You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

587 lines
23KB

  1. /*
  2. * RV40 decoder
  3. * Copyright (c) 2007 Konstantin Shishkov
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * RV40 decoder
  24. */
  25. #include "libavutil/imgutils.h"
  26. #include "avcodec.h"
  27. #include "mpegutils.h"
  28. #include "mpegvideo.h"
  29. #include "golomb.h"
  30. #include "rv34.h"
  31. #include "rv40vlc2.h"
  32. #include "rv40data.h"
  33. static VLC aic_top_vlc;
  34. static VLC aic_mode1_vlc[AIC_MODE1_NUM], aic_mode2_vlc[AIC_MODE2_NUM];
  35. static VLC ptype_vlc[NUM_PTYPE_VLCS], btype_vlc[NUM_BTYPE_VLCS];
  36. static const int16_t mode2_offs[] = {
  37. 0, 614, 1222, 1794, 2410, 3014, 3586, 4202, 4792, 5382, 5966, 6542,
  38. 7138, 7716, 8292, 8864, 9444, 10030, 10642, 11212, 11814
  39. };
  40. /**
  41. * Initialize all tables.
  42. */
  43. static av_cold void rv40_init_tables(void)
  44. {
  45. int i;
  46. static VLC_TYPE aic_table[1 << AIC_TOP_BITS][2];
  47. static VLC_TYPE aic_mode1_table[AIC_MODE1_NUM << AIC_MODE1_BITS][2];
  48. static VLC_TYPE aic_mode2_table[11814][2];
  49. static VLC_TYPE ptype_table[NUM_PTYPE_VLCS << PTYPE_VLC_BITS][2];
  50. static VLC_TYPE btype_table[NUM_BTYPE_VLCS << BTYPE_VLC_BITS][2];
  51. aic_top_vlc.table = aic_table;
  52. aic_top_vlc.table_allocated = 1 << AIC_TOP_BITS;
  53. init_vlc(&aic_top_vlc, AIC_TOP_BITS, AIC_TOP_SIZE,
  54. rv40_aic_top_vlc_bits, 1, 1,
  55. rv40_aic_top_vlc_codes, 1, 1, INIT_VLC_USE_NEW_STATIC);
  56. for(i = 0; i < AIC_MODE1_NUM; i++){
  57. // Every tenth VLC table is empty
  58. if((i % 10) == 9) continue;
  59. aic_mode1_vlc[i].table = &aic_mode1_table[i << AIC_MODE1_BITS];
  60. aic_mode1_vlc[i].table_allocated = 1 << AIC_MODE1_BITS;
  61. init_vlc(&aic_mode1_vlc[i], AIC_MODE1_BITS, AIC_MODE1_SIZE,
  62. aic_mode1_vlc_bits[i], 1, 1,
  63. aic_mode1_vlc_codes[i], 1, 1, INIT_VLC_USE_NEW_STATIC);
  64. }
  65. for(i = 0; i < AIC_MODE2_NUM; i++){
  66. aic_mode2_vlc[i].table = &aic_mode2_table[mode2_offs[i]];
  67. aic_mode2_vlc[i].table_allocated = mode2_offs[i + 1] - mode2_offs[i];
  68. init_vlc(&aic_mode2_vlc[i], AIC_MODE2_BITS, AIC_MODE2_SIZE,
  69. aic_mode2_vlc_bits[i], 1, 1,
  70. aic_mode2_vlc_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
  71. }
  72. for(i = 0; i < NUM_PTYPE_VLCS; i++){
  73. ptype_vlc[i].table = &ptype_table[i << PTYPE_VLC_BITS];
  74. ptype_vlc[i].table_allocated = 1 << PTYPE_VLC_BITS;
  75. ff_init_vlc_sparse(&ptype_vlc[i], PTYPE_VLC_BITS, PTYPE_VLC_SIZE,
  76. ptype_vlc_bits[i], 1, 1,
  77. ptype_vlc_codes[i], 1, 1,
  78. ptype_vlc_syms, 1, 1, INIT_VLC_USE_NEW_STATIC);
  79. }
  80. for(i = 0; i < NUM_BTYPE_VLCS; i++){
  81. btype_vlc[i].table = &btype_table[i << BTYPE_VLC_BITS];
  82. btype_vlc[i].table_allocated = 1 << BTYPE_VLC_BITS;
  83. ff_init_vlc_sparse(&btype_vlc[i], BTYPE_VLC_BITS, BTYPE_VLC_SIZE,
  84. btype_vlc_bits[i], 1, 1,
  85. btype_vlc_codes[i], 1, 1,
  86. btype_vlc_syms, 1, 1, INIT_VLC_USE_NEW_STATIC);
  87. }
  88. }
  89. /**
  90. * Get stored dimension from bitstream.
