You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2077 lines
76KB

  1. /*
  2. * DCA compatible decoder
  3. * Copyright (C) 2004 Gildas Bazin
  4. * Copyright (C) 2004 Benjamin Zores
  5. * Copyright (C) 2006 Benjamin Larsson
  6. * Copyright (C) 2007 Konstantin Shishkov
  7. * Copyright (C) 2012 Paul B Mahol
  8. * Copyright (C) 2014 Niels Möller
  9. *
  10. * This file is part of FFmpeg.
  11. *
  12. * FFmpeg is free software; you can redistribute it and/or
  13. * modify it under the terms of the GNU Lesser General Public
  14. * License as published by the Free Software Foundation; either
  15. * version 2.1 of the License, or (at your option) any later version.
  16. *
  17. * FFmpeg is distributed in the hope that it will be useful,
  18. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  19. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  20. * Lesser General Public License for more details.
  21. *
  22. * You should have received a copy of the GNU Lesser General Public
  23. * License along with FFmpeg; if not, write to the Free Software
  24. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  25. */
  26. #include <math.h>
  27. #include <stddef.h>
  28. #include <stdio.h>
  29. #include "libavutil/attributes.h"
  30. #include "libavutil/channel_layout.h"
  31. #include "libavutil/common.h"
  32. #include "libavutil/float_dsp.h"
  33. #include "libavutil/internal.h"
  34. #include "libavutil/intreadwrite.h"
  35. #include "libavutil/mathematics.h"
  36. #include "libavutil/opt.h"
  37. #include "libavutil/samplefmt.h"
  38. #include "avcodec.h"
  39. #include "dca.h"
  40. #include "dca_syncwords.h"
  41. #include "dcadata.h"
  42. #include "dcadsp.h"
  43. #include "dcahuff.h"
  44. #include "fft.h"
  45. #include "fmtconvert.h"
  46. #include "get_bits.h"
  47. #include "internal.h"
  48. #include "mathops.h"
  49. #include "synth_filter.h"
  50. #if ARCH_ARM
  51. # include "arm/dca.h"
  52. #endif
  53. enum DCAMode {
  54. DCA_MONO = 0,
  55. DCA_CHANNEL,
  56. DCA_STEREO,
  57. DCA_STEREO_SUMDIFF,
  58. DCA_STEREO_TOTAL,
  59. DCA_3F,
  60. DCA_2F1R,
  61. DCA_3F1R,
  62. DCA_2F2R,
  63. DCA_3F2R,
  64. DCA_4F2R
  65. };
  66. enum DCAXxchSpeakerMask {
  67. DCA_XXCH_FRONT_CENTER = 0x0000001,
  68. DCA_XXCH_FRONT_LEFT = 0x0000002,
  69. DCA_XXCH_FRONT_RIGHT = 0x0000004,
  70. DCA_XXCH_SIDE_REAR_LEFT = 0x0000008,
  71. DCA_XXCH_SIDE_REAR_RIGHT = 0x0000010,
  72. DCA_XXCH_LFE1 = 0x0000020,
  73. DCA_XXCH_REAR_CENTER = 0x0000040,
  74. DCA_XXCH_SURROUND_REAR_LEFT = 0x0000080,
  75. DCA_XXCH_SURROUND_REAR_RIGHT = 0x0000100,
  76. DCA_XXCH_SIDE_SURROUND_LEFT = 0x0000200,
  77. DCA_XXCH_SIDE_SURROUND_RIGHT = 0x0000400,
  78. DCA_XXCH_FRONT_CENTER_LEFT = 0x0000800,
  79. DCA_XXCH_FRONT_CENTER_RIGHT = 0x0001000,
  80. DCA_XXCH_FRONT_HIGH_LEFT = 0x0002000,
  81. DCA_XXCH_FRONT_HIGH_CENTER = 0x0004000,
  82. DCA_XXCH_FRONT_HIGH_RIGHT = 0x0008000,
  83. DCA_XXCH_LFE2 = 0x0010000,
  84. DCA_XXCH_SIDE_FRONT_LEFT = 0x0020000,
  85. DCA_XXCH_SIDE_FRONT_RIGHT = 0x0040000,
  86. DCA_XXCH_OVERHEAD = 0x0080000,
  87. DCA_XXCH_SIDE_HIGH_LEFT = 0x0100000,
  88. DCA_XXCH_SIDE_HIGH_RIGHT = 0x0200000,
  89. DCA_XXCH_REAR_HIGH_CENTER = 0x0400000,
  90. DCA_XXCH_REAR_HIGH_LEFT = 0x0800000,
  91. DCA_XXCH_REAR_HIGH_RIGHT = 0x1000000,
  92. DCA_XXCH_REAR_LOW_CENTER = 0x2000000,
  93. DCA_XXCH_REAR_LOW_LEFT = 0x4000000,
  94. DCA_XXCH_REAR_LOW_RIGHT = 0x8000000,
  95. };
  96. #define DCA_DOLBY 101 /* FIXME */
  97. #define DCA_CHANNEL_BITS 6
  98. #define DCA_CHANNEL_MASK 0x3F
  99. #define DCA_LFE 0x80
  100. #define HEADER_SIZE 14
  101. #define DCA_NSYNCAUX 0x9A1105A0
  102. /** Bit allocation */
  103. typedef struct BitAlloc {
  104. int offset; ///< code values offset
  105. int maxbits[8]; ///< max bits in VLC
  106. int wrap; ///< wrap for get_vlc2()
  107. VLC vlc[8]; ///< actual codes
  108. } BitAlloc;
  109. static BitAlloc dca_bitalloc_index; ///< indexes for samples VLC select
  110. static BitAlloc dca_tmode; ///< transition mode VLCs
  111. static BitAlloc dca_scalefactor; ///< scalefactor VLCs
  112. static BitAlloc dca_smpl_bitalloc[11]; ///< samples VLCs
  113. static av_always_inline int get_bitalloc(GetBitContext *gb, BitAlloc *ba,
  114. int idx)
  115. {
  116. return get_vlc2(gb, ba->vlc[idx].table, ba->vlc[idx].bits, ba->wrap) +
  117. ba->offset;
  118. }
  119. static float dca_dmix_code(unsigned code);
  120. static av_cold void dca_init_vlcs(void)
  121. {
  122. static int vlcs_initialized = 0;
  123. int i, j, c = 14;
  124. static VLC_TYPE dca_table[23622][2];
  125. if (vlcs_initialized)
  126. return;
  127. dca_bitalloc_index.offset = 1;
  128. dca_bitalloc_index.wrap = 2;
  129. for (i = 0; i < 5; i++) {
  130. dca_bitalloc_index.vlc[i].table = &dca_table[ff_dca_vlc_offs[i]];
  131. dca_bitalloc_index.vlc[i].table_allocated = ff_dca_vlc_offs[i + 1] - ff_dca_vlc_offs[i];
  132. init_vlc(&dca_bitalloc_index.vlc[i], bitalloc_12_vlc_bits[i], 12,
  133. bitalloc_12_bits[i], 1, 1,
  134. bitalloc_12_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
  135. }
  136. dca_scalefactor.offset = -64;
  137. dca_scalefactor.wrap = 2;
  138. for (i = 0; i < 5; i++) {
  139. dca_scalefactor.vlc[i].table = &dca_table[ff_dca_vlc_offs[i + 5]];
  140. dca_scalefactor.vlc[i].table_allocated = ff_dca_vlc_offs[i + 6] - ff_dca_vlc_offs[i + 5];
  141. init_vlc(&dca_scalefactor.vlc[i], SCALES_VLC_BITS, 129,
  142. scales_bits[i], 1, 1,
  143. scales_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
  144. }
  145. dca_tmode.offset = 0;
  146. dca_tmode.wrap = 1;
  147. for (i = 0; i < 4; i++) {
  148. dca_tmode.vlc[i].table = &dca_table[ff_dca_vlc_offs[i + 10]];
  149. dca_tmode.vlc[i].table_allocated = ff_dca_vlc_offs[i + 11] - ff_dca_vlc_offs[i + 10];
  150. init_vlc(&dca_tmode.vlc[i], tmode_vlc_bits[i], 4,
  151. tmode_bits[i], 1, 1,
  152. tmode_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
  153. }
  154. for (i = 0; i < 10; i++)
  155. for (j = 0; j < 7; j++) {
  156. if (!bitalloc_codes[i][j])
  157. break;
  158. dca_smpl_bitalloc[i + 1].offset = bitalloc_offsets[i];
  159. dca_smpl_bitalloc[i + 1].wrap = 1 + (j > 4);
  160. dca_smpl_bitalloc[i + 1].vlc[j].table = &dca_table[ff_dca_vlc_offs[c]];
  161. dca_smpl_bitalloc[i + 1].vlc[j].table_allocated = ff_dca_vlc_offs[c + 1] - ff_dca_vlc_offs[c];
  162. init_vlc(&dca_smpl_bitalloc[i + 1].vlc[j], bitalloc_maxbits[i][j],
  163. bitalloc_sizes[i],
  164. bitalloc_bits[i][j], 1, 1,
  165. bitalloc_codes[i][j], 2, 2, INIT_VLC_USE_NEW_STATIC);
  166. c++;
  167. }
  168. vlcs_initialized = 1;
  169. }
  170. static inline void get_array(GetBitContext *gb, int *dst, int len, int bits)
  171. {
  172. while (len--)
  173. *dst++ = get_bits(gb, bits);
  174. }
  175. static inline int dca_xxch2index(DCAContext *s, int xxch_ch)
  176. {
  177. int i, base, mask;
  178. /* locate channel set containing the channel */
  179. for (i = -1, base = 0, mask = (s->xxch_core_spkmask & ~DCA_XXCH_LFE1);
  180. i <= s->xxch_chset && !(mask & xxch_ch); mask = s->xxch_spk_masks[++i])
  181. base += av_popcount(mask);
  182. return base + av_popcount(mask & (xxch_ch - 1));
  183. }
  184. static int dca_parse_audio_coding_header(DCAContext *s, int base_channel,
  185. int xxch)
  186. {
  187. int i, j;
  188. static const float adj_table[4] = { 1.0, 1.1250, 1.2500, 1.4375 };
  189. static const int bitlen[11] = { 0, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3 };
  190. static const int thr[11] = { 0, 1, 3, 3, 3, 3, 7, 7, 7, 7, 7 };
  191. int hdr_pos = 0, hdr_size = 0;
  192. float scale_factor;
  193. int this_chans, acc_mask;
  194. int embedded_downmix;
  195. int nchans, mask[8];
  196. int coeff, ichan;
  197. /* xxch has arbitrary sized audio coding headers */
  198. if (xxch) {
  199. hdr_pos = get_bits_count(&s->gb);
  200. hdr_size = get_bits(&s->gb, 7) + 1;
  201. }
  202. nchans = get_bits(&s->gb, 3) + 1;
  203. if (xxch && nchans >= 3) {
  204. av_log(s->avctx, AV_LOG_ERROR, "nchans %d is too large\n", nchans);
  205. return AVERROR_INVALIDDATA;
  206. } else if (nchans + base_channel > DCA_PRIM_CHANNELS_MAX) {
  207. av_log(s->avctx, AV_LOG_ERROR, "channel sum %d + %d is too large\n", nchans, base_channel);
