You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1674 lines
56KB

  1. /*
  2. * Motion estimation
  3. * Copyright (c) 2000,2001 Fabrice Bellard.
  4. * Copyright (c) 2002-2003 Michael Niedermayer
  5. *
  6. *
  7. * This library is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2 of the License, or (at your option) any later version.
  11. *
  12. * This library is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with this library; if not, write to the Free Software
  19. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  20. *
  21. * new Motion Estimation (X1/EPZS) by Michael Niedermayer <michaelni@gmx.at>
  22. */
  23. /**
  24. * @file motion_est.c
  25. * Motion estimation.
  26. */
  27. #include <stdlib.h>
  28. #include <stdio.h>
  29. #include "avcodec.h"
  30. #include "dsputil.h"
  31. #include "mpegvideo.h"
  32. //#undef NDEBUG
  33. //#include <assert.h>
  34. #define SQ(a) ((a)*(a))
  35. #define P_LEFT P[1]
  36. #define P_TOP P[2]
  37. #define P_TOPRIGHT P[3]
  38. #define P_MEDIAN P[4]
  39. #define P_MV1 P[9]
  40. static inline int sad_hpel_motion_search(MpegEncContext * s,
  41. int *mx_ptr, int *my_ptr, int dmin,
  42. int xmin, int ymin, int xmax, int ymax,
  43. int pred_x, int pred_y, Picture *picture,
  44. int n, int size, uint8_t * const mv_penalty);
  45. static inline int update_map_generation(MpegEncContext * s)
  46. {
  47. s->me.map_generation+= 1<<(ME_MAP_MV_BITS*2);
  48. if(s->me.map_generation==0){
  49. s->me.map_generation= 1<<(ME_MAP_MV_BITS*2);
  50. memset(s->me.map, 0, sizeof(uint32_t)*ME_MAP_SIZE);
  51. }
  52. return s->me.map_generation;
  53. }
  54. /* shape adaptive search stuff */
  55. typedef struct Minima{
  56. int height;
  57. int x, y;
  58. int checked;
  59. }Minima;
  60. static int minima_cmp(const void *a, const void *b){
  61. const Minima *da = (const Minima *) a;
  62. const Minima *db = (const Minima *) b;
  63. return da->height - db->height;
  64. }
  65. /* SIMPLE */
  66. #define RENAME(a) simple_ ## a
  67. #define CMP(d, x, y, size)\
  68. d = cmp(s, src_y, (ref_y) + (x) + (y)*(stride), stride);
  69. #define CMP_HPEL(d, dx, dy, x, y, size)\
  70. {\
  71. const int dxy= (dx) + 2*(dy);\
  72. hpel_put[0][dxy](s->me.scratchpad, (ref_y) + (x) + (y)*(stride), stride, (16>>size));\
  73. d = cmp_sub(s, s->me.scratchpad, src_y, stride);\
  74. }
  75. #define CMP_QPEL(d, dx, dy, x, y, size)\
  76. {\
  77. const int dxy= (dx) + 4*(dy);\
  78. qpel_put[0][dxy](s->me.scratchpad, (ref_y) + (x) + (y)*(stride), stride);\
  79. d = cmp_sub(s, s->me.scratchpad, src_y, stride);\
  80. }
  81. #include "motion_est_template.c"
  82. #undef RENAME
  83. #undef CMP
  84. #undef CMP_HPEL
  85. #undef CMP_QPEL
  86. #undef INIT
  87. /* SIMPLE CHROMA */
  88. #define RENAME(a) simple_chroma_ ## a
  89. #define CMP(d, x, y, size)\
  90. d = cmp(s, src_y, (ref_y) + (x) + (y)*(stride), stride);\
  91. if(chroma_cmp){\
  92. int dxy= ((x)&1) + 2*((y)&1);\
  93. int c= ((x)>>1) + ((y)>>1)*uvstride;\
  94. \
  95. chroma_hpel_put[0][dxy](s->me.scratchpad, ref_u + c, uvstride, 8);\
  96. d += chroma_cmp(s, s->me.scratchpad, src_u, uvstride);\
  97. chroma_hpel_put[0][dxy](s->me.scratchpad, ref_v + c, uvstride, 8);\
  98. d += chroma_cmp(s, s->me.scratchpad, src_v, uvstride);\
  99. }
  100. #define CMP_HPEL(d, dx, dy, x, y, size)\
  101. {\
  102. const int dxy= (dx) + 2*(dy);\
  103. hpel_put[0][dxy](s->me.scratchpad, (ref_y) + (x) + (y)*(stride), stride, (16>>size));\
  104. d = cmp_sub(s, s->me.scratchpad, src_y, stride);\
  105. if(chroma_cmp_sub){\
  106. int cxy= (dxy) | ((x)&1) | (2*((y)&1));\
  107. int c= ((x)>>1) + ((y)>>1)*uvstride;\
  108. chroma_hpel_put[0][cxy](s->me.scratchpad, ref_u + c, uvstride, 8);\
  109. d += chroma_cmp_sub(s, s->me.scratchpad, src_u, uvstride);\
  110. chroma_hpel_put[0][cxy](s->me.scratchpad, ref_v + c, uvstride, 8);\
  111. d += chroma_cmp_sub(s, s->me.scratchpad, src_v, uvstride);\
  112. }\
  113. }
  114. #define CMP_QPEL(d, dx, dy, x, y, size)\
  115. {\
  116. const int dxy= (dx) + 4*(dy);\
  117. qpel_put[0][dxy](s->me.scratchpad, (ref_y) + (x) + (y)*(stride), stride);\
  118. d = cmp_sub(s, s->me.scratchpad, src_y, stride);\
  119. if(chroma_cmp_sub){\
  120. int cxy, c;\
  121. int cx= (4*(x) + (dx))/2;\
  122. int cy= (4*(y) + (dy))/2;\
  123. cx= (cx>>1)|(cx&1);\
  124. cy= (cy>>1)|(cy&1);\
  125. cxy= (cx&1) + 2*(cy&1);\
  126. c= ((cx)>>1) + ((cy)>>1)*uvstride;\
  127. chroma_hpel_put[0][cxy](s->me.scratchpad, ref_u + c, uvstride, 8);\
  128. d += chroma_cmp_sub(s, s->me.scratchpad, src_u, uvstride);\
  129. chroma_hpel_put[0][cxy](s->me.scratchpad, ref_v + c, uvstride, 8);\
  130. d += chroma_cmp_sub(s, s->me.scratchpad, src_v, uvstride);\
  131. }\
  132. }
  133. #include "motion_est_template.c"
  134. #undef RENAME
  135. #undef CMP
  136. #undef CMP_HPEL
  137. #undef CMP_QPEL
  138. #undef INIT
  139. /* SIMPLE DIRECT HPEL */
  140. #define RENAME(a) simple_direct_hpel_ ## a
  141. //FIXME precalc divisions stuff
  142. #define CMP_DIRECT(d, dx, dy, x, y, size, cmp_func)\
  143. if((x) >= xmin && 2*(x) + (dx) <= 2*xmax && (y) >= ymin && 2*(y) + (dy) <= 2*ymax){\
  144. const int hx= 2*(x) + (dx);\
  145. const int hy= 2*(y) + (dy);\
  146. if(s->mv_type==MV_TYPE_8X8){\
  147. int i;\
  148. for(i=0; i<4; i++){\
  149. int fx = s->me.direct_basis_mv[i][0] + hx;\
  150. int fy = s->me.direct_basis_mv[i][1] + hy;\
  151. int bx = hx ? fx - s->me.co_located_mv[i][0] : s->me.co_located_mv[i][0]*(time_pb - time_pp)/time_pp + (i &1)*16;\
  152. int by = hy ? fy - s->me.co_located_mv[i][1] : s->me.co_located_mv[i][1]*(time_pb - time_pp)/time_pp + (i>>1)*16;\
  153. int fxy= (fx&1) + 2*(fy&1);\
  154. int bxy= (bx&1) + 2*(by&1);\
  155. \
  156. uint8_t *dst= s->me.scratchpad + 8*(i&1) + 8*stride*(i>>1);\
  157. hpel_put[1][fxy](dst, (ref_y ) + (fx>>1) + (fy>>1)*(stride), stride, 8);\
  158. hpel_avg[1][bxy](dst, (ref2_y) + (bx>>1) + (by>>1)*(stride), stride, 8);\
  159. }\
  160. }else{\
  161. int fx = s->me.direct_basis_mv[0][0] + hx;\
  162. int fy = s->me.direct_basis_mv[0][1] + hy;\
  163. int bx = hx ? fx - s->me.co_located_mv[0][0] : (s->me.co_located_mv[0][0]*(time_pb - time_pp)/time_pp);\
  164. int by = hy ? fy - s->me.co_located_mv[0][1] : (s->me.co_located_mv[0][1]*(time_pb - time_pp)/time_pp);\
  165. int fxy= (fx&1) + 2*(fy&1);\
  166. int bxy= (bx&1) + 2*(by&1);\
  167. \
  168. assert((fx>>1) + 16*s->mb_x >= -16);\
  169. assert((fy>>1) + 16*s->mb_y >= -16);\
  170. assert((fx>>1) + 16*s->mb_x <= s->width);\
  171. assert((fy>>1) + 16*s->mb_y <= s->height);\
  172. assert((bx>>1) + 16*s->mb_x >= -16);\
  173. assert((by>>1) + 16*s->mb_y >= -16);\
  174. assert((bx>>1) + 16*s->mb_x <= s->width);\
  175. assert((by>>1) + 16*s->mb_y <= s->height);\
  176. \
  177. hpel_put[0][fxy](s->me.scratchpad, (ref_y ) + (fx>>1) + (fy>>1)*(stride), stride, 16);\
  178. hpel_avg[0][bxy](s->me.scratchpad, (ref2_y) + (bx>>1) + (by>>1)*(stride), stride, 16);\
  179. }\
