You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1083 lines
36KB

  1. /*
  2. * Rate control for video encoders
  3. *
  4. * Copyright (c) 2002-2004 Michael Niedermayer <michaelni@gmx.at>
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file
  24. * Rate control for video encoders.
  25. */
  26. #include "libavutil/attributes.h"
  27. #include "libavutil/internal.h"
  28. #include "avcodec.h"
  29. #include "internal.h"
  30. #include "ratecontrol.h"
  31. #include "mpegutils.h"
  32. #include "mpegvideo.h"
  33. #include "libavutil/eval.h"
  34. #ifndef M_E
  35. #define M_E 2.718281828
  36. #endif
  37. static int init_pass2(MpegEncContext *s);
  38. static double get_qscale(MpegEncContext *s, RateControlEntry *rce,
  39. double rate_factor, int frame_num);
  40. void ff_write_pass1_stats(MpegEncContext *s)
  41. {
  42. snprintf(s->avctx->stats_out, 256,
  43. "in:%d out:%d type:%d q:%d itex:%d ptex:%d mv:%d misc:%d "
  44. "fcode:%d bcode:%d mc-var:%"PRId64" var:%"PRId64" icount:%d skipcount:%d hbits:%d;\n",
  45. s->current_picture_ptr->f->display_picture_number,
  46. s->current_picture_ptr->f->coded_picture_number,
  47. s->pict_type,
  48. s->current_picture.f->quality,
  49. s->i_tex_bits,
  50. s->p_tex_bits,
  51. s->mv_bits,
  52. s->misc_bits,
  53. s->f_code,
  54. s->b_code,
  55. s->current_picture.mc_mb_var_sum,
  56. s->current_picture.mb_var_sum,
  57. s->i_count, s->skip_count,
  58. s->header_bits);
  59. }
  60. static double get_fps(AVCodecContext *avctx)
  61. {
  62. return 1.0 / av_q2d(avctx->time_base) / FFMAX(avctx->ticks_per_frame, 1);
  63. }
  64. static inline double qp2bits(RateControlEntry *rce, double qp)
  65. {
  66. if (qp <= 0.0) {
  67. av_log(NULL, AV_LOG_ERROR, "qp<=0.0\n");
  68. }
  69. return rce->qscale * (double)(rce->i_tex_bits + rce->p_tex_bits + 1) / qp;
  70. }
  71. static inline double bits2qp(RateControlEntry *rce, double bits)
  72. {
  73. if (bits < 0.9) {
  74. av_log(NULL, AV_LOG_ERROR, "bits<0.9\n");
  75. }
  76. return rce->qscale * (double)(rce->i_tex_bits + rce->p_tex_bits + 1) / bits;
  77. }
  78. av_cold int ff_rate_control_init(MpegEncContext *s)
  79. {
  80. RateControlContext *rcc = &s->rc_context;
  81. int i, res;
  82. static const char * const const_names[] = {
  83. "PI",
  84. "E",
  85. "iTex",
  86. "pTex",
  87. "tex",
  88. "mv",
  89. "fCode",
  90. "iCount",
  91. "mcVar",
  92. "var",
  93. "isI",
  94. "isP",
  95. "isB",
  96. "avgQP",
  97. "qComp",
  98. #if 0
  99. "lastIQP",
  100. "lastPQP",
  101. "lastBQP",
  102. "nextNonBQP",
  103. #endif
  104. "avgIITex",
  105. "avgPITex",
  106. "avgPPTex",
  107. "avgBPTex",
  108. "avgTex",
  109. NULL
  110. };
  111. static double (* const func1[])(void *, double) = {
  112. (void *)bits2qp,
  113. (void *)qp2bits,
  114. NULL
  115. };
  116. static const char * const func1_names[] = {
  117. "bits2qp",
  118. "qp2bits",
  119. NULL
  120. };
  121. emms_c();
  122. if (!s->avctx->rc_max_available_vbv_use && s->avctx->rc_buffer_size) {
  123. if (s->avctx->rc_max_rate) {
  124. s->avctx->rc_max_available_vbv_use = av_clipf(s->avctx->rc_max_rate/(s->avctx->rc_buffer_size*get_fps(s->avctx)), 1.0/3, 1.0);
  125. } else
  126. s->avctx->rc_max_available_vbv_use = 1.0;
  127. }
  128. res = av_expr_parse(&rcc->rc_eq_eval,
  129. s->rc_eq ? s->rc_eq : "tex^qComp",
  130. const_names, func1_names, func1,
  131. NULL, NULL, 0, s->avctx);
  132. if (res < 0) {
  133. av_log(s->avctx, AV_LOG_ERROR, "Error parsing rc_eq \"%s\"\n", s->rc_eq);
  134. return res;
  135. }
  136. #if FF_API_RC_STRATEGY
  137. FF_DISABLE_DEPRECATION_WARNINGS
  138. if (!s->rc_strategy)
  139. s->rc_strategy = s->avctx->rc_strategy;
  140. FF_ENABLE_DEPRECATION_WARNINGS
  141. #endif
  142. for (i = 0; i < 5; i++) {
  143. rcc->pred[i].coeff = FF_QP2LAMBDA * 7.0;
  144. rcc->pred[i].count = 1.0;
  145. rcc->pred[i].decay = 0.4;
  146. rcc->i_cplx_sum [i] =
  147. rcc->p_cplx_sum [i] =
  148. rcc->mv_bits_sum[i] =
  149. rcc->qscale_sum [i] =
  150. rcc->frame_count[i] = 1; // 1 is better because of 1/0 and such
  151. rcc->last_qscale_for[i] = FF_QP2LAMBDA * 5;
  152. }
  153. rcc->buffer_index = s->avctx->rc_initial_buffer_occupancy;
  154. if (!rcc->buffer_index)
  155. rcc->buffer_index = s->avctx->rc_buffer_size * 3 / 4;