  208. return AVERROR_INVALIDDATA;
  209. }
  210. s->total_channels = nchans + base_channel;
  211. s->prim_channels = s->total_channels;
  212. /* obtain speaker layout mask & downmix coefficients for XXCH */
  213. if (xxch) {
  214. acc_mask = s->xxch_core_spkmask;
  215. this_chans = get_bits(&s->gb, s->xxch_nbits_spk_mask - 6) << 6;
  216. s->xxch_spk_masks[s->xxch_chset] = this_chans;
  217. s->xxch_chset_nch[s->xxch_chset] = nchans;
  218. for (i = 0; i <= s->xxch_chset; i++)
  219. acc_mask |= s->xxch_spk_masks[i];
  220. /* check for downmixing information */
  221. if (get_bits1(&s->gb)) {
  222. embedded_downmix = get_bits1(&s->gb);
  223. coeff = get_bits(&s->gb, 6);
  224. if (coeff<1 || coeff>61) {
  225. av_log(s->avctx, AV_LOG_ERROR, "6bit coeff %d is out of range\n", coeff);
  226. return AVERROR_INVALIDDATA;
  227. }
  228. scale_factor = -1.0f / dca_dmix_code((coeff<<2)-3);
  229. s->xxch_dmix_sf[s->xxch_chset] = scale_factor;
  230. for (i = base_channel; i < s->prim_channels; i++) {
  231. mask[i] = get_bits(&s->gb, s->xxch_nbits_spk_mask);
  232. }
  233. for (j = base_channel; j < s->prim_channels; j++) {
  234. memset(s->xxch_dmix_coeff[j], 0, sizeof(s->xxch_dmix_coeff[0]));
  235. s->xxch_dmix_embedded |= (embedded_downmix << j);
  236. for (i = 0; i < s->xxch_nbits_spk_mask; i++) {
  237. if (mask[j] & (1 << i)) {
  238. if ((1 << i) == DCA_XXCH_LFE1) {
  239. av_log(s->avctx, AV_LOG_WARNING,
  240. "DCA-XXCH: dmix to LFE1 not supported.\n");
  241. continue;
  242. }
  243. coeff = get_bits(&s->gb, 7);
  244. ichan = dca_xxch2index(s, 1 << i);
  245. if ((coeff&63)<1 || (coeff&63)>61) {
  246. av_log(s->avctx, AV_LOG_ERROR, "7bit coeff %d is out of range\n", coeff);
  247. return AVERROR_INVALIDDATA;
  248. }
  249. s->xxch_dmix_coeff[j][ichan] = dca_dmix_code((coeff<<2)-3);
  250. }
  251. }
  252. }
  253. }
  254. }
  255. if (s->prim_channels > DCA_PRIM_CHANNELS_MAX)
  256. s->prim_channels = DCA_PRIM_CHANNELS_MAX;
  257. for (i = base_channel; i < s->prim_channels; i++) {
  258. s->subband_activity[i] = get_bits(&s->gb, 5) + 2;
  259. if (s->subband_activity[i] > DCA_SUBBANDS)
  260. s->subband_activity[i] = DCA_SUBBANDS;
  261. }
  262. for (i = base_channel; i < s->prim_channels; i++) {
  263. s->vq_start_subband[i] = get_bits(&s->gb, 5) + 1;
  264. if (s->vq_start_subband[i] > DCA_SUBBANDS)
  265. s->vq_start_subband[i] = DCA_SUBBANDS;
  266. }
  267. get_array(&s->gb, s->joint_intensity + base_channel, s->prim_channels - base_channel, 3);
  268. get_array(&s->gb, s->transient_huffman + base_channel, s->prim_channels - base_channel, 2);
  269. get_array(&s->gb, s->scalefactor_huffman + base_channel, s->prim_channels - base_channel, 3);
  270. get_array(&s->gb, s->bitalloc_huffman + base_channel, s->prim_channels - base_channel, 3);
  271. /* Get codebooks quantization indexes */
  272. if (!base_channel)
  273. memset(s->quant_index_huffman, 0, sizeof(s->quant_index_huffman));
  274. for (j = 1; j < 11; j++)
  275. for (i = base_channel; i < s->prim_channels; i++)
  276. s->quant_index_huffman[i][j] = get_bits(&s->gb, bitlen[j]);
  277. /* Get scale factor adjustment */
  278. for (j = 0; j < 11; j++)
  279. for (i = base_channel; i < s->prim_channels; i++)
  280. s->scalefactor_adj[i][j] = 1;
  281. for (j = 1; j < 11; j++)
  282. for (i = base_channel; i < s->prim_channels; i++)
  283. if (s->quant_index_huffman[i][j] < thr[j])
  284. s->scalefactor_adj[i][j] = adj_table[get_bits(&s->gb, 2)];
  285. if (!xxch) {
  286. if (s->crc_present) {
  287. /* Audio header CRC check */
  288. get_bits(&s->gb, 16);
  289. }
  290. } else {
  291. /* Skip to the end of the header, also ignore CRC if present */
  292. i = get_bits_count(&s->gb);
  293. if (hdr_pos + 8 * hdr_size > i)
  294. skip_bits_long(&s->gb, hdr_pos + 8 * hdr_size - i);
  295. }
  296. s->current_subframe = 0;
  297. s->current_subsubframe = 0;
  298. return 0;
  299. }
  300. static int dca_parse_frame_header(DCAContext *s)
  301. {
  302. init_get_bits(&s->gb, s->dca_buffer, s->dca_buffer_size * 8);
  303. /* Sync code */
  304. skip_bits_long(&s->gb, 32);
  305. /* Frame header */
  306. s->frame_type = get_bits(&s->gb, 1);
  307. s->samples_deficit = get_bits(&s->gb, 5) + 1;
  308. s->crc_present = get_bits(&s->gb, 1);
  309. s->sample_blocks = get_bits(&s->gb, 7) + 1;
  310. s->frame_size = get_bits(&s->gb, 14) + 1;
  311. if (s->frame_size < 95)
  312. return AVERROR_INVALIDDATA;
  313. s->amode = get_bits(&s->gb, 6);
  314. s->sample_rate = avpriv_dca_sample_rates[get_bits(&s->gb, 4)];
  315. if (!s->sample_rate)
  316. return AVERROR_INVALIDDATA;
  317. s->bit_rate_index = get_bits(&s->gb, 5);
  318. s->bit_rate = ff_dca_bit_rates[s->bit_rate_index];
  319. if (!s->bit_rate)
  320. return AVERROR_INVALIDDATA;
  321. skip_bits1(&s->gb); // always 0 (reserved, cf. ETSI TS 102 114 V1.4.1)
  322. s->dynrange = get_bits(&s->gb, 1);
  323. s->timestamp = get_bits(&s->gb, 1);
  324. s->aux_data = get_bits(&s->gb, 1);
  325. s->hdcd = get_bits(&s->gb, 1);
  326. s->ext_descr = get_bits(&s->gb, 3);
  327. s->ext_coding = get_bits(&s->gb, 1);
  328. s->aspf = get_bits(&s->gb, 1);
  329. s->lfe = get_bits(&s->gb, 2);
  330. s->predictor_history = get_bits(&s->gb, 1);
  331. if (s->lfe > 2) {
  332. s->lfe = 0;
  333. av_log(s->avctx, AV_LOG_ERROR, "Invalid LFE value: %d\n", s->lfe);
  334. return AVERROR_INVALIDDATA;
  335. }
  336. /* TODO: check CRC */
  337. if (s->crc_present)
  338. s->header_crc = get_bits(&s->gb, 16);
  339. s->multirate_inter = get_bits(&s->gb, 1);
  340. s->version = get_bits(&s->gb, 4);
  341. s->copy_history = get_bits(&s->gb, 2);
  342. s->source_pcm_res = get_bits(&s->gb, 3);
  343. s->front_sum = get_bits(&s->gb, 1);
  344. s->surround_sum = get_bits(&s->gb, 1);
  345. s->dialog_norm = get_bits(&s->gb, 4);
  346. /* FIXME: channels mixing levels */
  347. s->output = s->amode;
  348. if (s->lfe)
  349. s->output |= DCA_LFE;
  350. /* Primary audio coding header */
  351. s->subframes = get_bits(&s->gb, 4) + 1;
  352. return dca_parse_audio_coding_header(s, 0, 0);
  353. }
  354. static inline int get_scale(GetBitContext *gb, int level, int value, int log2range)
  355. {
  356. if (level < 5) {
  357. /* huffman encoded */
  358. value += get_bitalloc(gb, &dca_scalefactor, level);
  359. value = av_clip(value, 0, (1 << log2range) - 1);
  360. } else if (level < 8) {
  361. if (level + 1 > log2range) {
  362. skip_bits(gb, level + 1 - log2range);
  363. value = get_bits(gb, log2range);
  364. } else {
  365. value = get_bits(gb, level + 1);
  366. }
  367. }
  368. return value;
  369. }
  370. static int dca_subframe_header(DCAContext *s, int base_channel, int block_index)
  371. {
  372. /* Primary audio coding side information */
  373. int j, k;
  374. if (get_bits_left(&s->gb) < 0)
  375. return AVERROR_INVALIDDATA;
  376. if (!base_channel) {
  377. s->subsubframes[s->current_subframe] = get_bits(&s->gb, 2) + 1;
  378. if (block_index + s->subsubframes[s->current_subframe] > s->sample_blocks/8) {
  379. s->subsubframes[s->current_subframe] = 1;
  380. return AVERROR_INVALIDDATA;
  381. }
  382. s->partial_samples[s->current_subframe] = get_bits(&s->gb, 3);
  383. }
  384. for (j = base_channel; j < s->prim_channels; j++) {
  385. for (k = 0; k < s->subband_activity[j]; k++)
  386. s->prediction_mode[j][k] = get_bits(&s->gb, 1);
  387. }
  388. /* Get prediction codebook */
  389. for (j = base_channel; j < s->prim_channels; j++) {
  390. for (k = 0; k < s->subband_activity[j]; k++) {
  391. if (s->prediction_mode[j][k] > 0) {
  392. /* (Prediction coefficient VQ address) */
  393. s->prediction_vq[j][k] = get_bits(&s->gb, 12);
  394. }
  395. }
  396. }
  397. /* Bit allocation index */
  398. for (j = base_channel; j < s->prim_channels; j++) {
  399. for (k = 0; k < s->vq_start_subband[j]; k++) {
  400. if (s->bitalloc_huffman[j] == 6)
  401. s->bitalloc[j][k] = get_bits(&s->gb, 5);
  402. else if (s->bitalloc_huffman[j] == 5)
  403. s->bitalloc[j][k] = get_bits(&s->gb, 4);
  404. else if (s->bitalloc_huffman[j] == 7) {
  405. av_log(s->avctx, AV_LOG_ERROR,
  406. "Invalid bit allocation index\n");
  407. return AVERROR_INVALIDDATA;