  91. *
  92. * If the width/height is the standard one then it's coded as a 3-bit index.
  93. * Otherwise it is coded as escaped 8-bit portions.
  94. */
  95. static int get_dimension(GetBitContext *gb, const int *dim)
  96. {
  97. int t = get_bits(gb, 3);
  98. int val = dim[t];
  99. if(val < 0)
  100. val = dim[get_bits1(gb) - val];
  101. if(!val){
  102. do{
  103. t = get_bits(gb, 8);
  104. val += t << 2;
  105. }while(t == 0xFF);
  106. }
  107. return val;
  108. }
  109. /**
  110. * Get encoded picture size - usually this is called from rv40_parse_slice_header.
  111. */
  112. static void rv40_parse_picture_size(GetBitContext *gb, int *w, int *h)
  113. {
  114. *w = get_dimension(gb, rv40_standard_widths);
  115. *h = get_dimension(gb, rv40_standard_heights);
  116. }
  117. static int rv40_parse_slice_header(RV34DecContext *r, GetBitContext *gb, SliceInfo *si)
  118. {
  119. int mb_bits;
  120. int w = r->s.width, h = r->s.height;
  121. int mb_size;
  122. int ret;
  123. memset(si, 0, sizeof(SliceInfo));
  124. if(get_bits1(gb))
  125. return AVERROR_INVALIDDATA;
  126. si->type = get_bits(gb, 2);
  127. if(si->type == 1) si->type = 0;
  128. si->quant = get_bits(gb, 5);
  129. if(get_bits(gb, 2))
  130. return AVERROR_INVALIDDATA;
  131. si->vlc_set = get_bits(gb, 2);
  132. skip_bits1(gb);
  133. si->pts = get_bits(gb, 13);
  134. if(!si->type || !get_bits1(gb))
  135. rv40_parse_picture_size(gb, &w, &h);
  136. if ((ret = av_image_check_size(w, h, 0, r->s.avctx)) < 0)
  137. return ret;
  138. si->width = w;
  139. si->height = h;
  140. mb_size = ((w + 15) >> 4) * ((h + 15) >> 4);
  141. mb_bits = ff_rv34_get_start_offset(gb, mb_size);
  142. si->start = get_bits(gb, mb_bits);
  143. return 0;
  144. }
  145. /**
  146. * Decode 4x4 intra types array.
  147. */
  148. static int rv40_decode_intra_types(RV34DecContext *r, GetBitContext *gb, int8_t *dst)
  149. {
  150. MpegEncContext *s = &r->s;
  151. int i, j, k, v;
  152. int A, B, C;
  153. int pattern;
  154. int8_t *ptr;
  155. for(i = 0; i < 4; i++, dst += r->intra_types_stride){
  156. if(!i && s->first_slice_line){
  157. pattern = get_vlc2(gb, aic_top_vlc.table, AIC_TOP_BITS, 1);
  158. dst[0] = (pattern >> 2) & 2;
  159. dst[1] = (pattern >> 1) & 2;
  160. dst[2] = pattern & 2;
  161. dst[3] = (pattern << 1) & 2;
  162. continue;
  163. }
  164. ptr = dst;
  165. for(j = 0; j < 4; j++){
  166. /* Coefficients are read using VLC chosen by the prediction pattern
  167. * The first one (used for retrieving a pair of coefficients) is
  168. * constructed from the top, top right and left coefficients
  169. * The second one (used for retrieving only one coefficient) is
  170. * top + 10 * left.
