You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1001 lines
34KB

  1. /*
  2. * WMA compatible decoder
  3. * Copyright (c) 2002 The FFmpeg Project
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * WMA compatible decoder.
  24. * This decoder handles Microsoft Windows Media Audio data, versions 1 & 2.
  25. * WMA v1 is identified by audio format 0x160 in Microsoft media files
  26. * (ASF/AVI/WAV). WMA v2 is identified by audio format 0x161.
  27. *
  28. * To use this decoder, a calling application must supply the extra data
  29. * bytes provided with the WMA data. These are the extra, codec-specific
  30. * bytes at the end of a WAVEFORMATEX data structure. Transmit these bytes
  31. * to the decoder using the extradata[_size] fields in AVCodecContext. There
  32. * should be 4 extra bytes for v1 data and 6 extra bytes for v2 data.
  33. */
  34. #include "libavutil/attributes.h"
  35. #include "avcodec.h"
  36. #include "internal.h"
  37. #include "wma.h"
  38. #define EXPVLCBITS 8
  39. #define EXPMAX ((19 + EXPVLCBITS - 1) / EXPVLCBITS)
  40. #define HGAINVLCBITS 9
  41. #define HGAINMAX ((13 + HGAINVLCBITS - 1) / HGAINVLCBITS)
  42. static void wma_lsp_to_curve_init(WMACodecContext *s, int frame_len);
  43. #ifdef TRACE
  44. static void dump_floats(WMACodecContext *s, const char *name,
  45. int prec, const float *tab, int n)
  46. {
  47. int i;
  48. ff_tlog(s->avctx, "%s[%d]:\n", name, n);
  49. for (i = 0; i < n; i++) {
  50. if ((i & 7) == 0)
  51. ff_tlog(s->avctx, "%4d: ", i);
  52. ff_tlog(s->avctx, " %8.*f", prec, tab[i]);
  53. if ((i & 7) == 7)
  54. ff_tlog(s->avctx, "\n");
  55. }
  56. if ((i & 7) != 0)
  57. ff_tlog(s->avctx, "\n");
  58. }
  59. #endif /* TRACE */
  60. static av_cold int wma_decode_init(AVCodecContext *avctx)
  61. {
  62. WMACodecContext *s = avctx->priv_data;
  63. int i, flags2;
  64. uint8_t *extradata;
  65. if (!avctx->block_align) {
  66. av_log(avctx, AV_LOG_ERROR, "block_align is not set\n");
  67. return AVERROR(EINVAL);
  68. }
  69. s->avctx = avctx;
  70. /* extract flag infos */
  71. flags2 = 0;
  72. extradata = avctx->extradata;
  73. if (avctx->codec->id == AV_CODEC_ID_WMAV1 && avctx->extradata_size >= 4)
  74. flags2 = AV_RL16(extradata + 2);
  75. else if (avctx->codec->id == AV_CODEC_ID_WMAV2 && avctx->extradata_size >= 6)
  76. flags2 = AV_RL16(extradata + 4);
  77. s->use_exp_vlc = flags2 & 0x0001;
  78. s->use_bit_reservoir = flags2 & 0x0002;
  79. s->use_variable_block_len = flags2 & 0x0004;
  80. if (avctx->codec->id == AV_CODEC_ID_WMAV2 && avctx->extradata_size >= 8){
  81. if (AV_RL16(extradata+4)==0xd && s->use_variable_block_len){
  82. av_log(avctx, AV_LOG_WARNING, "Disabling use_variable_block_len, if this fails contact the ffmpeg developers and send us the file\n");
  83. s->use_variable_block_len= 0; // this fixes issue1503
  84. }
  85. }
  86. for (i=0; i<MAX_CHANNELS; i++)
  87. s->max_exponent[i] = 1.0;
  88. if (ff_wma_init(avctx, flags2) < 0)
  89. return -1;
  90. /* init MDCT */
  91. for (i = 0; i < s->nb_block_sizes; i++)
  92. ff_mdct_init(&s->mdct_ctx[i], s->frame_len_bits - i + 1, 1, 1.0 / 32768.0);
  93. if (s->use_noise_coding) {
  94. init_vlc(&s->hgain_vlc, HGAINVLCBITS, sizeof(ff_wma_hgain_huffbits),
  95. ff_wma_hgain_huffbits, 1, 1,
  96. ff_wma_hgain_huffcodes, 2, 2, 0);
  97. }
  98. if (s->use_exp_vlc)
  99. init_vlc(&s->exp_vlc, EXPVLCBITS, sizeof(ff_aac_scalefactor_bits), // FIXME move out of context
  100. ff_aac_scalefactor_bits, 1, 1,
  101. ff_aac_scalefactor_code, 4, 4, 0);
  102. else
  103. wma_lsp_to_curve_init(s, s->frame_len);
  104. avctx->sample_fmt = AV_SAMPLE_FMT_FLTP;
  105. return 0;
  106. }
  107. /**
  108. * compute x^-0.25 with an exponent and mantissa table. We use linear
  109. * interpolation to reduce the mantissa table size at a small speed
  110. * expense (linear interpolation approximately doubles the number of
  111. * bits of precision).
