You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

497 lines
16KB

  1. /*
  2. * WMA compatible codec
  3. * Copyright (c) 2002-2007 The FFmpeg Project
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. #include "libavutil/attributes.h"
  22. #include "avcodec.h"
  23. #include "internal.h"
  24. #include "sinewin.h"
  25. #include "wma.h"
  26. #include "wma_common.h"
  27. #include "wma_freqs.h"
  28. #include "wmadata.h"
  29. /* XXX: use same run/length optimization as mpeg decoders */
  30. // FIXME maybe split decode / encode or pass flag
  31. static av_cold int init_coef_vlc(VLC *vlc, uint16_t **prun_table,
  32. float **plevel_table, uint16_t **pint_table,
  33. const CoefVLCTable *vlc_table)
  34. {
  35. int n = vlc_table->n;
  36. const uint8_t *table_bits = vlc_table->huffbits;
  37. const uint32_t *table_codes = vlc_table->huffcodes;
  38. const uint16_t *levels_table = vlc_table->levels;
  39. uint16_t *run_table, *level_table, *int_table;
  40. float *flevel_table;
  41. int i, l, j, k, level;
  42. init_vlc(vlc, VLCBITS, n, table_bits, 1, 1, table_codes, 4, 4, 0);
  43. run_table = av_malloc_array(n, sizeof(uint16_t));
  44. level_table = av_malloc_array(n, sizeof(uint16_t));
  45. flevel_table = av_malloc_array(n, sizeof(*flevel_table));
  46. int_table = av_malloc_array(n, sizeof(uint16_t));
  47. if (!run_table || !level_table || !flevel_table || !int_table) {
  48. av_freep(&run_table);
  49. av_freep(&level_table);
  50. av_freep(&flevel_table);
  51. av_freep(&int_table);
  52. return AVERROR(ENOMEM);
  53. }
  54. i = 2;
  55. level = 1;
  56. k = 0;
  57. while (i < n) {
  58. int_table[k] = i;
  59. l = levels_table[k++];
  60. for (j = 0; j < l; j++) {
  61. run_table[i] = j;
  62. level_table[i] = level;
  63. flevel_table[i] = level;
  64. i++;
  65. }
  66. level++;
  67. }
  68. *prun_table = run_table;
  69. *plevel_table = flevel_table;
  70. *pint_table = int_table;
  71. av_free(level_table);
  72. return 0;
  73. }
  74. av_cold int ff_wma_init(AVCodecContext *avctx, int flags2)
  75. {
  76. WMACodecContext *s = avctx->priv_data;
  77. int i, ret;
  78. float bps1, high_freq;
  79. volatile float bps;
  80. int sample_rate1;
  81. int coef_vlc_table;
  82. if (avctx->sample_rate <= 0 || avctx->sample_rate > 50000 ||
  83. avctx->channels <= 0 || avctx->channels > 2 ||
  84. avctx->bit_rate <= 0)
  85. return -1;
  86. if (avctx->codec->id == AV_CODEC_ID_WMAV1)
  87. s->version = 1;
  88. else
  89. s->version = 2;
  90. /* compute MDCT block size */
  91. s->frame_len_bits = ff_wma_get_frame_len_bits(avctx->sample_rate,
  92. s->version, 0);
  93. s->next_block_len_bits = s->frame_len_bits;
  94. s->prev_block_len_bits = s->frame_len_bits;
  95. s->block_len_bits = s->frame_len_bits;
  96. s->frame_len = 1 << s->frame_len_bits;
  97. if (s->use_variable_block_len) {
  98. int nb_max, nb;
  99. nb = ((flags2 >> 3) & 3) + 1;
  100. if ((avctx->bit_rate / avctx->channels) >= 32000)
  101. nb += 2;
  102. nb_max = s->frame_len_bits - BLOCK_MIN_BITS;
  103. if (nb > nb_max)
  104. nb = nb_max;
  105. s->nb_block_sizes = nb + 1;
  106. } else
  107. s->nb_block_sizes = 1;
  108. /* init rate dependent parameters */
  109. s->use_noise_coding = 1;
  110. high_freq = avctx->sample_rate * 0.5;
  111. /* if version 2, then the rates are normalized */
  112. sample_rate1 = avctx->sample_rate;
  113. if (s->version == 2) {
  114. if (sample_rate1 >= 44100)
  115. sample_rate1 = 44100;
  116. else if (sample_rate1 >= 22050)
  117. sample_rate1 = 22050;
  118. else if (sample_rate1 >= 16000)
  119. sample_rate1 = 16000;
  120. else if (sample_rate1 >= 11025)
  121. sample_rate1 = 11025;
  122. else if (sample_rate1 >= 8000)
  123. sample_rate1 = 8000;
  124. }
  125. bps = (float) avctx->bit_rate /
  126. (float) (avctx->channels * avctx->sample_rate);