  171. */
  172. A = ptr[-r->intra_types_stride + 1]; // it won't be used for the last coefficient in a row
  173. B = ptr[-r->intra_types_stride];
  174. C = ptr[-1];
  175. pattern = A + (B << 4) + (C << 8);
  176. for(k = 0; k < MODE2_PATTERNS_NUM; k++)
  177. if(pattern == rv40_aic_table_index[k])
  178. break;
  179. if(j < 3 && k < MODE2_PATTERNS_NUM){ //pattern is found, decoding 2 coefficients
  180. v = get_vlc2(gb, aic_mode2_vlc[k].table, AIC_MODE2_BITS, 2);
  181. *ptr++ = v/9;
  182. *ptr++ = v%9;
  183. j++;
  184. }else{
  185. if(B != -1 && C != -1)
  186. v = get_vlc2(gb, aic_mode1_vlc[B + C*10].table, AIC_MODE1_BITS, 1);
  187. else{ // tricky decoding
  188. v = 0;
  189. switch(C){
  190. case -1: // code 0 -> 1, 1 -> 0
  191. if(B < 2)
  192. v = get_bits1(gb) ^ 1;
  193. break;
  194. case 0:
  195. case 2: // code 0 -> 2, 1 -> 0
  196. v = (get_bits1(gb) ^ 1) << 1;
  197. break;
  198. }
  199. }
  200. *ptr++ = v;
  201. }
  202. }
  203. }
  204. return 0;
  205. }
  206. /**
  207. * Decode macroblock information.
  208. */
  209. static int rv40_decode_mb_info(RV34DecContext *r)
  210. {
  211. MpegEncContext *s = &r->s;
  212. GetBitContext *gb = &s->gb;
  213. int q, i;
  214. int prev_type = 0;
  215. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  216. if(!r->s.mb_skip_run) {
  217. r->s.mb_skip_run = svq3_get_ue_golomb(gb) + 1;
  218. if(r->s.mb_skip_run > (unsigned)s->mb_num)
  219. return -1;
  220. }
  221. if(--r->s.mb_skip_run)
  222. return RV34_MB_SKIP;
  223. if(r->avail_cache[6-4]){
  224. int blocks[RV34_MB_TYPES] = {0};
  225. int count = 0;
  226. if(r->avail_cache[6-1])
  227. blocks[r->mb_type[mb_pos - 1]]++;
  228. blocks[r->mb_type[mb_pos - s->mb_stride]]++;
  229. if(r->avail_cache[6-2])
  230. blocks[r->mb_type[mb_pos - s->mb_stride + 1]]++;
  231. if(r->avail_cache[6-5])
  232. blocks[r->mb_type[mb_pos - s->mb_stride - 1]]++;
  233. for(i = 0; i < RV34_MB_TYPES; i++){
  234. if(blocks[i] > count){
  235. count = blocks[i];
  236. prev_type = i;
  237. if(count>1)
  238. break;
  239. }
  240. }
  241. } else if (r->avail_cache[6-1])
  242. prev_type = r->mb_type[mb_pos - 1];
  243. if(s->pict_type == AV_PICTURE_TYPE_P){
  244. prev_type = block_num_to_ptype_vlc_num[prev_type];
  245. q = get_vlc2(gb, ptype_vlc[prev_type].table, PTYPE_VLC_BITS, 1);
  246. if(q < PBTYPE_ESCAPE)
  247. return q;
  248. q = get_vlc2(gb, ptype_vlc[prev_type].table, PTYPE_VLC_BITS, 1);
  249. av_log(s->avctx, AV_LOG_ERROR, "Dquant for P-frame\n");
  250. }else{
  251. prev_type = block_num_to_btype_vlc_num[prev_type];
  252. q = get_vlc2(gb, btype_vlc[prev_type].table, BTYPE_VLC_BITS, 1);
  253. if(q < PBTYPE_ESCAPE)
  254. return q;
  255. q = get_vlc2(gb, btype_vlc[prev_type].table, BTYPE_VLC_BITS, 1);
