You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2047 lines
69KB

  1. /*
  2. * Copyright (C) 2007 Marco Gerards <marco@gnu.org>
  3. * Copyright (C) 2009 David Conrad
  4. * Copyright (C) 2011 Jordi Ortiz
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file
  24. * Dirac Decoder
  25. * @author Marco Gerards <marco@gnu.org>, David Conrad, Jordi Ortiz <nenjordi@gmail.com>
  26. */
  27. #include "avcodec.h"
  28. #include "get_bits.h"
  29. #include "bytestream.h"
  30. #include "internal.h"
  31. #include "golomb.h"
  32. #include "dirac_arith.h"
  33. #include "mpeg12data.h"
  34. #include "libavcodec/mpegvideo.h"
  35. #include "mpegvideoencdsp.h"
  36. #include "dirac_dwt.h"
  37. #include "dirac.h"
  38. #include "diracdsp.h"
  39. #include "videodsp.h"
  40. /**
  41. * The spec limits the number of wavelet decompositions to 4 for both
  42. * level 1 (VC-2) and 128 (long-gop default).
  43. * 5 decompositions is the maximum before >16-bit buffers are needed.
  44. * Schroedinger allows this for DD 9,7 and 13,7 wavelets only, limiting
  45. * the others to 4 decompositions (or 3 for the fidelity filter).
  46. *
  47. * We use this instead of MAX_DECOMPOSITIONS to save some memory.
  48. */
  49. #define MAX_DWT_LEVELS 5
  50. /**
  51. * The spec limits this to 3 for frame coding, but in practice can be as high as 6
  52. */
  53. #define MAX_REFERENCE_FRAMES 8
  54. #define MAX_DELAY 5 /* limit for main profile for frame coding (TODO: field coding) */
  55. #define MAX_FRAMES (MAX_REFERENCE_FRAMES + MAX_DELAY + 1)
  56. #define MAX_QUANT 68 /* max quant for VC-2 */
  57. #define MAX_BLOCKSIZE 32 /* maximum xblen/yblen we support */
  58. /**
  59. * DiracBlock->ref flags, if set then the block does MC from the given ref
  60. */
  61. #define DIRAC_REF_MASK_REF1 1
  62. #define DIRAC_REF_MASK_REF2 2
  63. #define DIRAC_REF_MASK_GLOBAL 4
  64. /**
  65. * Value of Picture.reference when Picture is not a reference picture, but
  66. * is held for delayed output.
  67. */
  68. #define DELAYED_PIC_REF 4
  69. #define CALC_PADDING(size, depth) \
  70. (((size + (1 << depth) - 1) >> depth) << depth)
  71. #define DIVRNDUP(a, b) (((a) + (b) - 1) / (b))
  72. typedef struct {
  73. AVFrame *avframe;
  74. int interpolated[3]; /* 1 if hpel[] is valid */
  75. uint8_t *hpel[3][4];
  76. uint8_t *hpel_base[3][4];
  77. int reference;
  78. } DiracFrame;
  79. typedef struct {
  80. union {
  81. int16_t mv[2][2];
  82. int16_t dc[3];
  83. } u; /* anonymous unions aren't in C99 :( */
  84. uint8_t ref;
  85. } DiracBlock;
  86. typedef struct SubBand {
  87. int level;
  88. int orientation;
  89. int stride;
  90. int width;
  91. int height;
  92. int quant;
  93. IDWTELEM *ibuf;
  94. struct SubBand *parent;
  95. /* for low delay */
  96. unsigned length;
  97. const uint8_t *coeff_data;
  98. } SubBand;
  99. typedef struct Plane {
  100. int width;
  101. int height;
  102. ptrdiff_t stride;
  103. int idwt_width;
  104. int idwt_height;
  105. int idwt_stride;
  106. IDWTELEM *idwt_buf;
  107. IDWTELEM *idwt_buf_base;
  108. IDWTELEM *idwt_tmp;
  109. /* block length */
  110. uint8_t xblen;
  111. uint8_t yblen;
  112. /* block separation (block n+1 starts after this many pixels in block n) */
  113. uint8_t xbsep;
  114. uint8_t ybsep;
  115. /* amount of overspill on each edge (half of the overlap between blocks) */
  116. uint8_t xoffset;
  117. uint8_t yoffset;
  118. SubBand band[MAX_DWT_LEVELS][4];
  119. } Plane;
  120. typedef struct DiracContext {
  121. AVCodecContext *avctx;
  122. MpegvideoEncDSPContext mpvencdsp;
  123. VideoDSPContext vdsp;
  124. DiracDSPContext diracdsp;
  125. GetBitContext gb;
  126. dirac_source_params source;
  127. int seen_sequence_header;
  128. int frame_number; /* number of the next frame to display */
  129. Plane plane[3];
  130. int chroma_x_shift;
  131. int chroma_y_shift;
  132. int zero_res; /* zero residue flag */
  133. int is_arith; /* whether coeffs use arith or golomb coding */
  134. int low_delay; /* use the low delay syntax */
  135. int globalmc_flag; /* use global motion compensation */
  136. int num_refs; /* number of reference pictures */
  137. /* wavelet decoding */
  138. unsigned wavelet_depth; /* depth of the IDWT */
  139. unsigned wavelet_idx;
  140. /**
  141. * schroedinger older than 1.0.8 doesn't store
  142. * quant delta if only one codebook exists in a band
  143. */
  144. unsigned old_delta_quant;
  145. unsigned codeblock_mode;
  146. struct {
  147. unsigned width;
  148. unsigned height;
  149. } codeblock[MAX_DWT_LEVELS+1];
  150. struct {
  151. unsigned num_x; /* number of horizontal slices */
  152. unsigned num_y; /* number of vertical slices */
  153. AVRational bytes; /* average bytes per slice */
  154. uint8_t quant[MAX_DWT_LEVELS][4]; /* [DIRAC_STD] E.1 */
  155. } lowdelay;
  156. struct {
  157. int pan_tilt[2]; /* pan/tilt vector */
  158. int zrs[2][2]; /* zoom/rotate/shear matrix */
  159. int perspective[2]; /* perspective vector */
  160. unsigned zrs_exp;
  161. unsigned perspective_exp;
  162. } globalmc[2];
  163. /* motion compensation */
  164. uint8_t mv_precision; /* [DIRAC_STD] REFS_WT_PRECISION */
  165. int16_t weight[2]; /* [DIRAC_STD] REF1_WT and REF2_WT */
  166. unsigned weight_log2denom; /* [DIRAC_STD] REFS_WT_PRECISION */
  167. int blwidth; /* number of blocks (horizontally) */
  168. int blheight; /* number of blocks (vertically) */
  169. int sbwidth; /* number of superblocks (horizontally) */
  170. int sbheight; /* number of superblocks (vertically) */
  171. uint8_t *sbsplit;
  172. DiracBlock *blmotion;
  173. uint8_t *edge_emu_buffer[4];
  174. uint8_t *edge_emu_buffer_base;
  175. uint16_t *mctmp; /* buffer holding the MC data multiplied by OBMC weights */
  176. uint8_t *mcscratch;
  177. int buffer_stride;
  178. DECLARE_ALIGNED(16, uint8_t, obmc_weight)[3][MAX_BLOCKSIZE*MAX_BLOCKSIZE];
  179. void (*put_pixels_tab[4])(uint8_t *dst, const uint8_t *src[5], int stride, int h);
  180. void (*avg_pixels_tab[4])(uint8_t *dst, const uint8_t *src[5], int stride, int h);
  181. void (*add_obmc)(uint16_t *dst, const uint8_t *src, int stride, const uint8_t *obmc_weight, int yblen);
  182. dirac_weight_func weight_func;
  183. dirac_biweight_func biweight_func;
  184. DiracFrame *current_picture;
  185. DiracFrame *ref_pics[2];
  186. DiracFrame *ref_frames[MAX_REFERENCE_FRAMES+1];
  187. DiracFrame *delay_frames[MAX_DELAY+1];
  188. DiracFrame all_frames[MAX_FRAMES];
  189. } DiracContext;
  190. /**
  191. * Dirac Specification ->
  192. * Parse code values. 9.6.1 Table 9.1
  193. */
  194. enum dirac_parse_code {
  195. pc_seq_header = 0x00,
  196. pc_eos = 0x10,
  197. pc_aux_data = 0x20,
  198. pc_padding = 0x30,
  199. };
  200. enum dirac_subband {
  201. subband_ll = 0,
  202. subband_hl = 1,
  203. subband_lh = 2,
  204. subband_hh = 3,
  205. subband_nb,
  206. };
  207. static const uint8_t default_qmat[][4][4] = {
  208. { { 5, 3, 3, 0}, { 0, 4, 4, 1}, { 0, 5, 5, 2}, { 0, 6, 6, 3} },
  209. { { 4, 2, 2, 0}, { 0, 4, 4, 2}, { 0, 5, 5, 3}, { 0, 7, 7, 5} },
  210. { { 5, 3, 3, 0}, { 0, 4, 4, 1}, { 0, 5, 5, 2}, { 0, 6, 6, 3} },
  211. { { 8, 4, 4, 0}, { 0, 4, 4, 0}, { 0, 4, 4, 0}, { 0, 4, 4, 0} },
  212. { { 8, 4, 4, 0}, { 0, 4, 4, 0}, { 0, 4, 4, 0}, { 0, 4, 4, 0} },
  213. { { 0, 4, 4, 8}, { 0, 8, 8, 12}, { 0, 13, 13, 17}, { 0, 17, 17, 21} },
  214. { { 3, 1, 1, 0}, { 0, 4, 4, 2}, { 0, 6, 6, 5}, { 0, 9, 9, 7} },
  215. };
  216. static const int qscale_tab[MAX_QUANT+1] = {
  217. 4, 5, 6, 7, 8, 10, 11, 13,
  218. 16, 19, 23, 27, 32, 38, 45, 54,
  219. 64, 76, 91, 108, 128, 152, 181, 215,
  220. 256, 304, 362, 431, 512, 609, 724, 861,
  221. 1024, 1218, 1448, 1722, 2048, 2435, 2896, 3444,
  222. 4096, 4871, 5793, 6889, 8192, 9742, 11585, 13777,
  223. 16384, 19484, 23170, 27554, 32768, 38968, 46341, 55109,
  224. 65536, 77936
  225. };
  226. static const int qoffset_intra_tab[MAX_QUANT+1] = {
  227. 1, 2, 3, 4, 4, 5, 6, 7,
  228. 8, 10, 12, 14, 16, 19, 23, 27,
  229. 32, 38, 46, 54, 64, 76, 91, 108,
  230. 128, 152, 181, 216, 256, 305, 362, 431,
  231. 512, 609, 724, 861, 1024, 1218, 1448, 1722,
  232. 2048, 2436, 2897, 3445, 4096, 4871, 5793, 6889,
  233. 8192, 9742, 11585, 13777, 16384, 19484, 23171, 27555,
  234. 32768, 38968
  235. };
  236. static const int qoffset_inter_tab[MAX_QUANT+1] = {
  237. 1, 2, 2, 3, 3, 4, 4, 5,
  238. 6, 7, 9, 10, 12, 14, 17, 20,
  239. 24, 29, 34, 41, 48, 57, 68, 81,
  240. 96, 114, 136, 162, 192, 228, 272, 323,
  241. 384, 457, 543, 646, 768, 913, 1086, 1292,
  242. 1536, 1827, 2172, 2583, 3072, 3653, 4344, 5166,
  243. 6144, 7307, 8689, 10333, 12288, 14613, 17378, 20666,
  244. 24576, 29226
  245. };
  246. /* magic number division by 3 from schroedinger */
  247. static inline int divide3(int x)
  248. {
  249. return ((x+1)*21845 + 10922) >> 16;
  250. }
  251. static DiracFrame *remove_frame(DiracFrame *framelist[], int picnum)
  252. {
  253. DiracFrame *remove_pic = NULL;
  254. int i, remove_idx = -1;
  255. for (i = 0; framelist[i]; i++)
  256. if (framelist[i]->avframe->display_picture_number == picnum) {
  257. remove_pic = framelist[i];
