You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1858 lines
66KB

  1. /*
  2. * MPEG-4 ALS decoder
  3. * Copyright (c) 2009 Thilo Borgmann <thilo.borgmann _at_ mail.de>
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * MPEG-4 ALS decoder
  24. * @author Thilo Borgmann <thilo.borgmann _at_ mail.de>
  25. */
  26. #include <inttypes.h>
  27. #include "avcodec.h"
  28. #include "get_bits.h"
  29. #include "unary.h"
  30. #include "mpeg4audio.h"
  31. #include "bytestream.h"
  32. #include "bgmc.h"
  33. #include "bswapdsp.h"
  34. #include "internal.h"
  35. #include "libavutil/samplefmt.h"
  36. #include "libavutil/crc.h"
  37. #include <stdint.h>
  38. /** Rice parameters and corresponding index offsets for decoding the
  39. * indices of scaled PARCOR values. The table chosen is set globally
  40. * by the encoder and stored in ALSSpecificConfig.
  41. */
  42. static const int8_t parcor_rice_table[3][20][2] = {
  43. { {-52, 4}, {-29, 5}, {-31, 4}, { 19, 4}, {-16, 4},
  44. { 12, 3}, { -7, 3}, { 9, 3}, { -5, 3}, { 6, 3},
  45. { -4, 3}, { 3, 3}, { -3, 2}, { 3, 2}, { -2, 2},
  46. { 3, 2}, { -1, 2}, { 2, 2}, { -1, 2}, { 2, 2} },
  47. { {-58, 3}, {-42, 4}, {-46, 4}, { 37, 5}, {-36, 4},
  48. { 29, 4}, {-29, 4}, { 25, 4}, {-23, 4}, { 20, 4},
  49. {-17, 4}, { 16, 4}, {-12, 4}, { 12, 3}, {-10, 4},
  50. { 7, 3}, { -4, 4}, { 3, 3}, { -1, 3}, { 1, 3} },
  51. { {-59, 3}, {-45, 5}, {-50, 4}, { 38, 4}, {-39, 4},
  52. { 32, 4}, {-30, 4}, { 25, 3}, {-23, 3}, { 20, 3},
  53. {-20, 3}, { 16, 3}, {-13, 3}, { 10, 3}, { -7, 3},
  54. { 3, 3}, { 0, 3}, { -1, 3}, { 2, 3}, { -1, 2} }
  55. };
  56. /** Scaled PARCOR values used for the first two PARCOR coefficients.
  57. * To be indexed by the Rice coded indices.
  58. * Generated by: parcor_scaled_values[i] = 32 + ((i * (i+1)) << 7) - (1 << 20)
  59. * Actual values are divided by 32 in order to be stored in 16 bits.
  60. */
  61. static const int16_t parcor_scaled_values[] = {
  62. -1048544 / 32, -1048288 / 32, -1047776 / 32, -1047008 / 32,
  63. -1045984 / 32, -1044704 / 32, -1043168 / 32, -1041376 / 32,
  64. -1039328 / 32, -1037024 / 32, -1034464 / 32, -1031648 / 32,
  65. -1028576 / 32, -1025248 / 32, -1021664 / 32, -1017824 / 32,
  66. -1013728 / 32, -1009376 / 32, -1004768 / 32, -999904 / 32,
  67. -994784 / 32, -989408 / 32, -983776 / 32, -977888 / 32,
  68. -971744 / 32, -965344 / 32, -958688 / 32, -951776 / 32,
  69. -944608 / 32, -937184 / 32, -929504 / 32, -921568 / 32,
  70. -913376 / 32, -904928 / 32, -896224 / 32, -887264 / 32,
  71. -878048 / 32, -868576 / 32, -858848 / 32, -848864 / 32,
  72. -838624 / 32, -828128 / 32, -817376 / 32, -806368 / 32,
  73. -795104 / 32, -783584 / 32, -771808 / 32, -759776 / 32,
  74. -747488 / 32, -734944 / 32, -722144 / 32, -709088 / 32,
  75. -695776 / 32, -682208 / 32, -668384 / 32, -654304 / 32,
  76. -639968 / 32, -625376 / 32, -610528 / 32, -595424 / 32,
  77. -580064 / 32, -564448 / 32, -548576 / 32, -532448 / 32,
  78. -516064 / 32, -499424 / 32, -482528 / 32, -465376 / 32,
  79. -447968 / 32, -430304 / 32, -412384 / 32, -394208 / 32,
  80. -375776 / 32, -357088 / 32, -338144 / 32, -318944 / 32,
  81. -299488 / 32, -279776 / 32, -259808 / 32, -239584 / 32,
  82. -219104 / 32, -198368 / 32, -177376 / 32, -156128 / 32,
  83. -134624 / 32, -112864 / 32, -90848 / 32, -68576 / 32,
  84. -46048 / 32, -23264 / 32, -224 / 32, 23072 / 32,
  85. 46624 / 32, 70432 / 32, 94496 / 32, 118816 / 32,
  86. 143392 / 32, 168224 / 32, 193312 / 32, 218656 / 32,
  87. 244256 / 32, 270112 / 32, 296224 / 32, 322592 / 32,
  88. 349216 / 32, 376096 / 32, 403232 / 32, 430624 / 32,
  89. 458272 / 32, 486176 / 32, 514336 / 32, 542752 / 32,
  90. 571424 / 32, 600352 / 32, 629536 / 32, 658976 / 32,
  91. 688672 / 32, 718624 / 32, 748832 / 32, 779296 / 32,
  92. 810016 / 32, 840992 / 32, 872224 / 32, 903712 / 32,
  93. 935456 / 32, 967456 / 32, 999712 / 32, 1032224 / 32
  94. };
  95. /** Gain values of p(0) for long-term prediction.
  96. * To be indexed by the Rice coded indices.
  97. */
  98. static const uint8_t ltp_gain_values [4][4] = {
  99. { 0, 8, 16, 24},
  100. {32, 40, 48, 56},
  101. {64, 70, 76, 82},
  102. {88, 92, 96, 100}
  103. };
  104. /** Inter-channel weighting factors for multi-channel correlation.
  105. * To be indexed by the Rice coded indices.
  106. */
  107. static const int16_t mcc_weightings[] = {
  108. 204, 192, 179, 166, 153, 140, 128, 115,
  109. 102, 89, 76, 64, 51, 38, 25, 12,
  110. 0, -12, -25, -38, -51, -64, -76, -89,
  111. -102, -115, -128, -140, -153, -166, -179, -192
  112. };
  113. /** Tail codes used in arithmetic coding using block Gilbert-Moore codes.
  114. */
  115. static const uint8_t tail_code[16][6] = {
  116. { 74, 44, 25, 13, 7, 3},
  117. { 68, 42, 24, 13, 7, 3},
  118. { 58, 39, 23, 13, 7, 3},
  119. {126, 70, 37, 19, 10, 5},
  120. {132, 70, 37, 20, 10, 5},
  121. {124, 70, 38, 20, 10, 5},
  122. {120, 69, 37, 20, 11, 5},
  123. {116, 67, 37, 20, 11, 5},
  124. {108, 66, 36, 20, 10, 5},
  125. {102, 62, 36, 20, 10, 5},
  126. { 88, 58, 34, 19, 10, 5},
  127. {162, 89, 49, 25, 13, 7},
  128. {156, 87, 49, 26, 14, 7},
  129. {150, 86, 47, 26, 14, 7},
  130. {142, 84, 47, 26, 14, 7},
  131. {131, 79, 46, 26, 14, 7}
  132. };
  133. enum RA_Flag {
  134. RA_FLAG_NONE,
  135. RA_FLAG_FRAMES,
  136. RA_FLAG_HEADER
  137. };
  138. typedef struct ALSSpecificConfig {
  139. uint32_t samples; ///< number of samples, 0xFFFFFFFF if unknown
  140. int resolution; ///< 000 = 8-bit; 001 = 16-bit; 010 = 24-bit; 011 = 32-bit
  141. int floating; ///< 1 = IEEE 32-bit floating-point, 0 = integer
  142. int msb_first; ///< 1 = original CRC calculated on big-endian system, 0 = little-endian
  143. int frame_length; ///< frame length for each frame (last frame may differ)
  144. int ra_distance; ///< distance between RA frames (in frames, 0...255)
  145. enum RA_Flag ra_flag; ///< indicates where the size of ra units is stored
  146. int adapt_order; ///< adaptive order: 1 = on, 0 = off
  147. int coef_table; ///< table index of Rice code parameters
  148. int long_term_prediction; ///< long term prediction (LTP): 1 = on, 0 = off
  149. int max_order; ///< maximum prediction order (0..1023)
  150. int block_switching; ///< number of block switching levels
  151. int bgmc; ///< "Block Gilbert-Moore Code": 1 = on, 0 = off (Rice coding only)
  152. int sb_part; ///< sub-block partition
  153. int joint_stereo; ///< joint stereo: 1 = on, 0 = off
  154. int mc_coding; ///< extended inter-channel coding (multi channel coding): 1 = on, 0 = off
  155. int chan_config; ///< indicates that a chan_config_info field is present
  156. int chan_sort; ///< channel rearrangement: 1 = on, 0 = off
  157. int rlslms; ///< use "Recursive Least Square-Least Mean Square" predictor: 1 = on, 0 = off
  158. int chan_config_info; ///< mapping of channels to loudspeaker locations. Unused until setting channel configuration is implemented.