  156. if (s->avctx->flags & AV_CODEC_FLAG_PASS2) {
  157. int i;
  158. char *p;
  159. /* find number of pics */
  160. p = s->avctx->stats_in;
  161. for (i = -1; p; i++)
  162. p = strchr(p + 1, ';');
  163. i += s->max_b_frames;
  164. if (i <= 0 || i >= INT_MAX / sizeof(RateControlEntry))
  165. return -1;
  166. rcc->entry = av_mallocz(i * sizeof(RateControlEntry));
  167. if (!rcc->entry)
  168. return AVERROR(ENOMEM);
  169. rcc->num_entries = i;
  170. /* init all to skipped p frames
  171. * (with b frames we might have a not encoded frame at the end FIXME) */
  172. for (i = 0; i < rcc->num_entries; i++) {
  173. RateControlEntry *rce = &rcc->entry[i];
  174. rce->pict_type = rce->new_pict_type = AV_PICTURE_TYPE_P;
  175. rce->qscale = rce->new_qscale = FF_QP2LAMBDA * 2;
  176. rce->misc_bits = s->mb_num + 10;
  177. rce->mb_var_sum = s->mb_num * 100;
  178. }
  179. /* read stats */
  180. p = s->avctx->stats_in;
  181. for (i = 0; i < rcc->num_entries - s->max_b_frames; i++) {
  182. RateControlEntry *rce;
  183. int picture_number;
  184. int e;
  185. char *next;
  186. next = strchr(p, ';');
  187. if (next) {
  188. (*next) = 0; // sscanf in unbelievably slow on looong strings // FIXME copy / do not write
  189. next++;
  190. }
  191. e = sscanf(p, " in:%d ", &picture_number);
  192. av_assert0(picture_number >= 0);
  193. av_assert0(picture_number < rcc->num_entries);
  194. rce = &rcc->entry[picture_number];
  195. e += sscanf(p, " in:%*d out:%*d type:%d q:%f itex:%d ptex:%d mv:%d misc:%d fcode:%d bcode:%d mc-var:%"SCNd64" var:%"SCNd64" icount:%d skipcount:%d hbits:%d",
  196. &rce->pict_type, &rce->qscale, &rce->i_tex_bits, &rce->p_tex_bits,
  197. &rce->mv_bits, &rce->misc_bits,
  198. &rce->f_code, &rce->b_code,
  199. &rce->mc_mb_var_sum, &rce->mb_var_sum,
  200. &rce->i_count, &rce->skip_count, &rce->header_bits);
  201. if (e != 14) {
  202. av_log(s->avctx, AV_LOG_ERROR,
  203. "statistics are damaged at line %d, parser out=%d\n",
  204. i, e);
  205. return -1;
  206. }
  207. p = next;
  208. }
  209. if (init_pass2(s) < 0) {
  210. ff_rate_control_uninit(s);
  211. return -1;
  212. }
  213. // FIXME maybe move to end
  214. if ((s->avctx->flags & AV_CODEC_FLAG_PASS2) && s->rc_strategy == 1) {
  215. #if CONFIG_LIBXVID
  216. return ff_xvid_rate_control_init(s);
  217. #else
  218. av_log(s->avctx, AV_LOG_ERROR,
  219. "Xvid ratecontrol requires libavcodec compiled with Xvid support.\n");
  220. return -1;
  221. #endif
  222. }
  223. }
  224. if (!(s->avctx->flags & AV_CODEC_FLAG_PASS2)) {
  225. rcc->short_term_qsum = 0.001;
  226. rcc->short_term_qcount = 0.001;
  227. rcc->pass1_rc_eq_output_sum = 0.001;
  228. rcc->pass1_wanted_bits = 0.001;
  229. if (s->avctx->qblur > 1.0) {
  230. av_log(s->avctx, AV_LOG_ERROR, "qblur too large\n");
  231. return -1;
  232. }
  233. /* init stuff with the user specified complexity */
  234. if (s->rc_initial_cplx) {
  235. for (i = 0; i < 60 * 30; i++) {
  236. double bits = s->rc_initial_cplx * (i / 10000.0 + 1.0) * s->mb_num;
  237. RateControlEntry rce;
  238. if (i % ((s->gop_size + 3) / 4) == 0)
  239. rce.pict_type = AV_PICTURE_TYPE_I;
  240. else if (i % (s->max_b_frames + 1))
  241. rce.pict_type = AV_PICTURE_TYPE_B;
  242. else
  243. rce.pict_type = AV_PICTURE_TYPE_P;
  244. rce.new_pict_type = rce.pict_type;
  245. rce.mc_mb_var_sum = bits * s->mb_num / 100000;
  246. rce.mb_var_sum = s->mb_num;
  247. rce.qscale = FF_QP2LAMBDA * 2;
  248. rce.f_code = 2;
  249. rce.b_code = 1;
  250. rce.misc_bits = 1;
  251. if (s->pict_type == AV_PICTURE_TYPE_I) {
  252. rce.i_count = s->mb_num;
  253. rce.i_tex_bits = bits;
  254. rce.p_tex_bits = 0;
  255. rce.mv_bits = 0;
  256. } else {
  257. rce.i_count = 0; // FIXME we do know this approx
  258. rce.i_tex_bits = 0;
  259. rce.p_tex_bits = bits * 0.9;
  260. rce.mv_bits = bits * 0.1;
  261. }
  262. rcc->i_cplx_sum[rce.pict_type] += rce.i_tex_bits * rce.qscale;
  263. rcc->p_cplx_sum[rce.pict_type] += rce.p_tex_bits * rce.qscale;
  264. rcc->mv_bits_sum[rce.pict_type] += rce.mv_bits;
  265. rcc->frame_count[rce.pict_type]++;
  266. get_qscale(s, &rce, rcc->pass1_wanted_bits / rcc->pass1_rc_eq_output_sum, i);
  267. // FIXME misbehaves a little for variable fps
  268. rcc->pass1_wanted_bits += s->bit_rate / get_fps(s->avctx);