  258. remove_idx = i;
  259. }
  260. if (remove_pic)
  261. for (i = remove_idx; framelist[i]; i++)
  262. framelist[i] = framelist[i+1];
  263. return remove_pic;
  264. }
  265. static int add_frame(DiracFrame *framelist[], int maxframes, DiracFrame *frame)
  266. {
  267. int i;
  268. for (i = 0; i < maxframes; i++)
  269. if (!framelist[i]) {
  270. framelist[i] = frame;
  271. return 0;
  272. }
  273. return -1;
  274. }
  275. static int alloc_sequence_buffers(DiracContext *s)
  276. {
  277. int sbwidth = DIVRNDUP(s->source.width, 4);
  278. int sbheight = DIVRNDUP(s->source.height, 4);
  279. int i, w, h, top_padding;
  280. /* todo: think more about this / use or set Plane here */
  281. for (i = 0; i < 3; i++) {
  282. int max_xblen = MAX_BLOCKSIZE >> (i ? s->chroma_x_shift : 0);
  283. int max_yblen = MAX_BLOCKSIZE >> (i ? s->chroma_y_shift : 0);
  284. w = s->source.width >> (i ? s->chroma_x_shift : 0);
  285. h = s->source.height >> (i ? s->chroma_y_shift : 0);
  286. /* we allocate the max we support here since num decompositions can
  287. * change from frame to frame. Stride is aligned to 16 for SIMD, and
  288. * 1<<MAX_DWT_LEVELS top padding to avoid if(y>0) in arith decoding
  289. * MAX_BLOCKSIZE padding for MC: blocks can spill up to half of that
  290. * on each side */
  291. top_padding = FFMAX(1<<MAX_DWT_LEVELS, max_yblen/2);
  292. w = FFALIGN(CALC_PADDING(w, MAX_DWT_LEVELS), 8); /* FIXME: Should this be 16 for SSE??? */
  293. h = top_padding + CALC_PADDING(h, MAX_DWT_LEVELS) + max_yblen/2;
  294. s->plane[i].idwt_buf_base = av_mallocz_array((w+max_xblen), h * sizeof(IDWTELEM));
  295. s->plane[i].idwt_tmp = av_malloc_array((w+16), sizeof(IDWTELEM));
  296. s->plane[i].idwt_buf = s->plane[i].idwt_buf_base + top_padding*w;
  297. if (!s->plane[i].idwt_buf_base || !s->plane[i].idwt_tmp)
  298. return AVERROR(ENOMEM);
  299. }
  300. /* fixme: allocate using real stride here */
  301. s->sbsplit = av_malloc_array(sbwidth, sbheight);
  302. s->blmotion = av_malloc_array(sbwidth, sbheight * 16 * sizeof(*s->blmotion));
  303. if (!s->sbsplit || !s->blmotion)
  304. return AVERROR(ENOMEM);
  305. return 0;
  306. }
  307. static int alloc_buffers(DiracContext *s, int stride)
  308. {
  309. int w = s->source.width;
  310. int h = s->source.height;
  311. av_assert0(stride >= w);
  312. stride += 64;
  313. if (s->buffer_stride >= stride)
  314. return 0;
  315. s->buffer_stride = 0;
  316. av_freep(&s->edge_emu_buffer_base);
  317. memset(s->edge_emu_buffer, 0, sizeof(s->edge_emu_buffer));
  318. av_freep(&s->mctmp);
  319. av_freep(&s->mcscratch);
  320. s->edge_emu_buffer_base = av_malloc_array(stride, MAX_BLOCKSIZE);
  321. s->mctmp = av_malloc_array((stride+MAX_BLOCKSIZE), (h+MAX_BLOCKSIZE) * sizeof(*s->mctmp));
  322. s->mcscratch = av_malloc_array(stride, MAX_BLOCKSIZE);
  323. if (!s->edge_emu_buffer_base || !s->mctmp || !s->mcscratch)
  324. return AVERROR(ENOMEM);
  325. s->buffer_stride = stride;
  326. return 0;
  327. }
  328. static void free_sequence_buffers(DiracContext *s)
  329. {
  330. int i, j, k;
  331. for (i = 0; i < MAX_FRAMES; i++) {
  332. if (s->all_frames[i].avframe->data[0]) {
  333. av_frame_unref(s->all_frames[i].avframe);
  334. memset(s->all_frames[i].interpolated, 0, sizeof(s->all_frames[i].interpolated));
  335. }
  336. for (j = 0; j < 3; j++)
  337. for (k = 1; k < 4; k++)
  338. av_freep(&s->all_frames[i].hpel_base[j][k]);
  339. }
  340. memset(s->ref_frames, 0, sizeof(s->ref_frames));
  341. memset(s->delay_frames, 0, sizeof(s->delay_frames));
  342. for (i = 0; i < 3; i++) {
  343. av_freep(&s->plane[i].idwt_buf_base);
  344. av_freep(&s->plane[i].idwt_tmp);
  345. }
  346. s->buffer_stride = 0;
  347. av_freep(&s->sbsplit);
  348. av_freep(&s->blmotion);
  349. av_freep(&s->edge_emu_buffer_base);
  350. av_freep(&s->mctmp);
  351. av_freep(&s->mcscratch);
  352. }
  353. static av_cold int dirac_decode_init(AVCodecContext *avctx)
  354. {
  355. DiracContext *s = avctx->priv_data;
  356. int i;
  357. s->avctx = avctx;
  358. s->frame_number = -1;
  359. ff_diracdsp_init(&s->diracdsp);
  360. ff_mpegvideoencdsp_init(&s->mpvencdsp, avctx);
  361. ff_videodsp_init(&s->vdsp, 8);
  362. for (i = 0; i < MAX_FRAMES; i++) {
  363. s->all_frames[i].avframe = av_frame_alloc();
  364. if (!s->all_frames[i].avframe) {
  365. while (i > 0)
  366. av_frame_free(&s->all_frames[--i].avframe);
  367. return AVERROR(ENOMEM);
  368. }
  369. }
  370. return 0;
  371. }
  372. static void dirac_decode_flush(AVCodecContext *avctx)
  373. {
  374. DiracContext *s = avctx->priv_data;
  375. free_sequence_buffers(s);
  376. s->seen_sequence_header = 0;
  377. s->frame_number = -1;
  378. }
  379. static av_cold int dirac_decode_end(AVCodecContext *avctx)
  380. {
  381. DiracContext *s = avctx->priv_data;
  382. int i;
  383. dirac_decode_flush(avctx);
  384. for (i = 0; i < MAX_FRAMES; i++)
  385. av_frame_free(&s->all_frames[i].avframe);
  386. return 0;
  387. }
  388. #define SIGN_CTX(x) (CTX_SIGN_ZERO + ((x) > 0) - ((x) < 0))
  389. static inline void coeff_unpack_arith(DiracArith *c, int qfactor, int qoffset,
  390. SubBand *b, IDWTELEM *buf, int x, int y)
  391. {
  392. int coeff, sign;
  393. int sign_pred = 0;
  394. int pred_ctx = CTX_ZPZN_F1;
  395. /* Check if the parent subband has a 0 in the corresponding position */
  396. if (b->parent)
  397. pred_ctx += !!b->parent->ibuf[b->parent->stride * (y>>1) + (x>>1)] << 1;
  398. if (b->orientation == subband_hl)
  399. sign_pred = buf[-b->stride];
  400. /* Determine if the pixel has only zeros in its neighbourhood */
  401. if (x) {
  402. pred_ctx += !(buf[-1] | buf[-b->stride] | buf[-1-b->stride]);
  403. if (b->orientation == subband_lh)
  404. sign_pred = buf[-1];
  405. } else {
  406. pred_ctx += !buf[-b->stride];
  407. }
  408. coeff = dirac_get_arith_uint(c, pred_ctx, CTX_COEFF_DATA);
  409. if (coeff) {
  410. coeff = (coeff * qfactor + qoffset + 2) >> 2;
  411. sign = dirac_get_arith_bit(c, SIGN_CTX(sign_pred));
  412. coeff = (coeff ^ -sign) + sign;
  413. }
  414. *buf = coeff;
  415. }
  416. static inline int coeff_unpack_golomb(GetBitContext *gb, int qfactor, int qoffset)
  417. {
  418. int sign, coeff;
  419. coeff = svq3_get_ue_golomb(gb);
  420. if (coeff) {
  421. coeff = (coeff * qfactor + qoffset + 2) >> 2;
  422. sign = get_bits1(gb);
  423. coeff = (coeff ^ -sign) + sign;
  424. }
  425. return coeff;
  426. }
  427. /**
  428. * Decode the coeffs in the rectangle defined by left, right, top, bottom
  429. * [DIRAC_STD] 13.4.3.2 Codeblock unpacking loop. codeblock()
  430. */
  431. static inline void codeblock(DiracContext *s, SubBand *b,
  432. GetBitContext *gb, DiracArith *c,
  433. int left, int right, int top, int bottom,
  434. int blockcnt_one, int is_arith)
  435. {
  436. int x, y, zero_block;
  437. int qoffset, qfactor;
  438. IDWTELEM *buf;
  439. /* check for any coded coefficients in this codeblock */
  440. if (!blockcnt_one) {
  441. if (is_arith)
  442. zero_block = dirac_get_arith_bit(c, CTX_ZERO_BLOCK);
  443. else
  444. zero_block = get_bits1(gb);
  445. if (zero_block)
  446. return;
  447. }
  448. if (s->codeblock_mode && !(s->old_delta_quant && blockcnt_one)) {
  449. int quant = b->quant;
  450. if (is_arith)
  451. quant += dirac_get_arith_int(c, CTX_DELTA_Q_F, CTX_DELTA_Q_DATA);
  452. else
  453. quant += dirac_get_se_golomb(gb);
  454. if (quant < 0) {
  455. av_log(s->avctx, AV_LOG_ERROR, "Invalid quant\n");
  456. return;
  457. }
  458. b->quant = quant;
  459. }
  460. b->quant = FFMIN(b->quant, MAX_QUANT);
  461. qfactor = qscale_tab[b->quant];
  462. /* TODO: context pointer? */
  463. if (!s->num_refs)
  464. qoffset = qoffset_intra_tab[b->quant];
  465. else
  466. qoffset = qoffset_inter_tab[b->quant];
  467. buf = b->ibuf + top * b->stride;
  468. for (y = top; y < bottom; y++) {
  469. for (x = left; x < right; x++) {
  470. /* [DIRAC_STD] 13.4.4 Subband coefficients. coeff_unpack() */
  471. if (is_arith)
  472. coeff_unpack_arith(c, qfactor, qoffset, b, buf+x, x, y);
  473. else
  474. buf[x] = coeff_unpack_golomb(gb, qfactor, qoffset);
  475. }
  476. buf += b->stride;
  477. }
  478. }
  479. /**
  480. * Dirac Specification ->
  481. * 13.3 intra_dc_prediction(band)
  482. */
  483. static inline void intra_dc_prediction(SubBand *b)
  484. {
  485. IDWTELEM *buf = b->ibuf;
  486. int x, y;
  487. for (x = 1; x < b->width; x++)
  488. buf[x] += buf[x-1];
  489. buf += b->stride;
  490. for (y = 1; y < b->height; y++) {
  491. buf[0] += buf[-b->stride];
  492. for (x = 1; x < b->width; x++) {
  493. int pred = buf[x - 1] + buf[x - b->stride] + buf[x - b->stride-1];
  494. buf[x] += divide3(pred);
  495. }
  496. buf += b->stride;
  497. }
  498. }
  499. /**
  500. * Dirac Specification ->
  501. * 13.4.2 Non-skipped subbands. subband_coeffs()
  502. */
  503. static av_always_inline void decode_subband_internal(DiracContext *s, SubBand *b, int is_arith)
  504. {
  505. int cb_x, cb_y, left, right, top, bottom;
  506. DiracArith c;
  507. GetBitContext gb;
  508. int cb_width = s->codeblock[b->level + (b->orientation != subband_ll)].width;