  127. s->byte_offset_bits = av_log2((int) (bps * s->frame_len / 8.0 + 0.5)) + 2;
  128. if (s->byte_offset_bits + 3 > MIN_CACHE_BITS) {
  129. av_log(avctx, AV_LOG_ERROR, "byte_offset_bits %d is too large\n", s->byte_offset_bits);
  130. return AVERROR_PATCHWELCOME;
  131. }
  132. /* compute high frequency value and choose if noise coding should
  133. * be activated */
  134. bps1 = bps;
  135. if (avctx->channels == 2)
  136. bps1 = bps * 1.6;
  137. if (sample_rate1 == 44100) {
  138. if (bps1 >= 0.61)
  139. s->use_noise_coding = 0;
  140. else
  141. high_freq = high_freq * 0.4;
  142. } else if (sample_rate1 == 22050) {
  143. if (bps1 >= 1.16)
  144. s->use_noise_coding = 0;
  145. else if (bps1 >= 0.72)
  146. high_freq = high_freq * 0.7;
  147. else
  148. high_freq = high_freq * 0.6;
  149. } else if (sample_rate1 == 16000) {
  150. if (bps > 0.5)
  151. high_freq = high_freq * 0.5;
  152. else
  153. high_freq = high_freq * 0.3;
  154. } else if (sample_rate1 == 11025)
  155. high_freq = high_freq * 0.7;
  156. else if (sample_rate1 == 8000) {
  157. if (bps <= 0.625)
  158. high_freq = high_freq * 0.5;
  159. else if (bps > 0.75)
  160. s->use_noise_coding = 0;
  161. else
  162. high_freq = high_freq * 0.65;
  163. } else {
  164. if (bps >= 0.8)
  165. high_freq = high_freq * 0.75;
  166. else if (bps >= 0.6)
  167. high_freq = high_freq * 0.6;
  168. else
  169. high_freq = high_freq * 0.5;
  170. }
  171. ff_dlog(s->avctx, "flags2=0x%x\n", flags2);
  172. ff_dlog(s->avctx, "version=%d channels=%d sample_rate=%d bitrate=%d block_align=%d\n",
  173. s->version, avctx->channels, avctx->sample_rate, avctx->bit_rate,
  174. avctx->block_align);
  175. ff_dlog(s->avctx, "bps=%f bps1=%f high_freq=%f bitoffset=%d\n",
  176. bps, bps1, high_freq, s->byte_offset_bits);
  177. ff_dlog(s->avctx, "use_noise_coding=%d use_exp_vlc=%d nb_block_sizes=%d\n",
  178. s->use_noise_coding, s->use_exp_vlc, s->nb_block_sizes);
  179. /* compute the scale factor band sizes for each MDCT block size */
  180. {
  181. int a, b, pos, lpos, k, block_len, i, j, n;
  182. const uint8_t *table;
  183. if (s->version == 1)
  184. s->coefs_start = 3;
  185. else
  186. s->coefs_start = 0;
  187. for (k = 0; k < s->nb_block_sizes; k++) {
  188. block_len = s->frame_len >> k;
  189. if (s->version == 1) {
  190. lpos = 0;
  191. for (i = 0; i < 25; i++) {
  192. a = ff_wma_critical_freqs[i];
  193. b = avctx->sample_rate;
  194. pos = ((block_len * 2 * a) + (b >> 1)) / b;
  195. if (pos > block_len)
  196. pos = block_len;
  197. s->exponent_bands[0][i] = pos - lpos;
  198. if (pos >= block_len) {
  199. i++;
  200. break;
  201. }
  202. lpos = pos;
  203. }
  204. s->exponent_sizes[0] = i;
  205. } else {
  206. /* hardcoded tables */
  207. table = NULL;
  208. a = s->frame_len_bits - BLOCK_MIN_BITS - k;
  209. if (a < 3) {
  210. if (avctx->sample_rate >= 44100)
  211. table = exponent_band_44100[a];
  212. else if (avctx->sample_rate >= 32000)
  213. table = exponent_band_32000[a];
  214. else if (avctx->sample_rate >= 22050)
  215. table = exponent_band_22050[a];
  216. }
  217. if (table) {
  218. n = *table++;
  219. for (i = 0; i < n; i++)
  220. s->exponent_bands[k][i] = table[i];
  221. s->exponent_sizes[k] = n;
  222. } else {
  223. j = 0;
  224. lpos = 0;
  225. for (i = 0; i < 25; i++) {
  226. a = ff_wma_critical_freqs[i];
  227. b = avctx->sample_rate;
  228. pos = ((block_len * 2 * a) + (b << 1)) / (4 * b);
  229. pos <<= 2;
  230. if (pos > block_len)
  231. pos = block_len;
  232. if (pos > lpos)
  233. s->exponent_bands[k][j++] = pos - lpos;
  234. if (pos >= block_len)
  235. break;
  236. lpos = pos;
  237. }
  238. s->exponent_sizes[k] = j;
  239. }
  240. }
  241. /* max number of coefs */
  242. s->coefs_end[k] = (s->frame_len - ((s->frame_len * 9) / 100)) >> k;
  243. /* high freq computation */
  244. s->high_band_start[k] = (int) ((block_len * 2 * high_freq) /