  269. }
  270. }
  271. }
  272. return 0;
  273. }
  274. av_cold void ff_rate_control_uninit(MpegEncContext *s)
  275. {
  276. RateControlContext *rcc = &s->rc_context;
  277. emms_c();
  278. av_expr_free(rcc->rc_eq_eval);
  279. av_freep(&rcc->entry);
  280. #if CONFIG_LIBXVID
  281. if ((s->avctx->flags & AV_CODEC_FLAG_PASS2) && s->rc_strategy == 1)
  282. ff_xvid_rate_control_uninit(s);
  283. #endif
  284. }
  285. int ff_vbv_update(MpegEncContext *s, int frame_size)
  286. {
  287. RateControlContext *rcc = &s->rc_context;
  288. const double fps = get_fps(s->avctx);
  289. const int buffer_size = s->avctx->rc_buffer_size;
  290. const double min_rate = s->avctx->rc_min_rate / fps;
  291. const double max_rate = s->avctx->rc_max_rate / fps;
  292. ff_dlog(s, "%d %f %d %f %f\n",
  293. buffer_size, rcc->buffer_index, frame_size, min_rate, max_rate);
  294. if (buffer_size) {
  295. int left;
  296. rcc->buffer_index -= frame_size;
  297. if (rcc->buffer_index < 0) {
  298. av_log(s->avctx, AV_LOG_ERROR, "rc buffer underflow\n");
  299. if (frame_size > max_rate && s->qscale == s->avctx->qmax) {
  300. av_log(s->avctx, AV_LOG_ERROR, "max bitrate possibly too small or try trellis with large lmax or increase qmax\n");
  301. }
  302. rcc->buffer_index = 0;
  303. }
  304. left = buffer_size - rcc->buffer_index - 1;
  305. rcc->buffer_index += av_clip(left, min_rate, max_rate);
  306. if (rcc->buffer_index > buffer_size) {
  307. int stuffing = ceil((rcc->buffer_index - buffer_size) / 8);
  308. if (stuffing < 4 && s->codec_id == AV_CODEC_ID_MPEG4)
  309. stuffing = 4;
  310. rcc->buffer_index -= 8 * stuffing;
  311. if (s->avctx->debug & FF_DEBUG_RC)
  312. av_log(s->avctx, AV_LOG_DEBUG, "stuffing %d bytes\n", stuffing);
  313. return stuffing;
  314. }
  315. }
  316. return 0;
  317. }
  318. /**
  319. * Modify the bitrate curve from pass1 for one frame.
  320. */
  321. static double get_qscale(MpegEncContext *s, RateControlEntry *rce,
  322. double rate_factor, int frame_num)
  323. {
  324. RateControlContext *rcc = &s->rc_context;
  325. AVCodecContext *a = s->avctx;
  326. const int pict_type = rce->new_pict_type;
  327. const double mb_num = s->mb_num;
  328. double q, bits;
  329. int i;
  330. double const_values[] = {
  331. M_PI,
  332. M_E,
  333. rce->i_tex_bits * rce->qscale,
  334. rce->p_tex_bits * rce->qscale,
  335. (rce->i_tex_bits + rce->p_tex_bits) * (double)rce->qscale,
  336. rce->mv_bits / mb_num,
  337. rce->pict_type == AV_PICTURE_TYPE_B ? (rce->f_code + rce->b_code) * 0.5 : rce->f_code,
  338. rce->i_count / mb_num,
  339. rce->mc_mb_var_sum / mb_num,
  340. rce->mb_var_sum / mb_num,
  341. rce->pict_type == AV_PICTURE_TYPE_I,
  342. rce->pict_type == AV_PICTURE_TYPE_P,
  343. rce->pict_type == AV_PICTURE_TYPE_B,
  344. rcc->qscale_sum[pict_type] / (double)rcc->frame_count[pict_type],
  345. a->qcompress,
  346. #if 0
  347. rcc->last_qscale_for[AV_PICTURE_TYPE_I],
  348. rcc->last_qscale_for[AV_PICTURE_TYPE_P],
  349. rcc->last_qscale_for[AV_PICTURE_TYPE_B],
  350. rcc->next_non_b_qscale,
  351. #endif
  352. rcc->i_cplx_sum[AV_PICTURE_TYPE_I] / (double)rcc->frame_count[AV_PICTURE_TYPE_I],
  353. rcc->i_cplx_sum[AV_PICTURE_TYPE_P] / (double)rcc->frame_count[AV_PICTURE_TYPE_P],
  354. rcc->p_cplx_sum[AV_PICTURE_TYPE_P] / (double)rcc->frame_count[AV_PICTURE_TYPE_P],
  355. rcc->p_cplx_sum[AV_PICTURE_TYPE_B] / (double)rcc->frame_count[AV_PICTURE_TYPE_B],
  356. (rcc->i_cplx_sum[pict_type] + rcc->p_cplx_sum[pict_type]) / (double)rcc->frame_count[pict_type],
  357. 0
  358. };
  359. bits = av_expr_eval(rcc->rc_eq_eval, const_values, rce);
  360. if (isnan(bits)) {
  361. av_log(s->avctx, AV_LOG_ERROR, "Error evaluating rc_eq \"%s\"\n", s->rc_eq);
  362. return -1;
  363. }
  364. rcc->pass1_rc_eq_output_sum += bits;
  365. bits *= rate_factor;
  366. if (bits < 0.0)
  367. bits = 0.0;
  368. bits += 1.0; // avoid 1/0 issues
  369. /* user override */
  370. for (i = 0; i < s->avctx->rc_override_count; i++) {
  371. RcOverride *rco = s->avctx->rc_override;
  372. if (rco[i].start_frame > frame_num)
  373. continue;
  374. if (rco[i].end_frame < frame_num)
  375. continue;
  376. if (rco[i].qscale)
  377. bits = qp2bits(rce, rco[i].qscale); // FIXME move at end to really force it?