  112. */
  113. static inline float pow_m1_4(WMACodecContext *s, float x)
  114. {
  115. union {
  116. float f;
  117. unsigned int v;
  118. } u, t;
  119. unsigned int e, m;
  120. float a, b;
  121. u.f = x;
  122. e = u.v >> 23;
  123. m = (u.v >> (23 - LSP_POW_BITS)) & ((1 << LSP_POW_BITS) - 1);
  124. /* build interpolation scale: 1 <= t < 2. */
  125. t.v = ((u.v << LSP_POW_BITS) & ((1 << 23) - 1)) | (127 << 23);
  126. a = s->lsp_pow_m_table1[m];
  127. b = s->lsp_pow_m_table2[m];
  128. return s->lsp_pow_e_table[e] * (a + b * t.f);
  129. }
  130. static av_cold void wma_lsp_to_curve_init(WMACodecContext *s, int frame_len)
  131. {
  132. float wdel, a, b;
  133. int i, e, m;
  134. wdel = M_PI / frame_len;
  135. for (i = 0; i < frame_len; i++)
  136. s->lsp_cos_table[i] = 2.0f * cos(wdel * i);
  137. /* tables for x^-0.25 computation */
  138. for (i = 0; i < 256; i++) {
  139. e = i - 126;
  140. s->lsp_pow_e_table[i] = pow(2.0, e * -0.25);
  141. }
  142. /* NOTE: these two tables are needed to avoid two operations in
  143. * pow_m1_4 */
  144. b = 1.0;
  145. for (i = (1 << LSP_POW_BITS) - 1; i >= 0; i--) {
  146. m = (1 << LSP_POW_BITS) + i;
  147. a = (float) m * (0.5 / (1 << LSP_POW_BITS));
  148. a = pow(a, -0.25);
  149. s->lsp_pow_m_table1[i] = 2 * a - b;
  150. s->lsp_pow_m_table2[i] = b - a;
  151. b = a;
  152. }
  153. }
  154. /**
  155. * NOTE: We use the same code as Vorbis here
  156. * @todo optimize it further with SSE/3Dnow
  157. */
  158. static void wma_lsp_to_curve(WMACodecContext *s, float *out, float *val_max_ptr,
  159. int n, float *lsp)
  160. {
  161. int i, j;
  162. float p, q, w, v, val_max;
  163. val_max = 0;
  164. for (i = 0; i < n; i++) {
  165. p = 0.5f;
  166. q = 0.5f;
  167. w = s->lsp_cos_table[i];
  168. for (j = 1; j < NB_LSP_COEFS; j += 2) {
  169. q *= w - lsp[j - 1];
  170. p *= w - lsp[j];
  171. }
  172. p *= p * (2.0f - w);
  173. q *= q * (2.0f + w);
  174. v = p + q;
  175. v = pow_m1_4(s, v);
  176. if (v > val_max)
  177. val_max = v;
  178. out[i] = v;
  179. }
  180. *val_max_ptr = val_max;
  181. }
  182. /**
  183. * decode exponents coded with LSP coefficients (same idea as Vorbis)
  184. */
  185. static void decode_exp_lsp(WMACodecContext *s, int ch)
  186. {
  187. float lsp_coefs[NB_LSP_COEFS];
  188. int val, i;
  189. for (i = 0; i < NB_LSP_COEFS; i++) {
  190. if (i == 0 || i >= 8)
  191. val = get_bits(&s->gb, 3);
  192. else
  193. val = get_bits(&s->gb, 4);
  194. lsp_coefs[i] = ff_wma_lsp_codebook[i][val];
  195. }
  196. wma_lsp_to_curve(s, s->exponents[ch], &s->max_exponent[ch],
  197. s->block_len, lsp_coefs);
  198. }
  199. /** pow(10, i / 16.0) for i in -60..95 */
  200. static const float pow_tab[] = {
  201. 1.7782794100389e-04, 2.0535250264571e-04,
  202. 2.3713737056617e-04, 2.7384196342644e-04,
  203. 3.1622776601684e-04, 3.6517412725484e-04,
  204. 4.2169650342858e-04, 4.8696752516586e-04,
  205. 5.6234132519035e-04, 6.4938163157621e-04,
  206. 7.4989420933246e-04, 8.6596432336006e-04,
  207. 1.0000000000000e-03, 1.1547819846895e-03,
  208. 1.3335214321633e-03, 1.5399265260595e-03,
  209. 1.7782794100389e-03, 2.0535250264571e-03,
  210. 2.3713737056617e-03, 2.7384196342644e-03,
  211. 3.1622776601684e-03, 3.6517412725484e-03,
  212. 4.2169650342858e-03, 4.8696752516586e-03,
  213. 5.6234132519035e-03, 6.4938163157621e-03,
  214. 7.4989420933246e-03, 8.6596432336006e-03,
  215. 1.0000000000000e-02, 1.1547819846895e-02,
  216. 1.3335214321633e-02, 1.5399265260595e-02,
  217. 1.7782794100389e-02, 2.0535250264571e-02,
  218. 2.3713737056617e-02, 2.7384196342644e-02,
  219. 3.1622776601684e-02, 3.6517412725484e-02,
  220. 4.2169650342858e-02, 4.8696752516586e-02,
  221. 5.6234132519035e-02, 6.4938163157621e-02,
  222. 7.4989420933246e-02, 8.6596432336007e-02,
  223. 1.0000000000000e-01, 1.1547819846895e-01,
  224. 1.3335214321633e-01, 1.5399265260595e-01,
  225. 1.7782794100389e-01, 2.0535250264571e-01,
  226. 2.3713737056617e-01, 2.7384196342644e-01,
  227. 3.1622776601684e-01, 3.6517412725484e-01,
  228. 4.2169650342858e-01, 4.8696752516586e-01,
  229. 5.6234132519035e-01, 6.4938163157621e-01,