  159. int *chan_pos; ///< original channel positions
  160. int crc_enabled; ///< enable Cyclic Redundancy Checksum
  161. } ALSSpecificConfig;
  162. typedef struct ALSChannelData {
  163. int stop_flag;
  164. int master_channel;
  165. int time_diff_flag;
  166. int time_diff_sign;
  167. int time_diff_index;
  168. int weighting[6];
  169. } ALSChannelData;
  170. typedef struct ALSDecContext {
  171. AVCodecContext *avctx;
  172. ALSSpecificConfig sconf;
  173. GetBitContext gb;
  174. BswapDSPContext bdsp;
  175. const AVCRC *crc_table;
  176. uint32_t crc_org; ///< CRC value of the original input data
  177. uint32_t crc; ///< CRC value calculated from decoded data
  178. unsigned int cur_frame_length; ///< length of the current frame to decode
  179. unsigned int frame_id; ///< the frame ID / number of the current frame
  180. unsigned int js_switch; ///< if true, joint-stereo decoding is enforced
  181. unsigned int cs_switch; ///< if true, channel rearrangement is done
  182. unsigned int num_blocks; ///< number of blocks used in the current frame
  183. unsigned int s_max; ///< maximum Rice parameter allowed in entropy coding
  184. uint8_t *bgmc_lut; ///< pointer at lookup tables used for BGMC
  185. int *bgmc_lut_status; ///< pointer at lookup table status flags used for BGMC
  186. int ltp_lag_length; ///< number of bits used for ltp lag value
  187. int *const_block; ///< contains const_block flags for all channels
  188. unsigned int *shift_lsbs; ///< contains shift_lsbs flags for all channels
  189. unsigned int *opt_order; ///< contains opt_order flags for all channels
  190. int *store_prev_samples; ///< contains store_prev_samples flags for all channels
  191. int *use_ltp; ///< contains use_ltp flags for all channels
  192. int *ltp_lag; ///< contains ltp lag values for all channels
  193. int **ltp_gain; ///< gain values for ltp 5-tap filter for a channel
  194. int *ltp_gain_buffer; ///< contains all gain values for ltp 5-tap filter
  195. int32_t **quant_cof; ///< quantized parcor coefficients for a channel
  196. int32_t *quant_cof_buffer; ///< contains all quantized parcor coefficients
  197. int32_t **lpc_cof; ///< coefficients of the direct form prediction filter for a channel
  198. int32_t *lpc_cof_buffer; ///< contains all coefficients of the direct form prediction filter
  199. int32_t *lpc_cof_reversed_buffer; ///< temporary buffer to set up a reversed versio of lpc_cof_buffer
  200. ALSChannelData **chan_data; ///< channel data for multi-channel correlation
  201. ALSChannelData *chan_data_buffer; ///< contains channel data for all channels
  202. int *reverted_channels; ///< stores a flag for each reverted channel
  203. int32_t *prev_raw_samples; ///< contains unshifted raw samples from the previous block
  204. int32_t **raw_samples; ///< decoded raw samples for each channel
  205. int32_t *raw_buffer; ///< contains all decoded raw samples including carryover samples
  206. uint8_t *crc_buffer; ///< buffer of byte order corrected samples used for CRC check
  207. } ALSDecContext;
  208. typedef struct ALSBlockData {
  209. unsigned int block_length; ///< number of samples within the block
  210. unsigned int ra_block; ///< if true, this is a random access block
  211. int *const_block; ///< if true, this is a constant value block
  212. int js_blocks; ///< true if this block contains a difference signal
  213. unsigned int *shift_lsbs; ///< shift of values for this block
  214. unsigned int *opt_order; ///< prediction order of this block
  215. int *store_prev_samples;///< if true, carryover samples have to be stored
  216. int *use_ltp; ///< if true, long-term prediction is used
  217. int *ltp_lag; ///< lag value for long-term prediction
  218. int *ltp_gain; ///< gain values for ltp 5-tap filter
  219. int32_t *quant_cof; ///< quantized parcor coefficients
  220. int32_t *lpc_cof; ///< coefficients of the direct form prediction
  221. int32_t *raw_samples; ///< decoded raw samples / residuals for this block
  222. int32_t *prev_raw_samples; ///< contains unshifted raw samples from the previous block
  223. int32_t *raw_other; ///< decoded raw samples of the other channel of a channel pair
  224. } ALSBlockData;
  225. static av_cold void dprint_specific_config(ALSDecContext *ctx)
  226. {
  227. #ifdef DEBUG
  228. AVCodecContext *avctx = ctx->avctx;
  229. ALSSpecificConfig *sconf = &ctx->sconf;
  230. ff_dlog(avctx, "resolution = %i\n", sconf->resolution);
  231. ff_dlog(avctx, "floating = %i\n", sconf->floating);
  232. ff_dlog(avctx, "frame_length = %i\n", sconf->frame_length);
  233. ff_dlog(avctx, "ra_distance = %i\n", sconf->ra_distance);
  234. ff_dlog(avctx, "ra_flag = %i\n", sconf->ra_flag);
  235. ff_dlog(avctx, "adapt_order = %i\n", sconf->adapt_order);
  236. ff_dlog(avctx, "coef_table = %i\n", sconf->coef_table);
  237. ff_dlog(avctx, "long_term_prediction = %i\n", sconf->long_term_prediction);
  238. ff_dlog(avctx, "max_order = %i\n", sconf->max_order);
  239. ff_dlog(avctx, "block_switching = %i\n", sconf->block_switching);
  240. ff_dlog(avctx, "bgmc = %i\n", sconf->bgmc);
  241. ff_dlog(avctx, "sb_part = %i\n", sconf->sb_part);
  242. ff_dlog(avctx, "joint_stereo = %i\n", sconf->joint_stereo);
  243. ff_dlog(avctx, "mc_coding = %i\n", sconf->mc_coding);
  244. ff_dlog(avctx, "chan_config = %i\n", sconf->chan_config);
  245. ff_dlog(avctx, "chan_sort = %i\n", sconf->chan_sort);
  246. ff_dlog(avctx, "RLSLMS = %i\n", sconf->rlslms);
  247. ff_dlog(avctx, "chan_config_info = %i\n", sconf->chan_config_info);
  248. #endif
  249. }
  250. /** Read an ALSSpecificConfig from a buffer into the output struct.