  180. d = cmp_func(s, s->me.scratchpad, src_y, stride);\
  181. }else\
  182. d= 256*256*256*32;
  183. #define CMP_HPEL(d, dx, dy, x, y, size)\
  184. CMP_DIRECT(d, dx, dy, x, y, size, cmp_sub)
  185. #define CMP(d, x, y, size)\
  186. CMP_DIRECT(d, 0, 0, x, y, size, cmp)
  187. #include "motion_est_template.c"
  188. #undef RENAME
  189. #undef CMP
  190. #undef CMP_HPEL
  191. #undef CMP_QPEL
  192. #undef INIT
  193. #undef CMP_DIRECT
  194. /* SIMPLE DIRECT QPEL */
  195. #define RENAME(a) simple_direct_qpel_ ## a
  196. #define CMP_DIRECT(d, dx, dy, x, y, size, cmp_func)\
  197. if((x) >= xmin && 4*(x) + (dx) <= 4*xmax && (y) >= ymin && 4*(y) + (dy) <= 4*ymax){\
  198. const int qx= 4*(x) + (dx);\
  199. const int qy= 4*(y) + (dy);\
  200. if(s->mv_type==MV_TYPE_8X8){\
  201. int i;\
  202. for(i=0; i<4; i++){\
  203. int fx = s->me.direct_basis_mv[i][0] + qx;\
  204. int fy = s->me.direct_basis_mv[i][1] + qy;\
  205. int bx = qx ? fx - s->me.co_located_mv[i][0] : s->me.co_located_mv[i][0]*(time_pb - time_pp)/time_pp + (i &1)*16;\
  206. int by = qy ? fy - s->me.co_located_mv[i][1] : s->me.co_located_mv[i][1]*(time_pb - time_pp)/time_pp + (i>>1)*16;\
  207. int fxy= (fx&3) + 4*(fy&3);\
  208. int bxy= (bx&3) + 4*(by&3);\
  209. \
  210. uint8_t *dst= s->me.scratchpad + 8*(i&1) + 8*stride*(i>>1);\
  211. qpel_put[1][fxy](dst, (ref_y ) + (fx>>2) + (fy>>2)*(stride), stride);\
  212. qpel_avg[1][bxy](dst, (ref2_y) + (bx>>2) + (by>>2)*(stride), stride);\
  213. }\
  214. }else{\
  215. int fx = s->me.direct_basis_mv[0][0] + qx;\
  216. int fy = s->me.direct_basis_mv[0][1] + qy;\
  217. int bx = qx ? fx - s->me.co_located_mv[0][0] : s->me.co_located_mv[0][0]*(time_pb - time_pp)/time_pp;\
  218. int by = qy ? fy - s->me.co_located_mv[0][1] : s->me.co_located_mv[0][1]*(time_pb - time_pp)/time_pp;\
  219. int fxy= (fx&3) + 4*(fy&3);\
  220. int bxy= (bx&3) + 4*(by&3);\
  221. \
  222. qpel_put[1][fxy](s->me.scratchpad , (ref_y ) + (fx>>2) + (fy>>2)*(stride) , stride);\
  223. qpel_put[1][fxy](s->me.scratchpad + 8 , (ref_y ) + (fx>>2) + (fy>>2)*(stride) + 8 , stride);\
  224. qpel_put[1][fxy](s->me.scratchpad + 8*stride, (ref_y ) + (fx>>2) + (fy>>2)*(stride) + 8*stride, stride);\
  225. qpel_put[1][fxy](s->me.scratchpad + 8 + 8*stride, (ref_y ) + (fx>>2) + (fy>>2)*(stride) + 8 + 8*stride, stride);\
  226. qpel_avg[1][bxy](s->me.scratchpad , (ref2_y) + (bx>>2) + (by>>2)*(stride) , stride);\
  227. qpel_avg[1][bxy](s->me.scratchpad + 8 , (ref2_y) + (bx>>2) + (by>>2)*(stride) + 8 , stride);\
  228. qpel_avg[1][bxy](s->me.scratchpad + 8*stride, (ref2_y) + (bx>>2) + (by>>2)*(stride) + 8*stride, stride);\
  229. qpel_avg[1][bxy](s->me.scratchpad + 8 + 8*stride, (ref2_y) + (bx>>2) + (by>>2)*(stride) + 8 + 8*stride, stride);\
  230. }\
  231. d = cmp_func(s, s->me.scratchpad, src_y, stride);\
  232. }else\
  233. d= 256*256*256*32;
  234. #define CMP_QPEL(d, dx, dy, x, y, size)\
  235. CMP_DIRECT(d, dx, dy, x, y, size, cmp_sub)
  236. #define CMP(d, x, y, size)\
  237. CMP_DIRECT(d, 0, 0, x, y, size, cmp)
  238. #include "motion_est_template.c"
  239. #undef RENAME
  240. #undef CMP
  241. #undef CMP_HPEL
  242. #undef CMP_QPEL
  243. #undef INIT
  244. #undef CMP__DIRECT
  245. static int zero_cmp(void *s, uint8_t *a, uint8_t *b, int stride){
  246. return 0;
  247. }
  248. static void set_cmp(MpegEncContext *s, me_cmp_func *cmp, int type){
  249. DSPContext* c= &s->dsp;
  250. int i;
  251. memset(cmp, 0, sizeof(void*)*11);
  252. switch(type&0xFF){
  253. case FF_CMP_SAD:
  254. cmp[0]= c->sad[0];
  255. cmp[1]= c->sad[1];
  256. break;
  257. case FF_CMP_SATD:
  258. cmp[0]= c->hadamard8_diff[0];
  259. cmp[1]= c->hadamard8_diff[1];
  260. break;
  261. case FF_CMP_SSE:
  262. cmp[0]= c->sse[0];
  263. cmp[1]= c->sse[1];
  264. break;
  265. case FF_CMP_DCT:
  266. cmp[0]= c->dct_sad[0];
  267. cmp[1]= c->dct_sad[1];
  268. break;
  269. case FF_CMP_PSNR:
  270. cmp[0]= c->quant_psnr[0];
  271. cmp[1]= c->quant_psnr[1];
  272. break;
  273. case FF_CMP_BIT:
  274. cmp[0]= c->bit[0];
  275. cmp[1]= c->bit[1];
  276. break;
  277. case FF_CMP_RD:
  278. cmp[0]= c->rd[0];
  279. cmp[1]= c->rd[1];
  280. break;
  281. case FF_CMP_ZERO:
  282. for(i=0; i<7; i++){
  283. cmp[i]= zero_cmp;
  284. }
  285. break;
  286. default:
  287. fprintf(stderr,"internal error in cmp function selection\n");
  288. }
  289. }
  290. static inline int get_penalty_factor(MpegEncContext *s, int type){
  291. switch(type&0xFF){
  292. default:
  293. case FF_CMP_SAD:
  294. return s->qscale*2;
  295. case FF_CMP_DCT:
  296. return s->qscale*3;
  297. case FF_CMP_SATD:
  298. return s->qscale*6;
  299. case FF_CMP_SSE:
  300. return s->qscale*s->qscale*2;
  301. case FF_CMP_BIT:
  302. return 1;
  303. case FF_CMP_RD:
  304. case FF_CMP_PSNR:
  305. return (s->qscale*s->qscale*185 + 64)>>7;
  306. }
  307. }
  308. void ff_init_me(MpegEncContext *s){
  309. set_cmp(s, s->dsp.me_pre_cmp, s->avctx->me_pre_cmp);
  310. set_cmp(s, s->dsp.me_cmp, s->avctx->me_cmp);
  311. set_cmp(s, s->dsp.me_sub_cmp, s->avctx->me_sub_cmp);
  312. set_cmp(s, s->dsp.mb_cmp, s->avctx->mb_cmp);
  313. if(s->flags&CODEC_FLAG_QPEL){
  314. if(s->avctx->me_sub_cmp&FF_CMP_CHROMA)
  315. s->me.sub_motion_search= simple_chroma_qpel_motion_search;
  316. else
  317. s->me.sub_motion_search= simple_qpel_motion_search;
  318. }else{
  319. if(s->avctx->me_sub_cmp&FF_CMP_CHROMA)
  320. s->me.sub_motion_search= simple_chroma_hpel_motion_search;
  321. else if( s->avctx->me_sub_cmp == FF_CMP_SAD
  322. && s->avctx-> me_cmp == FF_CMP_SAD
  323. && s->avctx-> mb_cmp == FF_CMP_SAD)
  324. s->me.sub_motion_search= sad_hpel_motion_search;
  325. else
  326. s->me.sub_motion_search= simple_hpel_motion_search;
  327. }
  328. if(s->avctx->me_cmp&FF_CMP_CHROMA){
  329. s->me.motion_search[0]= simple_chroma_epzs_motion_search;
  330. s->me.motion_search[1]= simple_chroma_epzs_motion_search4;
  331. }else{
  332. s->me.motion_search[0]= simple_epzs_motion_search;
  333. s->me.motion_search[1]= simple_epzs_motion_search4;
  334. }
  335. if(s->avctx->me_pre_cmp&FF_CMP_CHROMA){
  336. s->me.pre_motion_search= simple_chroma_epzs_motion_search;
  337. }else{
  338. s->me.pre_motion_search= simple_epzs_motion_search;
  339. }
  340. if(s->flags&CODEC_FLAG_QPEL){
  341. if(s->avctx->mb_cmp&FF_CMP_CHROMA)
  342. s->me.get_mb_score= simple_chroma_qpel_get_mb_score;
  343. else
  344. s->me.get_mb_score= simple_qpel_get_mb_score;
  345. }else{
  346. if(s->avctx->mb_cmp&FF_CMP_CHROMA)
  347. s->me.get_mb_score= simple_chroma_hpel_get_mb_score;
  348. else
  349. s->me.get_mb_score= simple_hpel_get_mb_score;
  350. }
  351. }
  352. static int pix_dev(uint8_t * pix, int line_size, int mean)
  353. {
  354. int s, i, j;
  355. s = 0;
  356. for (i = 0; i < 16; i++) {
  357. for (j = 0; j < 16; j += 8) {
  358. s += ABS(pix[0]-mean);
  359. s += ABS(pix[1]-mean);
  360. s += ABS(pix[2]-mean);
  361. s += ABS(pix[3]-mean);
  362. s += ABS(pix[4]-mean);
  363. s += ABS(pix[5]-mean);
  364. s += ABS(pix[6]-mean);
