You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1028 lines
30KB

  1. /*
  2. * Duck/ON2 TrueMotion 2 Decoder
  3. * Copyright (c) 2005 Konstantin Shishkov
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * Duck TrueMotion2 decoder.
  24. */
  25. #include <inttypes.h>
  26. #include "avcodec.h"
  27. #include "bswapdsp.h"
  28. #include "bytestream.h"
  29. #include "get_bits.h"
  30. #include "internal.h"
  31. #define TM2_ESCAPE 0x80000000
  32. #define TM2_DELTAS 64
  33. /* Huffman-coded streams of different types of blocks */
  34. enum TM2_STREAMS {
  35. TM2_C_HI = 0,
  36. TM2_C_LO,
  37. TM2_L_HI,
  38. TM2_L_LO,
  39. TM2_UPD,
  40. TM2_MOT,
  41. TM2_TYPE,
  42. TM2_NUM_STREAMS
  43. };
  44. /* Block types */
  45. enum TM2_BLOCKS {
  46. TM2_HI_RES = 0,
  47. TM2_MED_RES,
  48. TM2_LOW_RES,
  49. TM2_NULL_RES,
  50. TM2_UPDATE,
  51. TM2_STILL,
  52. TM2_MOTION
  53. };
  54. typedef struct TM2Context {
  55. AVCodecContext *avctx;
  56. AVFrame *pic;
  57. GetBitContext gb;
  58. BswapDSPContext bdsp;
  59. uint8_t *buffer;
  60. int buffer_size;
  61. /* TM2 streams */
  62. int *tokens[TM2_NUM_STREAMS];
  63. int tok_lens[TM2_NUM_STREAMS];
  64. int tok_ptrs[TM2_NUM_STREAMS];
  65. int deltas[TM2_NUM_STREAMS][TM2_DELTAS];
  66. /* for blocks decoding */
  67. int D[4];
  68. int CD[4];
  69. int *last;
  70. int *clast;
  71. /* data for current and previous frame */
  72. int *Y1_base, *U1_base, *V1_base, *Y2_base, *U2_base, *V2_base;
  73. int *Y1, *U1, *V1, *Y2, *U2, *V2;
  74. int y_stride, uv_stride;
  75. int cur;
  76. } TM2Context;
  77. /**
  78. * Huffman codes for each of streams
  79. */
  80. typedef struct TM2Codes {
  81. VLC vlc; ///< table for FFmpeg bitstream reader
  82. int bits;
  83. int *recode; ///< table for converting from code indexes to values
  84. int length;
  85. } TM2Codes;
  86. /**
  87. * structure for gathering Huffman codes information
  88. */
  89. typedef struct TM2Huff {
  90. int val_bits; ///< length of literal
  91. int max_bits; ///< maximum length of code
  92. int min_bits; ///< minimum length of code
  93. int nodes; ///< total number of nodes in tree
  94. int num; ///< current number filled
  95. int max_num; ///< total number of codes
  96. int *nums; ///< literals
  97. uint32_t *bits; ///< codes
  98. int *lens; ///< codelengths
  99. } TM2Huff;
  100. static int tm2_read_tree(TM2Context *ctx, uint32_t prefix, int length, TM2Huff *huff)
  101. {
  102. int ret;
  103. if (length > huff->max_bits) {
  104. av_log(ctx->avctx, AV_LOG_ERROR, "Tree exceeded its given depth (%i)\n",
  105. huff->max_bits);
  106. return AVERROR_INVALIDDATA;
  107. }
  108. if (!get_bits1(&ctx->gb)) { /* literal */
  109. if (length == 0) {
  110. length = 1;
  111. }
  112. if (huff->num >= huff->max_num) {
  113. av_log(ctx->avctx, AV_LOG_DEBUG, "Too many literals\n");
  114. return AVERROR_INVALIDDATA;
  115. }
  116. huff->nums[huff->num] = get_bits_long(&ctx->gb, huff->val_bits);
  117. huff->bits[huff->num] = prefix;
  118. huff->lens[huff->num] = length;
  119. huff->num++;
  120. return 0;
  121. } else { /* non-terminal node */
  122. if ((ret = tm2_read_tree(ctx, prefix << 1, length + 1, huff)) < 0)
  123. return ret;
  124. if ((ret = tm2_read_tree(ctx, (prefix << 1) | 1, length + 1, huff)) < 0)
  125. return ret;
  126. }
  127. return 0;
  128. }
  129. static int tm2_build_huff_table(TM2Context *ctx, TM2Codes *code)
  130. {
  131. TM2Huff huff;
  132. int res = 0;
  133. huff.val_bits = get_bits(&ctx->gb, 5);
  134. huff.max_bits = get_bits(&ctx->gb, 5);
  135. huff.min_bits = get_bits(&ctx->gb, 5);
  136. huff.nodes = get_bits_long(&ctx->gb, 17);
  137. huff.num = 0;
  138. /* check for correct codes parameters */
  139. if ((huff.val_bits < 1) || (huff.val_bits > 32) ||