  230. 7.4989420933246e-01, 8.6596432336007e-01,
  231. 1.0000000000000e+00, 1.1547819846895e+00,
  232. 1.3335214321633e+00, 1.5399265260595e+00,
  233. 1.7782794100389e+00, 2.0535250264571e+00,
  234. 2.3713737056617e+00, 2.7384196342644e+00,
  235. 3.1622776601684e+00, 3.6517412725484e+00,
  236. 4.2169650342858e+00, 4.8696752516586e+00,
  237. 5.6234132519035e+00, 6.4938163157621e+00,
  238. 7.4989420933246e+00, 8.6596432336007e+00,
  239. 1.0000000000000e+01, 1.1547819846895e+01,
  240. 1.3335214321633e+01, 1.5399265260595e+01,
  241. 1.7782794100389e+01, 2.0535250264571e+01,
  242. 2.3713737056617e+01, 2.7384196342644e+01,
  243. 3.1622776601684e+01, 3.6517412725484e+01,
  244. 4.2169650342858e+01, 4.8696752516586e+01,
  245. 5.6234132519035e+01, 6.4938163157621e+01,
  246. 7.4989420933246e+01, 8.6596432336007e+01,
  247. 1.0000000000000e+02, 1.1547819846895e+02,
  248. 1.3335214321633e+02, 1.5399265260595e+02,
  249. 1.7782794100389e+02, 2.0535250264571e+02,
  250. 2.3713737056617e+02, 2.7384196342644e+02,
  251. 3.1622776601684e+02, 3.6517412725484e+02,
  252. 4.2169650342858e+02, 4.8696752516586e+02,
  253. 5.6234132519035e+02, 6.4938163157621e+02,
  254. 7.4989420933246e+02, 8.6596432336007e+02,
  255. 1.0000000000000e+03, 1.1547819846895e+03,
  256. 1.3335214321633e+03, 1.5399265260595e+03,
  257. 1.7782794100389e+03, 2.0535250264571e+03,
  258. 2.3713737056617e+03, 2.7384196342644e+03,
  259. 3.1622776601684e+03, 3.6517412725484e+03,
  260. 4.2169650342858e+03, 4.8696752516586e+03,
  261. 5.6234132519035e+03, 6.4938163157621e+03,
  262. 7.4989420933246e+03, 8.6596432336007e+03,
  263. 1.0000000000000e+04, 1.1547819846895e+04,
  264. 1.3335214321633e+04, 1.5399265260595e+04,
  265. 1.7782794100389e+04, 2.0535250264571e+04,
  266. 2.3713737056617e+04, 2.7384196342644e+04,
  267. 3.1622776601684e+04, 3.6517412725484e+04,
  268. 4.2169650342858e+04, 4.8696752516586e+04,
  269. 5.6234132519035e+04, 6.4938163157621e+04,
  270. 7.4989420933246e+04, 8.6596432336007e+04,
  271. 1.0000000000000e+05, 1.1547819846895e+05,
  272. 1.3335214321633e+05, 1.5399265260595e+05,
  273. 1.7782794100389e+05, 2.0535250264571e+05,
  274. 2.3713737056617e+05, 2.7384196342644e+05,
  275. 3.1622776601684e+05, 3.6517412725484e+05,
  276. 4.2169650342858e+05, 4.8696752516586e+05,
  277. 5.6234132519035e+05, 6.4938163157621e+05,
  278. 7.4989420933246e+05, 8.6596432336007e+05,
  279. };
  280. /**
  281. * decode exponents coded with VLC codes
  282. */
  283. static int decode_exp_vlc(WMACodecContext *s, int ch)
  284. {
  285. int last_exp, n, code;
  286. const uint16_t *ptr;
  287. float v, max_scale;
  288. uint32_t *q, *q_end, iv;
  289. const float *ptab = pow_tab + 60;
  290. const uint32_t *iptab = (const uint32_t *) ptab;
  291. ptr = s->exponent_bands[s->frame_len_bits - s->block_len_bits];
  292. q = (uint32_t *) s->exponents[ch];
  293. q_end = q + s->block_len;
  294. max_scale = 0;
  295. if (s->version == 1) {
  296. last_exp = get_bits(&s->gb, 5) + 10;
  297. v = ptab[last_exp];
  298. iv = iptab[last_exp];
  299. max_scale = v;
  300. n = *ptr++;
  301. switch (n & 3) do {
  302. case 0: *q++ = iv;
  303. case 3: *q++ = iv;
  304. case 2: *q++ = iv;
  305. case 1: *q++ = iv;
  306. } while ((n -= 4) > 0);
  307. } else
  308. last_exp = 36;
  309. while (q < q_end) {
  310. code = get_vlc2(&s->gb, s->exp_vlc.table, EXPVLCBITS, EXPMAX);
  311. if (code < 0) {
  312. av_log(s->avctx, AV_LOG_ERROR, "Exponent vlc invalid\n");
  313. return -1;
  314. }
  315. /* NOTE: this offset is the same as MPEG4 AAC ! */
  316. last_exp += code - 60;
  317. if ((unsigned) last_exp + 60 >= FF_ARRAY_ELEMS(pow_tab)) {
  318. av_log(s->avctx, AV_LOG_ERROR, "Exponent out of range: %d\n",
  319. last_exp);
  320. return -1;
  321. }
  322. v = ptab[last_exp];
  323. iv = iptab[last_exp];
  324. if (v > max_scale)
  325. max_scale = v;
  326. n = *ptr++;
  327. switch (n & 3) do {
  328. case 0: *q++ = iv;
  329. case 3: *q++ = iv;
  330. case 2: *q++ = iv;
  331. case 1: *q++ = iv;
  332. } while ((n -= 4) > 0);
  333. }
  334. s->max_exponent[ch] = max_scale;
  335. return 0;
  336. }
  337. /**
  338. * Apply MDCT window and add into output.