  251. */
  252. static av_cold int read_specific_config(ALSDecContext *ctx)
  253. {
  254. GetBitContext gb;
  255. uint64_t ht_size;
  256. int i, config_offset;
  257. MPEG4AudioConfig m4ac = {0};
  258. ALSSpecificConfig *sconf = &ctx->sconf;
  259. AVCodecContext *avctx = ctx->avctx;
  260. uint32_t als_id, header_size, trailer_size;
  261. int ret;
  262. if ((ret = init_get_bits8(&gb, avctx->extradata, avctx->extradata_size)) < 0)
  263. return ret;
  264. config_offset = avpriv_mpeg4audio_get_config(&m4ac, avctx->extradata,
  265. avctx->extradata_size * 8, 1);
  266. if (config_offset < 0)
  267. return AVERROR_INVALIDDATA;
  268. skip_bits_long(&gb, config_offset);
  269. if (get_bits_left(&gb) < (30 << 3))
  270. return AVERROR_INVALIDDATA;
  271. // read the fixed items
  272. als_id = get_bits_long(&gb, 32);
  273. avctx->sample_rate = m4ac.sample_rate;
  274. skip_bits_long(&gb, 32); // sample rate already known
  275. sconf->samples = get_bits_long(&gb, 32);
  276. avctx->channels = m4ac.channels;
  277. skip_bits(&gb, 16); // number of channels already known
  278. skip_bits(&gb, 3); // skip file_type
  279. sconf->resolution = get_bits(&gb, 3);
  280. sconf->floating = get_bits1(&gb);
  281. sconf->msb_first = get_bits1(&gb);
  282. sconf->frame_length = get_bits(&gb, 16) + 1;
  283. sconf->ra_distance = get_bits(&gb, 8);
  284. sconf->ra_flag = get_bits(&gb, 2);
  285. sconf->adapt_order = get_bits1(&gb);
  286. sconf->coef_table = get_bits(&gb, 2);
  287. sconf->long_term_prediction = get_bits1(&gb);
  288. sconf->max_order = get_bits(&gb, 10);
  289. sconf->block_switching = get_bits(&gb, 2);
  290. sconf->bgmc = get_bits1(&gb);
  291. sconf->sb_part = get_bits1(&gb);
  292. sconf->joint_stereo = get_bits1(&gb);
  293. sconf->mc_coding = get_bits1(&gb);
  294. sconf->chan_config = get_bits1(&gb);
  295. sconf->chan_sort = get_bits1(&gb);
  296. sconf->crc_enabled = get_bits1(&gb);
  297. sconf->rlslms = get_bits1(&gb);
  298. skip_bits(&gb, 5); // skip 5 reserved bits
  299. skip_bits1(&gb); // skip aux_data_enabled
  300. // check for ALSSpecificConfig struct
  301. if (als_id != MKBETAG('A','L','S','\0'))
  302. return AVERROR_INVALIDDATA;
  303. ctx->cur_frame_length = sconf->frame_length;
  304. // read channel config
  305. if (sconf->chan_config)
  306. sconf->chan_config_info = get_bits(&gb, 16);
  307. // TODO: use this to set avctx->channel_layout
  308. // read channel sorting
  309. if (sconf->chan_sort && avctx->channels > 1) {
  310. int chan_pos_bits = av_ceil_log2(avctx->channels);
  311. int bits_needed = avctx->channels * chan_pos_bits + 7;
  312. if (get_bits_left(&gb) < bits_needed)
  313. return AVERROR_INVALIDDATA;
  314. if (!(sconf->chan_pos = av_malloc_array(avctx->channels, sizeof(*sconf->chan_pos))))
  315. return AVERROR(ENOMEM);
  316. ctx->cs_switch = 1;
  317. for (i = 0; i < avctx->channels; i++) {
  318. sconf->chan_pos[i] = -1;
  319. }
  320. for (i = 0; i < avctx->channels; i++) {
  321. int idx;
  322. idx = get_bits(&gb, chan_pos_bits);
  323. if (idx >= avctx->channels || sconf->chan_pos[idx] != -1) {
  324. av_log(avctx, AV_LOG_WARNING, "Invalid channel reordering.\n");
  325. ctx->cs_switch = 0;
  326. break;
  327. }
  328. sconf->chan_pos[idx] = i;
  329. }
  330. align_get_bits(&gb);
  331. }
  332. // read fixed header and trailer sizes,
  333. // if size = 0xFFFFFFFF then there is no data field!
  334. if (get_bits_left(&gb) < 64)
  335. return AVERROR_INVALIDDATA;
  336. header_size = get_bits_long(&gb, 32);
  337. trailer_size = get_bits_long(&gb, 32);
  338. if (header_size == 0xFFFFFFFF)
  339. header_size = 0;
  340. if (trailer_size == 0xFFFFFFFF)
  341. trailer_size = 0;
  342. ht_size = ((int64_t)(header_size) + (int64_t)(trailer_size)) << 3;
  343. // skip the header and trailer data
  344. if (get_bits_left(&gb) < ht_size)
  345. return AVERROR_INVALIDDATA;
  346. if (ht_size > INT32_MAX)
  347. return AVERROR_PATCHWELCOME;
  348. skip_bits_long(&gb, ht_size);
  349. // initialize CRC calculation
  350. if (sconf->crc_enabled) {
  351. if (get_bits_left(&gb) < 32)
  352. return AVERROR_INVALIDDATA;
  353. if (avctx->err_recognition & (AV_EF_CRCCHECK|AV_EF_CAREFUL)) {
  354. ctx->crc_table = av_crc_get_table(AV_CRC_32_IEEE_LE);
  355. ctx->crc = 0xFFFFFFFF;
  356. ctx->crc_org = ~get_bits_long(&gb, 32);
  357. } else
  358. skip_bits_long(&gb, 32);
  359. }
  360. // no need to read the rest of ALSSpecificConfig (ra_unit_size & aux data)
  361. dprint_specific_config(ctx);
  362. return 0;
  363. }
  364. /** Check the ALSSpecificConfig for unsupported features.
  365. */
  366. static int check_specific_config(ALSDecContext *ctx)
  367. {
  368. ALSSpecificConfig *sconf = &ctx->sconf;
  369. int error = 0;
  370. // report unsupported feature and set error value
  371. #define MISSING_ERR(cond, str, errval) \
  372. { \
  373. if (cond) { \
  374. avpriv_report_missing_feature(ctx->avctx, \
  375. str); \
  376. error = errval; \
  377. } \
  378. }
  379. MISSING_ERR(sconf->floating, "Floating point decoding", AVERROR_PATCHWELCOME);
  380. MISSING_ERR(sconf->rlslms, "Adaptive RLS-LMS prediction", AVERROR_PATCHWELCOME);
  381. return error;
  382. }
  383. /** Parse the bs_info field to extract the block partitioning used in
  384. * block switching mode, refer to ISO/IEC 14496-3, section 11.6.2.
  385. */
  386. static void parse_bs_info(const uint32_t bs_info, unsigned int n,
  387. unsigned int div, unsigned int **div_blocks,
  388. unsigned int *num_blocks)
  389. {
  390. if (n < 31 && ((bs_info << n) & 0x40000000)) {
  391. // if the level is valid and the investigated bit n is set
  392. // then recursively check both children at bits (2n+1) and (2n+2)
  393. n *= 2;
  394. div += 1;
  395. parse_bs_info(bs_info, n + 1, div, div_blocks, num_blocks);
  396. parse_bs_info(bs_info, n + 2, div, div_blocks, num_blocks);
  397. } else {
  398. // else the bit is not set or the last level has been reached
  399. // (bit implicitly not set)
  400. **div_blocks = div;
  401. (*div_blocks)++;
  402. (*num_blocks)++;
  403. }
  404. }
  405. /** Read and decode a Rice codeword.
  406. */
  407. static int32_t decode_rice(GetBitContext *gb, unsigned int k)
  408. {
  409. int max = get_bits_left(gb) - k;
  410. int q = get_unary(gb, 0, max);
  411. int r = k ? get_bits1(gb) : !(q & 1);
  412. if (k > 1) {
  413. q <<= (k - 1);
  414. q += get_bits_long(gb, k - 1);
  415. } else if (!k) {
  416. q >>= 1;
  417. }
  418. return r ? q : ~q;
  419. }
  420. /** Convert PARCOR coefficient k to direct filter coefficient.
  421. */
  422. static void parcor_to_lpc(unsigned int k, const int32_t *par, int32_t *cof)
  423. {
  424. int i, j;
  425. for (i = 0, j = k - 1; i < j; i++, j--) {
  426. int tmp1 = ((MUL64(par[k], cof[j]) + (1 << 19)) >> 20);
  427. cof[j] += ((MUL64(par[k], cof[i]) + (1 << 19)) >> 20);
  428. cof[i] += tmp1;
  429. }
  430. if (i == j)
  431. cof[i] += ((MUL64(par[k], cof[j]) + (1 << 19)) >> 20);
  432. cof[k] = par[k];
  433. }
  434. /** Read block switching field if necessary and set actual block sizes.
  435. * Also assure that the block sizes of the last frame correspond to the
  436. * actual number of samples.
  437. */
  438. static void get_block_sizes(ALSDecContext *ctx, unsigned int *div_blocks,
  439. uint32_t *bs_info)
  440. {
  441. ALSSpecificConfig *sconf = &ctx->sconf;
  442. GetBitContext *gb = &ctx->gb;
  443. unsigned int *ptr_div_blocks = div_blocks;
  444. unsigned int b;
  445. if (sconf->block_switching) {
  446. unsigned int bs_info_len = 1 << (sconf->block_switching + 2);
  447. *bs_info = get_bits_long(gb, bs_info_len);
  448. *bs_info <<= (32 - bs_info_len);
  449. }
  450. ctx->num_blocks = 0;
  451. parse_bs_info(*bs_info, 0, 0, &ptr_div_blocks, &ctx->num_blocks);
  452. // The last frame may have an overdetermined block structure given in
  453. // the bitstream. In that case the defined block structure would need
  454. // more samples than available to be consistent.