  256. av_log(s->avctx, AV_LOG_ERROR, "Dquant for B-frame\n");
  257. }
  258. return 0;
  259. }
  260. enum RV40BlockPos{
  261. POS_CUR,
  262. POS_TOP,
  263. POS_LEFT,
  264. POS_BOTTOM,
  265. };
  266. #define MASK_CUR 0x0001
  267. #define MASK_RIGHT 0x0008
  268. #define MASK_BOTTOM 0x0010
  269. #define MASK_TOP 0x1000
  270. #define MASK_Y_TOP_ROW 0x000F
  271. #define MASK_Y_LAST_ROW 0xF000
  272. #define MASK_Y_LEFT_COL 0x1111
  273. #define MASK_Y_RIGHT_COL 0x8888
  274. #define MASK_C_TOP_ROW 0x0003
  275. #define MASK_C_LAST_ROW 0x000C
  276. #define MASK_C_LEFT_COL 0x0005
  277. #define MASK_C_RIGHT_COL 0x000A
  278. static const int neighbour_offs_x[4] = { 0, 0, -1, 0 };
  279. static const int neighbour_offs_y[4] = { 0, -1, 0, 1 };
  280. static void rv40_adaptive_loop_filter(RV34DSPContext *rdsp,
  281. uint8_t *src, int stride, int dmode,
  282. int lim_q1, int lim_p1,
  283. int alpha, int beta, int beta2,
  284. int chroma, int edge, int dir)
  285. {
  286. int filter_p1, filter_q1;
  287. int strong;
  288. int lims;
  289. strong = rdsp->rv40_loop_filter_strength[dir](src, stride, beta, beta2,
  290. edge, &filter_p1, &filter_q1);
  291. lims = filter_p1 + filter_q1 + ((lim_q1 + lim_p1) >> 1) + 1;
  292. if (strong) {
  293. rdsp->rv40_strong_loop_filter[dir](src, stride, alpha,
  294. lims, dmode, chroma);
  295. } else if (filter_p1 & filter_q1) {
  296. rdsp->rv40_weak_loop_filter[dir](src, stride, 1, 1, alpha, beta,
  297. lims, lim_q1, lim_p1);
  298. } else if (filter_p1 | filter_q1) {
  299. rdsp->rv40_weak_loop_filter[dir](src, stride, filter_p1, filter_q1,
  300. alpha, beta, lims >> 1, lim_q1 >> 1,
  301. lim_p1 >> 1);
  302. }
  303. }
  304. /**
  305. * RV40 loop filtering function
  306. */
  307. static void rv40_loop_filter(RV34DecContext *r, int row)
  308. {
  309. MpegEncContext *s = &r->s;
  310. int mb_pos, mb_x;
  311. int i, j, k;
  312. uint8_t *Y, *C;
  313. int alpha, beta, betaY, betaC;
  314. int q;
  315. int mbtype[4]; ///< current macroblock and its neighbours types
  316. /**
  317. * flags indicating that macroblock can be filtered with strong filter
  318. * it is set only for intra coded MB and MB with DCs coded separately
  319. */
  320. int mb_strong[4];
  321. int clip[4]; ///< MB filter clipping value calculated from filtering strength
  322. /**
  323. * coded block patterns for luma part of current macroblock and its neighbours
  324. * Format:
  325. * LSB corresponds to the top left block,
  326. * each nibble represents one row of subblocks.
  327. */
  328. int cbp[4];
  329. /**
  330. * coded block patterns for chroma part of current macroblock and its neighbours
  331. * Format is the same as for luma with two subblocks in a row.