  509. int cb_height = s->codeblock[b->level + (b->orientation != subband_ll)].height;
  510. int blockcnt_one = (cb_width + cb_height) == 2;
  511. if (!b->length)
  512. return;
  513. init_get_bits8(&gb, b->coeff_data, b->length);
  514. if (is_arith)
  515. ff_dirac_init_arith_decoder(&c, &gb, b->length);
  516. top = 0;
  517. for (cb_y = 0; cb_y < cb_height; cb_y++) {
  518. bottom = (b->height * (cb_y+1LL)) / cb_height;
  519. left = 0;
  520. for (cb_x = 0; cb_x < cb_width; cb_x++) {
  521. right = (b->width * (cb_x+1LL)) / cb_width;
  522. codeblock(s, b, &gb, &c, left, right, top, bottom, blockcnt_one, is_arith);
  523. left = right;
  524. }
  525. top = bottom;
  526. }
  527. if (b->orientation == subband_ll && s->num_refs == 0)
  528. intra_dc_prediction(b);
  529. }
  530. static int decode_subband_arith(AVCodecContext *avctx, void *b)
  531. {
  532. DiracContext *s = avctx->priv_data;
  533. decode_subband_internal(s, b, 1);
  534. return 0;
  535. }
  536. static int decode_subband_golomb(AVCodecContext *avctx, void *arg)
  537. {
  538. DiracContext *s = avctx->priv_data;
  539. SubBand **b = arg;
  540. decode_subband_internal(s, *b, 0);
  541. return 0;
  542. }
  543. /**
  544. * Dirac Specification ->
  545. * [DIRAC_STD] 13.4.1 core_transform_data()
  546. */
  547. static void decode_component(DiracContext *s, int comp)
  548. {
  549. AVCodecContext *avctx = s->avctx;
  550. SubBand *bands[3*MAX_DWT_LEVELS+1];
  551. enum dirac_subband orientation;
  552. int level, num_bands = 0;
  553. /* Unpack all subbands at all levels. */
  554. for (level = 0; level < s->wavelet_depth; level++) {
  555. for (orientation = !!level; orientation < 4; orientation++) {
  556. SubBand *b = &s->plane[comp].band[level][orientation];
  557. bands[num_bands++] = b;
  558. align_get_bits(&s->gb);
  559. /* [DIRAC_STD] 13.4.2 subband() */
  560. b->length = svq3_get_ue_golomb(&s->gb);
  561. if (b->length) {
  562. b->quant = svq3_get_ue_golomb(&s->gb);
  563. align_get_bits(&s->gb);
  564. b->coeff_data = s->gb.buffer + get_bits_count(&s->gb)/8;
  565. b->length = FFMIN(b->length, FFMAX(get_bits_left(&s->gb)/8, 0));
  566. skip_bits_long(&s->gb, b->length*8);
  567. }
  568. }
  569. /* arithmetic coding has inter-level dependencies, so we can only execute one level at a time */
  570. if (s->is_arith)
  571. avctx->execute(avctx, decode_subband_arith, &s->plane[comp].band[level][!!level],
  572. NULL, 4-!!level, sizeof(SubBand));
  573. }
  574. /* golomb coding has no inter-level dependencies, so we can execute all subbands in parallel */
  575. if (!s->is_arith)
  576. avctx->execute(avctx, decode_subband_golomb, bands, NULL, num_bands, sizeof(SubBand*));
  577. }
  578. /* [DIRAC_STD] 13.5.5.2 Luma slice subband data. luma_slice_band(level,orient,sx,sy) --> if b2 == NULL */
  579. /* [DIRAC_STD] 13.5.5.3 Chroma slice subband data. chroma_slice_band(level,orient,sx,sy) --> if b2 != NULL */
  580. static void lowdelay_subband(DiracContext *s, GetBitContext *gb, int quant,
  581. int slice_x, int slice_y, int bits_end,
  582. SubBand *b1, SubBand *b2)
  583. {
  584. int left = b1->width * slice_x / s->lowdelay.num_x;
  585. int right = b1->width *(slice_x+1) / s->lowdelay.num_x;
  586. int top = b1->height * slice_y / s->lowdelay.num_y;
  587. int bottom = b1->height *(slice_y+1) / s->lowdelay.num_y;
  588. int qfactor = qscale_tab[FFMIN(quant, MAX_QUANT)];
  589. int qoffset = qoffset_intra_tab[FFMIN(quant, MAX_QUANT)];
  590. IDWTELEM *buf1 = b1->ibuf + top * b1->stride;
  591. IDWTELEM *buf2 = b2 ? b2->ibuf + top * b2->stride : NULL;
  592. int x, y;
  593. /* we have to constantly check for overread since the spec explicitly
  594. requires this, with the meaning that all remaining coeffs are set to 0 */
  595. if (get_bits_count(gb) >= bits_end)
  596. return;
  597. for (y = top; y < bottom; y++) {
  598. for (x = left; x < right; x++) {
  599. buf1[x] = coeff_unpack_golomb(gb, qfactor, qoffset);
  600. if (get_bits_count(gb) >= bits_end)
  601. return;
  602. if (buf2) {
  603. buf2[x] = coeff_unpack_golomb(gb, qfactor, qoffset);
  604. if (get_bits_count(gb) >= bits_end)
  605. return;
  606. }
  607. }
  608. buf1 += b1->stride;
  609. if (buf2)
  610. buf2 += b2->stride;
  611. }
  612. }
  613. struct lowdelay_slice {
  614. GetBitContext gb;
  615. int slice_x;
  616. int slice_y;
  617. int bytes;
  618. };
  619. /**
  620. * Dirac Specification ->
  621. * 13.5.2 Slices. slice(sx,sy)
  622. */
  623. static int decode_lowdelay_slice(AVCodecContext *avctx, void *arg)
  624. {
  625. DiracContext *s = avctx->priv_data;
  626. struct lowdelay_slice *slice = arg;
  627. GetBitContext *gb = &slice->gb;
  628. enum dirac_subband orientation;
  629. int level, quant, chroma_bits, chroma_end;
  630. int quant_base = get_bits(gb, 7); /*[DIRAC_STD] qindex */
  631. int length_bits = av_log2(8 * slice->bytes)+1;
  632. int luma_bits = get_bits_long(gb, length_bits);
  633. int luma_end = get_bits_count(gb) + FFMIN(luma_bits, get_bits_left(gb));
  634. /* [DIRAC_STD] 13.5.5.2 luma_slice_band */
  635. for (level = 0; level < s->wavelet_depth; level++)
  636. for (orientation = !!level; orientation < 4; orientation++) {
  637. quant = FFMAX(quant_base - s->lowdelay.quant[level][orientation], 0);
  638. lowdelay_subband(s, gb, quant, slice->slice_x, slice->slice_y, luma_end,
  639. &s->plane[0].band[level][orientation], NULL);
  640. }
  641. /* consume any unused bits from luma */
  642. skip_bits_long(gb, get_bits_count(gb) - luma_end);
  643. chroma_bits = 8*slice->bytes - 7 - length_bits - luma_bits;
  644. chroma_end = get_bits_count(gb) + FFMIN(chroma_bits, get_bits_left(gb));
  645. /* [DIRAC_STD] 13.5.5.3 chroma_slice_band */
  646. for (level = 0; level < s->wavelet_depth; level++)
  647. for (orientation = !!level; orientation < 4; orientation++) {
  648. quant = FFMAX(quant_base - s->lowdelay.quant[level][orientation], 0);
  649. lowdelay_subband(s, gb, quant, slice->slice_x, slice->slice_y, chroma_end,
  650. &s->plane[1].band[level][orientation],
  651. &s->plane[2].band[level][orientation]);
  652. }
  653. return 0;
  654. }
  655. /**
  656. * Dirac Specification ->
  657. * 13.5.1 low_delay_transform_data()
  658. */
  659. static int decode_lowdelay(DiracContext *s)
  660. {
  661. AVCodecContext *avctx = s->avctx;
  662. int slice_x, slice_y, bytes, bufsize;
  663. const uint8_t *buf;
  664. struct lowdelay_slice *slices;
  665. int slice_num = 0;
  666. slices = av_mallocz_array(s->lowdelay.num_x, s->lowdelay.num_y * sizeof(struct lowdelay_slice));
  667. if (!slices)
  668. return AVERROR(ENOMEM);
  669. align_get_bits(&s->gb);
  670. /*[DIRAC_STD] 13.5.2 Slices. slice(sx,sy) */
  671. buf = s->gb.buffer + get_bits_count(&s->gb)/8;
  672. bufsize = get_bits_left(&s->gb);
  673. for (slice_y = 0; bufsize > 0 && slice_y < s->lowdelay.num_y; slice_y++)
  674. for (slice_x = 0; bufsize > 0 && slice_x < s->lowdelay.num_x; slice_x++) {
  675. bytes = (slice_num+1) * s->lowdelay.bytes.num / s->lowdelay.bytes.den
  676. - slice_num * s->lowdelay.bytes.num / s->lowdelay.bytes.den;
  677. slices[slice_num].bytes = bytes;
  678. slices[slice_num].slice_x = slice_x;
  679. slices[slice_num].slice_y = slice_y;
  680. init_get_bits(&slices[slice_num].gb, buf, bufsize);
  681. slice_num++;
  682. buf += bytes;
  683. if (bufsize/8 >= bytes)
  684. bufsize -= bytes*8;
  685. else
  686. bufsize = 0;
  687. }
  688. avctx->execute(avctx, decode_lowdelay_slice, slices, NULL, slice_num,
  689. sizeof(struct lowdelay_slice)); /* [DIRAC_STD] 13.5.2 Slices */
  690. intra_dc_prediction(&s->plane[0].band[0][0]); /* [DIRAC_STD] 13.3 intra_dc_prediction() */
  691. intra_dc_prediction(&s->plane[1].band[0][0]); /* [DIRAC_STD] 13.3 intra_dc_prediction() */
  692. intra_dc_prediction(&s->plane[2].band[0][0]); /* [DIRAC_STD] 13.3 intra_dc_prediction() */
  693. av_free(slices);
  694. return 0;
  695. }
  696. static void init_planes(DiracContext *s)
  697. {
  698. int i, w, h, level, orientation;
  699. for (i = 0; i < 3; i++) {
  700. Plane *p = &s->plane[i];
  701. p->width = s->source.width >> (i ? s->chroma_x_shift : 0);
  702. p->height = s->source.height >> (i ? s->chroma_y_shift : 0);
  703. p->idwt_width = w = CALC_PADDING(p->width , s->wavelet_depth);
  704. p->idwt_height = h = CALC_PADDING(p->height, s->wavelet_depth);
  705. p->idwt_stride = FFALIGN(p->idwt_width, 8);
  706. for (level = s->wavelet_depth-1; level >= 0; level--) {
  707. w = w>>1;
  708. h = h>>1;
  709. for (orientation = !!level; orientation < 4; orientation++) {
  710. SubBand *b = &p->band[level][orientation];
  711. b->ibuf = p->idwt_buf;
  712. b->level = level;
  713. b->stride = p->idwt_stride << (s->wavelet_depth - level);
  714. b->width = w;
  715. b->height = h;
  716. b->orientation = orientation;
  717. if (orientation & 1)
  718. b->ibuf += w;
  719. if (orientation > 1)
  720. b->ibuf += b->stride>>1;
  721. if (level)
  722. b->parent = &p->band[level-1][orientation];
  723. }
  724. }
  725. if (i > 0) {
  726. p->xblen = s->plane[0].xblen >> s->chroma_x_shift;
  727. p->yblen = s->plane[0].yblen >> s->chroma_y_shift;