  455. // The block structure is actually used but the block sizes are adapted
  456. // to fit the actual number of available samples.
  457. // Example: 5 samples, 2nd level block sizes: 2 2 2 2.
  458. // This results in the actual block sizes: 2 2 1 0.
  459. // This is not specified in 14496-3 but actually done by the reference
  460. // codec RM22 revision 2.
  461. // This appears to happen in case of an odd number of samples in the last
  462. // frame which is actually not allowed by the block length switching part
  463. // of 14496-3.
  464. // The ALS conformance files feature an odd number of samples in the last
  465. // frame.
  466. for (b = 0; b < ctx->num_blocks; b++)
  467. div_blocks[b] = ctx->sconf.frame_length >> div_blocks[b];
  468. if (ctx->cur_frame_length != ctx->sconf.frame_length) {
  469. unsigned int remaining = ctx->cur_frame_length;
  470. for (b = 0; b < ctx->num_blocks; b++) {
  471. if (remaining <= div_blocks[b]) {
  472. div_blocks[b] = remaining;
  473. ctx->num_blocks = b + 1;
  474. break;
  475. }
  476. remaining -= div_blocks[b];
  477. }
  478. }
  479. }
  480. /** Read the block data for a constant block
  481. */
  482. static int read_const_block_data(ALSDecContext *ctx, ALSBlockData *bd)
  483. {
  484. ALSSpecificConfig *sconf = &ctx->sconf;
  485. AVCodecContext *avctx = ctx->avctx;
  486. GetBitContext *gb = &ctx->gb;
  487. if (bd->block_length <= 0)
  488. return AVERROR_INVALIDDATA;
  489. *bd->raw_samples = 0;
  490. *bd->const_block = get_bits1(gb); // 1 = constant value, 0 = zero block (silence)
  491. bd->js_blocks = get_bits1(gb);
  492. // skip 5 reserved bits
  493. skip_bits(gb, 5);
  494. if (*bd->const_block) {
  495. unsigned int const_val_bits = sconf->floating ? 24 : avctx->bits_per_raw_sample;
  496. *bd->raw_samples = get_sbits_long(gb, const_val_bits);
  497. }
  498. // ensure constant block decoding by reusing this field
  499. *bd->const_block = 1;
  500. return 0;
  501. }
  502. /** Decode the block data for a constant block
  503. */
  504. static void decode_const_block_data(ALSDecContext *ctx, ALSBlockData *bd)
  505. {
  506. int smp = bd->block_length - 1;
  507. int32_t val = *bd->raw_samples;
  508. int32_t *dst = bd->raw_samples + 1;
  509. // write raw samples into buffer
  510. for (; smp; smp--)
  511. *dst++ = val;
  512. }
  513. /** Read the block data for a non-constant block
  514. */
  515. static int read_var_block_data(ALSDecContext *ctx, ALSBlockData *bd)
  516. {
  517. ALSSpecificConfig *sconf = &ctx->sconf;
  518. AVCodecContext *avctx = ctx->avctx;
  519. GetBitContext *gb = &ctx->gb;
  520. unsigned int k;
  521. unsigned int s[8];
  522. unsigned int sx[8];
  523. unsigned int sub_blocks, log2_sub_blocks, sb_length;
  524. unsigned int start = 0;
  525. unsigned int opt_order;
  526. int sb;
  527. int32_t *quant_cof = bd->quant_cof;
  528. int32_t *current_res;
  529. // ensure variable block decoding by reusing this field
  530. *bd->const_block = 0;
  531. *bd->opt_order = 1;
  532. bd->js_blocks = get_bits1(gb);
  533. opt_order = *bd->opt_order;
  534. // determine the number of subblocks for entropy decoding
  535. if (!sconf->bgmc && !sconf->sb_part) {
  536. log2_sub_blocks = 0;
  537. } else {
  538. if (sconf->bgmc && sconf->sb_part)
  539. log2_sub_blocks = get_bits(gb, 2);
  540. else
  541. log2_sub_blocks = 2 * get_bits1(gb);
  542. }
  543. sub_blocks = 1 << log2_sub_blocks;
  544. // do not continue in case of a damaged stream since
  545. // block_length must be evenly divisible by sub_blocks
  546. if (bd->block_length & (sub_blocks - 1)) {
  547. av_log(avctx, AV_LOG_WARNING,
  548. "Block length is not evenly divisible by the number of subblocks.\n");
  549. return AVERROR_INVALIDDATA;
  550. }
  551. sb_length = bd->block_length >> log2_sub_blocks;
  552. if (sconf->bgmc) {
  553. s[0] = get_bits(gb, 8 + (sconf->resolution > 1));
  554. for (k = 1; k < sub_blocks; k++)
  555. s[k] = s[k - 1] + decode_rice(gb, 2);
  556. for (k = 0; k < sub_blocks; k++) {
  557. sx[k] = s[k] & 0x0F;
  558. s [k] >>= 4;
  559. }
  560. } else {
  561. s[0] = get_bits(gb, 4 + (sconf->resolution > 1));
  562. for (k = 1; k < sub_blocks; k++)
  563. s[k] = s[k - 1] + decode_rice(gb, 0);
  564. }
  565. for (k = 1; k < sub_blocks; k++)
  566. if (s[k] > 32) {
  567. av_log(avctx, AV_LOG_ERROR, "k invalid for rice code.\n");
  568. return AVERROR_INVALIDDATA;
  569. }
  570. if (get_bits1(gb))
  571. *bd->shift_lsbs = get_bits(gb, 4) + 1;
  572. *bd->store_prev_samples = (bd->js_blocks && bd->raw_other) || *bd->shift_lsbs;
  573. if (!sconf->rlslms) {
  574. if (sconf->adapt_order && sconf->max_order) {
  575. int opt_order_length = av_ceil_log2(av_clip((bd->block_length >> 3) - 1,
  576. 2, sconf->max_order + 1));
  577. *bd->opt_order = get_bits(gb, opt_order_length);
  578. if (*bd->opt_order > sconf->max_order) {
  579. *bd->opt_order = sconf->max_order;
  580. av_log(avctx, AV_LOG_ERROR, "Predictor order too large.\n");
  581. return AVERROR_INVALIDDATA;
  582. }
  583. } else {
  584. *bd->opt_order = sconf->max_order;
  585. }
  586. if (*bd->opt_order > bd->block_length) {
  587. *bd->opt_order = bd->block_length;
  588. av_log(avctx, AV_LOG_ERROR, "Predictor order too large.\n");
  589. return AVERROR_INVALIDDATA;
  590. }
  591. opt_order = *bd->opt_order;
  592. if (opt_order) {
  593. int add_base;
  594. if (sconf->coef_table == 3) {
  595. add_base = 0x7F;
  596. // read coefficient 0
  597. quant_cof[0] = 32 * parcor_scaled_values[get_bits(gb, 7)];
  598. // read coefficient 1
  599. if (opt_order > 1)
  600. quant_cof[1] = -32 * parcor_scaled_values[get_bits(gb, 7)];
  601. // read coefficients 2 to opt_order
  602. for (k = 2; k < opt_order; k++)
  603. quant_cof[k] = get_bits(gb, 7);
  604. } else {
  605. int k_max;
  606. add_base = 1;
  607. // read coefficient 0 to 19
  608. k_max = FFMIN(opt_order, 20);
  609. for (k = 0; k < k_max; k++) {
  610. int rice_param = parcor_rice_table[sconf->coef_table][k][1];
  611. int offset = parcor_rice_table[sconf->coef_table][k][0];
  612. quant_cof[k] = decode_rice(gb, rice_param) + offset;
  613. if (quant_cof[k] < -64 || quant_cof[k] > 63) {
  614. av_log(avctx, AV_LOG_ERROR,
  615. "quant_cof %"PRIu32" is out of range.\n",
  616. quant_cof[k]);
  617. return AVERROR_INVALIDDATA;
  618. }
  619. }
  620. // read coefficients 20 to 126
  621. k_max = FFMIN(opt_order, 127);
  622. for (; k < k_max; k++)
  623. quant_cof[k] = decode_rice(gb, 2) + (k & 1);
  624. // read coefficients 127 to opt_order
  625. for (; k < opt_order; k++)
  626. quant_cof[k] = decode_rice(gb, 1);