  332. */
  333. int uvcbp[4][2];
  334. /**
  335. * This mask represents the pattern of luma subblocks that should be filtered
  336. * in addition to the coded ones because they lie at the edge of
  337. * 8x8 block with different enough motion vectors
  338. */
  339. unsigned mvmasks[4];
  340. mb_pos = row * s->mb_stride;
  341. for(mb_x = 0; mb_x < s->mb_width; mb_x++, mb_pos++){
  342. int mbtype = s->current_picture_ptr->mb_type[mb_pos];
  343. if(IS_INTRA(mbtype) || IS_SEPARATE_DC(mbtype))
  344. r->cbp_luma [mb_pos] = r->deblock_coefs[mb_pos] = 0xFFFF;
  345. if(IS_INTRA(mbtype))
  346. r->cbp_chroma[mb_pos] = 0xFF;
  347. }
  348. mb_pos = row * s->mb_stride;
  349. for(mb_x = 0; mb_x < s->mb_width; mb_x++, mb_pos++){
  350. int y_h_deblock, y_v_deblock;
  351. int c_v_deblock[2], c_h_deblock[2];
  352. int clip_left;
  353. int avail[4];
  354. unsigned y_to_deblock;
  355. int c_to_deblock[2];
  356. q = s->current_picture_ptr->qscale_table[mb_pos];
  357. alpha = rv40_alpha_tab[q];
  358. beta = rv40_beta_tab [q];
  359. betaY = betaC = beta * 3;
  360. if(s->width * s->height <= 176*144)
  361. betaY += beta;
  362. avail[0] = 1;
  363. avail[1] = row;
  364. avail[2] = mb_x;
  365. avail[3] = row < s->mb_height - 1;
  366. for(i = 0; i < 4; i++){
  367. if(avail[i]){
  368. int pos = mb_pos + neighbour_offs_x[i] + neighbour_offs_y[i]*s->mb_stride;
  369. mvmasks[i] = r->deblock_coefs[pos];
  370. mbtype [i] = s->current_picture_ptr->mb_type[pos];
  371. cbp [i] = r->cbp_luma[pos];
  372. uvcbp[i][0] = r->cbp_chroma[pos] & 0xF;
  373. uvcbp[i][1] = r->cbp_chroma[pos] >> 4;
  374. }else{
  375. mvmasks[i] = 0;
  376. mbtype [i] = mbtype[0];
  377. cbp [i] = 0;
  378. uvcbp[i][0] = uvcbp[i][1] = 0;
  379. }
  380. mb_strong[i] = IS_INTRA(mbtype[i]) || IS_SEPARATE_DC(mbtype[i]);
  381. clip[i] = rv40_filter_clip_tbl[mb_strong[i] + 1][q];
  382. }
  383. y_to_deblock = mvmasks[POS_CUR]
  384. | (mvmasks[POS_BOTTOM] << 16);
  385. /* This pattern contains bits signalling that horizontal edges of
  386. * the current block can be filtered.
  387. * That happens when either of adjacent subblocks is coded or lies on
  388. * the edge of 8x8 blocks with motion vectors differing by more than
  389. * 3/4 pel in any component (any edge orientation for some reason).
  390. */
  391. y_h_deblock = y_to_deblock
  392. | ((cbp[POS_CUR] << 4) & ~MASK_Y_TOP_ROW)
  393. | ((cbp[POS_TOP] & MASK_Y_LAST_ROW) >> 12);
  394. /* This pattern contains bits signalling that vertical edges of
  395. * the current block can be filtered.
  396. * That happens when either of adjacent subblocks is coded or lies on
  397. * the edge of 8x8 blocks with motion vectors differing by more than
  398. * 3/4 pel in any component (any edge orientation for some reason).
  399. */
  400. y_v_deblock = y_to_deblock
  401. | ((cbp[POS_CUR] << 1) & ~MASK_Y_LEFT_COL)
  402. | ((cbp[POS_LEFT] & MASK_Y_RIGHT_COL) >> 3);
  403. if(!mb_x)
  404. y_v_deblock &= ~MASK_Y_LEFT_COL;
  405. if(!row)
  406. y_h_deblock &= ~MASK_Y_TOP_ROW;
  407. if(row == s->mb_height - 1 || (mb_strong[POS_CUR] | mb_strong[POS_BOTTOM]))
  408. y_h_deblock &= ~(MASK_Y_TOP_ROW << 16);
  409. /* Calculating chroma patterns is similar and easier since there is
  410. * no motion vector pattern for them.