  140. (huff.max_bits < 0) || (huff.max_bits > 25)) {
  141. av_log(ctx->avctx, AV_LOG_ERROR, "Incorrect tree parameters - literal "
  142. "length: %i, max code length: %i\n", huff.val_bits, huff.max_bits);
  143. return AVERROR_INVALIDDATA;
  144. }
  145. if ((huff.nodes <= 0) || (huff.nodes > 0x10000)) {
  146. av_log(ctx->avctx, AV_LOG_ERROR, "Incorrect number of Huffman tree "
  147. "nodes: %i\n", huff.nodes);
  148. return AVERROR_INVALIDDATA;
  149. }
  150. /* one-node tree */
  151. if (huff.max_bits == 0)
  152. huff.max_bits = 1;
  153. /* allocate space for codes - it is exactly ceil(nodes / 2) entries */
  154. huff.max_num = (huff.nodes + 1) >> 1;
  155. huff.nums = av_calloc(huff.max_num, sizeof(int));
  156. huff.bits = av_calloc(huff.max_num, sizeof(uint32_t));
  157. huff.lens = av_calloc(huff.max_num, sizeof(int));
  158. if (!huff.nums || !huff.bits || !huff.lens) {
  159. res = AVERROR(ENOMEM);
  160. goto out;
  161. }
  162. res = tm2_read_tree(ctx, 0, 0, &huff);
  163. if (huff.num != huff.max_num) {
  164. av_log(ctx->avctx, AV_LOG_ERROR, "Got less codes than expected: %i of %i\n",
  165. huff.num, huff.max_num);
  166. res = AVERROR_INVALIDDATA;
  167. }
  168. /* convert codes to vlc_table */
  169. if (res >= 0) {
  170. int i;
  171. res = init_vlc(&code->vlc, huff.max_bits, huff.max_num,
  172. huff.lens, sizeof(int), sizeof(int),
  173. huff.bits, sizeof(uint32_t), sizeof(uint32_t), 0);
  174. if (res < 0)
  175. av_log(ctx->avctx, AV_LOG_ERROR, "Cannot build VLC table\n");
  176. else {
  177. code->bits = huff.max_bits;
  178. code->length = huff.max_num;
  179. code->recode = av_malloc_array(code->length, sizeof(int));
  180. if (!code->recode) {
  181. res = AVERROR(ENOMEM);
  182. goto out;
  183. }
  184. for (i = 0; i < code->length; i++)
  185. code->recode[i] = huff.nums[i];
  186. }
  187. }
  188. out:
  189. /* free allocated memory */
  190. av_free(huff.nums);
  191. av_free(huff.bits);
  192. av_free(huff.lens);
  193. return res;
  194. }
  195. static void tm2_free_codes(TM2Codes *code)
  196. {
  197. av_free(code->recode);
  198. if (code->vlc.table)
  199. ff_free_vlc(&code->vlc);
  200. }
  201. static inline int tm2_get_token(GetBitContext *gb, TM2Codes *code)
  202. {
  203. int val;
  204. val = get_vlc2(gb, code->vlc.table, code->bits, 1);
  205. if(val<0)
  206. return -1;
  207. return code->recode[val];
  208. }
  209. #define TM2_OLD_HEADER_MAGIC 0x00000100
  210. #define TM2_NEW_HEADER_MAGIC 0x00000101
  211. static inline int tm2_read_header(TM2Context *ctx, const uint8_t *buf)
  212. {
  213. uint32_t magic = AV_RL32(buf);
  214. switch (magic) {
  215. case TM2_OLD_HEADER_MAGIC:
  216. avpriv_request_sample(ctx->avctx, "Old TM2 header");
  217. return 0;
  218. case TM2_NEW_HEADER_MAGIC:
  219. return 0;
  220. default:
  221. av_log(ctx->avctx, AV_LOG_ERROR, "Not a TM2 header: 0x%08"PRIX32"\n",
  222. magic);
  223. return AVERROR_INVALIDDATA;
  224. }
  225. }
  226. static int tm2_read_deltas(TM2Context *ctx, int stream_id)
  227. {
  228. int d, mb;
  229. int i, v;
  230. d = get_bits(&ctx->gb, 9);
  231. mb = get_bits(&ctx->gb, 5);
  232. av_assert2(mb < 32);
  233. if ((d < 1) || (d > TM2_DELTAS) || (mb < 1)) {
  234. av_log(ctx->avctx, AV_LOG_ERROR, "Incorrect delta table: %i deltas x %i bits\n", d, mb);
  235. return AVERROR_INVALIDDATA;
  236. }
  237. for (i = 0; i < d; i++) {
  238. v = get_bits_long(&ctx->gb, mb);
  239. if (v & (1 << (mb - 1)))
  240. ctx->deltas[stream_id][i] = v - (1 << mb);
  241. else
  242. ctx->deltas[stream_id][i] = v;
  243. }
  244. for (; i < TM2_DELTAS; i++)
  245. ctx->deltas[stream_id][i] = 0;
  246. return 0;
  247. }
  248. static int tm2_read_stream(TM2Context *ctx, const uint8_t *buf, int stream_id, int buf_size)