  627. quant_cof[0] = 32 * parcor_scaled_values[quant_cof[0] + 64];
  628. if (opt_order > 1)
  629. quant_cof[1] = -32 * parcor_scaled_values[quant_cof[1] + 64];
  630. }
  631. for (k = 2; k < opt_order; k++)
  632. quant_cof[k] = (quant_cof[k] << 14) + (add_base << 13);
  633. }
  634. }
  635. // read LTP gain and lag values
  636. if (sconf->long_term_prediction) {
  637. *bd->use_ltp = get_bits1(gb);
  638. if (*bd->use_ltp) {
  639. int r, c;
  640. bd->ltp_gain[0] = decode_rice(gb, 1) << 3;
  641. bd->ltp_gain[1] = decode_rice(gb, 2) << 3;
  642. r = get_unary(gb, 0, 3);
  643. c = get_bits(gb, 2);
  644. bd->ltp_gain[2] = ltp_gain_values[r][c];
  645. bd->ltp_gain[3] = decode_rice(gb, 2) << 3;
  646. bd->ltp_gain[4] = decode_rice(gb, 1) << 3;
  647. *bd->ltp_lag = get_bits(gb, ctx->ltp_lag_length);
  648. *bd->ltp_lag += FFMAX(4, opt_order + 1);
  649. }
  650. }
  651. // read first value and residuals in case of a random access block
  652. if (bd->ra_block) {
  653. if (opt_order)
  654. bd->raw_samples[0] = decode_rice(gb, avctx->bits_per_raw_sample - 4);
  655. if (opt_order > 1)
  656. bd->raw_samples[1] = decode_rice(gb, FFMIN(s[0] + 3, ctx->s_max));
  657. if (opt_order > 2)
  658. bd->raw_samples[2] = decode_rice(gb, FFMIN(s[0] + 1, ctx->s_max));
  659. start = FFMIN(opt_order, 3);
  660. }
  661. // read all residuals
  662. if (sconf->bgmc) {
  663. int delta[8];
  664. unsigned int k [8];
  665. unsigned int b = av_clip((av_ceil_log2(bd->block_length) - 3) >> 1, 0, 5);
  666. // read most significant bits
  667. unsigned int high;
  668. unsigned int low;
  669. unsigned int value;
  670. ff_bgmc_decode_init(gb, &high, &low, &value);
  671. current_res = bd->raw_samples + start;
  672. for (sb = 0; sb < sub_blocks; sb++) {
  673. unsigned int sb_len = sb_length - (sb ? 0 : start);
  674. k [sb] = s[sb] > b ? s[sb] - b : 0;
  675. delta[sb] = 5 - s[sb] + k[sb];
  676. ff_bgmc_decode(gb, sb_len, current_res,
  677. delta[sb], sx[sb], &high, &low, &value, ctx->bgmc_lut, ctx->bgmc_lut_status);
  678. current_res += sb_len;
  679. }
  680. ff_bgmc_decode_end(gb);
  681. // read least significant bits and tails
  682. current_res = bd->raw_samples + start;
  683. for (sb = 0; sb < sub_blocks; sb++, start = 0) {
  684. unsigned int cur_tail_code = tail_code[sx[sb]][delta[sb]];
  685. unsigned int cur_k = k[sb];
  686. unsigned int cur_s = s[sb];
  687. for (; start < sb_length; start++) {
  688. int32_t res = *current_res;
  689. if (res == cur_tail_code) {
  690. unsigned int max_msb = (2 + (sx[sb] > 2) + (sx[sb] > 10))
  691. << (5 - delta[sb]);
  692. res = decode_rice(gb, cur_s);
  693. if (res >= 0) {
  694. res += (max_msb ) << cur_k;
  695. } else {
  696. res -= (max_msb - 1) << cur_k;
  697. }
  698. } else {
  699. if (res > cur_tail_code)
  700. res--;
  701. if (res & 1)
  702. res = -res;
  703. res >>= 1;
  704. if (cur_k) {
  705. res <<= cur_k;
  706. res |= get_bits_long(gb, cur_k);
  707. }
  708. }
  709. *current_res++ = res;
  710. }
  711. }
  712. } else {
  713. current_res = bd->raw_samples + start;
  714. for (sb = 0; sb < sub_blocks; sb++, start = 0)
  715. for (; start < sb_length; start++)
  716. *current_res++ = decode_rice(gb, s[sb]);
  717. }
  718. if (!sconf->mc_coding || ctx->js_switch)
  719. align_get_bits(gb);
  720. return 0;
  721. }
  722. /** Decode the block data for a non-constant block
  723. */
  724. static int decode_var_block_data(ALSDecContext *ctx, ALSBlockData *bd)
  725. {
  726. ALSSpecificConfig *sconf = &ctx->sconf;
  727. unsigned int block_length = bd->block_length;
  728. unsigned int smp = 0;
  729. unsigned int k;
  730. int opt_order = *bd->opt_order;
  731. int sb;
  732. int64_t y;
  733. int32_t *quant_cof = bd->quant_cof;
  734. int32_t *lpc_cof = bd->lpc_cof;
  735. int32_t *raw_samples = bd->raw_samples;
  736. int32_t *raw_samples_end = bd->raw_samples + bd->block_length;
  737. int32_t *lpc_cof_reversed = ctx->lpc_cof_reversed_buffer;
  738. // reverse long-term prediction
  739. if (*bd->use_ltp) {
  740. int ltp_smp;
  741. for (ltp_smp = FFMAX(*bd->ltp_lag - 2, 0); ltp_smp < block_length; ltp_smp++) {
  742. int center = ltp_smp - *bd->ltp_lag;
  743. int begin = FFMAX(0, center - 2);
  744. int end = center + 3;
  745. int tab = 5 - (end - begin);
  746. int base;
  747. y = 1 << 6;
  748. for (base = begin; base < end; base++, tab++)
  749. y += MUL64(bd->ltp_gain[tab], raw_samples[base]);
  750. raw_samples[ltp_smp] += y >> 7;
  751. }
  752. }
  753. // reconstruct all samples from residuals
  754. if (bd->ra_block) {
  755. for (smp = 0; smp < opt_order; smp++) {
  756. y = 1 << 19;
  757. for (sb = 0; sb < smp; sb++)
  758. y += MUL64(lpc_cof[sb], raw_samples[-(sb + 1)]);
  759. *raw_samples++ -= y >> 20;
  760. parcor_to_lpc(smp, quant_cof, lpc_cof);
  761. }
  762. } else {
  763. for (k = 0; k < opt_order; k++)
  764. parcor_to_lpc(k, quant_cof, lpc_cof);
  765. // store previous samples in case that they have to be altered
  766. if (*bd->store_prev_samples)
  767. memcpy(bd->prev_raw_samples, raw_samples - sconf->max_order,
  768. sizeof(*bd->prev_raw_samples) * sconf->max_order);
  769. // reconstruct difference signal for prediction (joint-stereo)
  770. if (bd->js_blocks && bd->raw_other) {
  771. int32_t *left, *right;
  772. if (bd->raw_other > raw_samples) { // D = R - L
  773. left = raw_samples;
  774. right = bd->raw_other;
  775. } else { // D = R - L
  776. left = bd->raw_other;
  777. right = raw_samples;
  778. }
  779. for (sb = -1; sb >= -sconf->max_order; sb--)
  780. raw_samples[sb] = right[sb] - left[sb];
  781. }
  782. // reconstruct shifted signal
  783. if (*bd->shift_lsbs)
  784. for (sb = -1; sb >= -sconf->max_order; sb--)
  785. raw_samples[sb] >>= *bd->shift_lsbs;
  786. }
  787. // reverse linear prediction coefficients for efficiency
  788. lpc_cof = lpc_cof + opt_order;
  789. for (sb = 0; sb < opt_order; sb++)
  790. lpc_cof_reversed[sb] = lpc_cof[-(sb + 1)];
  791. // reconstruct raw samples
  792. raw_samples = bd->raw_samples + smp;
  793. lpc_cof = lpc_cof_reversed + opt_order;
  794. for (; raw_samples < raw_samples_end; raw_samples++) {
  795. y = 1 << 19;
  796. for (sb = -opt_order; sb < 0; sb++)
  797. y += MUL64(lpc_cof[sb], raw_samples[sb]);
  798. *raw_samples -= y >> 20;
  799. }
  800. raw_samples = bd->raw_samples;
  801. // restore previous samples in case that they have been altered
  802. if (*bd->store_prev_samples)
  803. memcpy(raw_samples - sconf->max_order, bd->prev_raw_samples,
  804. sizeof(*raw_samples) * sconf->max_order);
  805. return 0;
  806. }
  807. /** Read the block data.