  408. } else {
  409. s->bitalloc[j][k] =
  410. get_bitalloc(&s->gb, &dca_bitalloc_index, s->bitalloc_huffman[j]);
  411. }
  412. if (s->bitalloc[j][k] > 26) {
  413. ff_dlog(s->avctx, "bitalloc index [%i][%i] too big (%i)\n",
  414. j, k, s->bitalloc[j][k]);
  415. return AVERROR_INVALIDDATA;
  416. }
  417. }
  418. }
  419. /* Transition mode */
  420. for (j = base_channel; j < s->prim_channels; j++) {
  421. for (k = 0; k < s->subband_activity[j]; k++) {
  422. s->transition_mode[j][k] = 0;
  423. if (s->subsubframes[s->current_subframe] > 1 &&
  424. k < s->vq_start_subband[j] && s->bitalloc[j][k] > 0) {
  425. s->transition_mode[j][k] =
  426. get_bitalloc(&s->gb, &dca_tmode, s->transient_huffman[j]);
  427. }
  428. }
  429. }
  430. if (get_bits_left(&s->gb) < 0)
  431. return AVERROR_INVALIDDATA;
  432. for (j = base_channel; j < s->prim_channels; j++) {
  433. const uint32_t *scale_table;
  434. int scale_sum, log_size;
  435. memset(s->scale_factor[j], 0,
  436. s->subband_activity[j] * sizeof(s->scale_factor[0][0][0]) * 2);
  437. if (s->scalefactor_huffman[j] == 6) {
  438. scale_table = ff_dca_scale_factor_quant7;
  439. log_size = 7;
  440. } else {
  441. scale_table = ff_dca_scale_factor_quant6;
  442. log_size = 6;
  443. }
  444. /* When huffman coded, only the difference is encoded */
  445. scale_sum = 0;
  446. for (k = 0; k < s->subband_activity[j]; k++) {
  447. if (k >= s->vq_start_subband[j] || s->bitalloc[j][k] > 0) {
  448. scale_sum = get_scale(&s->gb, s->scalefactor_huffman[j], scale_sum, log_size);
  449. s->scale_factor[j][k][0] = scale_table[scale_sum];
  450. }
  451. if (k < s->vq_start_subband[j] && s->transition_mode[j][k]) {
  452. /* Get second scale factor */
  453. scale_sum = get_scale(&s->gb, s->scalefactor_huffman[j], scale_sum, log_size);
  454. s->scale_factor[j][k][1] = scale_table[scale_sum];
  455. }
  456. }
  457. }
  458. /* Joint subband scale factor codebook select */
  459. for (j = base_channel; j < s->prim_channels; j++) {
  460. /* Transmitted only if joint subband coding enabled */
  461. if (s->joint_intensity[j] > 0)
  462. s->joint_huff[j] = get_bits(&s->gb, 3);
  463. }
  464. if (get_bits_left(&s->gb) < 0)
  465. return AVERROR_INVALIDDATA;
  466. /* Scale factors for joint subband coding */
  467. for (j = base_channel; j < s->prim_channels; j++) {
  468. int source_channel;
  469. /* Transmitted only if joint subband coding enabled */
  470. if (s->joint_intensity[j] > 0) {
  471. int scale = 0;
  472. source_channel = s->joint_intensity[j] - 1;
  473. /* When huffman coded, only the difference is encoded
  474. * (is this valid as well for joint scales ???) */
  475. for (k = s->subband_activity[j]; k < s->subband_activity[source_channel]; k++) {
  476. scale = get_scale(&s->gb, s->joint_huff[j], 64 /* bias */, 7);
  477. s->joint_scale_factor[j][k] = scale; /*joint_scale_table[scale]; */
  478. }
  479. if (!(s->debug_flag & 0x02)) {
  480. av_log(s->avctx, AV_LOG_DEBUG,
  481. "Joint stereo coding not supported\n");
  482. s->debug_flag |= 0x02;
  483. }
  484. }
  485. }
  486. /* Dynamic range coefficient */
  487. if (!base_channel && s->dynrange)
  488. s->dynrange_coef = get_bits(&s->gb, 8);
  489. /* Side information CRC check word */
  490. if (s->crc_present) {
  491. get_bits(&s->gb, 16);
  492. }
  493. /*
  494. * Primary audio data arrays
  495. */
  496. /* VQ encoded high frequency subbands */
  497. for (j = base_channel; j < s->prim_channels; j++)
  498. for (k = s->vq_start_subband[j]; k < s->subband_activity[j]; k++)
  499. /* 1 vector -> 32 samples */
  500. s->high_freq_vq[j][k] = get_bits(&s->gb, 10);
  501. /* Low frequency effect data */
  502. if (!base_channel && s->lfe) {
  503. int quant7;
  504. /* LFE samples */
  505. int lfe_samples = 2 * s->lfe * (4 + block_index);
  506. int lfe_end_sample = 2 * s->lfe * (4 + block_index + s->subsubframes[s->current_subframe]);
  507. float lfe_scale;
  508. for (j = lfe_samples; j < lfe_end_sample; j++) {
  509. /* Signed 8 bits int */
  510. s->lfe_data[j] = get_sbits(&s->gb, 8);
  511. }
  512. /* Scale factor index */
  513. quant7 = get_bits(&s->gb, 8);
  514. if (quant7 > 127) {
  515. avpriv_request_sample(s->avctx, "LFEScaleIndex larger than 127");
  516. return AVERROR_INVALIDDATA;
  517. }
  518. s->lfe_scale_factor = ff_dca_scale_factor_quant7[quant7];
  519. /* Quantization step size * scale factor */
  520. lfe_scale = 0.035 * s->lfe_scale_factor;
  521. for (j = lfe_samples; j < lfe_end_sample; j++)
  522. s->lfe_data[j] *= lfe_scale;
  523. }
  524. return 0;
  525. }
  526. static void qmf_32_subbands(DCAContext *s, int chans,
  527. float samples_in[32][8], float *samples_out,
  528. float scale)
  529. {
  530. const float *prCoeff;
  531. int sb_act = s->subband_activity[chans];
  532. scale *= sqrt(1 / 8.0);
  533. /* Select filter */
  534. if (!s->multirate_inter) /* Non-perfect reconstruction */
  535. prCoeff = ff_dca_fir_32bands_nonperfect;
  536. else /* Perfect reconstruction */
  537. prCoeff = ff_dca_fir_32bands_perfect;
  538. s->dcadsp.qmf_32_subbands(samples_in, sb_act, &s->synth, &s->imdct,
  539. s->subband_fir_hist[chans],
  540. &s->hist_index[chans],
  541. s->subband_fir_noidea[chans], prCoeff,
  542. samples_out, s->raXin, scale);
  543. }
  544. static QMF64_table *qmf64_precompute(void)
  545. {
  546. unsigned i, j;
  547. QMF64_table *table = av_malloc(sizeof(*table));
  548. if (!table)
  549. return NULL;
  550. for (i = 0; i < 32; i++)
  551. for (j = 0; j < 32; j++)
  552. table->dct4_coeff[i][j] = cos((2 * i + 1) * (2 * j + 1) * M_PI / 128);
  553. for (i = 0; i < 32; i++)
  554. for (j = 0; j < 32; j++)
  555. table->dct2_coeff[i][j] = cos((2 * i + 1) * j * M_PI / 64);
  556. /* FIXME: Is the factor 0.125 = 1/8 right? */
  557. for (i = 0; i < 32; i++)
  558. table->rcos[i] = 0.125 / cos((2 * i + 1) * M_PI / 256);
  559. for (i = 0; i < 32; i++)
  560. table->rsin[i] = -0.125 / sin((2 * i + 1) * M_PI / 256);
  561. return table;
  562. }
  563. /* FIXME: Totally unoptimized. Based on the reference code and
  564. * http://multimedia.cx/mirror/dca-transform.pdf, with guessed tweaks
  565. * for doubling the size. */
  566. static void qmf_64_subbands(DCAContext *s, int chans, float samples_in[64][8],
  567. float *samples_out, float scale)
  568. {
  569. float raXin[64];
  570. float A[32], B[32];
  571. float *raX = s->subband_fir_hist[chans];
  572. float *raZ = s->subband_fir_noidea[chans];
  573. unsigned i, j, k, subindex;
  574. for (i = s->subband_activity[chans]; i < 64; i++)
  575. raXin[i] = 0.0;
  576. for (subindex = 0; subindex < 8; subindex++) {
  577. for (i = 0; i < s->subband_activity[chans]; i++)
  578. raXin[i] = samples_in[i][subindex];
  579. for (k = 0; k < 32; k++) {
  580. A[k] = 0.0;
  581. for (i = 0; i < 32; i++)
  582. A[k] += (raXin[2 * i] + raXin[2 * i + 1]) * s->qmf64_table->dct4_coeff[k][i];
  583. }
  584. for (k = 0; k < 32; k++) {
  585. B[k] = raXin[0] * s->qmf64_table->dct2_coeff[k][0];
  586. for (i = 1; i < 32; i++)
  587. B[k] += (raXin[2 * i] + raXin[2 * i - 1]) * s->qmf64_table->dct2_coeff[k][i];
  588. }
  589. for (k = 0; k < 32; k++) {
  590. raX[k] = s->qmf64_table->rcos[k] * (A[k] + B[k]);
  591. raX[63 - k] = s->qmf64_table->rsin[k] * (A[k] - B[k]);
  592. }
  593. for (i = 0; i < 64; i++) {
  594. float out = raZ[i];
  595. for (j = 0; j < 1024; j += 128)
  596. out += ff_dca_fir_64bands[j + i] * (raX[j + i] - raX[j + 63 - i]);
  597. *samples_out++ = out * scale;
  598. }
  599. for (i = 0; i < 64; i++) {
  600. float hist = 0.0;
  601. for (j = 0; j < 1024; j += 128)
  602. hist += ff_dca_fir_64bands[64 + j + i] * (-raX[i + j] - raX[j + 63 - i]);
  603. raZ[i] = hist;
  604. }
  605. /* FIXME: Make buffer circular, to avoid this move. */
  606. memmove(raX + 64, raX, (1024 - 64) * sizeof(*raX));
  607. }
  608. }
  609. static void lfe_interpolation_fir(DCAContext *s, const float *samples_in,
  610. float *samples_out)
  611. {
  612. /* samples_in: An array holding decimated samples.
  613. * Samples in current subframe starts from samples_in[0],
  614. * while samples_in[-1], samples_in[-2], ..., stores samples
  615. * from last subframe as history.