  249. {
  250. int i, ret;
  251. int skip = 0;
  252. int len, toks, pos;
  253. TM2Codes codes;
  254. GetByteContext gb;
  255. if (buf_size < 4) {
  256. av_log(ctx->avctx, AV_LOG_ERROR, "not enough space for len left\n");
  257. return AVERROR_INVALIDDATA;
  258. }
  259. /* get stream length in dwords */
  260. bytestream2_init(&gb, buf, buf_size);
  261. len = bytestream2_get_be32(&gb);
  262. skip = len * 4 + 4;
  263. if (len == 0)
  264. return 4;
  265. if (len >= INT_MAX/4-1 || len < 0 || skip > buf_size) {
  266. av_log(ctx->avctx, AV_LOG_ERROR, "invalid stream size\n");
  267. return AVERROR_INVALIDDATA;
  268. }
  269. toks = bytestream2_get_be32(&gb);
  270. if (toks & 1) {
  271. len = bytestream2_get_be32(&gb);
  272. if (len == TM2_ESCAPE) {
  273. len = bytestream2_get_be32(&gb);
  274. }
  275. if (len > 0) {
  276. pos = bytestream2_tell(&gb);
  277. if (skip <= pos)
  278. return AVERROR_INVALIDDATA;
  279. init_get_bits(&ctx->gb, buf + pos, (skip - pos) * 8);
  280. if ((ret = tm2_read_deltas(ctx, stream_id)) < 0)
  281. return ret;
  282. bytestream2_skip(&gb, ((get_bits_count(&ctx->gb) + 31) >> 5) << 2);
  283. }
  284. }
  285. /* skip unused fields */
  286. len = bytestream2_get_be32(&gb);
  287. if (len == TM2_ESCAPE) { /* some unknown length - could be escaped too */
  288. bytestream2_skip(&gb, 8); /* unused by decoder */
  289. } else {
  290. bytestream2_skip(&gb, 4); /* unused by decoder */
  291. }
  292. pos = bytestream2_tell(&gb);
  293. if (skip <= pos)
  294. return AVERROR_INVALIDDATA;
  295. init_get_bits(&ctx->gb, buf + pos, (skip - pos) * 8);
  296. if ((ret = tm2_build_huff_table(ctx, &codes)) < 0)
  297. return ret;
  298. bytestream2_skip(&gb, ((get_bits_count(&ctx->gb) + 31) >> 5) << 2);
  299. toks >>= 1;
  300. /* check if we have sane number of tokens */
  301. if ((toks < 0) || (toks > 0xFFFFFF)) {
  302. av_log(ctx->avctx, AV_LOG_ERROR, "Incorrect number of tokens: %i\n", toks);
  303. tm2_free_codes(&codes);
  304. return AVERROR_INVALIDDATA;
  305. }
  306. ret = av_reallocp_array(&ctx->tokens[stream_id], toks, sizeof(int));
  307. if (ret < 0) {
  308. ctx->tok_lens[stream_id] = 0;
  309. return ret;
  310. }
  311. ctx->tok_lens[stream_id] = toks;
  312. len = bytestream2_get_be32(&gb);
  313. if (len > 0) {
  314. pos = bytestream2_tell(&gb);
  315. if (skip <= pos)
  316. return AVERROR_INVALIDDATA;
  317. init_get_bits(&ctx->gb, buf + pos, (skip - pos) * 8);
  318. for (i = 0; i < toks; i++) {
  319. if (get_bits_left(&ctx->gb) <= 0) {
  320. av_log(ctx->avctx, AV_LOG_ERROR, "Incorrect number of tokens: %i\n", toks);
  321. return AVERROR_INVALIDDATA;
  322. }
  323. ctx->tokens[stream_id][i] = tm2_get_token(&ctx->gb, &codes);
  324. if (stream_id <= TM2_MOT && ctx->tokens[stream_id][i] >= TM2_DELTAS || ctx->tokens[stream_id][i]<0) {
  325. av_log(ctx->avctx, AV_LOG_ERROR, "Invalid delta token index %d for type %d, n=%d\n",
  326. ctx->tokens[stream_id][i], stream_id, i);
  327. return AVERROR_INVALIDDATA;
  328. }
  329. }
  330. } else {
  331. for (i = 0; i < toks; i++) {
  332. ctx->tokens[stream_id][i] = codes.recode[0];
  333. if (stream_id <= TM2_MOT && ctx->tokens[stream_id][i] >= TM2_DELTAS) {
  334. av_log(ctx->avctx, AV_LOG_ERROR, "Invalid delta token index %d for type %d, n=%d\n",
  335. ctx->tokens[stream_id][i], stream_id, i);
  336. return AVERROR_INVALIDDATA;
  337. }
  338. }
  339. }
  340. tm2_free_codes(&codes);
  341. return skip;
  342. }
  343. static inline int GET_TOK(TM2Context *ctx,int type)
  344. {
  345. if (ctx->tok_ptrs[type] >= ctx->tok_lens[type]) {
  346. av_log(ctx->avctx, AV_LOG_ERROR, "Read token from stream %i out of bounds (%i>=%i)\n", type, ctx->tok_ptrs[type], ctx->tok_lens[type]);
  347. return 0;
  348. }