  411. */
  412. for(i = 0; i < 2; i++){
  413. c_to_deblock[i] = (uvcbp[POS_BOTTOM][i] << 4) | uvcbp[POS_CUR][i];
  414. c_v_deblock[i] = c_to_deblock[i]
  415. | ((uvcbp[POS_CUR] [i] << 1) & ~MASK_C_LEFT_COL)
  416. | ((uvcbp[POS_LEFT][i] & MASK_C_RIGHT_COL) >> 1);
  417. c_h_deblock[i] = c_to_deblock[i]
  418. | ((uvcbp[POS_TOP][i] & MASK_C_LAST_ROW) >> 2)
  419. | (uvcbp[POS_CUR][i] << 2);
  420. if(!mb_x)
  421. c_v_deblock[i] &= ~MASK_C_LEFT_COL;
  422. if(!row)
  423. c_h_deblock[i] &= ~MASK_C_TOP_ROW;
  424. if(row == s->mb_height - 1 || (mb_strong[POS_CUR] | mb_strong[POS_BOTTOM]))
  425. c_h_deblock[i] &= ~(MASK_C_TOP_ROW << 4);
  426. }
  427. for(j = 0; j < 16; j += 4){
  428. Y = s->current_picture_ptr->f->data[0] + mb_x*16 + (row*16 + j) * s->linesize;
  429. for(i = 0; i < 4; i++, Y += 4){
  430. int ij = i + j;
  431. int clip_cur = y_to_deblock & (MASK_CUR << ij) ? clip[POS_CUR] : 0;
  432. int dither = j ? ij : i*4;
  433. // if bottom block is coded then we can filter its top edge
  434. // (or bottom edge of this block, which is the same)
  435. if(y_h_deblock & (MASK_BOTTOM << ij)){
  436. rv40_adaptive_loop_filter(&r->rdsp, Y+4*s->linesize,
  437. s->linesize, dither,
  438. y_to_deblock & (MASK_BOTTOM << ij) ? clip[POS_CUR] : 0,
  439. clip_cur, alpha, beta, betaY,
  440. 0, 0, 0);
  441. }
  442. // filter left block edge in ordinary mode (with low filtering strength)
  443. if(y_v_deblock & (MASK_CUR << ij) && (i || !(mb_strong[POS_CUR] | mb_strong[POS_LEFT]))){
  444. if(!i)
  445. clip_left = mvmasks[POS_LEFT] & (MASK_RIGHT << j) ? clip[POS_LEFT] : 0;
  446. else
  447. clip_left = y_to_deblock & (MASK_CUR << (ij-1)) ? clip[POS_CUR] : 0;
  448. rv40_adaptive_loop_filter(&r->rdsp, Y, s->linesize, dither,
  449. clip_cur,
  450. clip_left,
  451. alpha, beta, betaY, 0, 0, 1);
  452. }
  453. // filter top edge of the current macroblock when filtering strength is high
  454. if(!j && y_h_deblock & (MASK_CUR << i) && (mb_strong[POS_CUR] | mb_strong[POS_TOP])){
  455. rv40_adaptive_loop_filter(&r->rdsp, Y, s->linesize, dither,
  456. clip_cur,
  457. mvmasks[POS_TOP] & (MASK_TOP << i) ? clip[POS_TOP] : 0,
  458. alpha, beta, betaY, 0, 1, 0);
  459. }
  460. // filter left block edge in edge mode (with high filtering strength)
  461. if(y_v_deblock & (MASK_CUR << ij) && !i && (mb_strong[POS_CUR] | mb_strong[POS_LEFT])){
  462. clip_left = mvmasks[POS_LEFT] & (MASK_RIGHT << j) ? clip[POS_LEFT] : 0;
  463. rv40_adaptive_loop_filter(&r->rdsp, Y, s->linesize, dither,
  464. clip_cur,
  465. clip_left,
  466. alpha, beta, betaY, 0, 1, 1);
  467. }
  468. }
  469. }
  470. for(k = 0; k < 2; k++){
  471. for(j = 0; j < 2; j++){
  472. C = s->current_picture_ptr->f->data[k + 1] + mb_x*8 + (row*8 + j*4) * s->uvlinesize;
  473. for(i = 0; i < 2; i++, C += 4){
  474. int ij = i + j*2;
  475. int clip_cur = c_to_deblock[k] & (MASK_CUR << ij) ? clip[POS_CUR] : 0;