  378. else
  379. bits *= rco[i].quality_factor;
  380. }
  381. q = bits2qp(rce, bits);
  382. /* I/B difference */
  383. if (pict_type == AV_PICTURE_TYPE_I && s->avctx->i_quant_factor < 0.0)
  384. q = -q * s->avctx->i_quant_factor + s->avctx->i_quant_offset;
  385. else if (pict_type == AV_PICTURE_TYPE_B && s->avctx->b_quant_factor < 0.0)
  386. q = -q * s->avctx->b_quant_factor + s->avctx->b_quant_offset;
  387. if (q < 1)
  388. q = 1;
  389. return q;
  390. }
  391. static double get_diff_limited_q(MpegEncContext *s, RateControlEntry *rce, double q)
  392. {
  393. RateControlContext *rcc = &s->rc_context;
  394. AVCodecContext *a = s->avctx;
  395. const int pict_type = rce->new_pict_type;
  396. const double last_p_q = rcc->last_qscale_for[AV_PICTURE_TYPE_P];
  397. const double last_non_b_q = rcc->last_qscale_for[rcc->last_non_b_pict_type];
  398. if (pict_type == AV_PICTURE_TYPE_I &&
  399. (a->i_quant_factor > 0.0 || rcc->last_non_b_pict_type == AV_PICTURE_TYPE_P))
  400. q = last_p_q * FFABS(a->i_quant_factor) + a->i_quant_offset;
  401. else if (pict_type == AV_PICTURE_TYPE_B &&
  402. a->b_quant_factor > 0.0)
  403. q = last_non_b_q * a->b_quant_factor + a->b_quant_offset;
  404. if (q < 1)
  405. q = 1;
  406. /* last qscale / qdiff stuff */
  407. if (rcc->last_non_b_pict_type == pict_type || pict_type != AV_PICTURE_TYPE_I) {
  408. double last_q = rcc->last_qscale_for[pict_type];
  409. const int maxdiff = FF_QP2LAMBDA * a->max_qdiff;
  410. if (q > last_q + maxdiff)
  411. q = last_q + maxdiff;
  412. else if (q < last_q - maxdiff)
  413. q = last_q - maxdiff;
  414. }
  415. rcc->last_qscale_for[pict_type] = q; // Note we cannot do that after blurring
  416. if (pict_type != AV_PICTURE_TYPE_B)
  417. rcc->last_non_b_pict_type = pict_type;
  418. return q;
  419. }
  420. /**
  421. * Get the qmin & qmax for pict_type.
  422. */
  423. static void get_qminmax(int *qmin_ret, int *qmax_ret, MpegEncContext *s, int pict_type)
  424. {
  425. int qmin = s->lmin;
  426. int qmax = s->lmax;
  427. av_assert0(qmin <= qmax);
  428. switch (pict_type) {
  429. case AV_PICTURE_TYPE_B:
  430. qmin = (int)(qmin * FFABS(s->avctx->b_quant_factor) + s->avctx->b_quant_offset + 0.5);
  431. qmax = (int)(qmax * FFABS(s->avctx->b_quant_factor) + s->avctx->b_quant_offset + 0.5);
  432. break;
  433. case AV_PICTURE_TYPE_I:
  434. qmin = (int)(qmin * FFABS(s->avctx->i_quant_factor) + s->avctx->i_quant_offset + 0.5);
  435. qmax = (int)(qmax * FFABS(s->avctx->i_quant_factor) + s->avctx->i_quant_offset + 0.5);
  436. break;
  437. }
  438. qmin = av_clip(qmin, 1, FF_LAMBDA_MAX);
  439. qmax = av_clip(qmax, 1, FF_LAMBDA_MAX);
  440. if (qmax < qmin)
  441. qmax = qmin;
  442. *qmin_ret = qmin;
  443. *qmax_ret = qmax;
  444. }
  445. static double modify_qscale(MpegEncContext *s, RateControlEntry *rce,
  446. double q, int frame_num)
  447. {
  448. RateControlContext *rcc = &s->rc_context;
  449. const double buffer_size = s->avctx->rc_buffer_size;
  450. const double fps = get_fps(s->avctx);
  451. const double min_rate = s->avctx->rc_min_rate / fps;
  452. const double max_rate = s->avctx->rc_max_rate / fps;
  453. const int pict_type = rce->new_pict_type;
  454. int qmin, qmax;
  455. get_qminmax(&qmin, &qmax, s, pict_type);
  456. /* modulation */
  457. if (s->rc_qmod_freq &&
  458. frame_num % s->rc_qmod_freq == 0 &&
  459. pict_type == AV_PICTURE_TYPE_P)
  460. q *= s->rc_qmod_amp;
  461. /* buffer overflow/underflow protection */
  462. if (buffer_size) {
  463. double expected_size = rcc->buffer_index;
  464. double q_limit;
  465. if (min_rate) {
  466. double d = 2 * (buffer_size - expected_size) / buffer_size;
  467. if (d > 1.0)
  468. d = 1.0;
  469. else if (d < 0.0001)
  470. d = 0.0001;
  471. q *= pow(d, 1.0 / s->rc_buffer_aggressivity);
  472. q_limit = bits2qp(rce,
  473. FFMAX((min_rate - buffer_size + rcc->buffer_index) *
  474. s->avctx->rc_min_vbv_overflow_use, 1));
  475. if (q > q_limit) {
  476. if (s->avctx->debug & FF_DEBUG_RC)
  477. av_log(s->avctx, AV_LOG_DEBUG,
  478. "limiting QP %f -> %f\n", q, q_limit);
  479. q = q_limit;
  480. }
  481. }
  482. if (max_rate) {
  483. double d = 2 * expected_size / buffer_size;