  728. p->xbsep = s->plane[0].xbsep >> s->chroma_x_shift;
  729. p->ybsep = s->plane[0].ybsep >> s->chroma_y_shift;
  730. }
  731. p->xoffset = (p->xblen - p->xbsep)/2;
  732. p->yoffset = (p->yblen - p->ybsep)/2;
  733. }
  734. }
  735. /**
  736. * Unpack the motion compensation parameters
  737. * Dirac Specification ->
  738. * 11.2 Picture prediction data. picture_prediction()
  739. */
  740. static int dirac_unpack_prediction_parameters(DiracContext *s)
  741. {
  742. static const uint8_t default_blen[] = { 4, 12, 16, 24 };
  743. GetBitContext *gb = &s->gb;
  744. unsigned idx, ref;
  745. align_get_bits(gb);
  746. /* [DIRAC_STD] 11.2.2 Block parameters. block_parameters() */
  747. /* Luma and Chroma are equal. 11.2.3 */
  748. idx = svq3_get_ue_golomb(gb); /* [DIRAC_STD] index */
  749. if (idx > 4) {
  750. av_log(s->avctx, AV_LOG_ERROR, "Block prediction index too high\n");
  751. return AVERROR_INVALIDDATA;
  752. }
  753. if (idx == 0) {
  754. s->plane[0].xblen = svq3_get_ue_golomb(gb);
  755. s->plane[0].yblen = svq3_get_ue_golomb(gb);
  756. s->plane[0].xbsep = svq3_get_ue_golomb(gb);
  757. s->plane[0].ybsep = svq3_get_ue_golomb(gb);
  758. } else {
  759. /*[DIRAC_STD] preset_block_params(index). Table 11.1 */
  760. s->plane[0].xblen = default_blen[idx-1];
  761. s->plane[0].yblen = default_blen[idx-1];
  762. s->plane[0].xbsep = 4 * idx;
  763. s->plane[0].ybsep = 4 * idx;
  764. }
  765. /*[DIRAC_STD] 11.2.4 motion_data_dimensions()
  766. Calculated in function dirac_unpack_block_motion_data */
  767. if (s->plane[0].xblen % (1 << s->chroma_x_shift) != 0 ||
  768. s->plane[0].yblen % (1 << s->chroma_y_shift) != 0 ||
  769. !s->plane[0].xblen || !s->plane[0].yblen) {
  770. av_log(s->avctx, AV_LOG_ERROR,
  771. "invalid x/y block length (%d/%d) for x/y chroma shift (%d/%d)\n",
  772. s->plane[0].xblen, s->plane[0].yblen, s->chroma_x_shift, s->chroma_y_shift);
  773. return AVERROR_INVALIDDATA;
  774. }
  775. if (!s->plane[0].xbsep || !s->plane[0].ybsep || s->plane[0].xbsep < s->plane[0].xblen/2 || s->plane[0].ybsep < s->plane[0].yblen/2) {
  776. av_log(s->avctx, AV_LOG_ERROR, "Block separation too small\n");
  777. return AVERROR_INVALIDDATA;
  778. }
  779. if (s->plane[0].xbsep > s->plane[0].xblen || s->plane[0].ybsep > s->plane[0].yblen) {
  780. av_log(s->avctx, AV_LOG_ERROR, "Block separation greater than size\n");
  781. return AVERROR_INVALIDDATA;
  782. }
  783. if (FFMAX(s->plane[0].xblen, s->plane[0].yblen) > MAX_BLOCKSIZE) {
  784. av_log(s->avctx, AV_LOG_ERROR, "Unsupported large block size\n");
  785. return AVERROR_PATCHWELCOME;
  786. }
  787. /*[DIRAC_STD] 11.2.5 Motion vector precision. motion_vector_precision()
  788. Read motion vector precision */
  789. s->mv_precision = svq3_get_ue_golomb(gb);
  790. if (s->mv_precision > 3) {
  791. av_log(s->avctx, AV_LOG_ERROR, "MV precision finer than eighth-pel\n");
  792. return AVERROR_INVALIDDATA;
  793. }
  794. /*[DIRAC_STD] 11.2.6 Global motion. global_motion()
  795. Read the global motion compensation parameters */
  796. s->globalmc_flag = get_bits1(gb);
  797. if (s->globalmc_flag) {
  798. memset(s->globalmc, 0, sizeof(s->globalmc));
  799. /* [DIRAC_STD] pan_tilt(gparams) */
  800. for (ref = 0; ref < s->num_refs; ref++) {
  801. if (get_bits1(gb)) {
  802. s->globalmc[ref].pan_tilt[0] = dirac_get_se_golomb(gb);
  803. s->globalmc[ref].pan_tilt[1] = dirac_get_se_golomb(gb);
  804. }
  805. /* [DIRAC_STD] zoom_rotate_shear(gparams)
  806. zoom/rotation/shear parameters */
  807. if (get_bits1(gb)) {
  808. s->globalmc[ref].zrs_exp = svq3_get_ue_golomb(gb);
  809. s->globalmc[ref].zrs[0][0] = dirac_get_se_golomb(gb);
  810. s->globalmc[ref].zrs[0][1] = dirac_get_se_golomb(gb);
  811. s->globalmc[ref].zrs[1][0] = dirac_get_se_golomb(gb);
  812. s->globalmc[ref].zrs[1][1] = dirac_get_se_golomb(gb);
  813. } else {
  814. s->globalmc[ref].zrs[0][0] = 1;
  815. s->globalmc[ref].zrs[1][1] = 1;
  816. }
  817. /* [DIRAC_STD] perspective(gparams) */
  818. if (get_bits1(gb)) {
  819. s->globalmc[ref].perspective_exp = svq3_get_ue_golomb(gb);
  820. s->globalmc[ref].perspective[0] = dirac_get_se_golomb(gb);
  821. s->globalmc[ref].perspective[1] = dirac_get_se_golomb(gb);
  822. }
  823. }
  824. }
  825. /*[DIRAC_STD] 11.2.7 Picture prediction mode. prediction_mode()
  826. Picture prediction mode, not currently used. */
  827. if (svq3_get_ue_golomb(gb)) {
  828. av_log(s->avctx, AV_LOG_ERROR, "Unknown picture prediction mode\n");
  829. return AVERROR_INVALIDDATA;
  830. }
  831. /* [DIRAC_STD] 11.2.8 Reference picture weight. reference_picture_weights()
  832. just data read, weight calculation will be done later on. */
  833. s->weight_log2denom = 1;
  834. s->weight[0] = 1;
  835. s->weight[1] = 1;
  836. if (get_bits1(gb)) {
  837. s->weight_log2denom = svq3_get_ue_golomb(gb);
  838. s->weight[0] = dirac_get_se_golomb(gb);
  839. if (s->num_refs == 2)
  840. s->weight[1] = dirac_get_se_golomb(gb);
  841. }
  842. return 0;
  843. }
  844. /**
  845. * Dirac Specification ->
  846. * 11.3 Wavelet transform data. wavelet_transform()
  847. */
  848. static int dirac_unpack_idwt_params(DiracContext *s)
  849. {
  850. GetBitContext *gb = &s->gb;
  851. int i, level;
  852. unsigned tmp;
  853. #define CHECKEDREAD(dst, cond, errmsg) \
  854. tmp = svq3_get_ue_golomb(gb); \
  855. if (cond) { \
  856. av_log(s->avctx, AV_LOG_ERROR, errmsg); \
  857. return AVERROR_INVALIDDATA; \
  858. }\
  859. dst = tmp;
  860. align_get_bits(gb);
  861. s->zero_res = s->num_refs ? get_bits1(gb) : 0;
  862. if (s->zero_res)
  863. return 0;
  864. /*[DIRAC_STD] 11.3.1 Transform parameters. transform_parameters() */
  865. CHECKEDREAD(s->wavelet_idx, tmp > 6, "wavelet_idx is too big\n")
  866. CHECKEDREAD(s->wavelet_depth, tmp > MAX_DWT_LEVELS || tmp < 1, "invalid number of DWT decompositions\n")
  867. if (!s->low_delay) {
  868. /* Codeblock parameters (core syntax only) */
  869. if (get_bits1(gb)) {
  870. for (i = 0; i <= s->wavelet_depth; i++) {
  871. CHECKEDREAD(s->codeblock[i].width , tmp < 1 || tmp > (s->avctx->width >>s->wavelet_depth-i), "codeblock width invalid\n")
  872. CHECKEDREAD(s->codeblock[i].height, tmp < 1 || tmp > (s->avctx->height>>s->wavelet_depth-i), "codeblock height invalid\n")
  873. }
  874. CHECKEDREAD(s->codeblock_mode, tmp > 1, "unknown codeblock mode\n")
  875. } else
  876. for (i = 0; i <= s->wavelet_depth; i++)
  877. s->codeblock[i].width = s->codeblock[i].height = 1;
  878. } else {
  879. /* Slice parameters + quantization matrix*/
  880. /*[DIRAC_STD] 11.3.4 Slice coding Parameters (low delay syntax only). slice_parameters() */
  881. s->lowdelay.num_x = svq3_get_ue_golomb(gb);
  882. s->lowdelay.num_y = svq3_get_ue_golomb(gb);
  883. s->lowdelay.bytes.num = svq3_get_ue_golomb(gb);
  884. s->lowdelay.bytes.den = svq3_get_ue_golomb(gb);
  885. if (s->lowdelay.bytes.den <= 0) {
  886. av_log(s->avctx,AV_LOG_ERROR,"Invalid lowdelay.bytes.den\n");
  887. return AVERROR_INVALIDDATA;
  888. }
  889. /* [DIRAC_STD] 11.3.5 Quantisation matrices (low-delay syntax). quant_matrix() */
  890. if (get_bits1(gb)) {
  891. av_log(s->avctx,AV_LOG_DEBUG,"Low Delay: Has Custom Quantization Matrix!\n");
  892. /* custom quantization matrix */
  893. s->lowdelay.quant[0][0] = svq3_get_ue_golomb(gb);
  894. for (level = 0; level < s->wavelet_depth; level++) {
  895. s->lowdelay.quant[level][1] = svq3_get_ue_golomb(gb);
  896. s->lowdelay.quant[level][2] = svq3_get_ue_golomb(gb);
  897. s->lowdelay.quant[level][3] = svq3_get_ue_golomb(gb);
  898. }
  899. } else {
  900. if (s->wavelet_depth > 4) {
  901. av_log(s->avctx,AV_LOG_ERROR,"Mandatory custom low delay matrix missing for depth %d\n", s->wavelet_depth);
  902. return AVERROR_INVALIDDATA;
  903. }
  904. /* default quantization matrix */
  905. for (level = 0; level < s->wavelet_depth; level++)
  906. for (i = 0; i < 4; i++) {
  907. s->lowdelay.quant[level][i] = default_qmat[s->wavelet_idx][level][i];
  908. /* haar with no shift differs for different depths */
  909. if (s->wavelet_idx == 3)
  910. s->lowdelay.quant[level][i] += 4*(s->wavelet_depth-1 - level);
  911. }
  912. }
  913. }
  914. return 0;
  915. }
  916. static inline int pred_sbsplit(uint8_t *sbsplit, int stride, int x, int y)
  917. {
  918. static const uint8_t avgsplit[7] = { 0, 0, 1, 1, 1, 2, 2 };
  919. if (!(x|y))
  920. return 0;
  921. else if (!y)
  922. return sbsplit[-1];
  923. else if (!x)
  924. return sbsplit[-stride];
  925. return avgsplit[sbsplit[-1] + sbsplit[-stride] + sbsplit[-stride-1]];
  926. }
  927. static inline int pred_block_mode(DiracBlock *block, int stride, int x, int y, int refmask)
  928. {
  929. int pred;
  930. if (!(x|y))
  931. return 0;
  932. else if (!y)
  933. return block[-1].ref & refmask;
  934. else if (!x)
  935. return block[-stride].ref & refmask;
  936. /* return the majority */
  937. pred = (block[-1].ref & refmask) + (block[-stride].ref & refmask) + (block[-stride-1].ref & refmask);
  938. return (pred >> 1) & refmask;
  939. }
  940. static inline void pred_block_dc(DiracBlock *block, int stride, int x, int y)
  941. {
  942. int i, n = 0;