  349. if (type <= TM2_MOT) {
  350. if (ctx->tokens[type][ctx->tok_ptrs[type]] >= TM2_DELTAS) {
  351. av_log(ctx->avctx, AV_LOG_ERROR, "token %d is too large\n", ctx->tokens[type][ctx->tok_ptrs[type]]);
  352. return 0;
  353. }
  354. return ctx->deltas[type][ctx->tokens[type][ctx->tok_ptrs[type]++]];
  355. }
  356. return ctx->tokens[type][ctx->tok_ptrs[type]++];
  357. }
  358. /* blocks decoding routines */
  359. /* common Y, U, V pointers initialisation */
  360. #define TM2_INIT_POINTERS() \
  361. int *last, *clast; \
  362. int *Y, *U, *V;\
  363. int Ystride, Ustride, Vstride;\
  364. \
  365. Ystride = ctx->y_stride;\
  366. Vstride = ctx->uv_stride;\
  367. Ustride = ctx->uv_stride;\
  368. Y = (ctx->cur?ctx->Y2:ctx->Y1) + by * 4 * Ystride + bx * 4;\
  369. V = (ctx->cur?ctx->V2:ctx->V1) + by * 2 * Vstride + bx * 2;\
  370. U = (ctx->cur?ctx->U2:ctx->U1) + by * 2 * Ustride + bx * 2;\
  371. last = ctx->last + bx * 4;\
  372. clast = ctx->clast + bx * 4;
  373. #define TM2_INIT_POINTERS_2() \
  374. int *Yo, *Uo, *Vo;\
  375. int oYstride, oUstride, oVstride;\
  376. \
  377. TM2_INIT_POINTERS();\
  378. oYstride = Ystride;\
  379. oVstride = Vstride;\
  380. oUstride = Ustride;\
  381. Yo = (ctx->cur?ctx->Y1:ctx->Y2) + by * 4 * oYstride + bx * 4;\
  382. Vo = (ctx->cur?ctx->V1:ctx->V2) + by * 2 * oVstride + bx * 2;\
  383. Uo = (ctx->cur?ctx->U1:ctx->U2) + by * 2 * oUstride + bx * 2;
  384. /* recalculate last and delta values for next blocks */
  385. #define TM2_RECALC_BLOCK(CHR, stride, last, CD) {\
  386. CD[0] = CHR[1] - last[1];\
  387. CD[1] = (int)CHR[stride + 1] - (int)CHR[1];\
  388. last[0] = (int)CHR[stride + 0];\
  389. last[1] = (int)CHR[stride + 1];}
  390. /* common operations - add deltas to 4x4 block of luma or 2x2 blocks of chroma */
  391. static inline void tm2_apply_deltas(TM2Context *ctx, int* Y, int stride, int *deltas, int *last)
  392. {
  393. int ct, d;
  394. int i, j;
  395. for (j = 0; j < 4; j++){
  396. ct = ctx->D[j];
  397. for (i = 0; i < 4; i++){
  398. d = deltas[i + j * 4];
  399. ct += d;
  400. last[i] += ct;
  401. Y[i] = av_clip_uint8(last[i]);
  402. }
  403. Y += stride;
  404. ctx->D[j] = ct;
  405. }
  406. }
  407. static inline void tm2_high_chroma(int *data, int stride, int *last, int *CD, int *deltas)
  408. {
  409. int i, j;
  410. for (j = 0; j < 2; j++) {
  411. for (i = 0; i < 2; i++) {
  412. CD[j] += deltas[i + j * 2];
  413. last[i] += CD[j];
  414. data[i] = last[i];
  415. }
  416. data += stride;
  417. }
  418. }
  419. static inline void tm2_low_chroma(int *data, int stride, int *clast, int *CD, int *deltas, int bx)
  420. {
  421. int t;
  422. int l;
  423. int prev;
  424. if (bx > 0)
  425. prev = clast[-3];
  426. else
  427. prev = 0;
  428. t = (CD[0] + CD[1]) >> 1;
  429. l = (prev - CD[0] - CD[1] + clast[1]) >> 1;
  430. CD[1] = CD[0] + CD[1] - t;
  431. CD[0] = t;
  432. clast[0] = l;
  433. tm2_high_chroma(data, stride, clast, CD, deltas);
  434. }
  435. static inline void tm2_hi_res_block(TM2Context *ctx, AVFrame *pic, int bx, int by)
  436. {
  437. int i;
  438. int deltas[16];
  439. TM2_INIT_POINTERS();
  440. /* hi-res chroma */
  441. for (i = 0; i < 4; i++) {
  442. deltas[i] = GET_TOK(ctx, TM2_C_HI);
  443. deltas[i + 4] = GET_TOK(ctx, TM2_C_HI);
  444. }
  445. tm2_high_chroma(U, Ustride, clast, ctx->CD, deltas);
  446. tm2_high_chroma(V, Vstride, clast + 2, ctx->CD + 2, deltas + 4);
  447. /* hi-res luma */
  448. for (i = 0; i < 16; i++)
  449. deltas[i] = GET_TOK(ctx, TM2_L_HI);
  450. tm2_apply_deltas(ctx, Y, Ystride, deltas, last);
  451. }
  452. static inline void tm2_med_res_block(TM2Context *ctx, AVFrame *pic, int bx, int by)
  453. {
  454. int i;
  455. int deltas[16];
  456. TM2_INIT_POINTERS();
  457. /* low-res chroma */
