_num = h->frame_num;
  780. h->frame_num = h->slice_num;
  781. h->prev_frame_num_offset = (h->frame_num - h->prev_frame_num);
  782. if (h->prev_frame_num_offset < 0) {
  783. h->prev_frame_num_offset += 256;
  784. }
  785. }
  786. for(m=0; m<2; m++){
  787. int i;
  788. for(i=0; i<4; i++){
  789. int j;
  790. for(j=-1; j<4; j++)
  791. h->ref_cache[m][scan8[0] + 8*i + j]= 1;
  792. if(i<3)
  793. h->ref_cache[m][scan8[0] + 8*i + j]= PART_NOT_AVAILABLE;
  794. }
  795. }
  796. for (s->mb_y=0; s->mb_y < s->mb_height; s->mb_y++) {
  797. for (s->mb_x=0; s->mb_x < s->mb_width; s->mb_x++) {
  798. if ( (get_bits_count(&s->gb) + 7) >= s->gb.size_in_bits &&
  799. ((get_bits_count(&s->gb) & 7) == 0 || show_bits (&s->gb, (-get_bits_count(&s->gb) & 7)) == 0)) {
  800. skip_bits(&s->gb, h->next_slice_index - get_bits_count(&s->gb));
  801. s->gb.size_in_bits = 8*buf_size;
  802. if (svq3_decode_slice_header (h))
  803. return -1;
  804. /* TODO: support s->mb_skip_run */
  805. }
  806. mb_type = svq3_get_ue_golomb (&s->gb);
  807. if (s->pict_type == I_TYPE) {
  808. mb_type += 8;
  809. } else if (s->pict_type == B_TYPE && mb_type >= 4) {
  810. mb_type += 4;
  811. }
  812. if (mb_type > 33 || svq3_decode_mb (h, mb_type)) {
  813. av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding MB %d %d\n", s->mb_x, s->mb_y);
  814. return -1;
  815. }
  816. if (mb_type != 0) {
  817. hl_decode_mb (h);
  818. }
  819. if (s->pict_type != B_TYPE && !s->low_delay) {
  820. s->current_picture.mb_type[s->mb_x + s->mb_y*s->mb_stride] =
  821. (s->pict_type == P_TYPE && mb_type < 8) ? (mb_type - 1) : -1;
  822. }
  823. }
  824. ff_draw_horiz_band(s, 16*s->mb_y, 16);
  825. }
  826. MPV_frame_end(s);
  827. if (s->pict_type == B_TYPE || s->low_delay) {
  828. *(AVFrame *) data = *(AVFrame *) &s->current_picture;
  829. } else {
  830. *(AVFrame *) data = *(AVFrame *) &s->last_picture;
  831. }
  832. avctx->frame_number = s->picture_number - 1;
  833. /* Do not output the last pic after seeking. */
  834. if (s->last_picture_ptr || s->low_delay) {
  835. *data_size = sizeof(AVFrame);
  836. }
  837. return buf_size;
  838. }
  839. AVCodec svq3_decoder = {
  840. "svq3",
  841. CODEC_TYPE_VIDEO,
  842. CODEC_ID_SVQ3,
  843. sizeof(H264Context),
  844. decode_init,
  845. NULL,
  846. decode_end,
  847. svq3_decode_frame,
  848. CODEC_CAP_DRAW_HORIZ_BAND | CODEC_CAP_DR1 | CODEC_CAP_DELAY,
  849. };