  943. memset(block->u.dc, 0, sizeof(block->u.dc));
  944. if (x && !(block[-1].ref & 3)) {
  945. for (i = 0; i < 3; i++)
  946. block->u.dc[i] += block[-1].u.dc[i];
  947. n++;
  948. }
  949. if (y && !(block[-stride].ref & 3)) {
  950. for (i = 0; i < 3; i++)
  951. block->u.dc[i] += block[-stride].u.dc[i];
  952. n++;
  953. }
  954. if (x && y && !(block[-1-stride].ref & 3)) {
  955. for (i = 0; i < 3; i++)
  956. block->u.dc[i] += block[-1-stride].u.dc[i];
  957. n++;
  958. }
  959. if (n == 2) {
  960. for (i = 0; i < 3; i++)
  961. block->u.dc[i] = (block->u.dc[i]+1)>>1;
  962. } else if (n == 3) {
  963. for (i = 0; i < 3; i++)
  964. block->u.dc[i] = divide3(block->u.dc[i]);
  965. }
  966. }
  967. static inline void pred_mv(DiracBlock *block, int stride, int x, int y, int ref)
  968. {
  969. int16_t *pred[3];
  970. int refmask = ref+1;
  971. int mask = refmask | DIRAC_REF_MASK_GLOBAL; /* exclude gmc blocks */
  972. int n = 0;
  973. if (x && (block[-1].ref & mask) == refmask)
  974. pred[n++] = block[-1].u.mv[ref];
  975. if (y && (block[-stride].ref & mask) == refmask)
  976. pred[n++] = block[-stride].u.mv[ref];
  977. if (x && y && (block[-stride-1].ref & mask) == refmask)
  978. pred[n++] = block[-stride-1].u.mv[ref];
  979. switch (n) {
  980. case 0:
  981. block->u.mv[ref][0] = 0;
  982. block->u.mv[ref][1] = 0;
  983. break;
  984. case 1:
  985. block->u.mv[ref][0] = pred[0][0];
  986. block->u.mv[ref][1] = pred[0][1];
  987. break;
  988. case 2:
  989. block->u.mv[ref][0] = (pred[0][0] + pred[1][0] + 1) >> 1;
  990. block->u.mv[ref][1] = (pred[0][1] + pred[1][1] + 1) >> 1;
  991. break;
  992. case 3:
  993. block->u.mv[ref][0] = mid_pred(pred[0][0], pred[1][0], pred[2][0]);
  994. block->u.mv[ref][1] = mid_pred(pred[0][1], pred[1][1], pred[2][1]);
  995. break;
  996. }
  997. }
  998. static void global_mv(DiracContext *s, DiracBlock *block, int x, int y, int ref)
  999. {
  1000. int ez = s->globalmc[ref].zrs_exp;
  1001. int ep = s->globalmc[ref].perspective_exp;
  1002. int (*A)[2] = s->globalmc[ref].zrs;
  1003. int *b = s->globalmc[ref].pan_tilt;
  1004. int *c = s->globalmc[ref].perspective;
  1005. int m = (1<<ep) - (c[0]*x + c[1]*y);
  1006. int mx = m * ((A[0][0] * x + A[0][1]*y) + (1<<ez) * b[0]);
  1007. int my = m * ((A[1][0] * x + A[1][1]*y) + (1<<ez) * b[1]);
  1008. block->u.mv[ref][0] = (mx + (1<<(ez+ep))) >> (ez+ep);
  1009. block->u.mv[ref][1] = (my + (1<<(ez+ep))) >> (ez+ep);
  1010. }
  1011. static void decode_block_params(DiracContext *s, DiracArith arith[8], DiracBlock *block,
  1012. int stride, int x, int y)
  1013. {
  1014. int i;
  1015. block->ref = pred_block_mode(block, stride, x, y, DIRAC_REF_MASK_REF1);
  1016. block->ref ^= dirac_get_arith_bit(arith, CTX_PMODE_REF1);
  1017. if (s->num_refs == 2) {
  1018. block->ref |= pred_block_mode(block, stride, x, y, DIRAC_REF_MASK_REF2);
  1019. block->ref ^= dirac_get_arith_bit(arith, CTX_PMODE_REF2) << 1;
  1020. }
  1021. if (!block->ref) {
  1022. pred_block_dc(block, stride, x, y);
  1023. for (i = 0; i < 3; i++)
  1024. block->u.dc[i] += dirac_get_arith_int(arith+1+i, CTX_DC_F1, CTX_DC_DATA);
  1025. return;
  1026. }
  1027. if (s->globalmc_flag) {
  1028. block->ref |= pred_block_mode(block, stride, x, y, DIRAC_REF_MASK_GLOBAL);
  1029. block->ref ^= dirac_get_arith_bit(arith, CTX_GLOBAL_BLOCK) << 2;
  1030. }
  1031. for (i = 0; i < s->num_refs; i++)
  1032. if (block->ref & (i+1)) {
  1033. if (block->ref & DIRAC_REF_MASK_GLOBAL) {
  1034. global_mv(s, block, x, y, i);
  1035. } else {
  1036. pred_mv(block, stride, x, y, i);
  1037. block->u.mv[i][0] += dirac_get_arith_int(arith + 4 + 2 * i, CTX_MV_F1, CTX_MV_DATA);
  1038. block->u.mv[i][1] += dirac_get_arith_int(arith + 5 + 2 * i, CTX_MV_F1, CTX_MV_DATA);
  1039. }
  1040. }
  1041. }
  1042. /**
  1043. * Copies the current block to the other blocks covered by the current superblock split mode
  1044. */
  1045. static void propagate_block_data(DiracBlock *block, int stride, int size)
  1046. {
  1047. int x, y;
  1048. DiracBlock *dst = block;
  1049. for (x = 1; x < size; x++)
  1050. dst[x] = *block;
  1051. for (y = 1; y < size; y++) {
  1052. dst += stride;
  1053. for (x = 0; x < size; x++)
  1054. dst[x] = *block;
  1055. }
  1056. }
  1057. /**
  1058. * Dirac Specification ->
  1059. * 12. Block motion data syntax
  1060. */
  1061. static int dirac_unpack_block_motion_data(DiracContext *s)
  1062. {
  1063. GetBitContext *gb = &s->gb;
  1064. uint8_t *sbsplit = s->sbsplit;
  1065. int i, x, y, q, p;
  1066. DiracArith arith[8];
  1067. align_get_bits(gb);
  1068. /* [DIRAC_STD] 11.2.4 and 12.2.1 Number of blocks and superblocks */
  1069. s->sbwidth = DIVRNDUP(s->source.width, 4*s->plane[0].xbsep);
  1070. s->sbheight = DIVRNDUP(s->source.height, 4*s->plane[0].ybsep);
  1071. s->blwidth = 4 * s->sbwidth;
  1072. s->blheight = 4 * s->sbheight;
  1073. /* [DIRAC_STD] 12.3.1 Superblock splitting modes. superblock_split_modes()
  1074. decode superblock split modes */
  1075. ff_dirac_init_arith_decoder(arith, gb, svq3_get_ue_golomb(gb)); /* svq3_get_ue_golomb(gb) is the length */
  1076. for (y = 0; y < s->sbheight; y++) {
  1077. for (x = 0; x < s->sbwidth; x++) {
  1078. unsigned int split = dirac_get_arith_uint(arith, CTX_SB_F1, CTX_SB_DATA);
  1079. if (split > 2)
  1080. return AVERROR_INVALIDDATA;
  1081. sbsplit[x] = (split + pred_sbsplit(sbsplit+x, s->sbwidth, x, y)) % 3;
  1082. }
  1083. sbsplit += s->sbwidth;
  1084. }
  1085. /* setup arith decoding */
  1086. ff_dirac_init_arith_decoder(arith, gb, svq3_get_ue_golomb(gb));
  1087. for (i = 0; i < s->num_refs; i++) {
  1088. ff_dirac_init_arith_decoder(arith + 4 + 2 * i, gb, svq3_get_ue_golomb(gb));
  1089. ff_dirac_init_arith_decoder(arith + 5 + 2 * i, gb, svq3_get_ue_golomb(gb));
  1090. }
  1091. for (i = 0; i < 3; i++)
  1092. ff_dirac_init_arith_decoder(arith+1+i, gb, svq3_get_ue_golomb(gb));
  1093. for (y = 0; y < s->sbheight; y++)
  1094. for (x = 0; x < s->sbwidth; x++) {
  1095. int blkcnt = 1 << s->sbsplit[y * s->sbwidth + x];
  1096. int step = 4 >> s->sbsplit[y * s->sbwidth + x];
  1097. for (q = 0; q < blkcnt; q++)
  1098. for (p = 0; p < blkcnt; p++) {
  1099. int bx = 4 * x + p*step;
  1100. int by = 4 * y + q*step;
  1101. DiracBlock *block = &s->blmotion[by*s->blwidth + bx];
  1102. decode_block_params(s, arith, block, s->blwidth, bx, by);
  1103. propagate_block_data(block, s->blwidth, step);
  1104. }
  1105. }
  1106. return 0;
  1107. }
  1108. static int weight(int i, int blen, int offset)
  1109. {
  1110. #define ROLLOFF(i) offset == 1 ? ((i) ? 5 : 3) : \
  1111. (1 + (6*(i) + offset - 1) / (2*offset - 1))
  1112. if (i < 2*offset)
  1113. return ROLLOFF(i);
  1114. else if (i > blen-1 - 2*offset)
  1115. return ROLLOFF(blen-1 - i);
  1116. return 8;
  1117. }
  1118. static void init_obmc_weight_row(Plane *p, uint8_t *obmc_weight, int stride,
  1119. int left, int right, int wy)
  1120. {
  1121. int x;
  1122. for (x = 0; left && x < p->xblen >> 1; x++)
  1123. obmc_weight[x] = wy*8;
  1124. for (; x < p->xblen >> right; x++)
  1125. obmc_weight[x] = wy*weight(x, p->xblen, p->xoffset);
  1126. for (; x < p->xblen; x++)
  1127. obmc_weight[x] = wy*8;
  1128. for (; x < stride; x++)
  1129. obmc_weight[x] = 0;
  1130. }
  1131. static void init_obmc_weight(Plane *p, uint8_t *obmc_weight, int stride,
  1132. int left, int right, int top, int bottom)
  1133. {
  1134. int y;
  1135. for (y = 0; top && y < p->yblen >> 1; y++) {
  1136. init_obmc_weight_row(p, obmc_weight, stride, left, right, 8);
  1137. obmc_weight += stride;
  1138. }
  1139. for (; y < p->yblen >> bottom; y++) {
  1140. int wy = weight(y, p->yblen, p->yoffset);
  1141. init_obmc_weight_row(p, obmc_weight, stride, left, right, wy);
  1142. obmc_weight += stride;
  1143. }
  1144. for (; y < p->yblen; y++) {
  1145. init_obmc_weight_row(p, obmc_weight, stride, left, right, 8);
  1146. obmc_weight += stride;
  1147. }
  1148. }
  1149. static void init_obmc_weights(DiracContext *s, Plane *p, int by)
  1150. {
  1151. int top = !by;
  1152. int bottom = by == s->blheight-1;
  1153. /* don't bother re-initing for rows 2 to blheight-2, the weights don't change */
  1154. if (top || bottom || by == 1) {
  1155. init_obmc_weight(p, s->obmc_weight[0], MAX_BLOCKSIZE, 1, 0, top, bottom);
  1156. init_obmc_weight(p, s->obmc_weight[1], MAX_BLOCKSIZE, 0, 0, top, bottom);
  1157. init_obmc_weight(p, s->obmc_weight[2], MAX_BLOCKSIZE, 0, 1, top, bottom);
  1158. }
  1159. }
  1160. static const uint8_t epel_weights[4][4][4] = {
  1161. {{ 16, 0, 0, 0 },
  1162. { 12, 4, 0, 0 },
  1163. { 8, 8, 0, 0 },
  1164. { 4, 12, 0, 0 }},
  1165. {{ 12, 0, 4, 0 },
  1166. { 9, 3, 3, 1 },
  1167. { 6, 6, 2, 2 },
  1168. { 3, 9, 1, 3 }},
  1169. {{ 8, 0, 8, 0 },
  1170. { 6, 2, 6, 2 },
  1171. { 4, 4, 4, 4 },
  1172. { 2, 6, 2, 6 }},
  1173. {{ 4, 0, 12, 0 },
  1174. { 3, 1, 9, 3 },
  1175. { 2, 2, 6, 6 },
  1176. { 1, 3, 3, 9 }}
  1177. };
  1178. /**
  1179. * For block x,y, determine which of the hpel planes to do bilinear
  1180. * interpolation from and set src[] to the location in each hpel plane
  1181. * to MC from.