  616. *
  617. * samples_out: An array holding interpolated samples
  618. */
  619. int idx;
  620. const float *prCoeff;
  621. int deciindex;
  622. /* Select decimation filter */
  623. if (s->lfe == 1) {
  624. idx = 1;
  625. prCoeff = ff_dca_lfe_fir_128;
  626. } else {
  627. idx = 0;
  628. if (s->exss_ext_mask & DCA_EXT_EXSS_XLL)
  629. prCoeff = ff_dca_lfe_xll_fir_64;
  630. else
  631. prCoeff = ff_dca_lfe_fir_64;
  632. }
  633. /* Interpolation */
  634. for (deciindex = 0; deciindex < 2 * s->lfe; deciindex++) {
  635. s->dcadsp.lfe_fir[idx](samples_out, samples_in, prCoeff);
  636. samples_in++;
  637. samples_out += 2 * 32 * (1 + idx);
  638. }
  639. }
  640. /* downmixing routines */
  641. #define MIX_REAR1(samples, s1, rs, coef) \
  642. samples[0][i] += samples[s1][i] * coef[rs][0]; \
  643. samples[1][i] += samples[s1][i] * coef[rs][1];
  644. #define MIX_REAR2(samples, s1, s2, rs, coef) \
  645. samples[0][i] += samples[s1][i] * coef[rs][0] + samples[s2][i] * coef[rs + 1][0]; \
  646. samples[1][i] += samples[s1][i] * coef[rs][1] + samples[s2][i] * coef[rs + 1][1];
  647. #define MIX_FRONT3(samples, coef) \
  648. t = samples[c][i]; \
  649. u = samples[l][i]; \
  650. v = samples[r][i]; \
  651. samples[0][i] = t * coef[0][0] + u * coef[1][0] + v * coef[2][0]; \
  652. samples[1][i] = t * coef[0][1] + u * coef[1][1] + v * coef[2][1];
  653. #define DOWNMIX_TO_STEREO(op1, op2) \
  654. for (i = 0; i < 256; i++) { \
  655. op1 \
  656. op2 \
  657. }
  658. static void dca_downmix(float **samples, int srcfmt, int lfe_present,
  659. float coef[DCA_PRIM_CHANNELS_MAX + 1][2],
  660. const int8_t *channel_mapping)
  661. {
  662. int c, l, r, sl, sr, s;
  663. int i;
  664. float t, u, v;
  665. switch (srcfmt) {
  666. case DCA_MONO:
  667. case DCA_4F2R:
  668. av_log(NULL, AV_LOG_ERROR, "Not implemented!\n");
  669. break;
  670. case DCA_CHANNEL:
  671. case DCA_STEREO:
  672. case DCA_STEREO_TOTAL:
  673. case DCA_STEREO_SUMDIFF:
  674. break;
  675. case DCA_3F:
  676. c = channel_mapping[0];
  677. l = channel_mapping[1];
  678. r = channel_mapping[2];
  679. DOWNMIX_TO_STEREO(MIX_FRONT3(samples, coef), );
  680. break;
  681. case DCA_2F1R:
  682. s = channel_mapping[2];
  683. DOWNMIX_TO_STEREO(MIX_REAR1(samples, s, 2, coef), );
  684. break;
  685. case DCA_3F1R:
  686. c = channel_mapping[0];
  687. l = channel_mapping[1];
  688. r = channel_mapping[2];
  689. s = channel_mapping[3];
  690. DOWNMIX_TO_STEREO(MIX_FRONT3(samples, coef),
  691. MIX_REAR1(samples, s, 3, coef));
  692. break;
  693. case DCA_2F2R:
  694. sl = channel_mapping[2];
  695. sr = channel_mapping[3];
  696. DOWNMIX_TO_STEREO(MIX_REAR2(samples, sl, sr, 2, coef), );
  697. break;
  698. case DCA_3F2R:
  699. c = channel_mapping[0];
  700. l = channel_mapping[1];
  701. r = channel_mapping[2];
  702. sl = channel_mapping[3];
  703. sr = channel_mapping[4];
  704. DOWNMIX_TO_STEREO(MIX_FRONT3(samples, coef),
  705. MIX_REAR2(samples, sl, sr, 3, coef));
  706. break;
  707. }
  708. if (lfe_present) {
  709. int lf_buf = ff_dca_lfe_index[srcfmt];
  710. int lf_idx = ff_dca_channels[srcfmt];
  711. for (i = 0; i < 256; i++) {
  712. samples[0][i] += samples[lf_buf][i] * coef[lf_idx][0];
  713. samples[1][i] += samples[lf_buf][i] * coef[lf_idx][1];
  714. }
  715. }
  716. }
  717. #ifndef decode_blockcodes
  718. /* Very compact version of the block code decoder that does not use table
  719. * look-up but is slightly slower */
  720. static int decode_blockcode(int code, int levels, int32_t *values)
  721. {
  722. int i;
  723. int offset = (levels - 1) >> 1;
  724. for (i = 0; i < 4; i++) {
  725. int div = FASTDIV(code, levels);
  726. values[i] = code - offset - div * levels;
  727. code = div;
  728. }
  729. return code;
  730. }
  731. static int decode_blockcodes(int code1, int code2, int levels, int32_t *values)
  732. {
  733. return decode_blockcode(code1, levels, values) |
  734. decode_blockcode(code2, levels, values + 4);
  735. }
  736. #endif
  737. static const uint8_t abits_sizes[7] = { 7, 10, 12, 13, 15, 17, 19 };
  738. static const uint8_t abits_levels[7] = { 3, 5, 7, 9, 13, 17, 25 };
  739. static int dca_subsubframe(DCAContext *s, int base_channel, int block_index)
  740. {
  741. int k, l;
  742. int subsubframe = s->current_subsubframe;
  743. const float *quant_step_table;
  744. /* FIXME */
  745. float (*subband_samples)[DCA_SUBBANDS][8] = s->subband_samples[block_index];
  746. LOCAL_ALIGNED_16(int32_t, block, [8 * DCA_SUBBANDS]);
  747. /*
  748. * Audio data
  749. */
  750. /* Select quantization step size table */
  751. if (s->bit_rate_index == 0x1f)
  752. quant_step_table = ff_dca_lossless_quant_d;
  753. else
  754. quant_step_table = ff_dca_lossy_quant_d;
  755. for (k = base_channel; k < s->prim_channels; k++) {
  756. float rscale[DCA_SUBBANDS];
  757. if (get_bits_left(&s->gb) < 0)
  758. return AVERROR_INVALIDDATA;
  759. for (l = 0; l < s->vq_start_subband[k]; l++) {
  760. int m;
  761. /* Select the mid-tread linear quantizer */
  762. int abits = s->bitalloc[k][l];
  763. float quant_step_size = quant_step_table[abits];
  764. /*
  765. * Determine quantization index code book and its type
  766. */
  767. /* Select quantization index code book */
  768. int sel = s->quant_index_huffman[k][abits];
  769. /*
  770. * Extract bits from the bit stream
  771. */
  772. if (!abits) {
  773. rscale[l] = 0;
  774. memset(block + 8 * l, 0, 8 * sizeof(block[0]));
  775. } else {
  776. /* Deal with transients */
  777. int sfi = s->transition_mode[k][l] && subsubframe >= s->transition_mode[k][l];
  778. rscale[l] = quant_step_size * s->scale_factor[k][l][sfi] *
  779. s->scalefactor_adj[k][sel];
  780. if (abits >= 11 || !dca_smpl_bitalloc[abits].vlc[sel].table) {
  781. if (abits <= 7) {
  782. /* Block code */
  783. int block_code1, block_code2, size, levels, err;
  784. size = abits_sizes[abits - 1];
  785. levels = abits_levels[abits - 1];
  786. block_code1 = get_bits(&s->gb, size);
  787. block_code2 = get_bits(&s->gb, size);
  788. err = decode_blockcodes(block_code1, block_code2,
  789. levels, block + 8 * l);
  790. if (err) {
  791. av_log(s->avctx, AV_LOG_ERROR,
  792. "ERROR: block code look-up failed\n");
  793. return AVERROR_INVALIDDATA;
  794. }
  795. } else {
  796. /* no coding */
  797. for (m = 0; m < 8; m++)
  798. block[8 * l + m] = get_sbits(&s->gb, abits - 3);
  799. }
  800. } else {
  801. /* Huffman coded */
  802. for (m = 0; m < 8; m++)
  803. block[8 * l + m] = get_bitalloc(&s->gb,
  804. &dca_smpl_bitalloc[abits], sel);
  805. }
  806. }
  807. }
  808. s->fmt_conv.int32_to_float_fmul_array8(&s->fmt_conv, subband_samples[k][0],
  809. block, rscale, 8 * s->vq_start_subband[k]);
  810. for (l = 0; l < s->vq_start_subband[k]; l++) {
  811. int m;
  812. /*
  813. * Inverse ADPCM if in prediction mode
  814. */
  815. if (s->prediction_mode[k][l]) {
  816. int n;
  817. if (s->predictor_history)
  818. subband_samples[k][l][0] += (ff_dca_adpcm_vb[s->prediction_vq[k][l]][0] *
  819. s->subband_samples_hist[k][l][3] +
  820. ff_dca_adpcm_vb[s->prediction_vq[k][l]][1] *
  821. s->subband_samples_hist[k][l][2] +
  822. ff_dca_adpcm_vb[s->prediction_vq[k][l]][2] *
  823. s->subband_samples_hist[k][l][1] +
  824. ff_dca_adpcm_vb[s->prediction_vq[k][l]][3] *
  825. s->subband_samples_hist[k][l][0]) *
  826. (1.0f / 8192);
  827. for (m = 1; m < 8; m++) {
  828. float sum = ff_dca_adpcm_vb[s->prediction_vq[k][l]][0] *
  829. subband_samples[k][l][m - 1];
  830. for (n = 2; n <= 4; n++)
  831. if (m >= n)
  832. sum += ff_dca_adpcm_vb[s->prediction_vq[k][l]][n - 1] *
  833. subband_samples[k][l][m - n];
  834. else if (s->predictor_history)
  835. sum += ff_dca_adpcm_vb[s->prediction_vq[k][l]][n - 1] *
  836. s->subband_samples_hist[k][l][m - n + 4];
  837. subband_samples[k][l][m] += sum * (1.0f / 8192);
  838. }
  839. }
  840. }
  841. /*
  842. * Decode VQ encoded high frequencies
  843. */
  844. if (s->subband_activity[k] > s->vq_start_subband[k]) {
  845. if (!(s->debug_flag & 0x01)) {
  846. av_log(s->avctx, AV_LOG_DEBUG,
  847. "Stream with high frequencies VQ coding\n");
  848. s->debug_flag |= 0x01;
  849. }
  850. s->dcadsp.decode_hf(subband_samples[k], s->high_freq_vq[k],
  851. ff_dca_high_freq_vq, subsubframe * 8,
  852. s->scale_factor[k], s->vq_start_subband[k],
  853. s->subband_activity[k]);
  854. }
  855. }
  856. /* Check for DSYNC after subsubframe */
  857. if (s->aspf || subsubframe == s->subsubframes[s->current_subframe] - 1) {
  858. if (get_bits(&s->gb, 16) != 0xFFFF) {
  859. av_log(s->avctx, AV_LOG_ERROR, "Didn't get subframe DSYNC\n");
  860. return AVERROR_INVALIDDATA;
  861. }
  862. }
  863. /* Backup predictor history for adpcm */
  864. for (k = base_channel; k < s->prim_channels; k++)
  865. for (l = 0; l < s->vq_start_subband[k]; l++)
  866. AV_COPY128(s->subband_samples_hist[k][l], &subband_samples[k][l][4]);
  867. return 0;
  868. }
  869. static int dca_filter_channels(DCAContext *s, int block_index, int upsample)
  870. {
  871. float (*subband_samples)[DCA_SUBBANDS][8] = s->subband_samples[block_index];
  872. int k;
  873. if (upsample) {
  874. if (!s->qmf64_table) {
  875. s->qmf64_table = qmf64_precompute();
  876. if (!s->qmf64_table)
  877. return AVERROR(ENOMEM);
  878. }
  879. /* 64 subbands QMF */
  880. for (k = 0; k < s->prim_channels; k++) {
  881. if (s->channel_order_tab[k] >= 0)
  882. qmf_64_subbands(s, k, subband_samples[k],
  883. s->samples_chanptr[s->channel_order_tab[k]],
  884. /* Upsampling needs a factor 2 here. */
  885. M_SQRT2 / 32768.0);
  886. }
  887. } else {
  888. /* 32 subbands QMF */
  889. for (k = 0; k < s->prim_channels; k++) {
  890. if (s->channel_order_tab[k] >= 0)
  891. qmf_32_subbands(s, k, subband_samples[k],
  892. s->samples_chanptr[s->channel_order_tab[k]],
  893. M_SQRT1_2 / 32768.0);
  894. }
  895. }
  896. /* Generate LFE samples for this subsubframe FIXME!!! */
  897. if (s->lfe) {
  898. float *samples = s->samples_chanptr[s->lfe_index];
  899. lfe_interpolation_fir(s,
  900. s->lfe_data + 2 * s->lfe * (block_index + 4),
  901. samples);
  902. if (upsample) {
  903. unsigned i;
  904. /* Should apply the filter in Table 6-11 when upsampling. For
  905. * now, just duplicate. */
  906. for (i = 255; i > 0; i--) {
  907. samples[2 * i] =
  908. samples[2 * i + 1] = samples[i];
  909. }
  910. samples[1] = samples[0];
  911. }
  912. }
  913. /* FIXME: This downmixing is probably broken with upsample.