  339. *
  340. * We ensure that when the windows overlap their squared sum
  341. * is always 1 (MDCT reconstruction rule).
  342. */
  343. static void wma_window(WMACodecContext *s, float *out)
  344. {
  345. float *in = s->output;
  346. int block_len, bsize, n;
  347. /* left part */
  348. if (s->block_len_bits <= s->prev_block_len_bits) {
  349. block_len = s->block_len;
  350. bsize = s->frame_len_bits - s->block_len_bits;
  351. s->fdsp->vector_fmul_add(out, in, s->windows[bsize],
  352. out, block_len);
  353. } else {
  354. block_len = 1 << s->prev_block_len_bits;
  355. n = (s->block_len - block_len) / 2;
  356. bsize = s->frame_len_bits - s->prev_block_len_bits;
  357. s->fdsp->vector_fmul_add(out + n, in + n, s->windows[bsize],
  358. out + n, block_len);
  359. memcpy(out + n + block_len, in + n + block_len, n * sizeof(float));
  360. }
  361. out += s->block_len;
  362. in += s->block_len;
  363. /* right part */
  364. if (s->block_len_bits <= s->next_block_len_bits) {
  365. block_len = s->block_len;
  366. bsize = s->frame_len_bits - s->block_len_bits;
  367. s->fdsp->vector_fmul_reverse(out, in, s->windows[bsize], block_len);
  368. } else {
  369. block_len = 1 << s->next_block_len_bits;
  370. n = (s->block_len - block_len) / 2;
  371. bsize = s->frame_len_bits - s->next_block_len_bits;
  372. memcpy(out, in, n * sizeof(float));
  373. s->fdsp->vector_fmul_reverse(out + n, in + n, s->windows[bsize],
  374. block_len);
  375. memset(out + n + block_len, 0, n * sizeof(float));
  376. }
  377. }
  378. /**
  379. * @return 0 if OK. 1 if last block of frame. return -1 if
  380. * unrecorrable error.
  381. */
  382. static int wma_decode_block(WMACodecContext *s)
  383. {
  384. int n, v, a, ch, bsize;
  385. int coef_nb_bits, total_gain;
  386. int nb_coefs[MAX_CHANNELS];
  387. float mdct_norm;
  388. FFTContext *mdct;
  389. #ifdef TRACE
  390. ff_tlog(s->avctx, "***decode_block: %d:%d\n",
  391. s->frame_count - 1, s->block_num);
  392. #endif /* TRACE */
  393. /* compute current block length */
  394. if (s->use_variable_block_len) {
  395. n = av_log2(s->nb_block_sizes - 1) + 1;
  396. if (s->reset_block_lengths) {
  397. s->reset_block_lengths = 0;
  398. v = get_bits(&s->gb, n);
  399. if (v >= s->nb_block_sizes) {
  400. av_log(s->avctx, AV_LOG_ERROR,
  401. "prev_block_len_bits %d out of range\n",
  402. s->frame_len_bits - v);
  403. return -1;
  404. }
  405. s->prev_block_len_bits = s->frame_len_bits - v;
  406. v = get_bits(&s->gb, n);
  407. if (v >= s->nb_block_sizes) {
  408. av_log(s->avctx, AV_LOG_ERROR,
  409. "block_len_bits %d out of range\n",
  410. s->frame_len_bits - v);
  411. return -1;
  412. }
  413. s->block_len_bits = s->frame_len_bits - v;
  414. } else {
  415. /* update block lengths */
  416. s->prev_block_len_bits = s->block_len_bits;
  417. s->block_len_bits = s->next_block_len_bits;
  418. }
  419. v = get_bits(&s->gb, n);
  420. if (v >= s->nb_block_sizes) {
  421. av_log(s->avctx, AV_LOG_ERROR,
  422. "next_block_len_bits %d out of range\n",
  423. s->frame_len_bits - v);
  424. return -1;
  425. }
  426. s->next_block_len_bits = s->frame_len_bits - v;
  427. } else {
  428. /* fixed block len */
  429. s->next_block_len_bits = s->frame_len_bits;
  430. s->prev_block_len_bits = s->frame_len_bits;
  431. s->block_len_bits = s->frame_len_bits;
  432. }
  433. if (s->frame_len_bits - s->block_len_bits >= s->nb_block_sizes){
  434. av_log(s->avctx, AV_LOG_ERROR, "block_len_bits not initialized to a valid value\n");
  435. return -1;
  436. }
  437. /* now check if the block length is coherent with the frame length */
  438. s->block_len = 1 << s->block_len_bits;
  439. if ((s->block_pos + s->block_len) > s->frame_len) {
  440. av_log(s->avctx, AV_LOG_ERROR, "frame_len overflow\n");