  458. deltas[0] = GET_TOK(ctx, TM2_C_LO);
  459. deltas[1] = deltas[2] = deltas[3] = 0;
  460. tm2_low_chroma(U, Ustride, clast, ctx->CD, deltas, bx);
  461. deltas[0] = GET_TOK(ctx, TM2_C_LO);
  462. deltas[1] = deltas[2] = deltas[3] = 0;
  463. tm2_low_chroma(V, Vstride, clast + 2, ctx->CD + 2, deltas, bx);
  464. /* hi-res luma */
  465. for (i = 0; i < 16; i++)
  466. deltas[i] = GET_TOK(ctx, TM2_L_HI);
  467. tm2_apply_deltas(ctx, Y, Ystride, deltas, last);
  468. }
  469. static inline void tm2_low_res_block(TM2Context *ctx, AVFrame *pic, int bx, int by)
  470. {
  471. int i;
  472. int t1, t2;
  473. int deltas[16];
  474. TM2_INIT_POINTERS();
  475. /* low-res chroma */
  476. deltas[0] = GET_TOK(ctx, TM2_C_LO);
  477. deltas[1] = deltas[2] = deltas[3] = 0;
  478. tm2_low_chroma(U, Ustride, clast, ctx->CD, deltas, bx);
  479. deltas[0] = GET_TOK(ctx, TM2_C_LO);
  480. deltas[1] = deltas[2] = deltas[3] = 0;
  481. tm2_low_chroma(V, Vstride, clast + 2, ctx->CD + 2, deltas, bx);
  482. /* low-res luma */
  483. for (i = 0; i < 16; i++)
  484. deltas[i] = 0;
  485. deltas[ 0] = GET_TOK(ctx, TM2_L_LO);
  486. deltas[ 2] = GET_TOK(ctx, TM2_L_LO);
  487. deltas[ 8] = GET_TOK(ctx, TM2_L_LO);
  488. deltas[10] = GET_TOK(ctx, TM2_L_LO);
  489. if (bx > 0)
  490. last[0] = (last[-1] - ctx->D[0] - ctx->D[1] - ctx->D[2] - ctx->D[3] + last[1]) >> 1;
  491. else
  492. last[0] = (last[1] - ctx->D[0] - ctx->D[1] - ctx->D[2] - ctx->D[3])>> 1;
  493. last[2] = (last[1] + last[3]) >> 1;
  494. t1 = ctx->D[0] + ctx->D[1];
  495. ctx->D[0] = t1 >> 1;
  496. ctx->D[1] = t1 - (t1 >> 1);
  497. t2 = ctx->D[2] + ctx->D[3];
  498. ctx->D[2] = t2 >> 1;
  499. ctx->D[3] = t2 - (t2 >> 1);
  500. tm2_apply_deltas(ctx, Y, Ystride, deltas, last);
  501. }
  502. static inline void tm2_null_res_block(TM2Context *ctx, AVFrame *pic, int bx, int by)
  503. {
  504. int i;
  505. int ct;
  506. int left, right, diff;
  507. int deltas[16];
  508. TM2_INIT_POINTERS();
  509. /* null chroma */
  510. deltas[0] = deltas[1] = deltas[2] = deltas[3] = 0;
  511. tm2_low_chroma(U, Ustride, clast, ctx->CD, deltas, bx);
  512. deltas[0] = deltas[1] = deltas[2] = deltas[3] = 0;
  513. tm2_low_chroma(V, Vstride, clast + 2, ctx->CD + 2, deltas, bx);
  514. /* null luma */
  515. for (i = 0; i < 16; i++)
  516. deltas[i] = 0;
  517. ct = ctx->D[0] + ctx->D[1] + ctx->D[2] + ctx->D[3];
  518. if (bx > 0)
  519. left = last[-1] - ct;
  520. else
  521. left = 0;
  522. right = last[3];
  523. diff = right - left;
  524. last[0] = left + (diff >> 2);
  525. last[1] = left + (diff >> 1);
  526. last[2] = right - (diff >> 2);
  527. last[3] = right;
  528. {
  529. int tp = left;
  530. ctx->D[0] = (tp + (ct >> 2)) - left;
  531. left += ctx->D[0];
  532. ctx->D[1] = (tp + (ct >> 1)) - left;
  533. left += ctx->D[1];
  534. ctx->D[2] = ((tp + ct) - (ct >> 2)) - left;
  535. left += ctx->D[2];
  536. ctx->D[3] = (tp + ct) - left;
  537. }
  538. tm2_apply_deltas(ctx, Y, Ystride, deltas, last);
  539. }
  540. static inline void tm2_still_block(TM2Context *ctx, AVFrame *pic, int bx, int by)
  541. {
  542. int i, j;
  543. TM2_INIT_POINTERS_2();
  544. /* update chroma */
  545. for (j = 0; j < 2; j++) {
  546. for (i = 0; i < 2; i++){
  547. U[i] = Uo[i];
  548. V[i] = Vo[i];
  549. }
  550. U += Ustride; V += Vstride;
  551. Uo += oUstride; Vo += oVstride;
  552. }
  553. U -= Ustride * 2;
  554. V -= Vstride * 2;
  555. TM2_RECALC_BLOCK(U, Ustride, clast, ctx->CD);
  556. TM2_RECALC_BLOCK(V, Vstride, (clast + 2), (ctx->CD + 2));
  557. /* update deltas */
  558. ctx->D[0] = Yo[3] - last[3];
  559. ctx->D[1] = Yo[3 + oYstride] - Yo[3];
  560. ctx->D[2] = Yo[3 + oYstride * 2] - Yo[3 + oYstride];
  561. ctx->D[3] = Yo[3 + oYstride * 3] - Yo[3 + oYstride * 2];
  562. for (j = 0; j < 4; j++) {