  914. * Probably totally broken also with XLL in general. */
  915. /* Downmixing to Stereo */
  916. if (s->prim_channels + !!s->lfe > 2 &&
  917. s->avctx->request_channel_layout == AV_CH_LAYOUT_STEREO) {
  918. dca_downmix(s->samples_chanptr, s->amode, !!s->lfe, s->downmix_coef,
  919. s->channel_order_tab);
  920. }
  921. return 0;
  922. }
  923. static int dca_subframe_footer(DCAContext *s, int base_channel)
  924. {
  925. int in, out, aux_data_count, aux_data_end, reserved;
  926. uint32_t nsyncaux;
  927. /*
  928. * Unpack optional information
  929. */
  930. /* presumably optional information only appears in the core? */
  931. if (!base_channel) {
  932. if (s->timestamp)
  933. skip_bits_long(&s->gb, 32);
  934. if (s->aux_data) {
  935. aux_data_count = get_bits(&s->gb, 6);
  936. // align (32-bit)
  937. skip_bits_long(&s->gb, (-get_bits_count(&s->gb)) & 31);
  938. aux_data_end = 8 * aux_data_count + get_bits_count(&s->gb);
  939. if ((nsyncaux = get_bits_long(&s->gb, 32)) != DCA_NSYNCAUX) {
  940. av_log(s->avctx, AV_LOG_ERROR, "nSYNCAUX mismatch %#"PRIx32"\n",
  941. nsyncaux);
  942. return AVERROR_INVALIDDATA;
  943. }
  944. if (get_bits1(&s->gb)) { // bAUXTimeStampFlag
  945. avpriv_request_sample(s->avctx,
  946. "Auxiliary Decode Time Stamp Flag");
  947. // align (4-bit)
  948. skip_bits(&s->gb, (-get_bits_count(&s->gb)) & 4);
  949. // 44 bits: nMSByte (8), nMarker (4), nLSByte (28), nMarker (4)
  950. skip_bits_long(&s->gb, 44);
  951. }
  952. if ((s->core_downmix = get_bits1(&s->gb))) {
  953. int am = get_bits(&s->gb, 3);
  954. switch (am) {
  955. case 0:
  956. s->core_downmix_amode = DCA_MONO;
  957. break;
  958. case 1:
  959. s->core_downmix_amode = DCA_STEREO;
  960. break;
  961. case 2:
  962. s->core_downmix_amode = DCA_STEREO_TOTAL;
  963. break;
  964. case 3:
  965. s->core_downmix_amode = DCA_3F;
  966. break;
  967. case 4:
  968. s->core_downmix_amode = DCA_2F1R;
  969. break;
  970. case 5:
  971. s->core_downmix_amode = DCA_2F2R;
  972. break;
  973. case 6:
  974. s->core_downmix_amode = DCA_3F1R;
  975. break;
  976. default:
  977. av_log(s->avctx, AV_LOG_ERROR,
  978. "Invalid mode %d for embedded downmix coefficients\n",
  979. am);
  980. return AVERROR_INVALIDDATA;
  981. }
  982. for (out = 0; out < ff_dca_channels[s->core_downmix_amode]; out++) {
  983. for (in = 0; in < s->prim_channels + !!s->lfe; in++) {
  984. uint16_t tmp = get_bits(&s->gb, 9);
  985. if ((tmp & 0xFF) > 241) {
  986. av_log(s->avctx, AV_LOG_ERROR,
  987. "Invalid downmix coefficient code %"PRIu16"\n",
  988. tmp);
  989. return AVERROR_INVALIDDATA;
  990. }
  991. s->core_downmix_codes[in][out] = tmp;
  992. }
  993. }
  994. }
  995. align_get_bits(&s->gb); // byte align
  996. skip_bits(&s->gb, 16); // nAUXCRC16
  997. // additional data (reserved, cf. ETSI TS 102 114 V1.4.1)
  998. if ((reserved = (aux_data_end - get_bits_count(&s->gb))) < 0) {
  999. av_log(s->avctx, AV_LOG_ERROR,
  1000. "Overread auxiliary data by %d bits\n", -reserved);
  1001. return AVERROR_INVALIDDATA;
  1002. } else if (reserved) {
  1003. avpriv_request_sample(s->avctx,
  1004. "Core auxiliary data reserved content");
  1005. skip_bits_long(&s->gb, reserved);
  1006. }
  1007. }
  1008. if (s->crc_present && s->dynrange)
  1009. get_bits(&s->gb, 16);
  1010. }
  1011. return 0;
  1012. }
  1013. /**
  1014. * Decode a dca frame block
  1015. *
  1016. * @param s pointer to the DCAContext
  1017. */
  1018. static int dca_decode_block(DCAContext *s, int base_channel, int block_index)
  1019. {
  1020. int ret;
  1021. /* Sanity check */
  1022. if (s->current_subframe >= s->subframes) {
  1023. av_log(s->avctx, AV_LOG_DEBUG, "check failed: %i>%i",
  1024. s->current_subframe, s->subframes);
  1025. return AVERROR_INVALIDDATA;
  1026. }
  1027. if (!s->current_subsubframe) {
  1028. /* Read subframe header */
  1029. if ((ret = dca_subframe_header(s, base_channel, block_index)))
  1030. return ret;
  1031. }
  1032. /* Read subsubframe */
  1033. if ((ret = dca_subsubframe(s, base_channel, block_index)))
  1034. return ret;
  1035. /* Update state */
  1036. s->current_subsubframe++;
  1037. if (s->current_subsubframe >= s->subsubframes[s->current_subframe]) {
  1038. s->current_subsubframe = 0;
  1039. s->current_subframe++;
  1040. }
  1041. if (s->current_subframe >= s->subframes) {
  1042. /* Read subframe footer */
  1043. if ((ret = dca_subframe_footer(s, base_channel)))
  1044. return ret;
  1045. }
  1046. return 0;
  1047. }
  1048. int ff_dca_xbr_parse_frame(DCAContext *s)
  1049. {
  1050. int scale_table_high[DCA_CHSET_CHANS_MAX][DCA_SUBBANDS][2];
  1051. int active_bands[DCA_CHSETS_MAX][DCA_CHSET_CHANS_MAX];
  1052. int abits_high[DCA_CHSET_CHANS_MAX][DCA_SUBBANDS];
  1053. int anctemp[DCA_CHSET_CHANS_MAX];
  1054. int chset_fsize[DCA_CHSETS_MAX];
  1055. int n_xbr_ch[DCA_CHSETS_MAX];
  1056. int hdr_size, num_chsets, xbr_tmode, hdr_pos;
  1057. int i, j, k, l, chset, chan_base;
  1058. av_log(s->avctx, AV_LOG_DEBUG, "DTS-XBR: decoding XBR extension\n");
  1059. /* get bit position of sync header */
  1060. hdr_pos = get_bits_count(&s->gb) - 32;
  1061. hdr_size = get_bits(&s->gb, 6) + 1;
  1062. num_chsets = get_bits(&s->gb, 2) + 1;
  1063. for(i = 0; i < num_chsets; i++)
  1064. chset_fsize[i] = get_bits(&s->gb, 14) + 1;
  1065. xbr_tmode = get_bits1(&s->gb);
  1066. for(i = 0; i < num_chsets; i++) {
  1067. n_xbr_ch[i] = get_bits(&s->gb, 3) + 1;
  1068. k = get_bits(&s->gb, 2) + 5;
  1069. for(j = 0; j < n_xbr_ch[i]; j++) {
  1070. active_bands[i][j] = get_bits(&s->gb, k) + 1;
  1071. if (active_bands[i][j] > DCA_SUBBANDS) {
  1072. av_log(s->avctx, AV_LOG_ERROR, "too many active subbands (%d)\n", active_bands[i][j]);
  1073. return AVERROR_INVALIDDATA;
  1074. }
  1075. }
  1076. }
  1077. /* skip to the end of the header */
  1078. i = get_bits_count(&s->gb);
  1079. if(hdr_pos + hdr_size * 8 > i)
  1080. skip_bits_long(&s->gb, hdr_pos + hdr_size * 8 - i);
  1081. /* loop over the channel data sets */
  1082. /* only decode as many channels as we've decoded base data for */
  1083. for(chset = 0, chan_base = 0;
  1084. chset < num_chsets && chan_base + n_xbr_ch[chset] <= s->prim_channels;
  1085. chan_base += n_xbr_ch[chset++]) {
  1086. int start_posn = get_bits_count(&s->gb);
  1087. int subsubframe = 0;
  1088. int subframe = 0;
  1089. /* loop over subframes */
  1090. for (k = 0; k < (s->sample_blocks / 8); k++) {
  1091. /* parse header if we're on first subsubframe of a block */
  1092. if(subsubframe == 0) {
  1093. /* Parse subframe header */
  1094. for(i = 0; i < n_xbr_ch[chset]; i++) {
  1095. anctemp[i] = get_bits(&s->gb, 2) + 2;
  1096. }
  1097. for(i = 0; i < n_xbr_ch[chset]; i++) {
  1098. get_array(&s->gb, abits_high[i], active_bands[chset][i], anctemp[i]);
  1099. }
  1100. for(i = 0; i < n_xbr_ch[chset]; i++) {
  1101. anctemp[i] = get_bits(&s->gb, 3);
  1102. if(anctemp[i] < 1) {
  1103. av_log(s->avctx, AV_LOG_ERROR, "DTS-XBR: SYNC ERROR\n");
  1104. return AVERROR_INVALIDDATA;
  1105. }
  1106. }
  1107. /* generate scale factors */
  1108. for(i = 0; i < n_xbr_ch[chset]; i++) {
  1109. const uint32_t *scale_table;
  1110. int nbits;
  1111. int scale_table_size;
  1112. if (s->scalefactor_huffman[chan_base+i] == 6) {
  1113. scale_table = ff_dca_scale_factor_quant7;
  1114. scale_table_size = FF_ARRAY_ELEMS(ff_dca_scale_factor_quant7);
  1115. } else {
  1116. scale_table = ff_dca_scale_factor_quant6;
  1117. scale_table_size = FF_ARRAY_ELEMS(ff_dca_scale_factor_quant6);
  1118. }
  1119. nbits = anctemp[i];
  1120. for(j = 0; j < active_bands[chset][i]; j++) {
  1121. if(abits_high[i][j] > 0) {
  1122. int index = get_bits(&s->gb, nbits);
  1123. if (index >= scale_table_size) {
  1124. av_log(s->avctx, AV_LOG_ERROR, "scale table index %d invalid\n", index);
  1125. return AVERROR_INVALIDDATA;
  1126. }
  1127. scale_table_high[i][j][0] = scale_table[index];
  1128. if(xbr_tmode && s->transition_mode[i][j]) {
  1129. int index = get_bits(&s->gb, nbits);
  1130. if (index >= scale_table_size) {
  1131. av_log(s->avctx, AV_LOG_ERROR, "scale table index %d invalid\n", index);
  1132. return AVERROR_INVALIDDATA;
  1133. }
  1134. scale_table_high[i][j][1] = scale_table[index];
  1135. }
  1136. }
  1137. }
  1138. }
  1139. }
  1140. /* decode audio array for this block */
  1141. for(i = 0; i < n_xbr_ch[chset]; i++) {
  1142. for(j = 0; j < active_bands[chset][i]; j++) {
  1143. const int xbr_abits = abits_high[i][j];
  1144. const float quant_step_size = ff_dca_lossless_quant_d[xbr_abits];
  1145. const int sfi = xbr_tmode && s->transition_mode[i][j] && subsubframe >= s->transition_mode[i][j];
  1146. const float rscale = quant_step_size * scale_table_high[i][j][sfi];
  1147. float *subband_samples = s->subband_samples[k][chan_base+i][j];
  1148. int block[8];
  1149. if(xbr_abits <= 0)
  1150. continue;
  1151. if(xbr_abits > 7) {
  1152. get_array(&s->gb, block, 8, xbr_abits - 3);
  1153. } else {
  1154. int block_code1, block_code2, size, levels, err;