  484. if (d > 1.0)
  485. d = 1.0;
  486. else if (d < 0.0001)
  487. d = 0.0001;
  488. q /= pow(d, 1.0 / s->rc_buffer_aggressivity);
  489. q_limit = bits2qp(rce,
  490. FFMAX(rcc->buffer_index *
  491. s->avctx->rc_max_available_vbv_use,
  492. 1));
  493. if (q < q_limit) {
  494. if (s->avctx->debug & FF_DEBUG_RC)
  495. av_log(s->avctx, AV_LOG_DEBUG,
  496. "limiting QP %f -> %f\n", q, q_limit);
  497. q = q_limit;
  498. }
  499. }
  500. }
  501. ff_dlog(s, "q:%f max:%f min:%f size:%f index:%f agr:%f\n",
  502. q, max_rate, min_rate, buffer_size, rcc->buffer_index,
  503. s->rc_buffer_aggressivity);
  504. if (s->rc_qsquish == 0.0 || qmin == qmax) {
  505. if (q < qmin)
  506. q = qmin;
  507. else if (q > qmax)
  508. q = qmax;
  509. } else {
  510. double min2 = log(qmin);
  511. double max2 = log(qmax);
  512. q = log(q);
  513. q = (q - min2) / (max2 - min2) - 0.5;
  514. q *= -4.0;
  515. q = 1.0 / (1.0 + exp(q));
  516. q = q * (max2 - min2) + min2;
  517. q = exp(q);
  518. }
  519. return q;
  520. }
  521. // ----------------------------------
  522. // 1 Pass Code
  523. static double predict_size(Predictor *p, double q, double var)
  524. {
  525. return p->coeff * var / (q * p->count);
  526. }
  527. static void update_predictor(Predictor *p, double q, double var, double size)
  528. {
  529. double new_coeff = size * q / (var + 1);
  530. if (var < 10)
  531. return;
  532. p->count *= p->decay;
  533. p->coeff *= p->decay;
  534. p->count++;
  535. p->coeff += new_coeff;
  536. }
  537. static void adaptive_quantization(MpegEncContext *s, double q)
  538. {
  539. int i;
  540. const float lumi_masking = s->avctx->lumi_masking / (128.0 * 128.0);
  541. const float dark_masking = s->avctx->dark_masking / (128.0 * 128.0);
  542. const float temp_cplx_masking = s->avctx->temporal_cplx_masking;
  543. const float spatial_cplx_masking = s->avctx->spatial_cplx_masking;
  544. const float p_masking = s->avctx->p_masking;
  545. const float border_masking = s->border_masking;
  546. float bits_sum = 0.0;
  547. float cplx_sum = 0.0;
  548. float *cplx_tab = s->cplx_tab;
  549. float *bits_tab = s->bits_tab;
  550. const int qmin = s->avctx->mb_lmin;
  551. const int qmax = s->avctx->mb_lmax;
  552. Picture *const pic = &s->current_picture;
  553. const int mb_width = s->mb_width;
  554. const int mb_height = s->mb_height;
  555. for (i = 0; i < s->mb_num; i++) {
  556. const int mb_xy = s->mb_index2xy[i];
  557. float temp_cplx = sqrt(pic->mc_mb_var[mb_xy]); // FIXME merge in pow()
  558. float spat_cplx = sqrt(pic->mb_var[mb_xy]);
  559. const int lumi = pic->mb_mean[mb_xy];
  560. float bits, cplx, factor;
  561. int mb_x = mb_xy % s->mb_stride;
  562. int mb_y = mb_xy / s->mb_stride;
  563. int mb_distance;
  564. float mb_factor = 0.0;
  565. if (spat_cplx < 4)
  566. spat_cplx = 4; // FIXME finetune
  567. if (temp_cplx < 4)
  568. temp_cplx = 4; // FIXME finetune
  569. if ((s->mb_type[mb_xy] & CANDIDATE_MB_TYPE_INTRA)) { // FIXME hq mode
  570. cplx = spat_cplx;
  571. factor = 1.0 + p_masking;
  572. } else {
  573. cplx = temp_cplx;
  574. factor = pow(temp_cplx, -temp_cplx_masking);
  575. }
  576. factor *= pow(spat_cplx, -spatial_cplx_masking);
  577. if (lumi > 127)
  578. factor *= (1.0 - (lumi - 128) * (lumi - 128) * lumi_masking);
  579. else
  580. factor *= (1.0 - (lumi - 128) * (lumi - 128) * dark_masking);
  581. if (mb_x < mb_width / 5) {
  582. mb_distance = mb_width / 5 - mb_x;
  583. mb_factor = (float)mb_distance / (float)(mb_width / 5);
  584. } else if (mb_x > 4 * mb_width / 5) {
  585. mb_distance = mb_x - 4 * mb_width / 5;
  586. mb_factor = (float)mb_distance / (float)(mb_width / 5);
  587. }
  588. if (mb_y < mb_height / 5) {
  589. mb_distance = mb_height / 5 - mb_y;
  590. mb_factor = FFMAX(mb_factor,
  591. (float)mb_distance / (float)(mb_height / 5));
  592. } else if (mb_y > 4 * mb_height / 5) {
  593. mb_distance = mb_y - 4 * mb_height / 5;
  594. mb_factor = FFMAX(mb_factor,
  595. (float)mb_distance / (float)(mb_height / 5));
  596. }
  597. factor *= 1.0 - border_masking * mb_factor;
  598. if (factor < 0.00001)
  599. factor = 0.00001;