  563. for (i = 0; i < 4; i++) {
  564. Y[i] = Yo[i];
  565. last[i] = Yo[i];
  566. }
  567. Y += Ystride;
  568. Yo += oYstride;
  569. }
  570. }
  571. static inline void tm2_update_block(TM2Context *ctx, AVFrame *pic, int bx, int by)
  572. {
  573. int i, j;
  574. int d;
  575. TM2_INIT_POINTERS_2();
  576. /* update chroma */
  577. for (j = 0; j < 2; j++) {
  578. for (i = 0; i < 2; i++) {
  579. U[i] = Uo[i] + GET_TOK(ctx, TM2_UPD);
  580. V[i] = Vo[i] + GET_TOK(ctx, TM2_UPD);
  581. }
  582. U += Ustride;
  583. V += Vstride;
  584. Uo += oUstride;
  585. Vo += oVstride;
  586. }
  587. U -= Ustride * 2;
  588. V -= Vstride * 2;
  589. TM2_RECALC_BLOCK(U, Ustride, clast, ctx->CD);
  590. TM2_RECALC_BLOCK(V, Vstride, (clast + 2), (ctx->CD + 2));
  591. /* update deltas */
  592. ctx->D[0] = Yo[3] - last[3];
  593. ctx->D[1] = Yo[3 + oYstride] - Yo[3];
  594. ctx->D[2] = Yo[3 + oYstride * 2] - Yo[3 + oYstride];
  595. ctx->D[3] = Yo[3 + oYstride * 3] - Yo[3 + oYstride * 2];
  596. for (j = 0; j < 4; j++) {
  597. d = last[3];
  598. for (i = 0; i < 4; i++) {
  599. Y[i] = Yo[i] + GET_TOK(ctx, TM2_UPD);
  600. last[i] = Y[i];
  601. }
  602. ctx->D[j] = last[3] - d;
  603. Y += Ystride;
  604. Yo += oYstride;
  605. }
  606. }
  607. static inline void tm2_motion_block(TM2Context *ctx, AVFrame *pic, int bx, int by)
  608. {
  609. int i, j;
  610. int mx, my;
  611. TM2_INIT_POINTERS_2();
  612. mx = GET_TOK(ctx, TM2_MOT);
  613. my = GET_TOK(ctx, TM2_MOT);
  614. mx = av_clip(mx, -(bx * 4 + 4), ctx->avctx->width - bx * 4);
  615. my = av_clip(my, -(by * 4 + 4), ctx->avctx->height - by * 4);
  616. if (4*bx+mx<0 || 4*by+my<0 || 4*bx+mx+4 > ctx->avctx->width || 4*by+my+4 > ctx->avctx->height) {
  617. av_log(ctx->avctx, AV_LOG_ERROR, "MV out of picture\n");
  618. return;
  619. }
  620. Yo += my * oYstride + mx;
  621. Uo += (my >> 1) * oUstride + (mx >> 1);
  622. Vo += (my >> 1) * oVstride + (mx >> 1);
  623. /* copy chroma */
  624. for (j = 0; j < 2; j++) {
  625. for (i = 0; i < 2; i++) {
  626. U[i] = Uo[i];
  627. V[i] = Vo[i];
  628. }
  629. U += Ustride;
  630. V += Vstride;
  631. Uo += oUstride;
  632. Vo += oVstride;
  633. }
  634. U -= Ustride * 2;
  635. V -= Vstride * 2;
  636. TM2_RECALC_BLOCK(U, Ustride, clast, ctx->CD);
  637. TM2_RECALC_BLOCK(V, Vstride, (clast + 2), (ctx->CD + 2));
  638. /* copy luma */
  639. for (j = 0; j < 4; j++) {
  640. for (i = 0; i < 4; i++) {
  641. Y[i] = Yo[i];
  642. }
  643. Y += Ystride;
  644. Yo += oYstride;
  645. }
  646. /* calculate deltas */
  647. Y -= Ystride * 4;
  648. ctx->D[0] = Y[3] - last[3];
  649. ctx->D[1] = Y[3 + Ystride] - Y[3];
  650. ctx->D[2] = Y[3 + Ystride * 2] - Y[3 + Ystride];
  651. ctx->D[3] = Y[3 + Ystride * 3] - Y[3 + Ystride * 2];
  652. for (i = 0; i < 4; i++)
  653. last[i] = Y[i + Ystride * 3];
  654. }
  655. static int tm2_decode_blocks(TM2Context *ctx, AVFrame *p)
  656. {
  657. int i, j;
  658. int w = ctx->avctx->width, h = ctx->avctx->height, bw = w >> 2, bh = h >> 2, cw = w >> 1;
  659. int type;
  660. int keyframe = 1;
  661. int *Y, *U, *V;
  662. uint8_t *dst;
  663. for (i = 0; i < TM2_NUM_STREAMS; i++)
  664. ctx->tok_ptrs[i] = 0;
  665. if (ctx->tok_lens[TM2_TYPE]<bw*bh) {
  666. av_log(ctx->avctx,AV_LOG_ERROR,"Got %i tokens for %i blocks\n",ctx->tok_lens[TM2_TYPE],bw*bh);
  667. return AVERROR_INVALIDDATA;
  668. }
  669. memset(ctx->last, 0, 4 * bw * sizeof(int));
  670. memset(ctx->clast, 0, 4 * bw * sizeof(int));
  671. for (j = 0; j < bh; j++) {
  672. memset(ctx->D, 0, 4 * sizeof(int));
  673. memset(ctx->CD, 0, 4 * sizeof(int));
  674. for (i = 0; i < bw; i++) {
  675. type = GET_TOK(ctx, TM2_TYPE);
  676. switch(type) {
  677. case TM2_HI_RES:
  678. tm2_hi_res_block(ctx, p, i, j);
  679. break;