  365. s += ABS(pix[7]-mean);
  366. pix += 8;
  367. }
  368. pix += line_size - 16;
  369. }
  370. return s;
  371. }
  372. static inline void no_motion_search(MpegEncContext * s,
  373. int *mx_ptr, int *my_ptr)
  374. {
  375. *mx_ptr = 16 * s->mb_x;
  376. *my_ptr = 16 * s->mb_y;
  377. }
  378. static int full_motion_search(MpegEncContext * s,
  379. int *mx_ptr, int *my_ptr, int range,
  380. int xmin, int ymin, int xmax, int ymax, uint8_t *ref_picture)
  381. {
  382. int x1, y1, x2, y2, xx, yy, x, y;
  383. int mx, my, dmin, d;
  384. uint8_t *pix;
  385. xx = 16 * s->mb_x;
  386. yy = 16 * s->mb_y;
  387. x1 = xx - range + 1; /* we loose one pixel to avoid boundary pb with half pixel pred */
  388. if (x1 < xmin)
  389. x1 = xmin;
  390. x2 = xx + range - 1;
  391. if (x2 > xmax)
  392. x2 = xmax;
  393. y1 = yy - range + 1;
  394. if (y1 < ymin)
  395. y1 = ymin;
  396. y2 = yy + range - 1;
  397. if (y2 > ymax)
  398. y2 = ymax;
  399. pix = s->new_picture.data[0] + (yy * s->linesize) + xx;
  400. dmin = 0x7fffffff;
  401. mx = 0;
  402. my = 0;
  403. for (y = y1; y <= y2; y++) {
  404. for (x = x1; x <= x2; x++) {
  405. d = s->dsp.pix_abs16x16(pix, ref_picture + (y * s->linesize) + x,
  406. s->linesize);
  407. if (d < dmin ||
  408. (d == dmin &&
  409. (abs(x - xx) + abs(y - yy)) <
  410. (abs(mx - xx) + abs(my - yy)))) {
  411. dmin = d;
  412. mx = x;
  413. my = y;
  414. }
  415. }
  416. }
  417. *mx_ptr = mx;
  418. *my_ptr = my;
  419. #if 0
  420. if (*mx_ptr < -(2 * range) || *mx_ptr >= (2 * range) ||
  421. *my_ptr < -(2 * range) || *my_ptr >= (2 * range)) {
  422. fprintf(stderr, "error %d %d\n", *mx_ptr, *my_ptr);
  423. }
  424. #endif
  425. return dmin;
  426. }
  427. static int log_motion_search(MpegEncContext * s,
  428. int *mx_ptr, int *my_ptr, int range,
  429. int xmin, int ymin, int xmax, int ymax, uint8_t *ref_picture)
  430. {
  431. int x1, y1, x2, y2, xx, yy, x, y;
  432. int mx, my, dmin, d;
  433. uint8_t *pix;
  434. xx = s->mb_x << 4;
  435. yy = s->mb_y << 4;
  436. /* Left limit */
  437. x1 = xx - range;
  438. if (x1 < xmin)
  439. x1 = xmin;
  440. /* Right limit */
  441. x2 = xx + range;
  442. if (x2 > xmax)
  443. x2 = xmax;
  444. /* Upper limit */
  445. y1 = yy - range;
  446. if (y1 < ymin)
  447. y1 = ymin;
  448. /* Lower limit */
  449. y2 = yy + range;
  450. if (y2 > ymax)
  451. y2 = ymax;
  452. pix = s->new_picture.data[0] + (yy * s->linesize) + xx;
  453. dmin = 0x7fffffff;
  454. mx = 0;
  455. my = 0;
  456. do {
  457. for (y = y1; y <= y2; y += range) {
  458. for (x = x1; x <= x2; x += range) {
  459. d = s->dsp.pix_abs16x16(pix, ref_picture + (y * s->linesize) + x, s->linesize);
  460. if (d < dmin || (d == dmin && (abs(x - xx) + abs(y - yy)) < (abs(mx - xx) + abs(my - yy)))) {
  461. dmin = d;
  462. mx = x;
  463. my = y;
  464. }
  465. }
  466. }
  467. range = range >> 1;
  468. x1 = mx - range;
  469. if (x1 < xmin)
  470. x1 = xmin;
  471. x2 = mx + range;
  472. if (x2 > xmax)
  473. x2 = xmax;
  474. y1 = my - range;
  475. if (y1 < ymin)
  476. y1 = ymin;
  477. y2 = my + range;
  478. if (y2 > ymax)
  479. y2 = ymax;
  480. } while (range >= 1);
  481. #ifdef DEBUG
  482. fprintf(stderr, "log - MX: %d\tMY: %d\n", mx, my);
  483. #endif
  484. *mx_ptr = mx;
  485. *my_ptr = my;
  486. return dmin;
  487. }
  488. static int phods_motion_search(MpegEncContext * s,
  489. int *mx_ptr, int *my_ptr, int range,
  490. int xmin, int ymin, int xmax, int ymax, uint8_t *ref_picture)
  491. {
  492. int x1, y1, x2, y2, xx, yy, x, y, lastx, d;
  493. int mx, my, dminx, dminy;
  494. uint8_t *pix;
  495. xx = s->mb_x << 4;
  496. yy = s->mb_y << 4;
  497. /* Left limit */
  498. x1 = xx - range;
  499. if (x1 < xmin)
  500. x1 = xmin;
  501. /* Right limit */
  502. x2 = xx + range;
  503. if (x2 > xmax)
  504. x2 = xmax;
  505. /* Upper limit */
  506. y1 = yy - range;
  507. if (y1 < ymin)
  508. y1 = ymin;
  509. /* Lower limit */
  510. y2 = yy + range;
  511. if (y2 > ymax)
  512. y2 = ymax;
  513. pix = s->new_picture.data[0] + (yy * s->linesize) + xx;
  514. mx = 0;
  515. my = 0;
  516. x = xx;
  517. y = yy;
  518. do {
  519. dminx = 0x7fffffff;
  520. dminy = 0x7fffffff;
  521. lastx = x;
  522. for (x = x1; x <= x2; x += range) {
  523. d = s->dsp.pix_abs16x16(pix, ref_picture + (y * s->linesize) + x, s->linesize);
  524. if (d < dminx || (d == dminx && (abs(x - xx) + abs(y - yy)) < (abs(mx - xx) + abs(my - yy)))) {
  525. dminx = d;
  526. mx = x;
  527. }
  528. }
  529. x = lastx;
  530. for (y = y1; y <= y2; y += range) {
  531. d = s->dsp.pix_abs16x16(pix, ref_picture + (y * s->linesize) + x, s->linesize);
  532. if (d < dminy || (d == dminy && (abs(x - xx) + abs(y - yy)) < (abs(mx - xx) + abs(my - yy)))) {
  533. dminy = d;
  534. my = y;
  535. }
  536. }
  537. range = range >> 1;
  538. x = mx;
  539. y = my;
  540. x1 = mx - range;
  541. if (x1 < xmin)
  542. x1 = xmin;
  543. x2 = mx + range;
  544. if (x2 > xmax)
  545. x2 = xmax;
  546. y1 = my - range;
  547. if (y1 < ymin)
  548. y1 = ymin;
  549. y2 = my + range;
  550. if (y2 > ymax)
  551. y2 = ymax;
  552. } while (range >= 1);
  553. #ifdef DEBUG
  554. fprintf(stderr, "phods - MX: %d\tMY: %d\n", mx, my);
  555. #endif
  556. /* half pixel search */
  557. *mx_ptr = mx;
  558. *my_ptr = my;
  559. return dminy;
  560. }
  561. #define Z_THRESHOLD 256
  562. #define CHECK_SAD_HALF_MV(suffix, x, y) \
  563. {\
  564. d= pix_abs_ ## suffix(pix, ptr+((x)>>1), s->linesize);\
  565. d += (mv_penalty[pen_x + x] + mv_penalty[pen_y + y])*penalty_factor;\
  566. COPY3_IF_LT(dminh, d, dx, x, dy, y)\
  567. }
  568. static inline int sad_hpel_motion_search(MpegEncContext * s,
  569. int *mx_ptr, int *my_ptr, int dmin,
  570. int xmin, int ymin, int xmax, int ymax,
  571. int pred_x, int pred_y, Picture *picture,
  572. int n, int size, uint8_t * const mv_penalty)
  573. {
  574. uint8_t *ref_picture= picture->data[0];
  575. uint32_t *score_map= s->me.score_map;
  576. const int penalty_factor= s->me.sub_penalty_factor;
  577. int mx, my, xx, yy, dminh;
  578. uint8_t *pix, *ptr;
  579. op_pixels_abs_func pix_abs_x2;
  580. op_pixels_abs_func pix_abs_y2;
  581. op_pixels_abs_func pix_abs_xy2;
  582. if(size==0){
  583. pix_abs_x2 = s->dsp.pix_abs16x16_x2;
  584. pix_abs_y2 = s->dsp.pix_abs16x16_y2;
  585. pix_abs_xy2= s->dsp.pix_abs16x16_xy2;
  586. }else{
  587. pix_abs_x2 = s->dsp.pix_abs8x8_x2;
  588. pix_abs_y2 = s->dsp.pix_abs8x8_y2;
  589. pix_abs_xy2= s->dsp.pix_abs8x8_xy2;
  590. }
  591. if(s->me.skip){
  592. // printf("S");
  593. *mx_ptr = 0;
  594. *my_ptr = 0;
  595. return dmin;
  596. }
  597. // printf("N");
  598. xx = 16 * s->mb_x + 8*(n&1);
  599. yy = 16 * s->mb_y + 8*(n>>1);
  600. pix = s->new_picture.data[0] + (yy * s->linesize) + xx;
  601. mx = *mx_ptr;
  602. my = *my_ptr;
  603. ptr = ref_picture + ((yy + my) * s->linesize) + (xx + mx);
  604. dminh = dmin;
  605. if (mx > xmin && mx < xmax &&
  606. my > ymin && my < ymax) {