  600. bits = cplx * factor;
  601. cplx_sum += cplx;
  602. bits_sum += bits;
  603. cplx_tab[i] = cplx;
  604. bits_tab[i] = bits;
  605. }
  606. /* handle qmin/qmax clipping */
  607. if (s->mpv_flags & FF_MPV_FLAG_NAQ) {
  608. float factor = bits_sum / cplx_sum;
  609. for (i = 0; i < s->mb_num; i++) {
  610. float newq = q * cplx_tab[i] / bits_tab[i];
  611. newq *= factor;
  612. if (newq > qmax) {
  613. bits_sum -= bits_tab[i];
  614. cplx_sum -= cplx_tab[i] * q / qmax;
  615. } else if (newq < qmin) {
  616. bits_sum -= bits_tab[i];
  617. cplx_sum -= cplx_tab[i] * q / qmin;
  618. }
  619. }
  620. if (bits_sum < 0.001)
  621. bits_sum = 0.001;
  622. if (cplx_sum < 0.001)
  623. cplx_sum = 0.001;
  624. }
  625. for (i = 0; i < s->mb_num; i++) {
  626. const int mb_xy = s->mb_index2xy[i];
  627. float newq = q * cplx_tab[i] / bits_tab[i];
  628. int intq;
  629. if (s->mpv_flags & FF_MPV_FLAG_NAQ) {
  630. newq *= bits_sum / cplx_sum;
  631. }
  632. intq = (int)(newq + 0.5);
  633. if (intq > qmax)
  634. intq = qmax;
  635. else if (intq < qmin)
  636. intq = qmin;
  637. s->lambda_table[mb_xy] = intq;
  638. }
  639. }
  640. void ff_get_2pass_fcode(MpegEncContext *s)
  641. {
  642. RateControlContext *rcc = &s->rc_context;
  643. RateControlEntry *rce = &rcc->entry[s->picture_number];
  644. s->f_code = rce->f_code;
  645. s->b_code = rce->b_code;
  646. }
  647. // FIXME rd or at least approx for dquant
  648. float ff_rate_estimate_qscale(MpegEncContext *s, int dry_run)
  649. {
  650. float q;
  651. int qmin, qmax;
  652. float br_compensation;
  653. double diff;
  654. double short_term_q;
  655. double fps;
  656. int picture_number = s->picture_number;
  657. int64_t wanted_bits;
  658. RateControlContext *rcc = &s->rc_context;
  659. AVCodecContext *a = s->avctx;
  660. RateControlEntry local_rce, *rce;
  661. double bits;
  662. double rate_factor;
  663. int64_t var;
  664. const int pict_type = s->pict_type;
  665. Picture * const pic = &s->current_picture;
  666. emms_c();
  667. #if CONFIG_LIBXVID
  668. if ((s->avctx->flags & AV_CODEC_FLAG_PASS2) && s->rc_strategy == 1)
  669. return ff_xvid_rate_estimate_qscale(s, dry_run);
  670. #endif
  671. get_qminmax(&qmin, &qmax, s, pict_type);
  672. fps = get_fps(s->avctx);
  673. /* update predictors */
  674. if (picture_number > 2 && !dry_run) {
  675. const int64_t last_var =
  676. s->last_pict_type == AV_PICTURE_TYPE_I ? rcc->last_mb_var_sum
  677. : rcc->last_mc_mb_var_sum;
  678. av_assert1(s->frame_bits >= s->stuffing_bits);
  679. update_predictor(&rcc->pred[s->last_pict_type],
  680. rcc->last_qscale,
  681. sqrt(last_var),
  682. s->frame_bits - s->stuffing_bits);
  683. }
  684. if (s->avctx->flags & AV_CODEC_FLAG_PASS2) {
  685. av_assert0(picture_number >= 0);
  686. if (picture_number >= rcc->num_entries) {
  687. av_log(s, AV_LOG_ERROR, "Input is longer than 2-pass log file\n");
  688. return -1;
  689. }
  690. rce = &rcc->entry[picture_number];
  691. wanted_bits = rce->expected_bits;
  692. } else {
  693. Picture *dts_pic;
  694. rce = &local_rce;
  695. /* FIXME add a dts field to AVFrame and ensure it is set and use it
  696. * here instead of reordering but the reordering is simpler for now
  697. * until H.264 B-pyramid must be handled. */
  698. if (s->pict_type == AV_PICTURE_TYPE_B || s->low_delay)
  699. dts_pic = s->current_picture_ptr;
  700. else
  701. dts_pic = s->last_picture_ptr;
  702. if (!dts_pic || dts_pic->f->pts == AV_NOPTS_VALUE)
  703. wanted_bits = (uint64_t)(s->bit_rate * (double)picture_number / fps);
  704. else
  705. wanted_bits = (uint64_t)(s->bit_rate * (double)dts_pic->f->pts / fps);
  706. }
  707. diff = s->total_bits - wanted_bits;
  708. br_compensation = (a->bit_rate_tolerance - diff) / a->bit_rate_tolerance;
  709. if (br_compensation <= 0.0)
  710. br_compensation = 0.001;
  711. var = pict_type == AV_PICTURE_TYPE_I ? pic->mb_var_sum : pic->mc_mb_var_sum;
  712. short_term_q = 0; /* avoid warning */
  713. if (s->avctx->flags & AV_CODEC_FLAG_PASS2) {
  714. if (pict_type != AV_PICTURE_TYPE_I)
  715. av_assert0(pict_type == rce->new_pict_type);
  716. q = rce->new_qscale / br_compensation;