  680. case TM2_MED_RES:
  681. tm2_med_res_block(ctx, p, i, j);
  682. break;
  683. case TM2_LOW_RES:
  684. tm2_low_res_block(ctx, p, i, j);
  685. break;
  686. case TM2_NULL_RES:
  687. tm2_null_res_block(ctx, p, i, j);
  688. break;
  689. case TM2_UPDATE:
  690. tm2_update_block(ctx, p, i, j);
  691. keyframe = 0;
  692. break;
  693. case TM2_STILL:
  694. tm2_still_block(ctx, p, i, j);
  695. keyframe = 0;
  696. break;
  697. case TM2_MOTION:
  698. tm2_motion_block(ctx, p, i, j);
  699. keyframe = 0;
  700. break;
  701. default:
  702. av_log(ctx->avctx, AV_LOG_ERROR, "Skipping unknown block type %i\n", type);
  703. }
  704. }
  705. }
  706. /* copy data from our buffer to AVFrame */
  707. Y = (ctx->cur?ctx->Y2:ctx->Y1);
  708. U = (ctx->cur?ctx->U2:ctx->U1);
  709. V = (ctx->cur?ctx->V2:ctx->V1);
  710. dst = p->data[0];
  711. for (j = 0; j < h; j++) {
  712. for (i = 0; i < w; i++) {
  713. int y = Y[i], u = U[i >> 1], v = V[i >> 1];
  714. dst[3*i+0] = av_clip_uint8(y + v);
  715. dst[3*i+1] = av_clip_uint8(y);
  716. dst[3*i+2] = av_clip_uint8(y + u);
  717. }
  718. /* horizontal edge extension */
  719. Y[-4] = Y[-3] = Y[-2] = Y[-1] = Y[0];
  720. Y[w + 3] = Y[w + 2] = Y[w + 1] = Y[w] = Y[w - 1];
  721. /* vertical edge extension */
  722. if (j == 0) {
  723. memcpy(Y - 4 - 1 * ctx->y_stride, Y - 4, ctx->y_stride);
  724. memcpy(Y - 4 - 2 * ctx->y_stride, Y - 4, ctx->y_stride);
  725. memcpy(Y - 4 - 3 * ctx->y_stride, Y - 4, ctx->y_stride);
  726. memcpy(Y - 4 - 4 * ctx->y_stride, Y - 4, ctx->y_stride);
  727. } else if (j == h - 1) {
  728. memcpy(Y - 4 + 1 * ctx->y_stride, Y - 4, ctx->y_stride);
  729. memcpy(Y - 4 + 2 * ctx->y_stride, Y - 4, ctx->y_stride);
  730. memcpy(Y - 4 + 3 * ctx->y_stride, Y - 4, ctx->y_stride);
  731. memcpy(Y - 4 + 4 * ctx->y_stride, Y - 4, ctx->y_stride);
  732. }
  733. Y += ctx->y_stride;
  734. if (j & 1) {
  735. /* horizontal edge extension */
  736. U[-2] = U[-1] = U[0];
  737. V[-2] = V[-1] = V[0];
  738. U[cw + 1] = U[cw] = U[cw - 1];
  739. V[cw + 1] = V[cw] = V[cw - 1];
  740. /* vertical edge extension */
  741. if (j == 1) {
  742. memcpy(U - 2 - 1 * ctx->uv_stride, U - 2, ctx->uv_stride);
  743. memcpy(V - 2 - 1 * ctx->uv_stride, V - 2, ctx->uv_stride);
  744. memcpy(U - 2 - 2 * ctx->uv_stride, U - 2, ctx->uv_stride);
  745. memcpy(V - 2 - 2 * ctx->uv_stride, V - 2, ctx->uv_stride);
  746. } else if (j == h - 1) {
  747. memcpy(U - 2 + 1 * ctx->uv_stride, U - 2, ctx->uv_stride);
  748. memcpy(V - 2 + 1 * ctx->uv_stride, V - 2, ctx->uv_stride);
  749. memcpy(U - 2 + 2 * ctx->uv_stride, U - 2, ctx->uv_stride);
  750. memcpy(V - 2 + 2 * ctx->uv_stride, V - 2, ctx->uv_stride);
  751. }
  752. U += ctx->uv_stride;
  753. V += ctx->uv_stride;
  754. }
  755. dst += p->linesize[0];
  756. }
  757. return keyframe;
  758. }
  759. static const int tm2_stream_order[TM2_NUM_STREAMS] = {
  760. TM2_C_HI, TM2_C_LO, TM2_L_HI, TM2_L_LO, TM2_UPD, TM2_MOT, TM2_TYPE
  761. };
  762. #define TM2_HEADER_SIZE 40
  763. static int decode_frame(AVCodecContext *avctx,
  764. void *data, int *got_frame,
  765. AVPacket *avpkt)
  766. {
  767. TM2Context * const l = avctx->priv_data;
  768. const uint8_t *buf = avpkt->data;
  769. int buf_size = avpkt->size & ~3;
  770. AVFrame * const p = l->pic;
  771. int offset = TM2_HEADER_SIZE;
  772. int i, t, ret;
  773. av_fast_padded_malloc(&l->buffer, &l->buffer_size, buf_size);
  774. if (!l->buffer) {
  775. av_log(avctx, AV_LOG_ERROR, "Cannot allocate temporary buffer\n");
  776. return AVERROR(ENOMEM);
  777. }
  778. if ((ret = ff_reget_buffer(avctx, p)) < 0)
  779. return ret;
  780. l->bdsp.bswap_buf((uint32_t *) l->buffer, (const uint32_t *) buf,
  781. buf_size >> 2);
  782. if ((ret = tm2_read_header(l, l->buffer)) < 0) {
  783. return ret;
  784. }