  607. int dx=0, dy=0;
  608. int d, pen_x, pen_y;
  609. const int index= (my<<ME_MAP_SHIFT) + mx;
  610. const int t= score_map[(index-(1<<ME_MAP_SHIFT))&(ME_MAP_SIZE-1)];
  611. const int l= score_map[(index- 1 )&(ME_MAP_SIZE-1)];
  612. const int r= score_map[(index+ 1 )&(ME_MAP_SIZE-1)];
  613. const int b= score_map[(index+(1<<ME_MAP_SHIFT))&(ME_MAP_SIZE-1)];
  614. mx<<=1;
  615. my<<=1;
  616. pen_x= pred_x + mx;
  617. pen_y= pred_y + my;
  618. ptr-= s->linesize;
  619. if(t<=b){
  620. CHECK_SAD_HALF_MV(y2 , 0, -1)
  621. if(l<=r){
  622. CHECK_SAD_HALF_MV(xy2, -1, -1)
  623. if(t+r<=b+l){
  624. CHECK_SAD_HALF_MV(xy2, +1, -1)
  625. ptr+= s->linesize;
  626. }else{
  627. ptr+= s->linesize;
  628. CHECK_SAD_HALF_MV(xy2, -1, +1)
  629. }
  630. CHECK_SAD_HALF_MV(x2 , -1, 0)
  631. }else{
  632. CHECK_SAD_HALF_MV(xy2, +1, -1)
  633. if(t+l<=b+r){
  634. CHECK_SAD_HALF_MV(xy2, -1, -1)
  635. ptr+= s->linesize;
  636. }else{
  637. ptr+= s->linesize;
  638. CHECK_SAD_HALF_MV(xy2, +1, +1)
  639. }
  640. CHECK_SAD_HALF_MV(x2 , +1, 0)
  641. }
  642. }else{
  643. if(l<=r){
  644. if(t+l<=b+r){
  645. CHECK_SAD_HALF_MV(xy2, -1, -1)
  646. ptr+= s->linesize;
  647. }else{
  648. ptr+= s->linesize;
  649. CHECK_SAD_HALF_MV(xy2, +1, +1)
  650. }
  651. CHECK_SAD_HALF_MV(x2 , -1, 0)
  652. CHECK_SAD_HALF_MV(xy2, -1, +1)
  653. }else{
  654. if(t+r<=b+l){
  655. CHECK_SAD_HALF_MV(xy2, +1, -1)
  656. ptr+= s->linesize;
  657. }else{
  658. ptr+= s->linesize;
  659. CHECK_SAD_HALF_MV(xy2, -1, +1)
  660. }
  661. CHECK_SAD_HALF_MV(x2 , +1, 0)
  662. CHECK_SAD_HALF_MV(xy2, +1, +1)
  663. }
  664. CHECK_SAD_HALF_MV(y2 , 0, +1)
  665. }
  666. mx+=dx;
  667. my+=dy;
  668. }else{
  669. mx<<=1;
  670. my<<=1;
  671. }
  672. *mx_ptr = mx;
  673. *my_ptr = my;
  674. return dminh;
  675. }
  676. static inline void set_p_mv_tables(MpegEncContext * s, int mx, int my, int mv4)
  677. {
  678. const int xy= s->mb_x + s->mb_y*s->mb_stride;
  679. s->p_mv_table[xy][0] = mx;
  680. s->p_mv_table[xy][1] = my;
  681. /* has allready been set to the 4 MV if 4MV is done */
  682. if(mv4){
  683. int mot_xy= s->block_index[0];
  684. s->motion_val[mot_xy ][0]= mx;
  685. s->motion_val[mot_xy ][1]= my;
  686. s->motion_val[mot_xy+1][0]= mx;
  687. s->motion_val[mot_xy+1][1]= my;
  688. mot_xy += s->block_wrap[0];
  689. s->motion_val[mot_xy ][0]= mx;
  690. s->motion_val[mot_xy ][1]= my;
  691. s->motion_val[mot_xy+1][0]= mx;
  692. s->motion_val[mot_xy+1][1]= my;
  693. }
  694. }
  695. /**
  696. * get fullpel ME search limits.
  697. * @param range the approximate search range for the old ME code, unused for EPZS and newer
  698. */
  699. static inline void get_limits(MpegEncContext *s, int *range, int *xmin, int *ymin, int *xmax, int *ymax)
  700. {
  701. if(s->avctx->me_range) *range= s->avctx->me_range >> 1;
  702. else *range= 16;
  703. if (s->unrestricted_mv) {
  704. *xmin = -16;
  705. *ymin = -16;
  706. *xmax = s->mb_width*16;
  707. *ymax = s->mb_height*16;
  708. } else {
  709. *xmin = 0;
  710. *ymin = 0;
  711. *xmax = s->mb_width*16 - 16;
  712. *ymax = s->mb_height*16 - 16;
  713. }
  714. //FIXME try to limit x/y min/max if me_range is set
  715. }
  716. static inline int h263_mv4_search(MpegEncContext *s, int xmin, int ymin, int xmax, int ymax, int mx, int my, int shift)
  717. {
  718. int block;
  719. int P[10][2];
  720. int dmin_sum=0, mx4_sum=0, my4_sum=0;
  721. uint8_t * const mv_penalty= s->me.mv_penalty[s->f_code] + MAX_MV;
  722. for(block=0; block<4; block++){
  723. int mx4, my4;
  724. int pred_x4, pred_y4;
  725. int dmin4;
  726. static const int off[4]= {2, 1, 1, -1};
  727. const int mot_stride = s->block_wrap[0];
  728. const int mot_xy = s->block_index[block];
  729. // const int block_x= (block&1);
  730. // const int block_y= (block>>1);
  731. #if 1 // this saves us a bit of cliping work and shouldnt affect compression in a negative way
  732. const int rel_xmin4= xmin;
  733. const int rel_xmax4= xmax;
  734. const int rel_ymin4= ymin;
  735. const int rel_ymax4= ymax;
  736. #else
  737. const int rel_xmin4= xmin - block_x*8;
  738. const int rel_xmax4= xmax - block_x*8 + 8;
  739. const int rel_ymin4= ymin - block_y*8;
  740. const int rel_ymax4= ymax - block_y*8 + 8;
  741. #endif
  742. P_LEFT[0] = s->motion_val[mot_xy - 1][0];
  743. P_LEFT[1] = s->motion_val[mot_xy - 1][1];
  744. if(P_LEFT[0] > (rel_xmax4<<shift)) P_LEFT[0] = (rel_xmax4<<shift);
  745. /* special case for first line */
  746. if (s->mb_y == 0 && block<2) {
  747. pred_x4= P_LEFT[0];
  748. pred_y4= P_LEFT[1];
  749. } else {
  750. P_TOP[0] = s->motion_val[mot_xy - mot_stride ][0];
  751. P_TOP[1] = s->motion_val[mot_xy - mot_stride ][1];
  752. P_TOPRIGHT[0] = s->motion_val[mot_xy - mot_stride + off[block]][0];
  753. P_TOPRIGHT[1] = s->motion_val[mot_xy - mot_stride + off[block]][1];
  754. if(P_TOP[1] > (rel_ymax4<<shift)) P_TOP[1] = (rel_ymax4<<shift);
  755. if(P_TOPRIGHT[0] < (rel_xmin4<<shift)) P_TOPRIGHT[0]= (rel_xmin4<<shift);
  756. if(P_TOPRIGHT[0] > (rel_xmax4<<shift)) P_TOPRIGHT[0]= (rel_xmax4<<shift);
  757. if(P_TOPRIGHT[1] > (rel_ymax4<<shift)) P_TOPRIGHT[1]= (rel_ymax4<<shift);
  758. P_MEDIAN[0]= mid_pred(P_LEFT[0], P_TOP[0], P_TOPRIGHT[0]);
  759. P_MEDIAN[1]= mid_pred(P_LEFT[1], P_TOP[1], P_TOPRIGHT[1]);
  760. // if(s->out_format == FMT_H263){
  761. pred_x4 = P_MEDIAN[0];
  762. pred_y4 = P_MEDIAN[1];
  763. #if 0
  764. }else { /* mpeg1 at least */
  765. pred_x4= P_LEFT[0];
  766. pred_y4= P_LEFT[1];
  767. }
  768. #endif
  769. }
  770. P_MV1[0]= mx;
  771. P_MV1[1]= my;
  772. dmin4 = s->me.motion_search[1](s, block, &mx4, &my4, P, pred_x4, pred_y4, rel_xmin4, rel_ymin4, rel_xmax4, rel_ymax4,
  773. &s->last_picture, s->p_mv_table, (1<<16)>>shift, mv_penalty);
  774. dmin4= s->me.sub_motion_search(s, &mx4, &my4, dmin4, rel_xmin4, rel_ymin4, rel_xmax4, rel_ymax4,
  775. pred_x4, pred_y4, &s->last_picture, block, 1, mv_penalty);
  776. if(s->dsp.me_sub_cmp[0] != s->dsp.mb_cmp[0]){
  777. int dxy;
  778. const int offset= ((block&1) + (block>>1)*s->linesize)*8;
  779. uint8_t *dest_y = s->me.scratchpad + offset;
  780. if(s->quarter_sample){
  781. uint8_t *ref= s->last_picture.data[0] + (s->mb_x*16 + (mx4>>2)) + (s->mb_y*16 + (my4>>2))*s->linesize + offset;
  782. dxy = ((my4 & 3) << 2) | (mx4 & 3);
  783. if(s->no_rounding)
  784. s->dsp.put_no_rnd_qpel_pixels_tab[1][dxy](dest_y , ref , s->linesize);
  785. else
  786. s->dsp.put_qpel_pixels_tab [1][dxy](dest_y , ref , s->linesize);
  787. }else{
  788. uint8_t *ref= s->last_picture.data[0] + (s->mb_x*16 + (mx4>>1)) + (s->mb_y*16 + (my4>>1))*s->linesize + offset;
  789. dxy = ((my4 & 1) << 1) | (mx4 & 1);
  790. if(s->no_rounding)
  791. s->dsp.put_no_rnd_pixels_tab[1][dxy](dest_y , ref , s->linesize, 8);
  792. else
  793. s->dsp.put_pixels_tab [1][dxy](dest_y , ref , s->linesize, 8);
  794. }
  795. dmin_sum+= (mv_penalty[mx4-pred_x4] + mv_penalty[my4-pred_y4])*s->me.mb_penalty_factor;
  796. }else
  797. dmin_sum+= dmin4;