  1182. *
  1183. * @return the index of the put_dirac_pixels_tab function to use
  1184. * 0 for 1 plane (fpel,hpel), 1 for 2 planes (qpel), 2 for 4 planes (qpel), and 3 for epel
  1185. */
  1186. static int mc_subpel(DiracContext *s, DiracBlock *block, const uint8_t *src[5],
  1187. int x, int y, int ref, int plane)
  1188. {
  1189. Plane *p = &s->plane[plane];
  1190. uint8_t **ref_hpel = s->ref_pics[ref]->hpel[plane];
  1191. int motion_x = block->u.mv[ref][0];
  1192. int motion_y = block->u.mv[ref][1];
  1193. int mx, my, i, epel, nplanes = 0;
  1194. if (plane) {
  1195. motion_x >>= s->chroma_x_shift;
  1196. motion_y >>= s->chroma_y_shift;
  1197. }
  1198. mx = motion_x & ~(-1U << s->mv_precision);
  1199. my = motion_y & ~(-1U << s->mv_precision);
  1200. motion_x >>= s->mv_precision;
  1201. motion_y >>= s->mv_precision;
  1202. /* normalize subpel coordinates to epel */
  1203. /* TODO: template this function? */
  1204. mx <<= 3 - s->mv_precision;
  1205. my <<= 3 - s->mv_precision;
  1206. x += motion_x;
  1207. y += motion_y;
  1208. epel = (mx|my)&1;
  1209. /* hpel position */
  1210. if (!((mx|my)&3)) {
  1211. nplanes = 1;
  1212. src[0] = ref_hpel[(my>>1)+(mx>>2)] + y*p->stride + x;
  1213. } else {
  1214. /* qpel or epel */
  1215. nplanes = 4;
  1216. for (i = 0; i < 4; i++)
  1217. src[i] = ref_hpel[i] + y*p->stride + x;
  1218. /* if we're interpolating in the right/bottom halves, adjust the planes as needed
  1219. we increment x/y because the edge changes for half of the pixels */
  1220. if (mx > 4) {
  1221. src[0] += 1;
  1222. src[2] += 1;
  1223. x++;
  1224. }
  1225. if (my > 4) {
  1226. src[0] += p->stride;
  1227. src[1] += p->stride;
  1228. y++;
  1229. }
  1230. /* hpel planes are:
  1231. [0]: F [1]: H
  1232. [2]: V [3]: C */
  1233. if (!epel) {
  1234. /* check if we really only need 2 planes since either mx or my is
  1235. a hpel position. (epel weights of 0 handle this there) */
  1236. if (!(mx&3)) {
  1237. /* mx == 0: average [0] and [2]
  1238. mx == 4: average [1] and [3] */
  1239. src[!mx] = src[2 + !!mx];
  1240. nplanes = 2;
  1241. } else if (!(my&3)) {
  1242. src[0] = src[(my>>1) ];
  1243. src[1] = src[(my>>1)+1];
  1244. nplanes = 2;
  1245. }
  1246. } else {
  1247. /* adjust the ordering if needed so the weights work */
  1248. if (mx > 4) {
  1249. FFSWAP(const uint8_t *, src[0], src[1]);
  1250. FFSWAP(const uint8_t *, src[2], src[3]);
  1251. }
  1252. if (my > 4) {
  1253. FFSWAP(const uint8_t *, src[0], src[2]);
  1254. FFSWAP(const uint8_t *, src[1], src[3]);
  1255. }
  1256. src[4] = epel_weights[my&3][mx&3];
  1257. }
  1258. }
  1259. /* fixme: v/h _edge_pos */
  1260. if (x + p->xblen > p->width +EDGE_WIDTH/2 ||
  1261. y + p->yblen > p->height+EDGE_WIDTH/2 ||
  1262. x < 0 || y < 0) {
  1263. for (i = 0; i < nplanes; i++) {
  1264. s->vdsp.emulated_edge_mc(s->edge_emu_buffer[i], src[i],
  1265. p->stride, p->stride,
  1266. p->xblen, p->yblen, x, y,
  1267. p->width+EDGE_WIDTH/2, p->height+EDGE_WIDTH/2);
  1268. src[i] = s->edge_emu_buffer[i];
  1269. }
  1270. }
  1271. return (nplanes>>1) + epel;
  1272. }
  1273. static void add_dc(uint16_t *dst, int dc, int stride,
  1274. uint8_t *obmc_weight, int xblen, int yblen)
  1275. {
  1276. int x, y;
  1277. dc += 128;
  1278. for (y = 0; y < yblen; y++) {
  1279. for (x = 0; x < xblen; x += 2) {
  1280. dst[x ] += dc * obmc_weight[x ];
  1281. dst[x+1] += dc * obmc_weight[x+1];
  1282. }
  1283. dst += stride;
  1284. obmc_weight += MAX_BLOCKSIZE;
  1285. }
  1286. }
  1287. static void block_mc(DiracContext *s, DiracBlock *block,
  1288. uint16_t *mctmp, uint8_t *obmc_weight,
  1289. int plane, int dstx, int dsty)
  1290. {
  1291. Plane *p = &s->plane[plane];
  1292. const uint8_t *src[5];
  1293. int idx;
  1294. switch (block->ref&3) {
  1295. case 0: /* DC */
  1296. add_dc(mctmp, block->u.dc[plane], p->stride, obmc_weight, p->xblen, p->yblen);
  1297. return;
  1298. case 1:
  1299. case 2:
  1300. idx = mc_subpel(s, block, src, dstx, dsty, (block->ref&3)-1, plane);
  1301. s->put_pixels_tab[idx](s->mcscratch, src, p->stride, p->yblen);
  1302. if (s->weight_func)
  1303. s->weight_func(s->mcscratch, p->stride, s->weight_log2denom,
  1304. s->weight[0] + s->weight[1], p->yblen);
  1305. break;
  1306. case 3:
  1307. idx = mc_subpel(s, block, src, dstx, dsty, 0, plane);
  1308. s->put_pixels_tab[idx](s->mcscratch, src, p->stride, p->yblen);
  1309. idx = mc_subpel(s, block, src, dstx, dsty, 1, plane);
  1310. if (s->biweight_func) {
  1311. /* fixme: +32 is a quick hack */
  1312. s->put_pixels_tab[idx](s->mcscratch + 32, src, p->stride, p->yblen);
  1313. s->biweight_func(s->mcscratch, s->mcscratch+32, p->stride, s->weight_log2denom,
  1314. s->weight[0], s->weight[1], p->yblen);
  1315. } else
  1316. s->avg_pixels_tab[idx](s->mcscratch, src, p->stride, p->yblen);
  1317. break;
  1318. }
  1319. s->add_obmc(mctmp, s->mcscratch, p->stride, obmc_weight, p->yblen);
  1320. }
  1321. static void mc_row(DiracContext *s, DiracBlock *block, uint16_t *mctmp, int plane, int dsty)
  1322. {
  1323. Plane *p = &s->plane[plane];
  1324. int x, dstx = p->xbsep - p->xoffset;
  1325. block_mc(s, block, mctmp, s->obmc_weight[0], plane, -p->xoffset, dsty);
  1326. mctmp += p->xbsep;
  1327. for (x = 1; x < s->blwidth-1; x++) {
  1328. block_mc(s, block+x, mctmp, s->obmc_weight[1], plane, dstx, dsty);
  1329. dstx += p->xbsep;
  1330. mctmp += p->xbsep;
  1331. }
  1332. block_mc(s, block+x, mctmp, s->obmc_weight[2], plane, dstx, dsty);
  1333. }
  1334. static void select_dsp_funcs(DiracContext *s, int width, int height, int xblen, int yblen)
  1335. {
  1336. int idx = 0;
  1337. if (xblen > 8)
  1338. idx = 1;
  1339. if (xblen > 16)
  1340. idx = 2;
  1341. memcpy(s->put_pixels_tab, s->diracdsp.put_dirac_pixels_tab[idx], sizeof(s->put_pixels_tab));
  1342. memcpy(s->avg_pixels_tab, s->diracdsp.avg_dirac_pixels_tab[idx], sizeof(s->avg_pixels_tab));
  1343. s->add_obmc = s->diracdsp.add_dirac_obmc[idx];
  1344. if (s->weight_log2denom > 1 || s->weight[0] != 1 || s->weight[1] != 1) {
  1345. s->weight_func = s->diracdsp.weight_dirac_pixels_tab[idx];
  1346. s->biweight_func = s->diracdsp.biweight_dirac_pixels_tab[idx];
  1347. } else {
  1348. s->weight_func = NULL;
  1349. s->biweight_func = NULL;
  1350. }
  1351. }
  1352. static int interpolate_refplane(DiracContext *s, DiracFrame *ref, int plane, int width, int height)
  1353. {
  1354. /* chroma allocates an edge of 8 when subsampled
  1355. which for 4:2:2 means an h edge of 16 and v edge of 8
  1356. just use 8 for everything for the moment */
  1357. int i, edge = EDGE_WIDTH/2;
  1358. ref->hpel[plane][0] = ref->avframe->data[plane];
  1359. s->mpvencdsp.draw_edges(ref->hpel[plane][0], ref->avframe->linesize[plane], width, height, edge, edge, EDGE_TOP | EDGE_BOTTOM); /* EDGE_TOP | EDGE_BOTTOM values just copied to make it build, this needs to be ensured */
  1360. /* no need for hpel if we only have fpel vectors */
  1361. if (!s->mv_precision)
  1362. return 0;
  1363. for (i = 1; i < 4; i++) {
  1364. if (!ref->hpel_base[plane][i])
  1365. ref->hpel_base[plane][i] = av_malloc((height+2*edge) * ref->avframe->linesize[plane] + 32);
  1366. if (!ref->hpel_base[plane][i]) {
  1367. return AVERROR(ENOMEM);
  1368. }
  1369. /* we need to be 16-byte aligned even for chroma */
  1370. ref->hpel[plane][i] = ref->hpel_base[plane][i] + edge*ref->avframe->linesize[plane] + 16;
  1371. }
  1372. if (!ref->interpolated[plane]) {
  1373. s->diracdsp.dirac_hpel_filter(ref->hpel[plane][1], ref->hpel[plane][2],
  1374. ref->hpel[plane][3], ref->hpel[plane][0],
  1375. ref->avframe->linesize[plane], width, height);
  1376. s->mpvencdsp.draw_edges(ref->hpel[plane][1], ref->avframe->linesize[plane], width, height, edge, edge, EDGE_TOP | EDGE_BOTTOM);
  1377. s->mpvencdsp.draw_edges(ref->hpel[plane][2], ref->avframe->linesize[plane], width, height, edge, edge, EDGE_TOP | EDGE_BOTTOM);