  441. return -1;
  442. }
  443. if (s->avctx->channels == 2)
  444. s->ms_stereo = get_bits1(&s->gb);
  445. v = 0;
  446. for (ch = 0; ch < s->avctx->channels; ch++) {
  447. a = get_bits1(&s->gb);
  448. s->channel_coded[ch] = a;
  449. v |= a;
  450. }
  451. bsize = s->frame_len_bits - s->block_len_bits;
  452. /* if no channel coded, no need to go further */
  453. /* XXX: fix potential framing problems */
  454. if (!v)
  455. goto next;
  456. /* read total gain and extract corresponding number of bits for
  457. * coef escape coding */
  458. total_gain = 1;
  459. for (;;) {
  460. if (get_bits_left(&s->gb) < 7) {
  461. av_log(s->avctx, AV_LOG_ERROR, "total_gain overread\n");
  462. return AVERROR_INVALIDDATA;
  463. }
  464. a = get_bits(&s->gb, 7);
  465. total_gain += a;
  466. if (a != 127)
  467. break;
  468. }
  469. coef_nb_bits = ff_wma_total_gain_to_bits(total_gain);
  470. /* compute number of coefficients */
  471. n = s->coefs_end[bsize] - s->coefs_start;
  472. for (ch = 0; ch < s->avctx->channels; ch++)
  473. nb_coefs[ch] = n;
  474. /* complex coding */
  475. if (s->use_noise_coding) {
  476. for (ch = 0; ch < s->avctx->channels; ch++) {
  477. if (s->channel_coded[ch]) {
  478. int i, n, a;
  479. n = s->exponent_high_sizes[bsize];
  480. for (i = 0; i < n; i++) {
  481. a = get_bits1(&s->gb);
  482. s->high_band_coded[ch][i] = a;
  483. /* if noise coding, the coefficients are not transmitted */
  484. if (a)
  485. nb_coefs[ch] -= s->exponent_high_bands[bsize][i];
  486. }
  487. }
  488. }
  489. for (ch = 0; ch < s->avctx->channels; ch++) {
  490. if (s->channel_coded[ch]) {
  491. int i, n, val, code;
  492. n = s->exponent_high_sizes[bsize];
  493. val = (int) 0x80000000;
  494. for (i = 0; i < n; i++) {
  495. if (s->high_band_coded[ch][i]) {
  496. if (val == (int) 0x80000000) {
  497. val = get_bits(&s->gb, 7) - 19;
  498. } else {
  499. code = get_vlc2(&s->gb, s->hgain_vlc.table,
  500. HGAINVLCBITS, HGAINMAX);
  501. if (code < 0) {
  502. av_log(s->avctx, AV_LOG_ERROR,
  503. "hgain vlc invalid\n");
  504. return -1;
  505. }
  506. val += code - 18;
  507. }
  508. s->high_band_values[ch][i] = val;
  509. }
  510. }
  511. }
  512. }
  513. }
  514. /* exponents can be reused in short blocks. */
  515. if ((s->block_len_bits == s->frame_len_bits) || get_bits1(&s->gb)) {
  516. for (ch = 0; ch < s->avctx->channels; ch++) {
  517. if (s->channel_coded[ch]) {
  518. if (s->use_exp_vlc) {
  519. if (decode_exp_vlc(s, ch) < 0)
  520. return -1;
  521. } else {
  522. decode_exp_lsp(s, ch);
  523. }
  524. s->exponents_bsize[ch] = bsize;
  525. }
  526. }
  527. }
  528. /* parse spectral coefficients : just RLE encoding */
  529. for (ch = 0; ch < s->avctx->channels; ch++) {
  530. if (s->channel_coded[ch]) {
  531. int tindex;
  532. WMACoef *ptr = &s->coefs1[ch][0];
  533. /* special VLC tables are used for ms stereo because
  534. * there is potentially less energy there */
  535. tindex = (ch == 1 && s->ms_stereo);
  536. memset(ptr, 0, s->block_len * sizeof(WMACoef));
  537. ff_wma_run_level_decode(s->avctx, &s->gb, &s->coef_vlc[tindex],
  538. s->level_table[tindex], s->run_table[tindex],
  539. 0, ptr, 0, nb_coefs[ch],
  540. s->block_len, s->frame_len_bits, coef_nb_bits);
  541. }
  542. if (s->version == 1 && s->avctx->channels >= 2)
  543. align_get_bits(&s->gb);
  544. }
  545. /* normalize */
  546. {
  547. int n4 = s->block_len / 2;
  548. mdct_norm = 1.0 / (float) n4;
  549. if (s->version == 1)
  550. mdct_norm *= sqrt(n4);
  551. }
  552. /* finally compute the MDCT coefficients */
  553. for (ch = 0; ch < s->avctx->channels; ch++) {
  554. if (s->channel_coded[ch]) {
  555. WMACoef *coefs1;
  556. float *coefs, *exponents, mult, mult1, noise;