  798. if(s->quarter_sample){
  799. mx4_sum+= mx4/2;
  800. my4_sum+= my4/2;
  801. }else{
  802. mx4_sum+= mx4;
  803. my4_sum+= my4;
  804. }
  805. s->motion_val[ s->block_index[block] ][0]= mx4;
  806. s->motion_val[ s->block_index[block] ][1]= my4;
  807. }
  808. if(s->dsp.me_sub_cmp[0] != s->dsp.mb_cmp[0]){
  809. dmin_sum += s->dsp.mb_cmp[0](s, s->new_picture.data[0] + s->mb_x*16 + s->mb_y*16*s->linesize, s->me.scratchpad, s->linesize);
  810. }
  811. if(s->avctx->mb_cmp&FF_CMP_CHROMA){
  812. int dxy;
  813. int mx, my;
  814. int offset;
  815. mx= ff_h263_round_chroma(mx4_sum);
  816. my= ff_h263_round_chroma(my4_sum);
  817. dxy = ((my & 1) << 1) | (mx & 1);
  818. offset= (s->mb_x*8 + (mx>>1)) + (s->mb_y*8 + (my>>1))*s->uvlinesize;
  819. if(s->no_rounding){
  820. s->dsp.put_no_rnd_pixels_tab[1][dxy](s->me.scratchpad , s->last_picture.data[1] + offset, s->uvlinesize, 8);
  821. s->dsp.put_no_rnd_pixels_tab[1][dxy](s->me.scratchpad+8 , s->last_picture.data[2] + offset, s->uvlinesize, 8);
  822. }else{
  823. s->dsp.put_pixels_tab [1][dxy](s->me.scratchpad , s->last_picture.data[1] + offset, s->uvlinesize, 8);
  824. s->dsp.put_pixels_tab [1][dxy](s->me.scratchpad+8 , s->last_picture.data[2] + offset, s->uvlinesize, 8);
  825. }
  826. dmin_sum += s->dsp.mb_cmp[1](s, s->new_picture.data[1] + s->mb_x*8 + s->mb_y*8*s->uvlinesize, s->me.scratchpad , s->uvlinesize);
  827. dmin_sum += s->dsp.mb_cmp[1](s, s->new_picture.data[2] + s->mb_x*8 + s->mb_y*8*s->uvlinesize, s->me.scratchpad+8, s->uvlinesize);
  828. }
  829. switch(s->avctx->mb_cmp&0xFF){
  830. /*case FF_CMP_SSE:
  831. return dmin_sum+ 32*s->qscale*s->qscale;*/
  832. case FF_CMP_RD:
  833. return dmin_sum;
  834. default:
  835. return dmin_sum+ 11*s->me.mb_penalty_factor;
  836. }
  837. }
  838. void ff_estimate_p_frame_motion(MpegEncContext * s,
  839. int mb_x, int mb_y)
  840. {
  841. uint8_t *pix, *ppix;
  842. int sum, varc, vard, mx, my, range, dmin, xx, yy;
  843. int xmin, ymin, xmax, ymax;
  844. int rel_xmin, rel_ymin, rel_xmax, rel_ymax;
  845. int pred_x=0, pred_y=0;
  846. int P[10][2];
  847. const int shift= 1+s->quarter_sample;
  848. int mb_type=0;
  849. uint8_t *ref_picture= s->last_picture.data[0];
  850. Picture * const pic= &s->current_picture;
  851. uint8_t * const mv_penalty= s->me.mv_penalty[s->f_code] + MAX_MV;
  852. assert(s->quarter_sample==0 || s->quarter_sample==1);
  853. s->me.penalty_factor = get_penalty_factor(s, s->avctx->me_cmp);
  854. s->me.sub_penalty_factor= get_penalty_factor(s, s->avctx->me_sub_cmp);
  855. s->me.mb_penalty_factor = get_penalty_factor(s, s->avctx->mb_cmp);
  856. get_limits(s, &range, &xmin, &ymin, &xmax, &ymax);
  857. rel_xmin= xmin - mb_x*16;
  858. rel_xmax= xmax - mb_x*16;
  859. rel_ymin= ymin - mb_y*16;
  860. rel_ymax= ymax - mb_y*16;
  861. s->me.skip=0;
  862. switch(s->me_method) {
  863. case ME_ZERO:
  864. default:
  865. no_motion_search(s, &mx, &my);
  866. mx-= mb_x*16;
  867. my-= mb_y*16;
  868. dmin = 0;
  869. break;
  870. case ME_FULL:
  871. dmin = full_motion_search(s, &mx, &my, range, xmin, ymin, xmax, ymax, ref_picture);
  872. mx-= mb_x*16;
  873. my-= mb_y*16;
  874. break;
  875. case ME_LOG:
  876. dmin = log_motion_search(s, &mx, &my, range / 2, xmin, ymin, xmax, ymax, ref_picture);
  877. mx-= mb_x*16;
  878. my-= mb_y*16;
  879. break;
  880. case ME_PHODS:
  881. dmin = phods_motion_search(s, &mx, &my, range / 2, xmin, ymin, xmax, ymax, ref_picture);
  882. mx-= mb_x*16;
  883. my-= mb_y*16;
  884. break;
  885. case ME_X1:
  886. case ME_EPZS:
  887. {
  888. const int mot_stride = s->block_wrap[0];
  889. const int mot_xy = s->block_index[0];
  890. P_LEFT[0] = s->motion_val[mot_xy - 1][0];
  891. P_LEFT[1] = s->motion_val[mot_xy - 1][1];
  892. if(P_LEFT[0] > (rel_xmax<<shift)) P_LEFT[0] = (rel_xmax<<shift);
  893. if(mb_y) {
  894. P_TOP[0] = s->motion_val[mot_xy - mot_stride ][0];
  895. P_TOP[1] = s->motion_val[mot_xy - mot_stride ][1];
  896. P_TOPRIGHT[0] = s->motion_val[mot_xy - mot_stride + 2][0];
  897. P_TOPRIGHT[1] = s->motion_val[mot_xy - mot_stride + 2][1];
  898. if(P_TOP[1] > (rel_ymax<<shift)) P_TOP[1] = (rel_ymax<<shift);
  899. if(P_TOPRIGHT[0] < (rel_xmin<<shift)) P_TOPRIGHT[0]= (rel_xmin<<shift);
  900. if(P_TOPRIGHT[1] > (rel_ymax<<shift)) P_TOPRIGHT[1]= (rel_ymax<<shift);
  901. P_MEDIAN[0]= mid_pred(P_LEFT[0], P_TOP[0], P_TOPRIGHT[0]);
  902. P_MEDIAN[1]= mid_pred(P_LEFT[1], P_TOP[1], P_TOPRIGHT[1]);
  903. if(s->out_format == FMT_H263){
  904. pred_x = P_MEDIAN[0];
  905. pred_y = P_MEDIAN[1];
  906. }else { /* mpeg1 at least */
  907. pred_x= P_LEFT[0];
  908. pred_y= P_LEFT[1];
  909. }
  910. }else{
  911. pred_x= P_LEFT[0];
  912. pred_y= P_LEFT[1];
  913. }
  914. }
  915. dmin = s->me.motion_search[0](s, 0, &mx, &my, P, pred_x, pred_y, rel_xmin, rel_ymin, rel_xmax, rel_ymax,
  916. &s->last_picture, s->p_mv_table, (1<<16)>>shift, mv_penalty);
  917. break;
  918. }
  919. /* intra / predictive decision */
  920. xx = mb_x * 16;
  921. yy = mb_y * 16;
  922. pix = s->new_picture.data[0] + (yy * s->linesize) + xx;
  923. /* At this point (mx,my) are full-pell and the relative displacement */
  924. ppix = ref_picture + ((yy+my) * s->linesize) + (xx+mx);
  925. sum = s->dsp.pix_sum(pix, s->linesize);
  926. varc = (s->dsp.pix_norm1(pix, s->linesize) - (((unsigned)(sum*sum))>>8) + 500 + 128)>>8;
  927. vard = (s->dsp.sse[0](NULL, pix, ppix, s->linesize)+128)>>8;
  928. //printf("%d %d %d %X %X %X\n", s->mb_width, mb_x, mb_y,(int)s, (int)s->mb_var, (int)s->mc_mb_var); fflush(stdout);
  929. pic->mb_var [s->mb_stride * mb_y + mb_x] = varc;
  930. pic->mc_mb_var[s->mb_stride * mb_y + mb_x] = vard;
  931. pic->mb_mean [s->mb_stride * mb_y + mb_x] = (sum+128)>>8;
  932. // pic->mb_cmp_score[s->mb_stride * mb_y + mb_x] = dmin;
  933. pic->mb_var_sum += varc;
  934. pic->mc_mb_var_sum += vard;
  935. //printf("E%d %d %d %X %X %X\n", s->mb_width, mb_x, mb_y,(int)s, (int)s->mb_var, (int)s->mc_mb_var); fflush(stdout);
  936. #if 0
  937. printf("varc=%4d avg_var=%4d (sum=%4d) vard=%4d mx=%2d my=%2d\n",
  938. varc, s->avg_mb_var, sum, vard, mx - xx, my - yy);
  939. #endif
  940. if(s->avctx->mb_decision > FF_MB_DECISION_SIMPLE){
  941. if (vard <= 64 || vard < varc)
  942. s->scene_change_score+= ff_sqrt(vard) - ff_sqrt(varc);
  943. else
  944. s->scene_change_score+= s->qscale;
  945. if (vard*2 + 200 > varc)
  946. mb_type|= MB_TYPE_INTRA;
  947. if (varc*2 + 200 > vard){
  948. mb_type|= MB_TYPE_INTER;
  949. s->me.sub_motion_search(s, &mx, &my, dmin, rel_xmin, rel_ymin, rel_xmax, rel_ymax,
  950. pred_x, pred_y, &s->last_picture, 0, 0, mv_penalty);
  951. }else{
  952. mx <<=shift;
  953. my <<=shift;
  954. }
  955. if((s->flags&CODEC_FLAG_4MV)
  956. && !s->me.skip && varc>50 && vard>10){
  957. h263_mv4_search(s, rel_xmin, rel_ymin, rel_xmax, rel_ymax, mx, my, shift);
  958. mb_type|=MB_TYPE_INTER4V;
  959. set_p_mv_tables(s, mx, my, 0);
  960. }else
  961. set_p_mv_tables(s, mx, my, 1);
  962. }else{