  245. avctx->sample_rate + 0.5);
  246. n = s->exponent_sizes[k];
  247. j = 0;
  248. pos = 0;
  249. for (i = 0; i < n; i++) {
  250. int start, end;
  251. start = pos;
  252. pos += s->exponent_bands[k][i];
  253. end = pos;
  254. if (start < s->high_band_start[k])
  255. start = s->high_band_start[k];
  256. if (end > s->coefs_end[k])
  257. end = s->coefs_end[k];
  258. if (end > start)
  259. s->exponent_high_bands[k][j++] = end - start;
  260. }
  261. s->exponent_high_sizes[k] = j;
  262. #if 0
  263. ff_tlog(s->avctx, "%5d: coefs_end=%d high_band_start=%d nb_high_bands=%d: ",
  264. s->frame_len >> k,
  265. s->coefs_end[k],
  266. s->high_band_start[k],
  267. s->exponent_high_sizes[k]);
  268. for (j = 0; j < s->exponent_high_sizes[k]; j++)
  269. ff_tlog(s->avctx, " %d", s->exponent_high_bands[k][j]);
  270. ff_tlog(s->avctx, "\n");
  271. #endif /* 0 */
  272. }
  273. }
  274. #ifdef TRACE
  275. {
  276. int i, j;
  277. for (i = 0; i < s->nb_block_sizes; i++) {
  278. ff_tlog(s->avctx, "%5d: n=%2d:",
  279. s->frame_len >> i,
  280. s->exponent_sizes[i]);
  281. for (j = 0; j < s->exponent_sizes[i]; j++)
  282. ff_tlog(s->avctx, " %d", s->exponent_bands[i][j]);
  283. ff_tlog(s->avctx, "\n");
  284. }
  285. }
  286. #endif /* TRACE */
  287. /* init MDCT windows : simple sine window */
  288. for (i = 0; i < s->nb_block_sizes; i++) {
  289. ff_init_ff_sine_windows(s->frame_len_bits - i);
  290. s->windows[i] = ff_sine_windows[s->frame_len_bits - i];
  291. }
  292. s->reset_block_lengths = 1;
  293. if (s->use_noise_coding) {
  294. /* init the noise generator */
  295. if (s->use_exp_vlc)
  296. s->noise_mult = 0.02;
  297. else
  298. s->noise_mult = 0.04;
  299. #ifdef TRACE
  300. for (i = 0; i < NOISE_TAB_SIZE; i++)
  301. s->noise_table[i] = 1.0 * s->noise_mult;
  302. #else
  303. {
  304. unsigned int seed;
  305. float norm;
  306. seed = 1;
  307. norm = (1.0 / (float) (1LL << 31)) * sqrt(3) * s->noise_mult;
  308. for (i = 0; i < NOISE_TAB_SIZE; i++) {
  309. seed = seed * 314159 + 1;
  310. s->noise_table[i] = (float) ((int) seed) * norm;
  311. }
  312. }
  313. #endif /* TRACE */
  314. }
  315. s->fdsp = avpriv_float_dsp_alloc(avctx->flags & AV_CODEC_FLAG_BITEXACT);
  316. if (!s->fdsp)
  317. return AVERROR(ENOMEM);
  318. /* choose the VLC tables for the coefficients */
  319. coef_vlc_table = 2;
  320. if (avctx->sample_rate >= 32000) {
  321. if (bps1 < 0.72)
  322. coef_vlc_table = 0;
  323. else if (bps1 < 1.16)
  324. coef_vlc_table = 1;
  325. }
  326. s->coef_vlcs[0] = &coef_vlcs[coef_vlc_table * 2];
  327. s->coef_vlcs[1] = &coef_vlcs[coef_vlc_table * 2 + 1];
  328. ret = init_coef_vlc(&s->coef_vlc[0], &s->run_table[0], &s->level_table[0],
  329. &s->int_table[0], s->coef_vlcs[0]);
  330. if (ret < 0)
  331. return ret;
  332. return init_coef_vlc(&s->coef_vlc[1], &s->run_table[1], &s->level_table[1],
  333. &s->int_table[1], s->coef_vlcs[1]);
  334. }
  335. int ff_wma_total_gain_to_bits(int total_gain)
  336. {
  337. if (total_gain < 15)
  338. return 13;
  339. else if (total_gain < 32)
  340. return 12;
  341. else if (total_gain < 40)
  342. return 11;
  343. else if (total_gain < 45)
  344. return 10;
  345. else
  346. return 9;
  347. }
  348. int ff_wma_end(AVCodecContext *avctx)
  349. {
  350. WMACodecContext *s = avctx->priv_data;
  351. int i;
  352. for (i = 0; i < s->nb_block_sizes; i++)
  353. ff_mdct_end(&s->mdct_ctx[i]);
  354. if (s->use_exp_vlc)
  355. ff_free_vlc(&s->exp_vlc);
  356. if (s->use_noise_coding)
  357. ff_free_vlc(&s->hgain_vlc);
  358. for (i = 0; i < 2; i++) {
  359. ff_free_vlc(&s->coef_vlc[i]);
  360. av_freep(&s->run_table[i]);
  361. av_freep(&s->level_table[i]);
  362. av_freep(&s->int_table[i]);
  363. }
  364. av_freep(&s->fdsp);
  365. return 0;
  366. }
  367. /**
  368. * Decode an uncompressed coefficient.