  1378. s->mpvencdsp.draw_edges(ref->hpel[plane][3], ref->avframe->linesize[plane], width, height, edge, edge, EDGE_TOP | EDGE_BOTTOM);
  1379. }
  1380. ref->interpolated[plane] = 1;
  1381. return 0;
  1382. }
  1383. /**
  1384. * Dirac Specification ->
  1385. * 13.0 Transform data syntax. transform_data()
  1386. */
  1387. static int dirac_decode_frame_internal(DiracContext *s)
  1388. {
  1389. DWTContext d;
  1390. int y, i, comp, dsty;
  1391. int ret;
  1392. if (s->low_delay) {
  1393. /* [DIRAC_STD] 13.5.1 low_delay_transform_data() */
  1394. for (comp = 0; comp < 3; comp++) {
  1395. Plane *p = &s->plane[comp];
  1396. memset(p->idwt_buf, 0, p->idwt_stride * p->idwt_height * sizeof(IDWTELEM));
  1397. }
  1398. if (!s->zero_res) {
  1399. if ((ret = decode_lowdelay(s)) < 0)
  1400. return ret;
  1401. }
  1402. }
  1403. for (comp = 0; comp < 3; comp++) {
  1404. Plane *p = &s->plane[comp];
  1405. uint8_t *frame = s->current_picture->avframe->data[comp];
  1406. /* FIXME: small resolutions */
  1407. for (i = 0; i < 4; i++)
  1408. s->edge_emu_buffer[i] = s->edge_emu_buffer_base + i*FFALIGN(p->width, 16);
  1409. if (!s->zero_res && !s->low_delay)
  1410. {
  1411. memset(p->idwt_buf, 0, p->idwt_stride * p->idwt_height * sizeof(IDWTELEM));
  1412. decode_component(s, comp); /* [DIRAC_STD] 13.4.1 core_transform_data() */
  1413. }
  1414. ret = ff_spatial_idwt_init2(&d, p->idwt_buf, p->idwt_width, p->idwt_height, p->idwt_stride,
  1415. s->wavelet_idx+2, s->wavelet_depth, p->idwt_tmp);
  1416. if (ret < 0)
  1417. return ret;
  1418. if (!s->num_refs) { /* intra */
  1419. for (y = 0; y < p->height; y += 16) {
  1420. ff_spatial_idwt_slice2(&d, y+16); /* decode */
  1421. s->diracdsp.put_signed_rect_clamped(frame + y*p->stride, p->stride,
  1422. p->idwt_buf + y*p->idwt_stride, p->idwt_stride, p->width, 16);
  1423. }
  1424. } else { /* inter */
  1425. int rowheight = p->ybsep*p->stride;
  1426. select_dsp_funcs(s, p->width, p->height, p->xblen, p->yblen);
  1427. for (i = 0; i < s->num_refs; i++) {
  1428. int ret = interpolate_refplane(s, s->ref_pics[i], comp, p->width, p->height);
  1429. if (ret < 0)
  1430. return ret;
  1431. }
  1432. memset(s->mctmp, 0, 4*p->yoffset*p->stride);
  1433. dsty = -p->yoffset;
  1434. for (y = 0; y < s->blheight; y++) {
  1435. int h = 0,
  1436. start = FFMAX(dsty, 0);
  1437. uint16_t *mctmp = s->mctmp + y*rowheight;
  1438. DiracBlock *blocks = s->blmotion + y*s->blwidth;
  1439. init_obmc_weights(s, p, y);
  1440. if (y == s->blheight-1 || start+p->ybsep > p->height)
  1441. h = p->height - start;
  1442. else
  1443. h = p->ybsep - (start - dsty);
  1444. if (h < 0)
  1445. break;
  1446. memset(mctmp+2*p->yoffset*p->stride, 0, 2*rowheight);
  1447. mc_row(s, blocks, mctmp, comp, dsty);
  1448. mctmp += (start - dsty)*p->stride + p->xoffset;
  1449. ff_spatial_idwt_slice2(&d, start + h); /* decode */
  1450. s->diracdsp.add_rect_clamped(frame + start*p->stride, mctmp, p->stride,
  1451. p->idwt_buf + start*p->idwt_stride, p->idwt_stride, p->width, h);
  1452. dsty += p->ybsep;
  1453. }
  1454. }
  1455. }
  1456. return 0;
  1457. }
  1458. static int get_buffer_with_edge(AVCodecContext *avctx, AVFrame *f, int flags)
  1459. {
  1460. int ret, i;
  1461. int chroma_x_shift, chroma_y_shift;
  1462. avcodec_get_chroma_sub_sample(avctx->pix_fmt, &chroma_x_shift, &chroma_y_shift);
  1463. f->width = avctx->width + 2 * EDGE_WIDTH;
  1464. f->height = avctx->height + 2 * EDGE_WIDTH + 2;
  1465. ret = ff_get_buffer(avctx, f, flags);
  1466. if (ret < 0)
  1467. return ret;
  1468. for (i = 0; f->data[i]; i++) {
  1469. int offset = (EDGE_WIDTH >> (i && i<3 ? chroma_y_shift : 0)) *
  1470. f->linesize[i] + 32;
  1471. f->data[i] += offset;
  1472. }
  1473. f->width = avctx->width;
  1474. f->height = avctx->height;
  1475. return 0;
  1476. }
  1477. /**
  1478. * Dirac Specification ->
  1479. * 11.1.1 Picture Header. picture_header()
  1480. */
  1481. static int dirac_decode_picture_header(DiracContext *s)
  1482. {
  1483. unsigned retire, picnum;
  1484. int i, j, ret;
  1485. int64_t refdist, refnum;
  1486. GetBitContext *gb = &s->gb;
  1487. /* [DIRAC_STD] 11.1.1 Picture Header. picture_header() PICTURE_NUM */
  1488. picnum = s->current_picture->avframe->display_picture_number = get_bits_long(gb, 32);
  1489. av_log(s->avctx,AV_LOG_DEBUG,"PICTURE_NUM: %d\n",picnum);
  1490. /* if this is the first keyframe after a sequence header, start our
  1491. reordering from here */
  1492. if (s->frame_number < 0)
  1493. s->frame_number = picnum;
  1494. s->ref_pics[0] = s->ref_pics[1] = NULL;
  1495. for (i = 0; i < s->num_refs; i++) {
  1496. refnum = (picnum + dirac_get_se_golomb(gb)) & 0xFFFFFFFF;
  1497. refdist = INT64_MAX;
  1498. /* find the closest reference to the one we want */
  1499. /* Jordi: this is needed if the referenced picture hasn't yet arrived */
  1500. for (j = 0; j < MAX_REFERENCE_FRAMES && refdist; j++)
  1501. if (s->ref_frames[j]
  1502. && FFABS(s->ref_frames[j]->avframe->display_picture_number - refnum) < refdist) {
  1503. s->ref_pics[i] = s->ref_frames[j];
  1504. refdist = FFABS(s->ref_frames[j]->avframe->display_picture_number - refnum);
  1505. }
  1506. if (!s->ref_pics[i] || refdist)
  1507. av_log(s->avctx, AV_LOG_DEBUG, "Reference not found\n");
  1508. /* if there were no references at all, allocate one */
  1509. if (!s->ref_pics[i])
  1510. for (j = 0; j < MAX_FRAMES; j++)
  1511. if (!s->all_frames[j].avframe->data[0]) {
  1512. s->ref_pics[i] = &s->all_frames[j];
  1513. get_buffer_with_edge(s->avctx, s->ref_pics[i]->avframe, AV_GET_BUFFER_FLAG_REF);
  1514. break;
  1515. }
  1516. if (!s->ref_pics[i]) {
  1517. av_log(s->avctx, AV_LOG_ERROR, "Reference could not be allocated\n");
  1518. return AVERROR_INVALIDDATA;
  1519. }
  1520. }
  1521. /* retire the reference frames that are not used anymore */
  1522. if (s->current_picture->reference) {
  1523. retire = (picnum + dirac_get_se_golomb(gb)) & 0xFFFFFFFF;
  1524. if (retire != picnum) {
  1525. DiracFrame *retire_pic = remove_frame(s->ref_frames, retire);
  1526. if (retire_pic)
  1527. retire_pic->reference &= DELAYED_PIC_REF;
  1528. else
  1529. av_log(s->avctx, AV_LOG_DEBUG, "Frame to retire not found\n");
  1530. }
  1531. /* if reference array is full, remove the oldest as per the spec */
  1532. while (add_frame(s->ref_frames, MAX_REFERENCE_FRAMES, s->current_picture)) {
  1533. av_log(s->avctx, AV_LOG_ERROR, "Reference frame overflow\n");
  1534. remove_frame(s->ref_frames, s->ref_frames[0]->avframe->display_picture_number)->reference &= DELAYED_PIC_REF;
  1535. }
  1536. }
  1537. if (s->num_refs) {
  1538. ret = dirac_unpack_prediction_parameters(s); /* [DIRAC_STD] 11.2 Picture Prediction Data. picture_prediction() */
  1539. if (ret < 0)
  1540. return ret;
  1541. ret = dirac_unpack_block_motion_data(s); /* [DIRAC_STD] 12. Block motion data syntax */
  1542. if (ret < 0)
  1543. return ret;
  1544. }
  1545. ret = dirac_unpack_idwt_params(s); /* [DIRAC_STD] 11.3 Wavelet transform data */
  1546. if (ret < 0)
  1547. return ret;
  1548. init_planes(s);
  1549. return 0;
  1550. }
  1551. static int get_delayed_pic(DiracContext *s, AVFrame *picture, int *got_frame)
  1552. {
  1553. DiracFrame *out = s->delay_frames[0];
  1554. int i, out_idx = 0;
  1555. int ret;
  1556. /* find frame with lowest picture number */
  1557. for (i = 1; s->delay_frames[i]; i++)
  1558. if (s->delay_frames[i]->avframe->display_picture_number < out->avframe->display_picture_number) {
  1559. out = s->delay_frames[i];
  1560. out_idx = i;
  1561. }
  1562. for (i = out_idx; s->delay_frames[i]; i++)
  1563. s->delay_frames[i] = s->delay_frames[i+1];
  1564. if (out) {
  1565. out->reference ^= DELAYED_PIC_REF;
  1566. *got_frame = 1;
  1567. if((ret = av_frame_ref(picture, out->avframe)) < 0)
  1568. return ret;
  1569. }
  1570. return 0;