  963. mb_type= MB_TYPE_INTER;
  964. dmin= s->me.sub_motion_search(s, &mx, &my, dmin, rel_xmin, rel_ymin, rel_xmax, rel_ymax,
  965. pred_x, pred_y, &s->last_picture, 0, 0, mv_penalty);
  966. if(s->avctx->me_sub_cmp != s->avctx->mb_cmp && !s->me.skip)
  967. dmin= s->me.get_mb_score(s, mx, my, pred_x, pred_y, &s->last_picture, mv_penalty);
  968. if((s->flags&CODEC_FLAG_4MV)
  969. && !s->me.skip && varc>50 && vard>10){
  970. int dmin4= h263_mv4_search(s, rel_xmin, rel_ymin, rel_xmax, rel_ymax, mx, my, shift);
  971. if(dmin4 < dmin){
  972. mb_type= MB_TYPE_INTER4V;
  973. dmin=dmin4;
  974. }
  975. }
  976. pic->mb_cmp_score[s->mb_stride * mb_y + mb_x] = dmin;
  977. set_p_mv_tables(s, mx, my, mb_type!=MB_TYPE_INTER4V);
  978. if (vard <= 64 || vard < varc) {
  979. s->scene_change_score+= ff_sqrt(vard) - ff_sqrt(varc);
  980. }else{
  981. s->scene_change_score+= s->qscale;
  982. }
  983. }
  984. s->mb_type[mb_y*s->mb_stride + mb_x]= mb_type;
  985. }
  986. int ff_pre_estimate_p_frame_motion(MpegEncContext * s,
  987. int mb_x, int mb_y)
  988. {
  989. int mx, my, range, dmin;
  990. int xmin, ymin, xmax, ymax;
  991. int rel_xmin, rel_ymin, rel_xmax, rel_ymax;
  992. int pred_x=0, pred_y=0;
  993. int P[10][2];
  994. const int shift= 1+s->quarter_sample;
  995. uint8_t * const mv_penalty= s->me.mv_penalty[s->f_code] + MAX_MV;
  996. const int xy= mb_x + mb_y*s->mb_stride;
  997. assert(s->quarter_sample==0 || s->quarter_sample==1);
  998. s->me.pre_penalty_factor = get_penalty_factor(s, s->avctx->me_pre_cmp);
  999. get_limits(s, &range, &xmin, &ymin, &xmax, &ymax);
  1000. rel_xmin= xmin - mb_x*16;
  1001. rel_xmax= xmax - mb_x*16;
  1002. rel_ymin= ymin - mb_y*16;
  1003. rel_ymax= ymax - mb_y*16;
  1004. s->me.skip=0;
  1005. P_LEFT[0] = s->p_mv_table[xy + 1][0];
  1006. P_LEFT[1] = s->p_mv_table[xy + 1][1];
  1007. if(P_LEFT[0] < (rel_xmin<<shift)) P_LEFT[0] = (rel_xmin<<shift);
  1008. /* special case for first line */
  1009. if (mb_y == s->mb_height-1) {
  1010. pred_x= P_LEFT[0];
  1011. pred_y= P_LEFT[1];
  1012. P_TOP[0]= P_TOPRIGHT[0]= P_MEDIAN[0]=
  1013. P_TOP[1]= P_TOPRIGHT[1]= P_MEDIAN[1]= 0; //FIXME
  1014. } else {
  1015. P_TOP[0] = s->p_mv_table[xy + s->mb_stride ][0];
  1016. P_TOP[1] = s->p_mv_table[xy + s->mb_stride ][1];
  1017. P_TOPRIGHT[0] = s->p_mv_table[xy + s->mb_stride - 1][0];
  1018. P_TOPRIGHT[1] = s->p_mv_table[xy + s->mb_stride - 1][1];
  1019. if(P_TOP[1] < (rel_ymin<<shift)) P_TOP[1] = (rel_ymin<<shift);
  1020. if(P_TOPRIGHT[0] > (rel_xmax<<shift)) P_TOPRIGHT[0]= (rel_xmax<<shift);
  1021. if(P_TOPRIGHT[1] < (rel_ymin<<shift)) P_TOPRIGHT[1]= (rel_ymin<<shift);
  1022. P_MEDIAN[0]= mid_pred(P_LEFT[0], P_TOP[0], P_TOPRIGHT[0]);
  1023. P_MEDIAN[1]= mid_pred(P_LEFT[1], P_TOP[1], P_TOPRIGHT[1]);
  1024. pred_x = P_MEDIAN[0];
  1025. pred_y = P_MEDIAN[1];
  1026. }
  1027. dmin = s->me.pre_motion_search(s, 0, &mx, &my, P, pred_x, pred_y, rel_xmin, rel_ymin, rel_xmax, rel_ymax,
  1028. &s->last_picture, s->p_mv_table, (1<<16)>>shift, mv_penalty);
  1029. s->p_mv_table[xy][0] = mx<<shift;
  1030. s->p_mv_table[xy][1] = my<<shift;
  1031. return dmin;
  1032. }
  1033. static int ff_estimate_motion_b(MpegEncContext * s,
  1034. int mb_x, int mb_y, int16_t (*mv_table)[2], Picture *picture, int f_code)
  1035. {
  1036. int mx, my, range, dmin;
  1037. int xmin, ymin, xmax, ymax;
  1038. int rel_xmin, rel_ymin, rel_xmax, rel_ymax;
  1039. int pred_x=0, pred_y=0;
  1040. int P[10][2];
  1041. const int shift= 1+s->quarter_sample;
  1042. const int mot_stride = s->mb_stride;
  1043. const int mot_xy = mb_y*mot_stride + mb_x;
  1044. uint8_t * const ref_picture= picture->data[0];
  1045. uint8_t * const mv_penalty= s->me.mv_penalty[f_code] + MAX_MV;
  1046. int mv_scale;
  1047. s->me.penalty_factor = get_penalty_factor(s, s->avctx->me_cmp);
  1048. s->me.sub_penalty_factor= get_penalty_factor(s, s->avctx->me_sub_cmp);
  1049. s->me.mb_penalty_factor = get_penalty_factor(s, s->avctx->mb_cmp);
  1050. get_limits(s, &range, &xmin, &ymin, &xmax, &ymax);
  1051. rel_xmin= xmin - mb_x*16;
  1052. rel_xmax= xmax - mb_x*16;
  1053. rel_ymin= ymin - mb_y*16;
  1054. rel_ymax= ymax - mb_y*16;
  1055. switch(s->me_method) {
  1056. case ME_ZERO:
  1057. default:
  1058. no_motion_search(s, &mx, &my);
  1059. dmin = 0;
  1060. mx-= mb_x*16;
  1061. my-= mb_y*16;
  1062. break;
  1063. case ME_FULL:
  1064. dmin = full_motion_search(s, &mx, &my, range, xmin, ymin, xmax, ymax, ref_picture);
  1065. mx-= mb_x*16;
  1066. my-= mb_y*16;
  1067. break;
  1068. case ME_LOG:
  1069. dmin = log_motion_search(s, &mx, &my, range / 2, xmin, ymin, xmax, ymax, ref_picture);
  1070. mx-= mb_x*16;
  1071. my-= mb_y*16;
  1072. break;
  1073. case ME_PHODS:
  1074. dmin = phods_motion_search(s, &mx, &my, range / 2, xmin, ymin, xmax, ymax, ref_picture);
  1075. mx-= mb_x*16;
  1076. my-= mb_y*16;
  1077. break;
  1078. case ME_X1:
  1079. case ME_EPZS:
  1080. {
  1081. P_LEFT[0] = mv_table[mot_xy - 1][0];
  1082. P_LEFT[1] = mv_table[mot_xy - 1][1];
  1083. if(P_LEFT[0] > (rel_xmax<<shift)) P_LEFT[0] = (rel_xmax<<shift);
  1084. /* special case for first line */
  1085. if (mb_y) {
  1086. P_TOP[0] = mv_table[mot_xy - mot_stride ][0];
  1087. P_TOP[1] = mv_table[mot_xy - mot_stride ][1];
  1088. P_TOPRIGHT[0] = mv_table[mot_xy - mot_stride + 1 ][0];
  1089. P_TOPRIGHT[1] = mv_table[mot_xy - mot_stride + 1 ][1];
  1090. if(P_TOP[1] > (rel_ymax<<shift)) P_TOP[1]= (rel_ymax<<shift);
  1091. if(P_TOPRIGHT[0] < (rel_xmin<<shift)) P_TOPRIGHT[0]= (rel_xmin<<shift);
  1092. if(P_TOPRIGHT[1] > (rel_ymax<<shift)) P_TOPRIGHT[1]= (rel_ymax<<shift);
  1093. P_MEDIAN[0]= mid_pred(P_LEFT[0], P_TOP[0], P_TOPRIGHT[0]);
  1094. P_MEDIAN[1]= mid_pred(P_LEFT[1], P_TOP[1], P_TOPRIGHT[1]);
  1095. }
  1096. pred_x= P_LEFT[0];
  1097. pred_y= P_LEFT[1];
  1098. }
  1099. if(mv_table == s->b_forw_mv_table){
  1100. mv_scale= (s->pb_time<<16) / (s->pp_time<<shift);
  1101. }else{
  1102. mv_scale= ((s->pb_time - s->pp_time)<<16) / (s->pp_time<<shift);
  1103. }
  1104. dmin = s->me.motion_search[0](s, 0, &mx, &my, P, pred_x, pred_y, rel_xmin, rel_ymin, rel_xmax, rel_ymax,
  1105. picture, s->p_mv_table, mv_scale, mv_penalty);
  1106. break;
  1107. }
  1108. dmin= s->me.sub_motion_search(s, &mx, &my, dmin, rel_xmin, rel_ymin, rel_xmax, rel_ymax,
  1109. pred_x, pred_y, picture, 0, 0, mv_penalty);
  1110. if(s->avctx->me_sub_cmp != s->avctx->mb_cmp && !s->me.skip)
  1111. dmin= s->me.get_mb_score(s, mx, my, pred_x, pred_y, picture, mv_penalty);
  1112. //printf("%d %d %d %d//", s->mb_x, s->mb_y, mx, my);
  1113. // s->mb_type[mb_y*s->mb_width + mb_x]= mb_type;
  1114. mv_table[mot_xy][0]= mx;
  1115. mv_table[mot_xy][1]= my;
  1116. return dmin;
  1117. }
  1118. static inline int check_bidir_mv(MpegEncContext * s,
  1119. int mb_x, int mb_y,
  1120. int motion_fx, int motion_fy,
  1121. int motion_bx, int motion_by,
  1122. int pred_fx, int pred_fy,
  1123. int pred_bx, int pred_by)
  1124. {
  1125. //FIXME optimize?