  557. int i, j, n, n1, last_high_band, esize;
  558. float exp_power[HIGH_BAND_MAX_SIZE];
  559. coefs1 = s->coefs1[ch];
  560. exponents = s->exponents[ch];
  561. esize = s->exponents_bsize[ch];
  562. mult = pow(10, total_gain * 0.05) / s->max_exponent[ch];
  563. mult *= mdct_norm;
  564. coefs = s->coefs[ch];
  565. if (s->use_noise_coding) {
  566. mult1 = mult;
  567. /* very low freqs : noise */
  568. for (i = 0; i < s->coefs_start; i++) {
  569. *coefs++ = s->noise_table[s->noise_index] *
  570. exponents[i << bsize >> esize] * mult1;
  571. s->noise_index = (s->noise_index + 1) &
  572. (NOISE_TAB_SIZE - 1);
  573. }
  574. n1 = s->exponent_high_sizes[bsize];
  575. /* compute power of high bands */
  576. exponents = s->exponents[ch] +
  577. (s->high_band_start[bsize] << bsize >> esize);
  578. last_high_band = 0; /* avoid warning */
  579. for (j = 0; j < n1; j++) {
  580. n = s->exponent_high_bands[s->frame_len_bits -
  581. s->block_len_bits][j];
  582. if (s->high_band_coded[ch][j]) {
  583. float e2, v;
  584. e2 = 0;
  585. for (i = 0; i < n; i++) {
  586. v = exponents[i << bsize >> esize];
  587. e2 += v * v;
  588. }
  589. exp_power[j] = e2 / n;
  590. last_high_band = j;
  591. ff_tlog(s->avctx, "%d: power=%f (%d)\n", j, exp_power[j], n);
  592. }
  593. exponents += n << bsize >> esize;
  594. }
  595. /* main freqs and high freqs */
  596. exponents = s->exponents[ch] + (s->coefs_start << bsize >> esize);
  597. for (j = -1; j < n1; j++) {
  598. if (j < 0)
  599. n = s->high_band_start[bsize] - s->coefs_start;
  600. else
  601. n = s->exponent_high_bands[s->frame_len_bits -
  602. s->block_len_bits][j];
  603. if (j >= 0 && s->high_band_coded[ch][j]) {
  604. /* use noise with specified power */
  605. mult1 = sqrt(exp_power[j] / exp_power[last_high_band]);
  606. /* XXX: use a table */
  607. mult1 = mult1 * pow(10, s->high_band_values[ch][j] * 0.05);
  608. mult1 = mult1 / (s->max_exponent[ch] * s->noise_mult);
  609. mult1 *= mdct_norm;
  610. for (i = 0; i < n; i++) {
  611. noise = s->noise_table[s->noise_index];
  612. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  613. *coefs++ = noise * exponents[i << bsize >> esize] * mult1;
  614. }
  615. exponents += n << bsize >> esize;
  616. } else {
  617. /* coded values + small noise */
  618. for (i = 0; i < n; i++) {
  619. noise = s->noise_table[s->noise_index];
  620. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  621. *coefs++ = ((*coefs1++) + noise) *
  622. exponents[i << bsize >> esize] * mult;
  623. }
  624. exponents += n << bsize >> esize;
  625. }
  626. }
  627. /* very high freqs : noise */
  628. n = s->block_len - s->coefs_end[bsize];
  629. mult1 = mult * exponents[(-(1 << bsize)) >> esize];
  630. for (i = 0; i < n; i++) {
  631. *coefs++ = s->noise_table[s->noise_index] * mult1;
  632. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  633. }
  634. } else {
  635. /* XXX: optimize more */
  636. for (i = 0; i < s->coefs_start; i++)
  637. *coefs++ = 0.0;
  638. n = nb_coefs[ch];
  639. for (i = 0; i < n; i++)
  640. *coefs++ = coefs1[i] * exponents[i << bsize >> esize] * mult;
  641. n = s->block_len - s->coefs_end[bsize];
  642. for (i = 0; i < n; i++)
  643. *coefs++ = 0.0;
  644. }
  645. }
  646. }
  647. #ifdef TRACE
  648. for (ch = 0; ch < s->avctx->channels; ch++) {
  649. if (s->channel_coded[ch]) {
  650. dump_floats(s, "exponents", 3, s->exponents[ch], s->block_len);
  651. dump_floats(s, "coefs", 1, s->coefs[ch], s->block_len);
  652. }
  653. }
  654. #endif /* TRACE */
  655. if (s->ms_stereo && s->channel_coded[1]) {
  656. /* nominal case for ms stereo: we do it before mdct */
  657. /* no need to optimize this case because it should almost
  658. * never happen */
  659. if (!s->channel_coded[0]) {