  369. * @param gb GetBitContext
  370. * @return the decoded coefficient
  371. */
  372. unsigned int ff_wma_get_large_val(GetBitContext *gb)
  373. {
  374. /** consumes up to 34 bits */
  375. int n_bits = 8;
  376. /** decode length */
  377. if (get_bits1(gb)) {
  378. n_bits += 8;
  379. if (get_bits1(gb)) {
  380. n_bits += 8;
  381. if (get_bits1(gb))
  382. n_bits += 7;
  383. }
  384. }
  385. return get_bits_long(gb, n_bits);
  386. }
  387. /**
  388. * Decode run level compressed coefficients.
  389. * @param avctx codec context
  390. * @param gb bitstream reader context
  391. * @param vlc vlc table for get_vlc2
  392. * @param level_table level codes
  393. * @param run_table run codes
  394. * @param version 0 for wma1,2 1 for wmapro
  395. * @param ptr output buffer
  396. * @param offset offset in the output buffer
  397. * @param num_coefs number of input coefficents
  398. * @param block_len input buffer length (2^n)
  399. * @param frame_len_bits number of bits for escaped run codes
  400. * @param coef_nb_bits number of bits for escaped level codes
  401. * @return 0 on success, -1 otherwise
  402. */
  403. int ff_wma_run_level_decode(AVCodecContext *avctx, GetBitContext *gb,
  404. VLC *vlc, const float *level_table,
  405. const uint16_t *run_table, int version,
  406. WMACoef *ptr, int offset, int num_coefs,
  407. int block_len, int frame_len_bits,
  408. int coef_nb_bits)
  409. {
  410. int code, level, sign;
  411. const uint32_t *ilvl = (const uint32_t *) level_table;
  412. uint32_t *iptr = (uint32_t *) ptr;
  413. const unsigned int coef_mask = block_len - 1;
  414. for (; offset < num_coefs; offset++) {
  415. code = get_vlc2(gb, vlc->table, VLCBITS, VLCMAX);
  416. if (code > 1) {
  417. /** normal code */
  418. offset += run_table[code];
  419. sign = get_bits1(gb) - 1;
  420. iptr[offset & coef_mask] = ilvl[code] ^ (sign & 0x80000000);
  421. } else if (code == 1) {
  422. /** EOB */
  423. break;
  424. } else {
  425. /** escape */
  426. if (!version) {
  427. level = get_bits(gb, coef_nb_bits);
  428. /** NOTE: this is rather suboptimal. reading
  429. * block_len_bits would be better */
  430. offset += get_bits(gb, frame_len_bits);
  431. } else {
  432. level = ff_wma_get_large_val(gb);
  433. /** escape decode */
  434. if (get_bits1(gb)) {
  435. if (get_bits1(gb)) {
  436. if (get_bits1(gb)) {
  437. av_log(avctx, AV_LOG_ERROR,
  438. "broken escape sequence\n");
  439. return -1;
  440. } else
  441. offset += get_bits(gb, frame_len_bits) + 4;
  442. } else
  443. offset += get_bits(gb, 2) + 1;
  444. }
  445. }
  446. sign = get_bits1(gb) - 1;
  447. ptr[offset & coef_mask] = (level ^ sign) - sign;
  448. }
  449. }
  450. /** NOTE: EOB can be omitted */
  451. if (offset > num_coefs) {
  452. av_log(avctx, AV_LOG_ERROR,
  453. "overflow (%d > %d) in spectral RLE, ignoring\n",
  454. offset,
  455. num_coefs
  456. );
  457. return -1;
  458. }
  459. return 0;
  460. }