  1126. //FIXME move into template?
  1127. //FIXME better f_code prediction (max mv & distance)
  1128. uint8_t * const mv_penalty= s->me.mv_penalty[s->f_code] + MAX_MV; // f_code of the prev frame
  1129. uint8_t *dest_y = s->me.scratchpad;
  1130. uint8_t *ptr;
  1131. int dxy;
  1132. int src_x, src_y;
  1133. int fbmin;
  1134. if(s->quarter_sample){
  1135. dxy = ((motion_fy & 3) << 2) | (motion_fx & 3);
  1136. src_x = mb_x * 16 + (motion_fx >> 2);
  1137. src_y = mb_y * 16 + (motion_fy >> 2);
  1138. assert(src_x >=-16 && src_x<=s->h_edge_pos);
  1139. assert(src_y >=-16 && src_y<=s->v_edge_pos);
  1140. ptr = s->last_picture.data[0] + (src_y * s->linesize) + src_x;
  1141. s->dsp.put_qpel_pixels_tab[0][dxy](dest_y , ptr , s->linesize);
  1142. dxy = ((motion_by & 3) << 2) | (motion_bx & 3);
  1143. src_x = mb_x * 16 + (motion_bx >> 2);
  1144. src_y = mb_y * 16 + (motion_by >> 2);
  1145. assert(src_x >=-16 && src_x<=s->h_edge_pos);
  1146. assert(src_y >=-16 && src_y<=s->v_edge_pos);
  1147. ptr = s->next_picture.data[0] + (src_y * s->linesize) + src_x;
  1148. s->dsp.avg_qpel_pixels_tab[0][dxy](dest_y , ptr , s->linesize);
  1149. }else{
  1150. dxy = ((motion_fy & 1) << 1) | (motion_fx & 1);
  1151. src_x = mb_x * 16 + (motion_fx >> 1);
  1152. src_y = mb_y * 16 + (motion_fy >> 1);
  1153. assert(src_x >=-16 && src_x<=s->h_edge_pos);
  1154. assert(src_y >=-16 && src_y<=s->v_edge_pos);
  1155. ptr = s->last_picture.data[0] + (src_y * s->linesize) + src_x;
  1156. s->dsp.put_pixels_tab[0][dxy](dest_y , ptr , s->linesize, 16);
  1157. dxy = ((motion_by & 1) << 1) | (motion_bx & 1);
  1158. src_x = mb_x * 16 + (motion_bx >> 1);
  1159. src_y = mb_y * 16 + (motion_by >> 1);
  1160. assert(src_x >=-16 && src_x<=s->h_edge_pos);
  1161. assert(src_y >=-16 && src_y<=s->v_edge_pos);
  1162. ptr = s->next_picture.data[0] + (src_y * s->linesize) + src_x;
  1163. s->dsp.avg_pixels_tab[0][dxy](dest_y , ptr , s->linesize, 16);
  1164. }
  1165. fbmin = (mv_penalty[motion_fx-pred_fx] + mv_penalty[motion_fy-pred_fy])*s->me.mb_penalty_factor
  1166. +(mv_penalty[motion_bx-pred_bx] + mv_penalty[motion_by-pred_by])*s->me.mb_penalty_factor
  1167. + s->dsp.mb_cmp[0](s, s->new_picture.data[0] + mb_x*16 + mb_y*16*s->linesize, dest_y, s->linesize);
  1168. if(s->avctx->mb_cmp&FF_CMP_CHROMA){
  1169. }
  1170. //FIXME CHROMA !!!
  1171. return fbmin;
  1172. }
  1173. /* refine the bidir vectors in hq mode and return the score in both lq & hq mode*/
  1174. static inline int bidir_refine(MpegEncContext * s,
  1175. int mb_x, int mb_y)
  1176. {
  1177. const int mot_stride = s->mb_stride;
  1178. const int xy = mb_y *mot_stride + mb_x;
  1179. int fbmin;
  1180. int pred_fx= s->b_bidir_forw_mv_table[xy-1][0];
  1181. int pred_fy= s->b_bidir_forw_mv_table[xy-1][1];
  1182. int pred_bx= s->b_bidir_back_mv_table[xy-1][0];
  1183. int pred_by= s->b_bidir_back_mv_table[xy-1][1];
  1184. int motion_fx= s->b_bidir_forw_mv_table[xy][0]= s->b_forw_mv_table[xy][0];
  1185. int motion_fy= s->b_bidir_forw_mv_table[xy][1]= s->b_forw_mv_table[xy][1];
  1186. int motion_bx= s->b_bidir_back_mv_table[xy][0]= s->b_back_mv_table[xy][0];
  1187. int motion_by= s->b_bidir_back_mv_table[xy][1]= s->b_back_mv_table[xy][1];
  1188. //FIXME do refinement and add flag
  1189. fbmin= check_bidir_mv(s, mb_x, mb_y,
  1190. motion_fx, motion_fy,
  1191. motion_bx, motion_by,
  1192. pred_fx, pred_fy,
  1193. pred_bx, pred_by);
  1194. return fbmin;
  1195. }
  1196. static inline int direct_search(MpegEncContext * s,
  1197. int mb_x, int mb_y)
  1198. {
  1199. int P[10][2];
  1200. const int mot_stride = s->mb_stride;
  1201. const int mot_xy = mb_y*mot_stride + mb_x;
  1202. const int shift= 1+s->quarter_sample;
  1203. int dmin, i;
  1204. const int time_pp= s->pp_time;
  1205. const int time_pb= s->pb_time;
  1206. int mx, my, xmin, xmax, ymin, ymax;
  1207. int16_t (*mv_table)[2]= s->b_direct_mv_table;
  1208. uint8_t * const mv_penalty= s->me.mv_penalty[1] + MAX_MV;
  1209. ymin= xmin=(-32)>>shift;
  1210. ymax= xmax= 31>>shift;
  1211. if(IS_8X8(s->next_picture.mb_type[mot_xy])){
  1212. s->mv_type= MV_TYPE_8X8;
  1213. }else{
  1214. s->mv_type= MV_TYPE_16X16;
  1215. }
  1216. for(i=0; i<4; i++){
  1217. int index= s->block_index[i];
  1218. int min, max;
  1219. s->me.co_located_mv[i][0]= s->motion_val[index][0];
  1220. s->me.co_located_mv[i][1]= s->motion_val[index][1];
  1221. s->me.direct_basis_mv[i][0]= s->me.co_located_mv[i][0]*time_pb/time_pp + ((i& 1)<<(shift+3));
  1222. s->me.direct_basis_mv[i][1]= s->me.co_located_mv[i][1]*time_pb/time_pp + ((i>>1)<<(shift+3));
  1223. // s->me.direct_basis_mv[1][i][0]= s->me.co_located_mv[i][0]*(time_pb - time_pp)/time_pp + ((i &1)<<(shift+3);
  1224. // s->me.direct_basis_mv[1][i][1]= s->me.co_located_mv[i][1]*(time_pb - time_pp)/time_pp + ((i>>1)<<(shift+3);
  1225. max= FFMAX(s->me.direct_basis_mv[i][0], s->me.direct_basis_mv[i][0] - s->me.co_located_mv[i][0])>>shift;
  1226. min= FFMIN(s->me.direct_basis_mv[i][0], s->me.direct_basis_mv[i][0] - s->me.co_located_mv[i][0])>>shift;
  1227. max+= (2*mb_x + (i& 1))*8 + 1; // +-1 is for the simpler rounding
  1228. min+= (2*mb_x + (i& 1))*8 - 1;
  1229. xmax= FFMIN(xmax, s->width - max);
  1230. xmin= FFMAX(xmin, - 16 - min);
  1231. max= FFMAX(s->me.direct_basis_mv[i][1], s->me.direct_basis_mv[i][1] - s->me.co_located_mv[i][1])>>shift;
  1232. min= FFMIN(s->me.direct_basis_mv[i][1], s->me.direct_basis_mv[i][1] - s->me.co_located_mv[i][1])>>shift;
  1233. max+= (2*mb_y + (i>>1))*8 + 1; // +-1 is for the simpler rounding
  1234. min+= (2*mb_y + (i>>1))*8 - 1;
  1235. ymax= FFMIN(ymax, s->height - max);
  1236. ymin= FFMAX(ymin, - 16 - min);
  1237. if(s->mv_type == MV_TYPE_16X16) break;
  1238. }
  1239. assert(xmax <= 15 && ymax <= 15 && xmin >= -16 && ymin >= -16);
  1240. if(xmax < 0 || xmin >0 || ymax < 0 || ymin > 0){
  1241. s->b_direct_mv_table[mot_xy][0]= 0;
  1242. s->b_direct_mv_table[mot_xy][1]= 0;
  1243. return 256*256*256*64;
  1244. }
  1245. P_LEFT[0] = clip(mv_table[mot_xy - 1][0], xmin<<shift, xmax<<shift);
  1246. P_LEFT[1] = clip(mv_table[mot_xy - 1][1], ymin<<shift, ymax<<shift);
  1247. /* special case for first line */
  1248. if (mb_y) {
  1249. P_TOP[0] = clip(mv_table[mot_xy - mot_stride ][0], xmin<<shift, xmax<<shift);
  1250. P_TOP[1] = clip(mv_table[mot_xy - mot_stride ][1], ymin<<shift, ymax<<shift);
  1251. P_TOPRIGHT[0] = clip(mv_table[mot_xy - mot_stride + 1 ][0], xmin<<shift, xmax<<shift);
  1252. P_TOPRIGHT[1] = clip(mv_table[mot_xy - mot_stride + 1 ][1], ymin<<shift, ymax<<shift);
  1253. P_MEDIAN[0]= mid_pred(P_LEFT[0], P_TOP[0], P_TOPRIGHT[0]);
  1254. P_MEDIAN[1]= mid_pred(P_LEFT[1], P_TOP[1], P_TOPRIGHT[1]);
  1255. }
  1256. //FIXME direct_search ptr in context!!! (needed for chroma anyway or this will get messy)
  1257. if(s->flags&CODEC_FLAG_QPEL){