  808. */
  809. static int read_block(ALSDecContext *ctx, ALSBlockData *bd)
  810. {
  811. int ret;
  812. GetBitContext *gb = &ctx->gb;
  813. *bd->shift_lsbs = 0;
  814. // read block type flag and read the samples accordingly
  815. if (get_bits1(gb)) {
  816. ret = read_var_block_data(ctx, bd);
  817. } else {
  818. ret = read_const_block_data(ctx, bd);
  819. }
  820. return ret;
  821. }
  822. /** Decode the block data.
  823. */
  824. static int decode_block(ALSDecContext *ctx, ALSBlockData *bd)
  825. {
  826. unsigned int smp;
  827. int ret = 0;
  828. // read block type flag and read the samples accordingly
  829. if (*bd->const_block)
  830. decode_const_block_data(ctx, bd);
  831. else
  832. ret = decode_var_block_data(ctx, bd); // always return 0
  833. if (ret < 0)
  834. return ret;
  835. // TODO: read RLSLMS extension data
  836. if (*bd->shift_lsbs)
  837. for (smp = 0; smp < bd->block_length; smp++)
  838. bd->raw_samples[smp] <<= *bd->shift_lsbs;
  839. return 0;
  840. }
  841. /** Read and decode block data successively.
  842. */
  843. static int read_decode_block(ALSDecContext *ctx, ALSBlockData *bd)
  844. {
  845. int ret;
  846. if ((ret = read_block(ctx, bd)) < 0)
  847. return ret;
  848. return decode_block(ctx, bd);
  849. }
  850. /** Compute the number of samples left to decode for the current frame and
  851. * sets these samples to zero.
  852. */
  853. static void zero_remaining(unsigned int b, unsigned int b_max,
  854. const unsigned int *div_blocks, int32_t *buf)
  855. {
  856. unsigned int count = 0;
  857. while (b < b_max)
  858. count += div_blocks[b++];
  859. if (count)
  860. memset(buf, 0, sizeof(*buf) * count);
  861. }
  862. /** Decode blocks independently.
  863. */
  864. static int decode_blocks_ind(ALSDecContext *ctx, unsigned int ra_frame,
  865. unsigned int c, const unsigned int *div_blocks,
  866. unsigned int *js_blocks)
  867. {
  868. int ret;
  869. unsigned int b;
  870. ALSBlockData bd = { 0 };
  871. bd.ra_block = ra_frame;
  872. bd.const_block = ctx->const_block;
  873. bd.shift_lsbs = ctx->shift_lsbs;
  874. bd.opt_order = ctx->opt_order;
  875. bd.store_prev_samples = ctx->store_prev_samples;
  876. bd.use_ltp = ctx->use_ltp;
  877. bd.ltp_lag = ctx->ltp_lag;
  878. bd.ltp_gain = ctx->ltp_gain[0];
  879. bd.quant_cof = ctx->quant_cof[0];
  880. bd.lpc_cof = ctx->lpc_cof[0];
  881. bd.prev_raw_samples = ctx->prev_raw_samples;
  882. bd.raw_samples = ctx->raw_samples[c];
  883. for (b = 0; b < ctx->num_blocks; b++) {
  884. bd.block_length = div_blocks[b];
  885. if ((ret = read_decode_block(ctx, &bd)) < 0) {
  886. // damaged block, write zero for the rest of the frame
  887. zero_remaining(b, ctx->num_blocks, div_blocks, bd.raw_samples);
  888. return ret;
  889. }
  890. bd.raw_samples += div_blocks[b];
  891. bd.ra_block = 0;
  892. }
  893. return 0;
  894. }
  895. /** Decode blocks dependently.
  896. */
  897. static int decode_blocks(ALSDecContext *ctx, unsigned int ra_frame,
  898. unsigned int c, const unsigned int *div_blocks,
  899. unsigned int *js_blocks)
  900. {
  901. ALSSpecificConfig *sconf = &ctx->sconf;
  902. unsigned int offset = 0;
  903. unsigned int b;
  904. int ret;
  905. ALSBlockData bd[2] = { { 0 } };
  906. bd[0].ra_block = ra_frame;
  907. bd[0].const_block = ctx->const_block;
  908. bd[0].shift_lsbs = ctx->shift_lsbs;
  909. bd[0].opt_order = ctx->opt_order;
  910. bd[0].store_prev_samples = ctx->store_prev_samples;
  911. bd[0].use_ltp = ctx->use_ltp;
  912. bd[0].ltp_lag = ctx->ltp_lag;
  913. bd[0].ltp_gain = ctx->ltp_gain[0];
  914. bd[0].quant_cof = ctx->quant_cof[0];
  915. bd[0].lpc_cof = ctx->lpc_cof[0];
  916. bd[0].prev_raw_samples = ctx->prev_raw_samples;
  917. bd[0].js_blocks = *js_blocks;
  918. bd[1].ra_block = ra_frame;
  919. bd[1].const_block = ctx->const_block;
  920. bd[1].shift_lsbs = ctx->shift_lsbs;
  921. bd[1].opt_order = ctx->opt_order;
  922. bd[1].store_prev_samples = ctx->store_prev_samples;
  923. bd[1].use_ltp = ctx->use_ltp;
  924. bd[1].ltp_lag = ctx->ltp_lag;
  925. bd[1].ltp_gain = ctx->ltp_gain[0];
  926. bd[1].quant_cof = ctx->quant_cof[0];
  927. bd[1].lpc_cof = ctx->lpc_cof[0];
  928. bd[1].prev_raw_samples = ctx->prev_raw_samples;
  929. bd[1].js_blocks = *(js_blocks + 1);
  930. // decode all blocks
  931. for (b = 0; b < ctx->num_blocks; b++) {
  932. unsigned int s;
  933. bd[0].block_length = div_blocks[b];
  934. bd[1].block_length = div_blocks[b];
  935. bd[0].raw_samples = ctx->raw_samples[c ] + offset;
  936. bd[1].raw_samples = ctx->raw_samples[c + 1] + offset;
  937. bd[0].raw_other = bd[1].raw_samples;
  938. bd[1].raw_other = bd[0].raw_samples;
  939. if ((ret = read_decode_block(ctx, &bd[0])) < 0 ||
  940. (ret = read_decode_block(ctx, &bd[1])) < 0)
  941. goto fail;
  942. // reconstruct joint-stereo blocks
  943. if (bd[0].js_blocks) {
  944. if (bd[1].js_blocks)
  945. av_log(ctx->avctx, AV_LOG_WARNING, "Invalid channel pair.\n");
  946. for (s = 0; s < div_blocks[b]; s++)
  947. bd[0].raw_samples[s] = bd[1].raw_samples[s] - bd[0].raw_samples[s];
  948. } else if (bd[1].js_blocks) {
  949. for (s = 0; s < div_blocks[b]; s++)
  950. bd[1].raw_samples[s] = bd[1].raw_samples[s] + bd[0].raw_samples[s];
  951. }
  952. offset += div_blocks[b];
  953. bd[0].ra_block = 0;
  954. bd[1].ra_block = 0;
  955. }
  956. // store carryover raw samples,
  957. // the others channel raw samples are stored by the calling function.
  958. memmove(ctx->raw_samples[c] - sconf->max_order,
  959. ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
  960. sizeof(*ctx->raw_samples[c]) * sconf->max_order);
  961. return 0;
  962. fail:
  963. // damaged block, write zero for the rest of the frame
  964. zero_remaining(b, ctx->num_blocks, div_blocks, bd[0].raw_samples);
  965. zero_remaining(b, ctx->num_blocks, div_blocks, bd[1].raw_samples);
  966. return ret;
  967. }
  968. static inline int als_weighting(GetBitContext *gb, int k, int off)
  969. {
  970. int idx = av_clip(decode_rice(gb, k) + off,
  971. 0, FF_ARRAY_ELEMS(mcc_weightings) - 1);
  972. return mcc_weightings[idx];
  973. }
  974. /** Read the channel data.