  717. ff_dlog(s, "%f %f %f last:%d var:%"PRId64" type:%d//\n", q, rce->new_qscale,
  718. br_compensation, s->frame_bits, var, pict_type);
  719. } else {
  720. rce->pict_type =
  721. rce->new_pict_type = pict_type;
  722. rce->mc_mb_var_sum = pic->mc_mb_var_sum;
  723. rce->mb_var_sum = pic->mb_var_sum;
  724. rce->qscale = FF_QP2LAMBDA * 2;
  725. rce->f_code = s->f_code;
  726. rce->b_code = s->b_code;
  727. rce->misc_bits = 1;
  728. bits = predict_size(&rcc->pred[pict_type], rce->qscale, sqrt(var));
  729. if (pict_type == AV_PICTURE_TYPE_I) {
  730. rce->i_count = s->mb_num;
  731. rce->i_tex_bits = bits;
  732. rce->p_tex_bits = 0;
  733. rce->mv_bits = 0;
  734. } else {
  735. rce->i_count = 0; // FIXME we do know this approx
  736. rce->i_tex_bits = 0;
  737. rce->p_tex_bits = bits * 0.9;
  738. rce->mv_bits = bits * 0.1;
  739. }
  740. rcc->i_cplx_sum[pict_type] += rce->i_tex_bits * rce->qscale;
  741. rcc->p_cplx_sum[pict_type] += rce->p_tex_bits * rce->qscale;
  742. rcc->mv_bits_sum[pict_type] += rce->mv_bits;
  743. rcc->frame_count[pict_type]++;
  744. rate_factor = rcc->pass1_wanted_bits /
  745. rcc->pass1_rc_eq_output_sum * br_compensation;
  746. q = get_qscale(s, rce, rate_factor, picture_number);
  747. if (q < 0)
  748. return -1;
  749. av_assert0(q > 0.0);
  750. q = get_diff_limited_q(s, rce, q);
  751. av_assert0(q > 0.0);
  752. // FIXME type dependent blur like in 2-pass
  753. if (pict_type == AV_PICTURE_TYPE_P || s->intra_only) {
  754. rcc->short_term_qsum *= a->qblur;
  755. rcc->short_term_qcount *= a->qblur;
  756. rcc->short_term_qsum += q;
  757. rcc->short_term_qcount++;
  758. q = short_term_q = rcc->short_term_qsum / rcc->short_term_qcount;
  759. }
  760. av_assert0(q > 0.0);
  761. q = modify_qscale(s, rce, q, picture_number);
  762. rcc->pass1_wanted_bits += s->bit_rate / fps;
  763. av_assert0(q > 0.0);
  764. }
  765. if (s->avctx->debug & FF_DEBUG_RC) {
  766. av_log(s->avctx, AV_LOG_DEBUG,
  767. "%c qp:%d<%2.1f<%d %d want:%d total:%d comp:%f st_q:%2.2f "
  768. "size:%d var:%"PRId64"/%"PRId64" br:%d fps:%d\n",
  769. av_get_picture_type_char(pict_type),
  770. qmin, q, qmax, picture_number,
  771. (int)wanted_bits / 1000, (int)s->total_bits / 1000,
  772. br_compensation, short_term_q, s->frame_bits,
  773. pic->mb_var_sum, pic->mc_mb_var_sum,
  774. s->bit_rate / 1000, (int)fps);
  775. }
  776. if (q < qmin)
  777. q = qmin;
  778. else if (q > qmax)
  779. q = qmax;
  780. if (s->adaptive_quant)
  781. adaptive_quantization(s, q);
  782. else
  783. q = (int)(q + 0.5);
  784. if (!dry_run) {
  785. rcc->last_qscale = q;
  786. rcc->last_mc_mb_var_sum = pic->mc_mb_var_sum;
  787. rcc->last_mb_var_sum = pic->mb_var_sum;
  788. }
  789. return q;
  790. }
  791. // ----------------------------------------------
  792. // 2-Pass code
  793. static int init_pass2(MpegEncContext *s)
  794. {
  795. RateControlContext *rcc = &s->rc_context;
  796. AVCodecContext *a = s->avctx;
  797. int i, toobig;
  798. double fps = get_fps(s->avctx);
  799. double complexity[5] = { 0 }; // approximate bits at quant=1
  800. uint64_t const_bits[5] = { 0 }; // quantizer independent bits
  801. uint64_t all_const_bits;
  802. uint64_t all_available_bits = (uint64_t)(s->bit_rate *
  803. (double)rcc->num_entries / fps);
  804. double rate_factor = 0;
  805. double step;
  806. const int filter_size = (int)(a->qblur * 4) | 1;
  807. double expected_bits = 0; // init to silence gcc warning
  808. double *qscale, *blurred_qscale, qscale_sum;
  809. /* find complexity & const_bits & decide the pict_types */
  810. for (i = 0; i < rcc->num_entries; i++) {
  811. RateControlEntry *rce = &rcc->entry[i];
  812. rce->new_pict_type = rce->pict_type;
  813. rcc->i_cplx_sum[rce->pict_type] += rce->i_tex_bits * rce->qscale;
  814. rcc->p_cplx_sum[rce->pict_type] += rce->p_tex_bits * rce->qscale;
  815. rcc->mv_bits_sum[rce->pict_type] += rce->mv_bits;
  816. rcc->frame_count[rce->pict_type]++;
  817. complexity[rce->new_pict_type] += (rce->i_tex_bits + rce->p_tex_bits) *
  818. (double)rce->qscale;
  819. const_bits[rce->new_pict_type] += rce->mv_bits + rce->misc_bits;
  820. }
  821. all_const_bits = const_bits[AV_PICTURE_TYPE_I] +