  1258. dmin = simple_direct_qpel_epzs_motion_search(s, 0, &mx, &my, P, 0, 0, xmin, ymin, xmax, ymax,
  1259. &s->last_picture, mv_table, 1<<14, mv_penalty);
  1260. dmin = simple_direct_qpel_qpel_motion_search(s, &mx, &my, dmin, xmin, ymin, xmax, ymax,
  1261. 0, 0, &s->last_picture, 0, 0, mv_penalty);
  1262. if(s->avctx->me_sub_cmp != s->avctx->mb_cmp && !s->me.skip)
  1263. dmin= simple_direct_qpel_qpel_get_mb_score(s, mx, my, 0, 0, &s->last_picture, mv_penalty);
  1264. }else{
  1265. dmin = simple_direct_hpel_epzs_motion_search(s, 0, &mx, &my, P, 0, 0, xmin, ymin, xmax, ymax,
  1266. &s->last_picture, mv_table, 1<<15, mv_penalty);
  1267. dmin = simple_direct_hpel_hpel_motion_search(s, &mx, &my, dmin, xmin, ymin, xmax, ymax,
  1268. 0, 0, &s->last_picture, 0, 0, mv_penalty);
  1269. if(s->avctx->me_sub_cmp != s->avctx->mb_cmp && !s->me.skip)
  1270. dmin= simple_direct_hpel_hpel_get_mb_score(s, mx, my, 0, 0, &s->last_picture, mv_penalty);
  1271. }
  1272. s->b_direct_mv_table[mot_xy][0]= mx;
  1273. s->b_direct_mv_table[mot_xy][1]= my;
  1274. return dmin;
  1275. }
  1276. void ff_estimate_b_frame_motion(MpegEncContext * s,
  1277. int mb_x, int mb_y)
  1278. {
  1279. const int penalty_factor= s->me.mb_penalty_factor;
  1280. int fmin, bmin, dmin, fbmin;
  1281. int type=0;
  1282. dmin= direct_search(s, mb_x, mb_y);
  1283. fmin= ff_estimate_motion_b(s, mb_x, mb_y, s->b_forw_mv_table, &s->last_picture, s->f_code) + 3*penalty_factor;
  1284. bmin= ff_estimate_motion_b(s, mb_x, mb_y, s->b_back_mv_table, &s->next_picture, s->b_code) + 2*penalty_factor;
  1285. //printf(" %d %d ", s->b_forw_mv_table[xy][0], s->b_forw_mv_table[xy][1]);
  1286. fbmin= bidir_refine(s, mb_x, mb_y) + penalty_factor;
  1287. //printf("%d %d %d %d\n", dmin, fmin, bmin, fbmin);
  1288. {
  1289. int score= fmin;
  1290. type = MB_TYPE_FORWARD;
  1291. // RAL: No MB_TYPE_DIRECT in MPEG-1 video (only MPEG-4)
  1292. if (s->codec_id != CODEC_ID_MPEG1VIDEO && dmin <= score){
  1293. score = dmin;
  1294. type = MB_TYPE_DIRECT;
  1295. }
  1296. if(bmin<score){
  1297. score=bmin;
  1298. type= MB_TYPE_BACKWARD;
  1299. }
  1300. if(fbmin<score){
  1301. score=fbmin;
  1302. type= MB_TYPE_BIDIR;
  1303. }
  1304. score= ((unsigned)(score*score + 128*256))>>16;
  1305. s->current_picture.mc_mb_var_sum += score;
  1306. s->current_picture.mc_mb_var[mb_y*s->mb_stride + mb_x] = score; //FIXME use SSE
  1307. }
  1308. if(s->avctx->mb_decision > FF_MB_DECISION_SIMPLE){
  1309. type= MB_TYPE_FORWARD | MB_TYPE_BACKWARD | MB_TYPE_BIDIR | MB_TYPE_DIRECT; //FIXME something smarter
  1310. if(dmin>256*256*16) type&= ~MB_TYPE_DIRECT; //dont try direct mode if its invalid for this MB
  1311. }
  1312. s->mb_type[mb_y*s->mb_stride + mb_x]= type;
  1313. }
  1314. /* find best f_code for ME which do unlimited searches */
  1315. int ff_get_best_fcode(MpegEncContext * s, int16_t (*mv_table)[2], int type)
  1316. {
  1317. if(s->me_method>=ME_EPZS){
  1318. int score[8];
  1319. int i, y;
  1320. uint8_t * fcode_tab= s->fcode_tab;
  1321. int best_fcode=-1;
  1322. int best_score=-10000000;
  1323. for(i=0; i<8; i++) score[i]= s->mb_num*(8-i);
  1324. for(y=0; y<s->mb_height; y++){
  1325. int x;
  1326. int xy= y*s->mb_stride;
  1327. for(x=0; x<s->mb_width; x++){
  1328. if(s->mb_type[xy] & type){
  1329. int fcode= FFMAX(fcode_tab[mv_table[xy][0] + MAX_MV],
  1330. fcode_tab[mv_table[xy][1] + MAX_MV]);
  1331. int j;
  1332. for(j=0; j<fcode && j<8; j++){
  1333. if(s->pict_type==B_TYPE || s->current_picture.mc_mb_var[xy] < s->current_picture.mb_var[xy])
  1334. score[j]-= 170;
  1335. }
  1336. }
  1337. xy++;
  1338. }
  1339. }
  1340. for(i=1; i<8; i++){
  1341. if(score[i] > best_score){
  1342. best_score= score[i];
  1343. best_fcode= i;
  1344. }
  1345. // printf("%d %d\n", i, score[i]);
  1346. }
  1347. // printf("fcode: %d type: %d\n", i, s->pict_type);
  1348. return best_fcode;
  1349. /* for(i=0; i<=MAX_FCODE; i++){
  1350. printf("%d ", mv_num[i]);
  1351. }
  1352. printf("\n");*/
  1353. }else{
  1354. return 1;
  1355. }
  1356. }
  1357. void ff_fix_long_p_mvs(MpegEncContext * s)
  1358. {
  1359. const int f_code= s->f_code;
  1360. int y, range;
  1361. range = (((s->codec_id == CODEC_ID_MPEG1VIDEO) ? 8 : 16) << f_code);
  1362. if(s->msmpeg4_version) range= 16;
  1363. if(s->avctx->me_range && range > s->avctx->me_range) range= s->avctx->me_range;
  1364. /* clip / convert to intra 16x16 type MVs */
  1365. for(y=0; y<s->mb_height; y++){
  1366. int x;
  1367. int xy= y*s->mb_stride;
  1368. for(x=0; x<s->mb_width; x++){
  1369. if(s->mb_type[xy]&MB_TYPE_INTER){
  1370. if( s->p_mv_table[xy][0] >=range || s->p_mv_table[xy][0] <-range
  1371. || s->p_mv_table[xy][1] >=range || s->p_mv_table[xy][1] <-range){
  1372. s->mb_type[xy] &= ~MB_TYPE_INTER;
  1373. s->mb_type[xy] |= MB_TYPE_INTRA;
  1374. s->p_mv_table[xy][0] = 0;
  1375. s->p_mv_table[xy][1] = 0;
  1376. }
  1377. }
  1378. xy++;
  1379. }
  1380. }
  1381. //printf("%d no:%d %d//\n", clip, noclip, f_code);
  1382. if(s->flags&CODEC_FLAG_4MV){
  1383. const int wrap= 2+ s->mb_width*2;
  1384. /* clip / convert to intra 8x8 type MVs */
  1385. for(y=0; y<s->mb_height; y++){
  1386. int xy= (y*2 + 1)*wrap + 1;
  1387. int i= y*s->mb_stride;
  1388. int x;
  1389. for(x=0; x<s->mb_width; x++){
  1390. if(s->mb_type[i]&MB_TYPE_INTER4V){
  1391. int block;
  1392. for(block=0; block<4; block++){
  1393. int off= (block& 1) + (block>>1)*wrap;
  1394. int mx= s->motion_val[ xy + off ][0];
  1395. int my= s->motion_val[ xy + off ][1];
  1396. if( mx >=range || mx <-range
  1397. || my >=range || my <-range){
  1398. s->mb_type[i] &= ~MB_TYPE_INTER4V;
  1399. s->mb_type[i] |= MB_TYPE_INTRA;
  1400. }
  1401. }
  1402. }
  1403. xy+=2;
  1404. i++;
  1405. }
  1406. }
  1407. }
  1408. }
  1409. void ff_fix_long_b_mvs(MpegEncContext * s, int16_t (*mv_table)[2], int f_code, int type)
  1410. {
  1411. int y;
  1412. // RAL: 8 in MPEG-1, 16 in MPEG-4
  1413. int range = (((s->codec_id == CODEC_ID_MPEG1VIDEO) ? 8 : 16) << f_code);
  1414. if(s->avctx->me_range && range > s->avctx->me_range) range= s->avctx->me_range;
  1415. /* clip / convert to intra 16x16 type MVs */
  1416. for(y=0; y<s->mb_height; y++){
  1417. int x;
  1418. int xy= y*s->mb_stride;
  1419. for(x=0; x<s->mb_width; x++){
  1420. if (s->mb_type[xy] & type){ // RAL: "type" test added...
  1421. if( mv_table[xy][0] >=range || mv_table[xy][0] <-range
  1422. || mv_table[xy][1] >=range || mv_table[xy][1] <-range){
  1423. if(s->codec_id == CODEC_ID_MPEG1VIDEO && 0){
  1424. }else{
  1425. if (mv_table[xy][0] > range-1) mv_table[xy][0]= range-1;
  1426. else if(mv_table[xy][0] < -range ) mv_table[xy][0]= -range;
  1427. if (mv_table[xy][1] > range-1) mv_table[xy][1]= range-1;
  1428. else if(mv_table[xy][1] < -range ) mv_table[xy][1]= -range;
  1429. }
  1430. }
  1431. }
  1432. xy++;
  1433. }
  1434. }
  1435. }