  975. */
  976. static int read_channel_data(ALSDecContext *ctx, ALSChannelData *cd, int c)
  977. {
  978. GetBitContext *gb = &ctx->gb;
  979. ALSChannelData *current = cd;
  980. unsigned int channels = ctx->avctx->channels;
  981. int entries = 0;
  982. while (entries < channels && !(current->stop_flag = get_bits1(gb))) {
  983. current->master_channel = get_bits_long(gb, av_ceil_log2(channels));
  984. if (current->master_channel >= channels) {
  985. av_log(ctx->avctx, AV_LOG_ERROR, "Invalid master channel.\n");
  986. return AVERROR_INVALIDDATA;
  987. }
  988. if (current->master_channel != c) {
  989. current->time_diff_flag = get_bits1(gb);
  990. current->weighting[0] = als_weighting(gb, 1, 16);
  991. current->weighting[1] = als_weighting(gb, 2, 14);
  992. current->weighting[2] = als_weighting(gb, 1, 16);
  993. if (current->time_diff_flag) {
  994. current->weighting[3] = als_weighting(gb, 1, 16);
  995. current->weighting[4] = als_weighting(gb, 1, 16);
  996. current->weighting[5] = als_weighting(gb, 1, 16);
  997. current->time_diff_sign = get_bits1(gb);
  998. current->time_diff_index = get_bits(gb, ctx->ltp_lag_length - 3) + 3;
  999. }
  1000. }
  1001. current++;
  1002. entries++;
  1003. }
  1004. if (entries == channels) {
  1005. av_log(ctx->avctx, AV_LOG_ERROR, "Damaged channel data.\n");
  1006. return AVERROR_INVALIDDATA;
  1007. }
  1008. align_get_bits(gb);
  1009. return 0;
  1010. }
  1011. /** Recursively reverts the inter-channel correlation for a block.
  1012. */
  1013. static int revert_channel_correlation(ALSDecContext *ctx, ALSBlockData *bd,
  1014. ALSChannelData **cd, int *reverted,
  1015. unsigned int offset, int c)
  1016. {
  1017. ALSChannelData *ch = cd[c];
  1018. unsigned int dep = 0;
  1019. unsigned int channels = ctx->avctx->channels;
  1020. unsigned int channel_size = ctx->sconf.frame_length + ctx->sconf.max_order;
  1021. if (reverted[c])
  1022. return 0;
  1023. reverted[c] = 1;
  1024. while (dep < channels && !ch[dep].stop_flag) {
  1025. revert_channel_correlation(ctx, bd, cd, reverted, offset,
  1026. ch[dep].master_channel);
  1027. dep++;
  1028. }
  1029. if (dep == channels) {
  1030. av_log(ctx->avctx, AV_LOG_WARNING, "Invalid channel correlation.\n");
  1031. return AVERROR_INVALIDDATA;
  1032. }
  1033. bd->const_block = ctx->const_block + c;
  1034. bd->shift_lsbs = ctx->shift_lsbs + c;
  1035. bd->opt_order = ctx->opt_order + c;
  1036. bd->store_prev_samples = ctx->store_prev_samples + c;
  1037. bd->use_ltp = ctx->use_ltp + c;
  1038. bd->ltp_lag = ctx->ltp_lag + c;
  1039. bd->ltp_gain = ctx->ltp_gain[c];
  1040. bd->lpc_cof = ctx->lpc_cof[c];
  1041. bd->quant_cof = ctx->quant_cof[c];
  1042. bd->raw_samples = ctx->raw_samples[c] + offset;
  1043. for (dep = 0; !ch[dep].stop_flag; dep++) {
  1044. ptrdiff_t smp;
  1045. ptrdiff_t begin = 1;
  1046. ptrdiff_t end = bd->block_length - 1;
  1047. int64_t y;
  1048. int32_t *master = ctx->raw_samples[ch[dep].master_channel] + offset;
  1049. if (ch[dep].master_channel == c)
  1050. continue;
  1051. if (ch[dep].time_diff_flag) {
  1052. int t = ch[dep].time_diff_index;
  1053. if (ch[dep].time_diff_sign) {
  1054. t = -t;
  1055. if (begin < t) {
  1056. av_log(ctx->avctx, AV_LOG_ERROR, "begin %td smaller than time diff index %d.\n", begin, t);
  1057. return AVERROR_INVALIDDATA;
  1058. }
  1059. begin -= t;
  1060. } else {
  1061. if (end < t) {
  1062. av_log(ctx->avctx, AV_LOG_ERROR, "end %td smaller than time diff index %d.\n", end, t);
  1063. return AVERROR_INVALIDDATA;
  1064. }
  1065. end -= t;
  1066. }
  1067. if (FFMIN(begin - 1, begin - 1 + t) < ctx->raw_buffer - master ||
  1068. FFMAX(end + 1, end + 1 + t) > ctx->raw_buffer + channels * channel_size - master) {
  1069. av_log(ctx->avctx, AV_LOG_ERROR,
  1070. "sample pointer range [%p, %p] not contained in raw_buffer [%p, %p].\n",
  1071. master + FFMIN(begin - 1, begin - 1 + t), master + FFMAX(end + 1, end + 1 + t),
  1072. ctx->raw_buffer, ctx->raw_buffer + channels * channel_size);
  1073. return AVERROR_INVALIDDATA;
  1074. }
  1075. for (smp = begin; smp < end; smp++) {
  1076. y = (1 << 6) +
  1077. MUL64(ch[dep].weighting[0], master[smp - 1 ]) +
  1078. MUL64(ch[dep].weighting[1], master[smp ]) +
  1079. MUL64(ch[dep].weighting[2], master[smp + 1 ]) +
  1080. MUL64(ch[dep].weighting[3], master[smp - 1 + t]) +
  1081. MUL64(ch[dep].weighting[4], master[smp + t]) +
  1082. MUL64(ch[dep].weighting[5], master[smp + 1 + t]);
  1083. bd->raw_samples[smp] += y >> 7;
  1084. }
  1085. } else {
  1086. if (begin - 1 < ctx->raw_buffer - master ||
  1087. end + 1 > ctx->raw_buffer + channels * channel_size - master) {
  1088. av_log(ctx->avctx, AV_LOG_ERROR,
  1089. "sample pointer range [%p, %p] not contained in raw_buffer [%p, %p].\n",
  1090. master + begin - 1, master + end + 1,
  1091. ctx->raw_buffer, ctx->raw_buffer + channels * channel_size);
  1092. return AVERROR_INVALIDDATA;
  1093. }
  1094. for (smp = begin; smp < end; smp++) {
  1095. y = (1 << 6) +
  1096. MUL64(ch[dep].weighting[0], master[smp - 1]) +
  1097. MUL64(ch[dep].weighting[1], master[smp ]) +
  1098. MUL64(ch[dep].weighting[2], master[smp + 1]);
  1099. bd->raw_samples[smp] += y >> 7;
  1100. }
  1101. }
  1102. }
  1103. return 0;
  1104. }
  1105. /** Read the frame data.
  1106. */
  1107. static int read_frame_data(ALSDecContext *ctx, unsigned int ra_frame)
  1108. {
  1109. ALSSpecificConfig *sconf = &ctx->sconf;
  1110. AVCodecContext *avctx = ctx->avctx;
  1111. GetBitContext *gb = &ctx->gb;
  1112. unsigned int div_blocks[32]; ///< block sizes.