  660. ff_tlog(s->avctx, "rare ms-stereo case happened\n");
  661. memset(s->coefs[0], 0, sizeof(float) * s->block_len);
  662. s->channel_coded[0] = 1;
  663. }
  664. s->fdsp->butterflies_float(s->coefs[0], s->coefs[1], s->block_len);
  665. }
  666. next:
  667. mdct = &s->mdct_ctx[bsize];
  668. for (ch = 0; ch < s->avctx->channels; ch++) {
  669. int n4, index;
  670. n4 = s->block_len / 2;
  671. if (s->channel_coded[ch])
  672. mdct->imdct_calc(mdct, s->output, s->coefs[ch]);
  673. else if (!(s->ms_stereo && ch == 1))
  674. memset(s->output, 0, sizeof(s->output));
  675. /* multiply by the window and add in the frame */
  676. index = (s->frame_len / 2) + s->block_pos - n4;
  677. wma_window(s, &s->frame_out[ch][index]);
  678. }
  679. /* update block number */
  680. s->block_num++;
  681. s->block_pos += s->block_len;
  682. if (s->block_pos >= s->frame_len)
  683. return 1;
  684. else
  685. return 0;
  686. }
  687. /* decode a frame of frame_len samples */
  688. static int wma_decode_frame(WMACodecContext *s, float **samples,
  689. int samples_offset)
  690. {
  691. int ret, ch;
  692. #ifdef TRACE
  693. ff_tlog(s->avctx, "***decode_frame: %d size=%d\n",
  694. s->frame_count++, s->frame_len);
  695. #endif /* TRACE */
  696. /* read each block */
  697. s->block_num = 0;
  698. s->block_pos = 0;
  699. for (;;) {
  700. ret = wma_decode_block(s);
  701. if (ret < 0)
  702. return -1;
  703. if (ret)
  704. break;
  705. }
  706. for (ch = 0; ch < s->avctx->channels; ch++) {
  707. /* copy current block to output */
  708. memcpy(samples[ch] + samples_offset, s->frame_out[ch],
  709. s->frame_len * sizeof(*s->frame_out[ch]));
  710. /* prepare for next block */
  711. memmove(&s->frame_out[ch][0], &s->frame_out[ch][s->frame_len],
  712. s->frame_len * sizeof(*s->frame_out[ch]));
  713. #ifdef TRACE
  714. dump_floats(s, "samples", 6, samples[ch] + samples_offset,
  715. s->frame_len);
  716. #endif /* TRACE */
  717. }
  718. return 0;
  719. }
  720. static int wma_decode_superframe(AVCodecContext *avctx, void *data,
  721. int *got_frame_ptr, AVPacket *avpkt)
  722. {
  723. AVFrame *frame = data;
  724. const uint8_t *buf = avpkt->data;
  725. int buf_size = avpkt->size;
  726. WMACodecContext *s = avctx->priv_data;
  727. int nb_frames, bit_offset, i, pos, len, ret;
  728. uint8_t *q;
  729. float **samples;
  730. int samples_offset;
  731. ff_tlog(avctx, "***decode_superframe:\n");
  732. if (buf_size == 0) {
  733. s->last_superframe_len = 0;
  734. return 0;
  735. }
  736. if (buf_size < avctx->block_align) {
  737. av_log(avctx, AV_LOG_ERROR,
  738. "Input packet size too small (%d < %d)\n",
  739. buf_size, avctx->block_align);
  740. return AVERROR_INVALIDDATA;
  741. }
  742. if (avctx->block_align)
  743. buf_size = avctx->block_align;
  744. init_get_bits(&s->gb, buf, buf_size * 8);
  745. if (s->use_bit_reservoir) {
  746. /* read super frame header */
  747. skip_bits(&s->gb, 4); /* super frame index */
  748. nb_frames = get_bits(&s->gb, 4) - (s->last_superframe_len <= 0);
  749. if (nb_frames <= 0) {
  750. int is_error = nb_frames < 0 || get_bits_left(&s->gb) <= 8;
  751. av_log(avctx, is_error ? AV_LOG_ERROR : AV_LOG_WARNING,
  752. "nb_frames is %d bits left %d\n",
  753. nb_frames, get_bits_left(&s->gb));
  754. if (is_error)
  755. return AVERROR_INVALIDDATA;
  756. if ((s->last_superframe_len + buf_size - 1) >
  757. MAX_CODED_SUPERFRAME_SIZE)
  758. goto fail;
  759. q = s->last_superframe + s->last_superframe_len;
  760. len = buf_size - 1;
  761. while (len > 0) {
  762. *q++ = get_bits (&s->gb, 8);
  763. len --;
  764. }
  765. memset(q, 0, AV_INPUT_BUFFER_PADDING_SIZE);
  766. s->last_superframe_len += 8*buf_size - 8;
  767. // s->reset_block_lengths = 1; //XXX is this needed ?