  1571. }
  1572. /**
  1573. * Dirac Specification ->
  1574. * 9.6 Parse Info Header Syntax. parse_info()
  1575. * 4 byte start code + byte parse code + 4 byte size + 4 byte previous size
  1576. */
  1577. #define DATA_UNIT_HEADER_SIZE 13
  1578. /* [DIRAC_STD] dirac_decode_data_unit makes reference to the while defined in 9.3
  1579. inside the function parse_sequence() */
  1580. static int dirac_decode_data_unit(AVCodecContext *avctx, const uint8_t *buf, int size)
  1581. {
  1582. DiracContext *s = avctx->priv_data;
  1583. DiracFrame *pic = NULL;
  1584. int ret, i, parse_code;
  1585. unsigned tmp;
  1586. if (size < DATA_UNIT_HEADER_SIZE)
  1587. return AVERROR_INVALIDDATA;
  1588. parse_code = buf[4];
  1589. init_get_bits(&s->gb, &buf[13], 8*(size - DATA_UNIT_HEADER_SIZE));
  1590. if (parse_code == pc_seq_header) {
  1591. if (s->seen_sequence_header)
  1592. return 0;
  1593. /* [DIRAC_STD] 10. Sequence header */
  1594. ret = avpriv_dirac_parse_sequence_header(avctx, &s->gb, &s->source);
  1595. if (ret < 0)
  1596. return ret;
  1597. avcodec_get_chroma_sub_sample(avctx->pix_fmt, &s->chroma_x_shift, &s->chroma_y_shift);
  1598. ret = alloc_sequence_buffers(s);
  1599. if (ret < 0)
  1600. return ret;
  1601. s->seen_sequence_header = 1;
  1602. } else if (parse_code == pc_eos) { /* [DIRAC_STD] End of Sequence */
  1603. free_sequence_buffers(s);
  1604. s->seen_sequence_header = 0;
  1605. } else if (parse_code == pc_aux_data) {
  1606. if (buf[13] == 1) { /* encoder implementation/version */
  1607. int ver[3];
  1608. /* versions older than 1.0.8 don't store quant delta for
  1609. subbands with only one codeblock */
  1610. if (sscanf(buf+14, "Schroedinger %d.%d.%d", ver, ver+1, ver+2) == 3)
  1611. if (ver[0] == 1 && ver[1] == 0 && ver[2] <= 7)
  1612. s->old_delta_quant = 1;
  1613. }
  1614. } else if (parse_code & 0x8) { /* picture data unit */
  1615. if (!s->seen_sequence_header) {
  1616. av_log(avctx, AV_LOG_DEBUG, "Dropping frame without sequence header\n");
  1617. return AVERROR_INVALIDDATA;
  1618. }
  1619. /* find an unused frame */
  1620. for (i = 0; i < MAX_FRAMES; i++)
  1621. if (s->all_frames[i].avframe->data[0] == NULL)
  1622. pic = &s->all_frames[i];
  1623. if (!pic) {
  1624. av_log(avctx, AV_LOG_ERROR, "framelist full\n");
  1625. return AVERROR_INVALIDDATA;
  1626. }
  1627. av_frame_unref(pic->avframe);
  1628. /* [DIRAC_STD] Defined in 9.6.1 ... */
  1629. tmp = parse_code & 0x03; /* [DIRAC_STD] num_refs() */
  1630. if (tmp > 2) {
  1631. av_log(avctx, AV_LOG_ERROR, "num_refs of 3\n");
  1632. return AVERROR_INVALIDDATA;
  1633. }
  1634. s->num_refs = tmp;
  1635. s->is_arith = (parse_code & 0x48) == 0x08; /* [DIRAC_STD] using_ac() */
  1636. s->low_delay = (parse_code & 0x88) == 0x88; /* [DIRAC_STD] is_low_delay() */
  1637. pic->reference = (parse_code & 0x0C) == 0x0C; /* [DIRAC_STD] is_reference() */
  1638. pic->avframe->key_frame = s->num_refs == 0; /* [DIRAC_STD] is_intra() */
  1639. pic->avframe->pict_type = s->num_refs + 1; /* Definition of AVPictureType in avutil.h */
  1640. if ((ret = get_buffer_with_edge(avctx, pic->avframe, (parse_code & 0x0C) == 0x0C ? AV_GET_BUFFER_FLAG_REF : 0)) < 0)
  1641. return ret;
  1642. s->current_picture = pic;
  1643. s->plane[0].stride = pic->avframe->linesize[0];
  1644. s->plane[1].stride = pic->avframe->linesize[1];
  1645. s->plane[2].stride = pic->avframe->linesize[2];
  1646. if (alloc_buffers(s, FFMAX3(FFABS(s->plane[0].stride), FFABS(s->plane[1].stride), FFABS(s->plane[2].stride))) < 0)
  1647. return AVERROR(ENOMEM);
  1648. /* [DIRAC_STD] 11.1 Picture parse. picture_parse() */
  1649. ret = dirac_decode_picture_header(s);
  1650. if (ret < 0)
  1651. return ret;
  1652. /* [DIRAC_STD] 13.0 Transform data syntax. transform_data() */
  1653. ret = dirac_decode_frame_internal(s);
  1654. if (ret < 0)
  1655. return ret;
  1656. }
  1657. return 0;
  1658. }
  1659. static int dirac_decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *pkt)
  1660. {
  1661. DiracContext *s = avctx->priv_data;
  1662. AVFrame *picture = data;
  1663. uint8_t *buf = pkt->data;
  1664. int buf_size = pkt->size;
  1665. int i, buf_idx = 0;
  1666. int ret;
  1667. unsigned data_unit_size;
  1668. /* release unused frames */
  1669. for (i = 0; i < MAX_FRAMES; i++)
  1670. if (s->all_frames[i].avframe->data[0] && !s->all_frames[i].reference) {
  1671. av_frame_unref(s->all_frames[i].avframe);
  1672. memset(s->all_frames[i].interpolated, 0, sizeof(s->all_frames[i].interpolated));
  1673. }
  1674. s->current_picture = NULL;
  1675. *got_frame = 0;
  1676. /* end of stream, so flush delayed pics */
  1677. if (buf_size == 0)
  1678. return get_delayed_pic(s, (AVFrame *)data, got_frame);
  1679. for (;;) {
  1680. /*[DIRAC_STD] Here starts the code from parse_info() defined in 9.6
  1681. [DIRAC_STD] PARSE_INFO_PREFIX = "BBCD" as defined in ISO/IEC 646
  1682. BBCD start code search */
  1683. for (; buf_idx + DATA_UNIT_HEADER_SIZE < buf_size; buf_idx++) {
  1684. if (buf[buf_idx ] == 'B' && buf[buf_idx+1] == 'B' &&
  1685. buf[buf_idx+2] == 'C' && buf[buf_idx+3] == 'D')
  1686. break;
  1687. }
  1688. /* BBCD found or end of data */
  1689. if (buf_idx + DATA_UNIT_HEADER_SIZE >= buf_size)
  1690. break;
  1691. data_unit_size = AV_RB32(buf+buf_idx+5);
  1692. if (data_unit_size > buf_size - buf_idx || !data_unit_size) {
  1693. if(data_unit_size > buf_size - buf_idx)
  1694. av_log(s->avctx, AV_LOG_ERROR,
  1695. "Data unit with size %d is larger than input buffer, discarding\n",
  1696. data_unit_size);
  1697. buf_idx += 4;
  1698. continue;
  1699. }
  1700. /* [DIRAC_STD] dirac_decode_data_unit makes reference to the while defined in 9.3 inside the function parse_sequence() */
  1701. ret = dirac_decode_data_unit(avctx, buf+buf_idx, data_unit_size);
  1702. if (ret < 0)
  1703. {
  1704. av_log(s->avctx, AV_LOG_ERROR,"Error in dirac_decode_data_unit\n");
  1705. return ret;
  1706. }
  1707. buf_idx += data_unit_size;
  1708. }
  1709. if (!s->current_picture)
  1710. return buf_size;
  1711. if (s->current_picture->avframe->display_picture_number > s->frame_number) {
  1712. DiracFrame *delayed_frame = remove_frame(s->delay_frames, s->frame_number);
  1713. s->current_picture->reference |= DELAYED_PIC_REF;
  1714. if (add_frame(s->delay_frames, MAX_DELAY, s->current_picture)) {
  1715. int min_num = s->delay_frames[0]->avframe->display_picture_number;
  1716. /* Too many delayed frames, so we display the frame with the lowest pts */
  1717. av_log(avctx, AV_LOG_ERROR, "Delay frame overflow\n");
  1718. for (i = 1; s->delay_frames[i]; i++)
  1719. if (s->delay_frames[i]->avframe->display_picture_number < min_num)
  1720. min_num = s->delay_frames[i]->avframe->display_picture_number;
  1721. delayed_frame = remove_frame(s->delay_frames, min_num);
  1722. add_frame(s->delay_frames, MAX_DELAY, s->current_picture);
  1723. }
  1724. if (delayed_frame) {
  1725. delayed_frame->reference ^= DELAYED_PIC_REF;
  1726. if((ret=av_frame_ref(data, delayed_frame->avframe)) < 0)
  1727. return ret;
  1728. *got_frame = 1;
  1729. }
  1730. } else if (s->current_picture->avframe->display_picture_number == s->frame_number) {
  1731. /* The right frame at the right time :-) */
  1732. if((ret=av_frame_ref(data, s->current_picture->avframe)) < 0)
  1733. return ret;
  1734. *got_frame = 1;
  1735. }
  1736. if (*got_frame)
  1737. s->frame_number = picture->display_picture_number + 1;
  1738. return buf_idx;
  1739. }
  1740. AVCodec ff_dirac_decoder = {
  1741. .name = "dirac",
  1742. .long_name = NULL_IF_CONFIG_SMALL("BBC Dirac VC-2"),
  1743. .type = AVMEDIA_TYPE_VIDEO,
  1744. .id = AV_CODEC_ID_DIRAC,
  1745. .priv_data_size = sizeof(DiracContext),
  1746. .init = dirac_decode_init,
  1747. .close = dirac_decode_end,
  1748. .decode = dirac_decode_frame,
  1749. .capabilities = AV_CODEC_CAP_DELAY,
  1750. .flush = dirac_decode_flush,
  1751. };