  1155. size = abits_sizes[xbr_abits - 1];
  1156. levels = abits_levels[xbr_abits - 1];
  1157. block_code1 = get_bits(&s->gb, size);
  1158. block_code2 = get_bits(&s->gb, size);
  1159. err = decode_blockcodes(block_code1, block_code2,
  1160. levels, block);
  1161. if (err) {
  1162. av_log(s->avctx, AV_LOG_ERROR,
  1163. "ERROR: DTS-XBR: block code look-up failed\n");
  1164. return AVERROR_INVALIDDATA;
  1165. }
  1166. }
  1167. /* scale & sum into subband */
  1168. for(l = 0; l < 8; l++)
  1169. subband_samples[l] += (float)block[l] * rscale;
  1170. }
  1171. }
  1172. /* check DSYNC marker */
  1173. if(s->aspf || subsubframe == s->subsubframes[subframe] - 1) {
  1174. if(get_bits(&s->gb, 16) != 0xffff) {
  1175. av_log(s->avctx, AV_LOG_ERROR, "DTS-XBR: Didn't get subframe DSYNC\n");
  1176. return AVERROR_INVALIDDATA;
  1177. }
  1178. }
  1179. /* advance sub-sub-frame index */
  1180. if(++subsubframe >= s->subsubframes[subframe]) {
  1181. subsubframe = 0;
  1182. subframe++;
  1183. }
  1184. }
  1185. /* skip to next channel set */
  1186. i = get_bits_count(&s->gb);
  1187. if(start_posn + chset_fsize[chset] * 8 != i) {
  1188. j = start_posn + chset_fsize[chset] * 8 - i;
  1189. if(j < 0 || j >= 8)
  1190. av_log(s->avctx, AV_LOG_ERROR, "DTS-XBR: end of channel set,"
  1191. " skipping further than expected (%d bits)\n", j);
  1192. skip_bits_long(&s->gb, j);
  1193. }
  1194. }
  1195. return 0;
  1196. }
  1197. /* parse initial header for XXCH and dump details */
  1198. int ff_dca_xxch_decode_frame(DCAContext *s)
  1199. {
  1200. int hdr_size, spkmsk_bits, num_chsets, core_spk, hdr_pos;
  1201. int i, chset, base_channel, chstart, fsize[8];
  1202. /* assume header word has already been parsed */
  1203. hdr_pos = get_bits_count(&s->gb) - 32;
  1204. hdr_size = get_bits(&s->gb, 6) + 1;
  1205. /*chhdr_crc =*/ skip_bits1(&s->gb);
  1206. spkmsk_bits = get_bits(&s->gb, 5) + 1;
  1207. num_chsets = get_bits(&s->gb, 2) + 1;
  1208. for (i = 0; i < num_chsets; i++)
  1209. fsize[i] = get_bits(&s->gb, 14) + 1;
  1210. core_spk = get_bits(&s->gb, spkmsk_bits);
  1211. s->xxch_core_spkmask = core_spk;
  1212. s->xxch_nbits_spk_mask = spkmsk_bits;
  1213. s->xxch_dmix_embedded = 0;
  1214. /* skip to the end of the header */
  1215. i = get_bits_count(&s->gb);
  1216. if (hdr_pos + hdr_size * 8 > i)
  1217. skip_bits_long(&s->gb, hdr_pos + hdr_size * 8 - i);
  1218. for (chset = 0; chset < num_chsets; chset++) {
  1219. chstart = get_bits_count(&s->gb);
  1220. base_channel = s->prim_channels;
  1221. s->xxch_chset = chset;
  1222. /* XXCH and Core headers differ, see 6.4.2 "XXCH Channel Set Header" vs.
  1223. 5.3.2 "Primary Audio Coding Header", DTS Spec 1.3.1 */
  1224. dca_parse_audio_coding_header(s, base_channel, 1);
  1225. /* decode channel data */
  1226. for (i = 0; i < (s->sample_blocks / 8); i++) {
  1227. if (dca_decode_block(s, base_channel, i)) {
  1228. av_log(s->avctx, AV_LOG_ERROR,
  1229. "Error decoding DTS-XXCH extension\n");
  1230. continue;
  1231. }
  1232. }
  1233. /* skip to end of this section */
  1234. i = get_bits_count(&s->gb);
  1235. if (chstart + fsize[chset] * 8 > i)
  1236. skip_bits_long(&s->gb, chstart + fsize[chset] * 8 - i);
  1237. }
  1238. s->xxch_chset = num_chsets;
  1239. return 0;
  1240. }
  1241. static float dca_dmix_code(unsigned code)
  1242. {
  1243. int sign = (code >> 8) - 1;
  1244. code &= 0xff;
  1245. return ((ff_dca_dmixtable[code] ^ sign) - sign) * (1.0 / (1 << 15));
  1246. }
  1247. /**
  1248. * Main frame decoding function
  1249. * FIXME add arguments
  1250. */
  1251. static int dca_decode_frame(AVCodecContext *avctx, void *data,
  1252. int *got_frame_ptr, AVPacket *avpkt)
  1253. {
  1254. AVFrame *frame = data;
  1255. const uint8_t *buf = avpkt->data;
  1256. int buf_size = avpkt->size;
  1257. int channel_mask;
  1258. int channel_layout;
  1259. int lfe_samples;
  1260. int num_core_channels = 0;
  1261. int i, ret;
  1262. float **samples_flt;
  1263. float *src_chan;
  1264. float *dst_chan;
  1265. DCAContext *s = avctx->priv_data;
  1266. int core_ss_end;
  1267. int channels, full_channels;
  1268. float scale;
  1269. int achan;
  1270. int chset;
  1271. int mask;
  1272. int lavc;
  1273. int posn;
  1274. int j, k;
  1275. int endch;
  1276. int upsample = 0;
  1277. s->exss_ext_mask = 0;
  1278. s->xch_present = 0;
  1279. s->dca_buffer_size = AVERROR_INVALIDDATA;
  1280. for (i = 0; i < buf_size - 3 && s->dca_buffer_size == AVERROR_INVALIDDATA; i++)
  1281. s->dca_buffer_size = avpriv_dca_convert_bitstream(buf + i, buf_size - i, s->dca_buffer,
  1282. DCA_MAX_FRAME_SIZE + DCA_MAX_EXSS_HEADER_SIZE);
  1283. if (s->dca_buffer_size == AVERROR_INVALIDDATA) {
  1284. av_log(avctx, AV_LOG_ERROR, "Not a valid DCA frame\n");
  1285. return AVERROR_INVALIDDATA;
  1286. }
  1287. if ((ret = dca_parse_frame_header(s)) < 0) {
  1288. // seems like the frame is corrupt, try with the next one
  1289. return ret;
  1290. }
  1291. // set AVCodec values with parsed data
  1292. avctx->sample_rate = s->sample_rate;
  1293. s->profile = FF_PROFILE_DTS;
  1294. for (i = 0; i < (s->sample_blocks / 8); i++) {
  1295. if ((ret = dca_decode_block(s, 0, i))) {
  1296. av_log(avctx, AV_LOG_ERROR, "error decoding block\n");
  1297. return ret;
  1298. }
  1299. }
  1300. /* record number of core channels incase less than max channels are requested */
  1301. num_core_channels = s->prim_channels;
  1302. if (s->prim_channels + !!s->lfe > 2 &&
  1303. avctx->request_channel_layout == AV_CH_LAYOUT_STEREO) {
  1304. /* Stereo downmix coefficients
  1305. *
  1306. * The decoder can only downmix to 2-channel, so we need to ensure
  1307. * embedded downmix coefficients are actually targeting 2-channel.
  1308. */
  1309. if (s->core_downmix && (s->core_downmix_amode == DCA_STEREO ||
  1310. s->core_downmix_amode == DCA_STEREO_TOTAL)) {
  1311. for (i = 0; i < num_core_channels + !!s->lfe; i++) {
  1312. /* Range checked earlier */
  1313. s->downmix_coef[i][0] = dca_dmix_code(s->core_downmix_codes[i][0]);
  1314. s->downmix_coef[i][1] = dca_dmix_code(s->core_downmix_codes[i][1]);
  1315. }
  1316. s->output = s->core_downmix_amode;
  1317. } else {
  1318. int am = s->amode & DCA_CHANNEL_MASK;
  1319. if (am >= FF_ARRAY_ELEMS(ff_dca_default_coeffs)) {
  1320. av_log(s->avctx, AV_LOG_ERROR,
  1321. "Invalid channel mode %d\n", am);
  1322. return AVERROR_INVALIDDATA;
  1323. }
  1324. if (num_core_channels + !!s->lfe >
  1325. FF_ARRAY_ELEMS(ff_dca_default_coeffs[0])) {
  1326. avpriv_request_sample(s->avctx, "Downmixing %d channels",
  1327. s->prim_channels + !!s->lfe);
  1328. return AVERROR_PATCHWELCOME;
  1329. }
  1330. for (i = 0; i < num_core_channels + !!s->lfe; i++) {
  1331. s->downmix_coef[i][0] = ff_dca_default_coeffs[am][i][0];
  1332. s->downmix_coef[i][1] = ff_dca_default_coeffs[am][i][1];
  1333. }
  1334. }
  1335. ff_dlog(s->avctx, "Stereo downmix coeffs:\n");
  1336. for (i = 0; i < num_core_channels + !!s->lfe; i++) {
  1337. ff_dlog(s->avctx, "L, input channel %d = %f\n", i,
  1338. s->downmix_coef[i][0]);
  1339. ff_dlog(s->avctx, "R, input channel %d = %f\n", i,
  1340. s->downmix_coef[i][1]);
  1341. }
  1342. ff_dlog(s->avctx, "\n");
  1343. }
  1344. if (s->ext_coding)
  1345. s->core_ext_mask = ff_dca_ext_audio_descr_mask[s->ext_descr];
  1346. else
  1347. s->core_ext_mask = 0;
  1348. core_ss_end = FFMIN(s->frame_size, s->dca_buffer_size) * 8;
  1349. /* only scan for extensions if ext_descr was unknown or indicated a
  1350. * supported XCh extension */
  1351. if (s->core_ext_mask < 0 || s->core_ext_mask & (DCA_EXT_XCH | DCA_EXT_XXCH)) {
  1352. /* if ext_descr was unknown, clear s->core_ext_mask so that the
  1353. * extensions scan can fill it up */
  1354. s->core_ext_mask = FFMAX(s->core_ext_mask, 0);
  1355. /* extensions start at 32-bit boundaries into bitstream */
  1356. skip_bits_long(&s->gb, (-get_bits_count(&s->gb)) & 31);
  1357. while (core_ss_end - get_bits_count(&s->gb) >= 32) {
  1358. uint32_t bits = get_bits_long(&s->gb, 32);
  1359. switch (bits) {
  1360. case DCA_SYNCWORD_XCH: {
  1361. int ext_amode, xch_fsize;
  1362. s->xch_base_channel = s->prim_channels;
  1363. /* validate sync word using XCHFSIZE field */
  1364. xch_fsize = show_bits(&s->gb, 10);
  1365. if ((s->frame_size != (get_bits_count(&s->gb) >> 3) - 4 + xch_fsize) &&
  1366. (s->frame_size != (get_bits_count(&s->gb) >> 3) - 4 + xch_fsize + 1))
  1367. continue;
  1368. /* skip length-to-end-of-frame field for the moment */
  1369. skip_bits(&s->gb, 10);
  1370. s->core_ext_mask |= DCA_EXT_XCH;
  1371. /* extension amode(number of channels in extension) should be 1 */
  1372. /* AFAIK XCh is not used for more channels */
  1373. if ((ext_amode = get_bits(&s->gb, 4)) != 1) {
  1374. av_log(avctx, AV_LOG_ERROR,
  1375. "XCh extension amode %d not supported!\n",
  1376. ext_amode);
  1377. continue;
  1378. }
  1379. if (s->xch_base_channel < 2) {
  1380. avpriv_request_sample(avctx, "XCh with fewer than 2 base channels");