  768. *got_frame_ptr = 0;
  769. return buf_size;
  770. }
  771. } else
  772. nb_frames = 1;
  773. /* get output buffer */
  774. frame->nb_samples = nb_frames * s->frame_len;
  775. if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
  776. return ret;
  777. samples = (float **) frame->extended_data;
  778. samples_offset = 0;
  779. if (s->use_bit_reservoir) {
  780. bit_offset = get_bits(&s->gb, s->byte_offset_bits + 3);
  781. if (bit_offset > get_bits_left(&s->gb)) {
  782. av_log(avctx, AV_LOG_ERROR,
  783. "Invalid last frame bit offset %d > buf size %d (%d)\n",
  784. bit_offset, get_bits_left(&s->gb), buf_size);
  785. goto fail;
  786. }
  787. if (s->last_superframe_len > 0) {
  788. /* add bit_offset bits to last frame */
  789. if ((s->last_superframe_len + ((bit_offset + 7) >> 3)) >
  790. MAX_CODED_SUPERFRAME_SIZE)
  791. goto fail;
  792. q = s->last_superframe + s->last_superframe_len;
  793. len = bit_offset;
  794. while (len > 7) {
  795. *q++ = (get_bits) (&s->gb, 8);
  796. len -= 8;
  797. }
  798. if (len > 0)
  799. *q++ = (get_bits) (&s->gb, len) << (8 - len);
  800. memset(q, 0, AV_INPUT_BUFFER_PADDING_SIZE);
  801. /* XXX: bit_offset bits into last frame */
  802. init_get_bits(&s->gb, s->last_superframe,
  803. s->last_superframe_len * 8 + bit_offset);
  804. /* skip unused bits */
  805. if (s->last_bitoffset > 0)
  806. skip_bits(&s->gb, s->last_bitoffset);
  807. /* this frame is stored in the last superframe and in the
  808. * current one */
  809. if (wma_decode_frame(s, samples, samples_offset) < 0)
  810. goto fail;
  811. samples_offset += s->frame_len;
  812. nb_frames--;
  813. }
  814. /* read each frame starting from bit_offset */
  815. pos = bit_offset + 4 + 4 + s->byte_offset_bits + 3;
  816. if (pos >= MAX_CODED_SUPERFRAME_SIZE * 8 || pos > buf_size * 8)
  817. return AVERROR_INVALIDDATA;
  818. init_get_bits(&s->gb, buf + (pos >> 3), (buf_size - (pos >> 3)) * 8);
  819. len = pos & 7;
  820. if (len > 0)
  821. skip_bits(&s->gb, len);
  822. s->reset_block_lengths = 1;
  823. for (i = 0; i < nb_frames; i++) {
  824. if (wma_decode_frame(s, samples, samples_offset) < 0)
  825. goto fail;
  826. samples_offset += s->frame_len;
  827. }
  828. /* we copy the end of the frame in the last frame buffer */
  829. pos = get_bits_count(&s->gb) +
  830. ((bit_offset + 4 + 4 + s->byte_offset_bits + 3) & ~7);
  831. s->last_bitoffset = pos & 7;
  832. pos >>= 3;
  833. len = buf_size - pos;
  834. if (len > MAX_CODED_SUPERFRAME_SIZE || len < 0) {
  835. av_log(s->avctx, AV_LOG_ERROR, "len %d invalid\n", len);
  836. goto fail;
  837. }
  838. s->last_superframe_len = len;
  839. memcpy(s->last_superframe, buf + pos, len);
  840. } else {
  841. /* single frame decode */
  842. if (wma_decode_frame(s, samples, samples_offset) < 0)
  843. goto fail;
  844. samples_offset += s->frame_len;
  845. }
  846. ff_dlog(s->avctx, "%d %d %d %d outbytes:%"PTRDIFF_SPECIFIER" eaten:%d\n",
  847. s->frame_len_bits, s->block_len_bits, s->frame_len, s->block_len,
  848. (int8_t *) samples - (int8_t *) data, avctx->block_align);
  849. *got_frame_ptr = 1;
  850. return buf_size;
  851. fail:
  852. /* when error, we reset the bit reservoir */
  853. s->last_superframe_len = 0;
  854. return -1;
  855. }
  856. static av_cold void flush(AVCodecContext *avctx)
  857. {
  858. WMACodecContext *s = avctx->priv_data;
  859. s->last_bitoffset =
  860. s->last_superframe_len = 0;
  861. }
  862. #if CONFIG_WMAV1_DECODER
  863. AVCodec ff_wmav1_decoder = {
  864. .name = "wmav1",
  865. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Audio 1"),
  866. .type = AVMEDIA_TYPE_AUDIO,
  867. .id = AV_CODEC_ID_WMAV1,
  868. .priv_data_size = sizeof(WMACodecContext),
  869. .init = wma_decode_init,
  870. .close = ff_wma_end,
  871. .decode = wma_decode_superframe,
  872. .flush = flush,
  873. .capabilities = AV_CODEC_CAP_DR1,
  874. .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
  875. AV_SAMPLE_FMT_NONE },
  876. };
  877. #endif
  878. #if CONFIG_WMAV2_DECODER
  879. AVCodec ff_wmav2_decoder = {
  880. .name = "wmav2",
  881. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Audio 2"),
  882. .type = AVMEDIA_TYPE_AUDIO,
  883. .id = AV_CODEC_ID_WMAV2,
  884. .priv_data_size = sizeof(WMACodecContext),
  885. .init = wma_decode_init,
  886. .close = ff_wma_end,
  887. .decode = wma_decode_superframe,
  888. .flush = flush,
  889. .capabilities = AV_CODEC_CAP_DR1,
  890. .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
  891. AV_SAMPLE_FMT_NONE },
  892. };
  893. #endif