  476. if(c_h_deblock[k] & (MASK_CUR << (ij+2))){
  477. int clip_bot = c_to_deblock[k] & (MASK_CUR << (ij+2)) ? clip[POS_CUR] : 0;
  478. rv40_adaptive_loop_filter(&r->rdsp, C+4*s->uvlinesize, s->uvlinesize, i*8,
  479. clip_bot,
  480. clip_cur,
  481. alpha, beta, betaC, 1, 0, 0);
  482. }
  483. if((c_v_deblock[k] & (MASK_CUR << ij)) && (i || !(mb_strong[POS_CUR] | mb_strong[POS_LEFT]))){
  484. if(!i)
  485. clip_left = uvcbp[POS_LEFT][k] & (MASK_CUR << (2*j+1)) ? clip[POS_LEFT] : 0;
  486. else
  487. clip_left = c_to_deblock[k] & (MASK_CUR << (ij-1)) ? clip[POS_CUR] : 0;
  488. rv40_adaptive_loop_filter(&r->rdsp, C, s->uvlinesize, j*8,
  489. clip_cur,
  490. clip_left,
  491. alpha, beta, betaC, 1, 0, 1);
  492. }
  493. if(!j && c_h_deblock[k] & (MASK_CUR << ij) && (mb_strong[POS_CUR] | mb_strong[POS_TOP])){
  494. int clip_top = uvcbp[POS_TOP][k] & (MASK_CUR << (ij+2)) ? clip[POS_TOP] : 0;
  495. rv40_adaptive_loop_filter(&r->rdsp, C, s->uvlinesize, i*8,
  496. clip_cur,
  497. clip_top,
  498. alpha, beta, betaC, 1, 1, 0);
  499. }
  500. if(c_v_deblock[k] & (MASK_CUR << ij) && !i && (mb_strong[POS_CUR] | mb_strong[POS_LEFT])){
  501. clip_left = uvcbp[POS_LEFT][k] & (MASK_CUR << (2*j+1)) ? clip[POS_LEFT] : 0;
  502. rv40_adaptive_loop_filter(&r->rdsp, C, s->uvlinesize, j*8,
  503. clip_cur,
  504. clip_left,
  505. alpha, beta, betaC, 1, 1, 1);
  506. }
  507. }
  508. }
  509. }
  510. }
  511. }
  512. /**
  513. * Initialize decoder.
  514. */
  515. static av_cold int rv40_decode_init(AVCodecContext *avctx)
  516. {
  517. RV34DecContext *r = avctx->priv_data;
  518. int ret;
  519. r->rv30 = 0;
  520. if ((ret = ff_rv34_decode_init(avctx)) < 0)
  521. return ret;
  522. if(!aic_top_vlc.bits)
  523. rv40_init_tables();
  524. r->parse_slice_header = rv40_parse_slice_header;
  525. r->decode_intra_types = rv40_decode_intra_types;
  526. r->decode_mb_info = rv40_decode_mb_info;
  527. r->loop_filter = rv40_loop_filter;
  528. r->luma_dc_quant_i = rv40_luma_dc_quant[0];
  529. r->luma_dc_quant_p = rv40_luma_dc_quant[1];
  530. return 0;
  531. }
  532. AVCodec ff_rv40_decoder = {
  533. .name = "rv40",
  534. .long_name = NULL_IF_CONFIG_SMALL("RealVideo 4.0"),
  535. .type = AVMEDIA_TYPE_VIDEO,
  536. .id = AV_CODEC_ID_RV40,
  537. .priv_data_size = sizeof(RV34DecContext),
  538. .init = rv40_decode_init,
  539. .close = ff_rv34_decode_end,
  540. .decode = ff_rv34_decode_frame,
  541. .capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_DELAY |
  542. AV_CODEC_CAP_FRAME_THREADS,
  543. .flush = ff_mpeg_flush,
  544. .pix_fmts = (const enum AVPixelFormat[]) {
  545. AV_PIX_FMT_YUV420P,
  546. AV_PIX_FMT_NONE
  547. },
  548. .init_thread_copy = ONLY_IF_THREADS_ENABLED(ff_rv34_decode_init_thread_copy),
  549. .update_thread_context = ONLY_IF_THREADS_ENABLED(ff_rv34_decode_update_thread_context),
  550. };