  1381. continue;
  1382. }
  1383. /* much like core primary audio coding header */
  1384. dca_parse_audio_coding_header(s, s->xch_base_channel, 0);
  1385. for (i = 0; i < (s->sample_blocks / 8); i++)
  1386. if ((ret = dca_decode_block(s, s->xch_base_channel, i))) {
  1387. av_log(avctx, AV_LOG_ERROR, "error decoding XCh extension\n");
  1388. continue;
  1389. }
  1390. s->xch_present = 1;
  1391. break;
  1392. }
  1393. case DCA_SYNCWORD_XXCH:
  1394. /* XXCh: extended channels */
  1395. /* usually found either in core or HD part in DTS-HD HRA streams,
  1396. * but not in DTS-ES which contains XCh extensions instead */
  1397. s->core_ext_mask |= DCA_EXT_XXCH;
  1398. ff_dca_xxch_decode_frame(s);
  1399. break;
  1400. case 0x1d95f262: {
  1401. int fsize96 = show_bits(&s->gb, 12) + 1;
  1402. if (s->frame_size != (get_bits_count(&s->gb) >> 3) - 4 + fsize96)
  1403. continue;
  1404. av_log(avctx, AV_LOG_DEBUG, "X96 extension found at %d bits\n",
  1405. get_bits_count(&s->gb));
  1406. skip_bits(&s->gb, 12);
  1407. av_log(avctx, AV_LOG_DEBUG, "FSIZE96 = %d bytes\n", fsize96);
  1408. av_log(avctx, AV_LOG_DEBUG, "REVNO = %d\n", get_bits(&s->gb, 4));
  1409. s->core_ext_mask |= DCA_EXT_X96;
  1410. break;
  1411. }
  1412. }
  1413. skip_bits_long(&s->gb, (-get_bits_count(&s->gb)) & 31);
  1414. }
  1415. } else {
  1416. /* no supported extensions, skip the rest of the core substream */
  1417. skip_bits_long(&s->gb, core_ss_end - get_bits_count(&s->gb));
  1418. }
  1419. if (s->core_ext_mask & DCA_EXT_X96)
  1420. s->profile = FF_PROFILE_DTS_96_24;
  1421. else if (s->core_ext_mask & (DCA_EXT_XCH | DCA_EXT_XXCH))
  1422. s->profile = FF_PROFILE_DTS_ES;
  1423. /* check for ExSS (HD part) */
  1424. if (s->dca_buffer_size - s->frame_size > 32 &&
  1425. get_bits_long(&s->gb, 32) == DCA_SYNCWORD_SUBSTREAM)
  1426. ff_dca_exss_parse_header(s);
  1427. avctx->profile = s->profile;
  1428. full_channels = channels = s->prim_channels + !!s->lfe;
  1429. /* If we have XXCH then the channel layout is managed differently */
  1430. /* note that XLL will also have another way to do things */
  1431. #if FF_API_REQUEST_CHANNELS
  1432. FF_DISABLE_DEPRECATION_WARNINGS
  1433. if (!(s->core_ext_mask & DCA_EXT_XXCH)
  1434. || (s->core_ext_mask & DCA_EXT_XXCH && avctx->request_channels > 0
  1435. && avctx->request_channels
  1436. < num_core_channels + !!s->lfe + s->xxch_chset_nch[0]))
  1437. {
  1438. FF_ENABLE_DEPRECATION_WARNINGS
  1439. #else
  1440. if (!(s->core_ext_mask & DCA_EXT_XXCH)) {
  1441. #endif
  1442. /* xxx should also do MA extensions */
  1443. if (s->amode < 16) {
  1444. avctx->channel_layout = ff_dca_core_channel_layout[s->amode];
  1445. if (s->prim_channels + !!s->lfe > 2 &&
  1446. avctx->request_channel_layout == AV_CH_LAYOUT_STEREO) {
  1447. /*
  1448. * Neither the core's auxiliary data nor our default tables contain
  1449. * downmix coefficients for the additional channel coded in the XCh
  1450. * extension, so when we're doing a Stereo downmix, don't decode it.
  1451. */
  1452. s->xch_disable = 1;
  1453. }
  1454. #if FF_API_REQUEST_CHANNELS
  1455. FF_DISABLE_DEPRECATION_WARNINGS
  1456. if (s->xch_present && !s->xch_disable &&
  1457. (!avctx->request_channels ||
  1458. avctx->request_channels > num_core_channels + !!s->lfe)) {
  1459. FF_ENABLE_DEPRECATION_WARNINGS
  1460. #else
  1461. if (s->xch_present && !s->xch_disable) {
  1462. #endif
  1463. if (avctx->channel_layout & AV_CH_BACK_CENTER) {
  1464. avpriv_request_sample(avctx, "XCh with Back center channel");
  1465. return AVERROR_INVALIDDATA;
  1466. }
  1467. avctx->channel_layout |= AV_CH_BACK_CENTER;
  1468. if (s->lfe) {
  1469. avctx->channel_layout |= AV_CH_LOW_FREQUENCY;
  1470. s->channel_order_tab = ff_dca_channel_reorder_lfe_xch[s->amode];
  1471. } else {
  1472. s->channel_order_tab = ff_dca_channel_reorder_nolfe_xch[s->amode];
  1473. }
  1474. if (s->channel_order_tab[s->xch_base_channel] < 0)
  1475. return AVERROR_INVALIDDATA;
  1476. } else {
  1477. channels = num_core_channels + !!s->lfe;
  1478. s->xch_present = 0; /* disable further xch processing */
  1479. if (s->lfe) {
  1480. avctx->channel_layout |= AV_CH_LOW_FREQUENCY;
  1481. s->channel_order_tab = ff_dca_channel_reorder_lfe[s->amode];
  1482. } else
  1483. s->channel_order_tab = ff_dca_channel_reorder_nolfe[s->amode];
  1484. }
  1485. if (channels > !!s->lfe &&
  1486. s->channel_order_tab[channels - 1 - !!s->lfe] < 0)
  1487. return AVERROR_INVALIDDATA;
  1488. if (av_get_channel_layout_nb_channels(avctx->channel_layout) != channels) {
  1489. av_log(avctx, AV_LOG_ERROR, "Number of channels %d mismatches layout %d\n", channels, av_get_channel_layout_nb_channels(avctx->channel_layout));
  1490. return AVERROR_INVALIDDATA;
  1491. }
  1492. if (num_core_channels + !!s->lfe > 2 &&
  1493. avctx->request_channel_layout == AV_CH_LAYOUT_STEREO) {
  1494. channels = 2;
  1495. s->output = s->prim_channels == 2 ? s->amode : DCA_STEREO;
  1496. avctx->channel_layout = AV_CH_LAYOUT_STEREO;
  1497. }
  1498. else if (avctx->request_channel_layout & AV_CH_LAYOUT_NATIVE) {
  1499. static const int8_t dca_channel_order_native[9] = { 0, 1, 2, 3, 4, 5, 6, 7, 8 };
  1500. s->channel_order_tab = dca_channel_order_native;
  1501. }
  1502. s->lfe_index = ff_dca_lfe_index[s->amode];
  1503. } else {
  1504. av_log(avctx, AV_LOG_ERROR,
  1505. "Non standard configuration %d !\n", s->amode);
  1506. return AVERROR_INVALIDDATA;
  1507. }
  1508. s->xxch_dmix_embedded = 0;
  1509. } else {
  1510. /* we only get here if an XXCH channel set can be added to the mix */
  1511. channel_mask = s->xxch_core_spkmask;
  1512. #if FF_API_REQUEST_CHANNELS
  1513. FF_DISABLE_DEPRECATION_WARNINGS
  1514. if (avctx->request_channels > 0
  1515. && avctx->request_channels < s->prim_channels) {
  1516. channels = num_core_channels + !!s->lfe;
  1517. for (i = 0; i < s->xxch_chset && channels + s->xxch_chset_nch[i]
  1518. <= avctx->request_channels; i++) {
  1519. channels += s->xxch_chset_nch[i];
  1520. channel_mask |= s->xxch_spk_masks[i];
  1521. }
  1522. FF_ENABLE_DEPRECATION_WARNINGS
  1523. } else
  1524. #endif
  1525. {
  1526. channels = s->prim_channels + !!s->lfe;
  1527. for (i = 0; i < s->xxch_chset; i++) {
  1528. channel_mask |= s->xxch_spk_masks[i];
  1529. }
  1530. }
  1531. /* Given the DTS spec'ed channel mask, generate an avcodec version */
  1532. channel_layout = 0;
  1533. for (i = 0; i < s->xxch_nbits_spk_mask; ++i) {
  1534. if (channel_mask & (1 << i)) {
  1535. channel_layout |= ff_dca_map_xxch_to_native[i];
  1536. }
  1537. }
  1538. /* make sure that we have managed to get equivalent dts/avcodec channel
  1539. * masks in some sense -- unfortunately some channels could overlap */
  1540. if (av_popcount(channel_mask) != av_popcount(channel_layout)) {
  1541. av_log(avctx, AV_LOG_DEBUG,
  1542. "DTS-XXCH: Inconsistent avcodec/dts channel layouts\n");
  1543. return AVERROR_INVALIDDATA;
  1544. }
  1545. avctx->channel_layout = channel_layout;
  1546. if (!(avctx->request_channel_layout & AV_CH_LAYOUT_NATIVE)) {
  1547. /* Estimate DTS --> avcodec ordering table */
  1548. for (chset = -1, j = 0; chset < s->xxch_chset; ++chset) {
  1549. mask = chset >= 0 ? s->xxch_spk_masks[chset]
  1550. : s->xxch_core_spkmask;
  1551. for (i = 0; i < s->xxch_nbits_spk_mask; i++) {
  1552. if (mask & ~(DCA_XXCH_LFE1 | DCA_XXCH_LFE2) & (1 << i)) {
  1553. lavc = ff_dca_map_xxch_to_native[i];
  1554. posn = av_popcount(channel_layout & (lavc - 1));
  1555. s->xxch_order_tab[j++] = posn;
  1556. }
  1557. }
  1558. }
  1559. s->lfe_index = av_popcount(channel_layout & (AV_CH_LOW_FREQUENCY-1));
  1560. } else { /* native ordering */
  1561. for (i = 0; i < channels; i++)
  1562. s->xxch_order_tab[i] = i;
  1563. s->lfe_index = channels - 1;
  1564. }
  1565. s->channel_order_tab = s->xxch_order_tab;
  1566. }
  1567. /* get output buffer */
  1568. frame->nb_samples = 256 * (s->sample_blocks / 8);
  1569. if (s->exss_ext_mask & DCA_EXT_EXSS_XLL) {
  1570. int xll_nb_samples = s->xll_segments * s->xll_smpl_in_seg;
  1571. /* Check for invalid/unsupported conditions first */
  1572. if (s->xll_residual_channels > channels) {
  1573. av_log(s->avctx, AV_LOG_WARNING,
  1574. "DCA: too many residual channels (%d, core channels %d). Disabling XLL\n",
  1575. s->xll_residual_channels, channels);
  1576. s->exss_ext_mask &= ~DCA_EXT_EXSS_XLL;
  1577. } else if (xll_nb_samples != frame->nb_samples &&
  1578. 2 * frame->nb_samples != xll_nb_samples) {
  1579. av_log(s->avctx, AV_LOG_WARNING,
  1580. "DCA: unsupported upsampling (%d XLL samples, %d core samples). Disabling XLL\n",
  1581. xll_nb_samples, frame->nb_samples);
  1582. s->exss_ext_mask &= ~DCA_EXT_EXSS_XLL;
  1583. } else {
  1584. if (2 * frame->nb_samples == xll_nb_samples) {
  1585. av_log(s->avctx, AV_LOG_INFO,
  1586. "XLL: upsampling core channels by a factor of 2\n");
  1587. upsample = 1;
  1588. frame->nb_samples = xll_nb_samples;
  1589. // FIXME: Is it good enough to copy from the first channel set?