  822. const_bits[AV_PICTURE_TYPE_P] +
  823. const_bits[AV_PICTURE_TYPE_B];
  824. if (all_available_bits < all_const_bits) {
  825. av_log(s->avctx, AV_LOG_ERROR, "requested bitrate is too low\n");
  826. return -1;
  827. }
  828. qscale = av_malloc_array(rcc->num_entries, sizeof(double));
  829. blurred_qscale = av_malloc_array(rcc->num_entries, sizeof(double));
  830. if (!qscale || !blurred_qscale) {
  831. av_free(qscale);
  832. av_free(blurred_qscale);
  833. return AVERROR(ENOMEM);
  834. }
  835. toobig = 0;
  836. for (step = 256 * 256; step > 0.0000001; step *= 0.5) {
  837. expected_bits = 0;
  838. rate_factor += step;
  839. rcc->buffer_index = s->avctx->rc_buffer_size / 2;
  840. /* find qscale */
  841. for (i = 0; i < rcc->num_entries; i++) {
  842. RateControlEntry *rce = &rcc->entry[i];
  843. qscale[i] = get_qscale(s, &rcc->entry[i], rate_factor, i);
  844. rcc->last_qscale_for[rce->pict_type] = qscale[i];
  845. }
  846. av_assert0(filter_size % 2 == 1);
  847. /* fixed I/B QP relative to P mode */
  848. for (i = FFMAX(0, rcc->num_entries - 300); i < rcc->num_entries; i++) {
  849. RateControlEntry *rce = &rcc->entry[i];
  850. qscale[i] = get_diff_limited_q(s, rce, qscale[i]);
  851. }
  852. for (i = rcc->num_entries - 1; i >= 0; i--) {
  853. RateControlEntry *rce = &rcc->entry[i];
  854. qscale[i] = get_diff_limited_q(s, rce, qscale[i]);
  855. }
  856. /* smooth curve */
  857. for (i = 0; i < rcc->num_entries; i++) {
  858. RateControlEntry *rce = &rcc->entry[i];
  859. const int pict_type = rce->new_pict_type;
  860. int j;
  861. double q = 0.0, sum = 0.0;
  862. for (j = 0; j < filter_size; j++) {
  863. int index = i + j - filter_size / 2;
  864. double d = index - i;
  865. double coeff = a->qblur == 0 ? 1.0 : exp(-d * d / (a->qblur * a->qblur));
  866. if (index < 0 || index >= rcc->num_entries)
  867. continue;
  868. if (pict_type != rcc->entry[index].new_pict_type)
  869. continue;
  870. q += qscale[index] * coeff;
  871. sum += coeff;
  872. }
  873. blurred_qscale[i] = q / sum;
  874. }
  875. /* find expected bits */
  876. for (i = 0; i < rcc->num_entries; i++) {
  877. RateControlEntry *rce = &rcc->entry[i];
  878. double bits;
  879. rce->new_qscale = modify_qscale(s, rce, blurred_qscale[i], i);
  880. bits = qp2bits(rce, rce->new_qscale) + rce->mv_bits + rce->misc_bits;
  881. bits += 8 * ff_vbv_update(s, bits);
  882. rce->expected_bits = expected_bits;
  883. expected_bits += bits;
  884. }
  885. ff_dlog(s->avctx,
  886. "expected_bits: %f all_available_bits: %d rate_factor: %f\n",
  887. expected_bits, (int)all_available_bits, rate_factor);
  888. if (expected_bits > all_available_bits) {
  889. rate_factor -= step;
  890. ++toobig;
  891. }
  892. }
  893. av_free(qscale);
  894. av_free(blurred_qscale);
  895. /* check bitrate calculations and print info */
  896. qscale_sum = 0.0;
  897. for (i = 0; i < rcc->num_entries; i++) {
  898. ff_dlog(s, "[lavc rc] entry[%d].new_qscale = %.3f qp = %.3f\n",
  899. i,
  900. rcc->entry[i].new_qscale,
  901. rcc->entry[i].new_qscale / FF_QP2LAMBDA);
  902. qscale_sum += av_clip(rcc->entry[i].new_qscale / FF_QP2LAMBDA,
  903. s->avctx->qmin, s->avctx->qmax);
  904. }
  905. av_assert0(toobig <= 40);
  906. av_log(s->avctx, AV_LOG_DEBUG,
  907. "[lavc rc] requested bitrate: %d bps expected bitrate: %d bps\n",
  908. s->bit_rate,
  909. (int)(expected_bits / ((double)all_available_bits / s->bit_rate)));
  910. av_log(s->avctx, AV_LOG_DEBUG,
  911. "[lavc rc] estimated target average qp: %.3f\n",
  912. (float)qscale_sum / rcc->num_entries);
  913. if (toobig == 0) {
  914. av_log(s->avctx, AV_LOG_INFO,
  915. "[lavc rc] Using all of requested bitrate is not "
  916. "necessary for this video with these parameters.\n");
  917. } else if (toobig == 40) {
  918. av_log(s->avctx, AV_LOG_ERROR,
  919. "[lavc rc] Error: bitrate too low for this video "
  920. "with these parameters.\n");
  921. return -1;
  922. } else if (fabs(expected_bits / all_available_bits - 1.0) > 0.01) {
  923. av_log(s->avctx, AV_LOG_ERROR,
  924. "[lavc rc] Error: 2pass curve failed to converge\n");
  925. return -1;
  926. }
  927. return 0;
  928. }