  785. for (i = 0; i < TM2_NUM_STREAMS; i++) {
  786. if (offset >= buf_size) {
  787. av_log(avctx, AV_LOG_ERROR, "no space for tm2_read_stream\n");
  788. return AVERROR_INVALIDDATA;
  789. }
  790. t = tm2_read_stream(l, l->buffer + offset, tm2_stream_order[i],
  791. buf_size - offset);
  792. if (t < 0) {
  793. int j = tm2_stream_order[i];
  794. memset(l->tokens[j], 0, sizeof(**l->tokens) * l->tok_lens[j]);
  795. return t;
  796. }
  797. offset += t;
  798. }
  799. p->key_frame = tm2_decode_blocks(l, p);
  800. if (p->key_frame)
  801. p->pict_type = AV_PICTURE_TYPE_I;
  802. else
  803. p->pict_type = AV_PICTURE_TYPE_P;
  804. l->cur = !l->cur;
  805. *got_frame = 1;
  806. ret = av_frame_ref(data, l->pic);
  807. return (ret < 0) ? ret : buf_size;
  808. }
  809. static av_cold int decode_init(AVCodecContext *avctx)
  810. {
  811. TM2Context * const l = avctx->priv_data;
  812. int i, w = avctx->width, h = avctx->height;
  813. if ((avctx->width & 3) || (avctx->height & 3)) {
  814. av_log(avctx, AV_LOG_ERROR, "Width and height must be multiple of 4\n");
  815. return AVERROR(EINVAL);
  816. }
  817. l->avctx = avctx;
  818. avctx->pix_fmt = AV_PIX_FMT_BGR24;
  819. l->pic = av_frame_alloc();
  820. if (!l->pic)
  821. return AVERROR(ENOMEM);
  822. ff_bswapdsp_init(&l->bdsp);
  823. l->last = av_malloc_array(w >> 2, 4 * sizeof(*l->last) );
  824. l->clast = av_malloc_array(w >> 2, 4 * sizeof(*l->clast));
  825. for (i = 0; i < TM2_NUM_STREAMS; i++) {
  826. l->tokens[i] = NULL;
  827. l->tok_lens[i] = 0;
  828. }
  829. w += 8;
  830. h += 8;
  831. l->Y1_base = av_calloc(w * h, sizeof(*l->Y1_base));
  832. l->Y2_base = av_calloc(w * h, sizeof(*l->Y2_base));
  833. l->y_stride = w;
  834. w = (w + 1) >> 1;
  835. h = (h + 1) >> 1;
  836. l->U1_base = av_calloc(w * h, sizeof(*l->U1_base));
  837. l->V1_base = av_calloc(w * h, sizeof(*l->V1_base));
  838. l->U2_base = av_calloc(w * h, sizeof(*l->U2_base));
  839. l->V2_base = av_calloc(w * h, sizeof(*l->V1_base));
  840. l->uv_stride = w;
  841. l->cur = 0;
  842. if (!l->Y1_base || !l->Y2_base || !l->U1_base ||
  843. !l->V1_base || !l->U2_base || !l->V2_base ||
  844. !l->last || !l->clast) {
  845. av_freep(&l->Y1_base);
  846. av_freep(&l->Y2_base);
  847. av_freep(&l->U1_base);
  848. av_freep(&l->U2_base);
  849. av_freep(&l->V1_base);
  850. av_freep(&l->V2_base);
  851. av_freep(&l->last);
  852. av_freep(&l->clast);
  853. av_frame_free(&l->pic);
  854. return AVERROR(ENOMEM);
  855. }
  856. l->Y1 = l->Y1_base + l->y_stride * 4 + 4;
  857. l->Y2 = l->Y2_base + l->y_stride * 4 + 4;
  858. l->U1 = l->U1_base + l->uv_stride * 2 + 2;
  859. l->U2 = l->U2_base + l->uv_stride * 2 + 2;
  860. l->V1 = l->V1_base + l->uv_stride * 2 + 2;
  861. l->V2 = l->V2_base + l->uv_stride * 2 + 2;
  862. return 0;
  863. }
  864. static av_cold int decode_end(AVCodecContext *avctx)
  865. {
  866. TM2Context * const l = avctx->priv_data;
  867. int i;
  868. av_free(l->last);
  869. av_free(l->clast);
  870. for (i = 0; i < TM2_NUM_STREAMS; i++)
  871. av_freep(&l->tokens[i]);
  872. if (l->Y1) {
  873. av_freep(&l->Y1_base);
  874. av_freep(&l->U1_base);
  875. av_freep(&l->V1_base);
  876. av_freep(&l->Y2_base);
  877. av_freep(&l->U2_base);
  878. av_freep(&l->V2_base);
  879. }
  880. av_freep(&l->buffer);
  881. l->buffer_size = 0;
  882. av_frame_free(&l->pic);
  883. return 0;
  884. }
  885. AVCodec ff_truemotion2_decoder = {
  886. .name = "truemotion2",
  887. .long_name = NULL_IF_CONFIG_SMALL("Duck TrueMotion 2.0"),
  888. .type = AVMEDIA_TYPE_VIDEO,
  889. .id = AV_CODEC_ID_TRUEMOTION2,
  890. .priv_data_size = sizeof(TM2Context),
  891. .init = decode_init,
  892. .close = decode_end,
  893. .decode = decode_frame,
  894. .capabilities = AV_CODEC_CAP_DR1,
  895. };