  1590. avctx->sample_rate = s->xll_chsets[0].sampling_frequency;
  1591. }
  1592. /* If downmixing to stereo, don't decode additional channels.
  1593. * FIXME: Using the xch_disable flag for this doesn't seem right. */
  1594. if (!s->xch_disable)
  1595. channels = s->xll_channels;
  1596. }
  1597. }
  1598. if (avctx->channels != channels) {
  1599. if (avctx->channels)
  1600. av_log(avctx, AV_LOG_INFO, "Number of channels changed in DCA decoder (%d -> %d)\n", avctx->channels, channels);
  1601. avctx->channels = channels;
  1602. }
  1603. /* FIXME: This is an ugly hack, to just revert to the default
  1604. * layout if we have additional channels. Need to convert the XLL
  1605. * channel masks to ffmpeg channel_layout mask. */
  1606. if (av_get_channel_layout_nb_channels(avctx->channel_layout) != avctx->channels)
  1607. avctx->channel_layout = 0;
  1608. if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
  1609. return ret;
  1610. samples_flt = (float **) frame->extended_data;
  1611. /* allocate buffer for extra channels if downmixing */
  1612. if (avctx->channels < full_channels) {
  1613. ret = av_samples_get_buffer_size(NULL, full_channels - channels,
  1614. frame->nb_samples,
  1615. avctx->sample_fmt, 0);
  1616. if (ret < 0)
  1617. return ret;
  1618. av_fast_malloc(&s->extra_channels_buffer,
  1619. &s->extra_channels_buffer_size, ret);
  1620. if (!s->extra_channels_buffer)
  1621. return AVERROR(ENOMEM);
  1622. ret = av_samples_fill_arrays((uint8_t **) s->extra_channels, NULL,
  1623. s->extra_channels_buffer,
  1624. full_channels - channels,
  1625. frame->nb_samples, avctx->sample_fmt, 0);
  1626. if (ret < 0)
  1627. return ret;
  1628. }
  1629. /* filter to get final output */
  1630. for (i = 0; i < (s->sample_blocks / 8); i++) {
  1631. int ch;
  1632. unsigned block = upsample ? 512 : 256;
  1633. for (ch = 0; ch < channels; ch++)
  1634. s->samples_chanptr[ch] = samples_flt[ch] + i * block;
  1635. for (; ch < full_channels; ch++)
  1636. s->samples_chanptr[ch] = s->extra_channels[ch - channels] + i * block;
  1637. dca_filter_channels(s, i, upsample);
  1638. /* If this was marked as a DTS-ES stream we need to subtract back- */
  1639. /* channel from SL & SR to remove matrixed back-channel signal */
  1640. if ((s->source_pcm_res & 1) && s->xch_present) {
  1641. float *back_chan = s->samples_chanptr[s->channel_order_tab[s->xch_base_channel]];
  1642. float *lt_chan = s->samples_chanptr[s->channel_order_tab[s->xch_base_channel - 2]];
  1643. float *rt_chan = s->samples_chanptr[s->channel_order_tab[s->xch_base_channel - 1]];
  1644. s->fdsp->vector_fmac_scalar(lt_chan, back_chan, -M_SQRT1_2, 256);
  1645. s->fdsp->vector_fmac_scalar(rt_chan, back_chan, -M_SQRT1_2, 256);
  1646. }
  1647. /* If stream contains XXCH, we might need to undo an embedded downmix */
  1648. if (s->xxch_dmix_embedded) {
  1649. /* Loop over channel sets in turn */
  1650. ch = num_core_channels;
  1651. for (chset = 0; chset < s->xxch_chset; chset++) {
  1652. endch = ch + s->xxch_chset_nch[chset];
  1653. mask = s->xxch_dmix_embedded;
  1654. /* undo downmix */
  1655. for (j = ch; j < endch; j++) {
  1656. if (mask & (1 << j)) { /* this channel has been mixed-out */
  1657. src_chan = s->samples_chanptr[s->channel_order_tab[j]];
  1658. for (k = 0; k < endch; k++) {
  1659. achan = s->channel_order_tab[k];
  1660. scale = s->xxch_dmix_coeff[j][k];
  1661. if (scale != 0.0) {
  1662. dst_chan = s->samples_chanptr[achan];
  1663. s->fdsp->vector_fmac_scalar(dst_chan, src_chan,
  1664. -scale, 256);
  1665. }
  1666. }
  1667. }
  1668. }
  1669. /* if a downmix has been embedded then undo the pre-scaling */
  1670. if ((mask & (1 << ch)) && s->xxch_dmix_sf[chset] != 1.0f) {
  1671. scale = s->xxch_dmix_sf[chset];
  1672. for (j = 0; j < ch; j++) {
  1673. src_chan = s->samples_chanptr[s->channel_order_tab[j]];
  1674. for (k = 0; k < 256; k++)
  1675. src_chan[k] *= scale;
  1676. }
  1677. /* LFE channel is always part of core, scale if it exists */
  1678. if (s->lfe) {
  1679. src_chan = s->samples_chanptr[s->lfe_index];
  1680. for (k = 0; k < 256; k++)
  1681. src_chan[k] *= scale;
  1682. }
  1683. }
  1684. ch = endch;
  1685. }
  1686. }
  1687. }
  1688. /* update lfe history */
  1689. lfe_samples = 2 * s->lfe * (s->sample_blocks / 8);
  1690. for (i = 0; i < 2 * s->lfe * 4; i++)
  1691. s->lfe_data[i] = s->lfe_data[i + lfe_samples];
  1692. if (s->exss_ext_mask & DCA_EXT_EXSS_XLL) {
  1693. ret = ff_dca_xll_decode_audio(s, frame);
  1694. if (ret < 0)
  1695. return ret;
  1696. }
  1697. /* AVMatrixEncoding
  1698. *
  1699. * DCA_STEREO_TOTAL (Lt/Rt) is equivalent to Dolby Surround */
  1700. ret = ff_side_data_update_matrix_encoding(frame,
  1701. (s->output & ~DCA_LFE) == DCA_STEREO_TOTAL ?
  1702. AV_MATRIX_ENCODING_DOLBY : AV_MATRIX_ENCODING_NONE);
  1703. if (ret < 0)
  1704. return ret;
  1705. if ( avctx->profile != FF_PROFILE_DTS_HD_MA
  1706. && avctx->profile != FF_PROFILE_DTS_HD_HRA)
  1707. avctx->bit_rate = s->bit_rate;
  1708. *got_frame_ptr = 1;
  1709. return buf_size;
  1710. }
  1711. /**
  1712. * DCA initialization
  1713. *
  1714. * @param avctx pointer to the AVCodecContext
  1715. */
  1716. static av_cold int dca_decode_init(AVCodecContext *avctx)
  1717. {
  1718. DCAContext *s = avctx->priv_data;
  1719. s->avctx = avctx;
  1720. dca_init_vlcs();
  1721. s->fdsp = avpriv_float_dsp_alloc(avctx->flags & AV_CODEC_FLAG_BITEXACT);
  1722. if (!s->fdsp)
  1723. return AVERROR(ENOMEM);
  1724. ff_mdct_init(&s->imdct, 6, 1, 1.0);
  1725. ff_synth_filter_init(&s->synth);
  1726. ff_dcadsp_init(&s->dcadsp);
  1727. ff_fmt_convert_init(&s->fmt_conv, avctx);
  1728. avctx->sample_fmt = AV_SAMPLE_FMT_FLTP;
  1729. /* allow downmixing to stereo */
  1730. #if FF_API_REQUEST_CHANNELS
  1731. FF_DISABLE_DEPRECATION_WARNINGS
  1732. if (avctx->request_channels == 2)
  1733. avctx->request_channel_layout = AV_CH_LAYOUT_STEREO;
  1734. FF_ENABLE_DEPRECATION_WARNINGS
  1735. #endif
  1736. if (avctx->channels > 2 &&
  1737. avctx->request_channel_layout == AV_CH_LAYOUT_STEREO)
  1738. avctx->channels = 2;
  1739. return 0;
  1740. }
  1741. static av_cold int dca_decode_end(AVCodecContext *avctx)
  1742. {
  1743. DCAContext *s = avctx->priv_data;
  1744. ff_mdct_end(&s->imdct);
  1745. av_freep(&s->extra_channels_buffer);
  1746. av_freep(&s->fdsp);
  1747. av_freep(&s->xll_sample_buf);
  1748. av_freep(&s->qmf64_table);
  1749. return 0;
  1750. }
  1751. static const AVProfile profiles[] = {
  1752. { FF_PROFILE_DTS, "DTS" },
  1753. { FF_PROFILE_DTS_ES, "DTS-ES" },
  1754. { FF_PROFILE_DTS_96_24, "DTS 96/24" },
  1755. { FF_PROFILE_DTS_HD_HRA, "DTS-HD HRA" },
  1756. { FF_PROFILE_DTS_HD_MA, "DTS-HD MA" },
  1757. { FF_PROFILE_UNKNOWN },
  1758. };
  1759. static const AVOption options[] = {
  1760. { "disable_xch", "disable decoding of the XCh extension", offsetof(DCAContext, xch_disable), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 1, AV_OPT_FLAG_DECODING_PARAM | AV_OPT_FLAG_AUDIO_PARAM },
  1761. { "disable_xll", "disable decoding of the XLL extension", offsetof(DCAContext, xll_disable), AV_OPT_TYPE_INT, { .i64 = 1 }, 0, 1, AV_OPT_FLAG_DECODING_PARAM | AV_OPT_FLAG_AUDIO_PARAM },
  1762. { NULL },
  1763. };
  1764. static const AVClass dca_decoder_class = {
  1765. .class_name = "DCA decoder",
  1766. .item_name = av_default_item_name,
  1767. .option = options,
  1768. .version = LIBAVUTIL_VERSION_INT,
  1769. .category = AV_CLASS_CATEGORY_DECODER,
  1770. };
  1771. AVCodec ff_dca_decoder = {
  1772. .name = "dca",
  1773. .long_name = NULL_IF_CONFIG_SMALL("DCA (DTS Coherent Acoustics)"),
  1774. .type = AVMEDIA_TYPE_AUDIO,
  1775. .id = AV_CODEC_ID_DTS,
  1776. .priv_data_size = sizeof(DCAContext),
  1777. .init = dca_decode_init,
  1778. .decode = dca_decode_frame,
  1779. .close = dca_decode_end,
  1780. .capabilities = AV_CODEC_CAP_CHANNEL_CONF | AV_CODEC_CAP_DR1,
  1781. .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
  1782. AV_SAMPLE_FMT_NONE },
  1783. .profiles = NULL_IF_CONFIG_SMALL(profiles),
  1784. .priv_class = &dca_decoder_class,
  1785. };