  1113. unsigned int c;
  1114. unsigned int js_blocks[2];
  1115. uint32_t bs_info = 0;
  1116. int ret;
  1117. // skip the size of the ra unit if present in the frame
  1118. if (sconf->ra_flag == RA_FLAG_FRAMES && ra_frame)
  1119. skip_bits_long(gb, 32);
  1120. if (sconf->mc_coding && sconf->joint_stereo) {
  1121. ctx->js_switch = get_bits1(gb);
  1122. align_get_bits(gb);
  1123. }
  1124. if (!sconf->mc_coding || ctx->js_switch) {
  1125. int independent_bs = !sconf->joint_stereo;
  1126. for (c = 0; c < avctx->channels; c++) {
  1127. js_blocks[0] = 0;
  1128. js_blocks[1] = 0;
  1129. get_block_sizes(ctx, div_blocks, &bs_info);
  1130. // if joint_stereo and block_switching is set, independent decoding
  1131. // is signaled via the first bit of bs_info
  1132. if (sconf->joint_stereo && sconf->block_switching)
  1133. if (bs_info >> 31)
  1134. independent_bs = 2;
  1135. // if this is the last channel, it has to be decoded independently
  1136. if (c == avctx->channels - 1)
  1137. independent_bs = 1;
  1138. if (independent_bs) {
  1139. ret = decode_blocks_ind(ctx, ra_frame, c,
  1140. div_blocks, js_blocks);
  1141. if (ret < 0)
  1142. return ret;
  1143. independent_bs--;
  1144. } else {
  1145. ret = decode_blocks(ctx, ra_frame, c, div_blocks, js_blocks);
  1146. if (ret < 0)
  1147. return ret;
  1148. c++;
  1149. }
  1150. // store carryover raw samples
  1151. memmove(ctx->raw_samples[c] - sconf->max_order,
  1152. ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
  1153. sizeof(*ctx->raw_samples[c]) * sconf->max_order);
  1154. }
  1155. } else { // multi-channel coding
  1156. ALSBlockData bd = { 0 };
  1157. int b, ret;
  1158. int *reverted_channels = ctx->reverted_channels;
  1159. unsigned int offset = 0;
  1160. for (c = 0; c < avctx->channels; c++)
  1161. if (ctx->chan_data[c] < ctx->chan_data_buffer) {
  1162. av_log(ctx->avctx, AV_LOG_ERROR, "Invalid channel data.\n");
  1163. return AVERROR_INVALIDDATA;
  1164. }
  1165. memset(reverted_channels, 0, sizeof(*reverted_channels) * avctx->channels);
  1166. bd.ra_block = ra_frame;
  1167. bd.prev_raw_samples = ctx->prev_raw_samples;
  1168. get_block_sizes(ctx, div_blocks, &bs_info);
  1169. for (b = 0; b < ctx->num_blocks; b++) {
  1170. bd.block_length = div_blocks[b];
  1171. if (bd.block_length <= 0) {
  1172. av_log(ctx->avctx, AV_LOG_WARNING,
  1173. "Invalid block length %u in channel data!\n",
  1174. bd.block_length);
  1175. continue;
  1176. }
  1177. for (c = 0; c < avctx->channels; c++) {
  1178. bd.const_block = ctx->const_block + c;
  1179. bd.shift_lsbs = ctx->shift_lsbs + c;
  1180. bd.opt_order = ctx->opt_order + c;
  1181. bd.store_prev_samples = ctx->store_prev_samples + c;
  1182. bd.use_ltp = ctx->use_ltp + c;
  1183. bd.ltp_lag = ctx->ltp_lag + c;
  1184. bd.ltp_gain = ctx->ltp_gain[c];
  1185. bd.lpc_cof = ctx->lpc_cof[c];
  1186. bd.quant_cof = ctx->quant_cof[c];
  1187. bd.raw_samples = ctx->raw_samples[c] + offset;
  1188. bd.raw_other = NULL;
  1189. if ((ret = read_block(ctx, &bd)) < 0)
  1190. return ret;
  1191. if ((ret = read_channel_data(ctx, ctx->chan_data[c], c)) < 0)
  1192. return ret;
  1193. }
  1194. for (c = 0; c < avctx->channels; c++) {
  1195. ret = revert_channel_correlation(ctx, &bd, ctx->chan_data,
  1196. reverted_channels, offset, c);
  1197. if (ret < 0)
  1198. return ret;
  1199. }
  1200. for (c = 0; c < avctx->channels; c++) {
  1201. bd.const_block = ctx->const_block + c;
  1202. bd.shift_lsbs = ctx->shift_lsbs + c;
  1203. bd.opt_order = ctx->opt_order + c;
  1204. bd.store_prev_samples = ctx->store_prev_samples + c;
  1205. bd.use_ltp = ctx->use_ltp + c;
  1206. bd.ltp_lag = ctx->ltp_lag + c;
  1207. bd.ltp_gain = ctx->ltp_gain[c];
  1208. bd.lpc_cof = ctx->lpc_cof[c];
  1209. bd.quant_cof = ctx->quant_cof[c];
  1210. bd.raw_samples = ctx->raw_samples[c] + offset;
  1211. if ((ret = decode_block(ctx, &bd)) < 0)
  1212. return ret;
  1213. }
  1214. memset(reverted_channels, 0, avctx->channels * sizeof(*reverted_channels));
  1215. offset += div_blocks[b];
  1216. bd.ra_block = 0;
  1217. }
  1218. // store carryover raw samples
  1219. for (c = 0; c < avctx->channels; c++)
  1220. memmove(ctx->raw_samples[c] - sconf->max_order,
  1221. ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
  1222. sizeof(*ctx->raw_samples[c]) * sconf->max_order);
  1223. }
  1224. // TODO: read_diff_float_data
  1225. if (get_bits_left(gb) < 0) {
  1226. av_log(ctx->avctx, AV_LOG_ERROR, "Overread %d\n", -get_bits_left(gb));
  1227. return AVERROR_INVALIDDATA;
  1228. }
  1229. return 0;
  1230. }
  1231. /** Decode an ALS frame.
  1232. */
  1233. static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame_ptr,
  1234. AVPacket *avpkt)
  1235. {
  1236. ALSDecContext *ctx = avctx->priv_data;
  1237. AVFrame *frame = data;
  1238. ALSSpecificConfig *sconf = &ctx->sconf;
  1239. const uint8_t *buffer = avpkt->data;
  1240. int buffer_size = avpkt->size;
  1241. int invalid_frame, ret;
  1242. unsigned int c, sample, ra_frame, bytes_read, shift;
  1243. if ((ret = init_get_bits8(&ctx->gb, buffer, buffer_size)) < 0)
  1244. return ret;
  1245. // In the case that the distance between random access frames is set to zero
  1246. // (sconf->ra_distance == 0) no frame is treated as a random access frame.
  1247. // For the first frame, if prediction is used, all samples used from the
  1248. // previous frame are assumed to be zero.
  1249. ra_frame = sconf->ra_distance && !(ctx->frame_id % sconf->ra_distance);
  1250. // the last frame to decode might have a different length
  1251. if (sconf->samples != 0xFFFFFFFF)
  1252. ctx->cur_frame_length = FFMIN(sconf->samples - ctx->frame_id * (uint64_t) sconf->frame_length,
  1253. sconf->frame_length);
  1254. else
  1255. ctx->cur_frame_length = sconf->frame_length;
  1256. // decode the frame data
  1257. if ((invalid_frame = read_frame_data(ctx, ra_frame)) < 0)
  1258. av_log(ctx->avctx, AV_LOG_WARNING,
  1259. "Reading frame data failed. Skipping RA unit.\n");
  1260. ctx->frame_id++;
  1261. /* get output buffer */
  1262. frame->nb_samples = ctx->cur_frame_length;
  1263. if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
  1264. return ret;
  1265. // transform decoded frame into output format
  1266. #define INTERLEAVE_OUTPUT(bps) \
  1267. { \
  1268. int##bps##_t *dest = (int##bps##_t*)frame->data[0]; \
  1269. shift = bps - ctx->avctx->bits_per_raw_sample; \
  1270. if (!ctx->cs_switch) { \
  1271. for (sample = 0; sample < ctx->cur_frame_length; sample++) \
  1272. for (c = 0; c < avctx->channels; c++) \
  1273. *dest++ = ctx->raw_samples[c][sample] << shift; \
  1274. } else { \
  1275. for (sample = 0; sample < ctx->cur_frame_length; sample++) \
  1276. for (c = 0; c < avctx->channels; c++) \
  1277. *dest++ = ctx->raw_samples[sconf->chan_pos[c]][sample] << shift; \
  1278. } \
  1279. }
  1280. if (ctx->avctx->bits_per_raw_sample <= 16) {
  1281. INTERLEAVE_OUTPUT(16)
  1282. } else {
  1283. INTERLEAVE_OUTPUT(32)
  1284. }
  1285. // update CRC
  1286. if (sconf->crc_enabled && (avctx->err_recognition & (AV_EF_CRCCHECK|AV_EF_CAREFUL))) {
  1287. int swap = HAVE_BIGENDIAN != sconf->msb_first;
  1288. if (ctx->avctx->bits_per_raw_sample == 24) {
  1289. int32_t *src = (int32_t *)frame->data[0];
  1290. for (sample = 0;
  1291. sample < ctx->cur_frame_length * avctx->channels;
  1292. sample++) {
  1293. int32_t v;
  1294. if (swap)
  1295. v = av_bswap32(src[sample]);
  1296. else
  1297. v = src[sample];
  1298. if (!HAVE_BIGENDIAN)
  1299. v >>= 8;
  1300. ctx->crc = av_crc(ctx->crc_table, ctx->crc, (uint8_t*)(&v), 3);
  1301. }
  1302. } else {
  1303. uint8_t *crc_source;
  1304. if (swap) {
  1305. if (ctx->avctx->bits_per_raw_sample <= 16) {
  1306. int16_t *src = (int16_t*) frame->data[0];
  1307. int16_t *dest = (int16_t*) ctx->crc_buffer;
  1308. for (sample = 0;
  1309. sample < ctx->cur_frame_length * avctx->channels;
  1310. sample++)
  1311. *dest++ = av_bswap16(src[sample]);
  1312. } else {
  1313. ctx->bdsp.bswap_buf((uint32_t *) ctx->crc_buffer,
  1314. (uint32_t *) frame->data[0],
  1315. ctx->cur_frame_length * avctx->channels);
  1316. }
  1317. crc_source = ctx->crc_buffer;
  1318. } else {
  1319. crc_source = frame->data[0];
  1320. }
  1321. ctx->crc = av_crc(ctx->crc_table, ctx->crc, crc_source,
  1322. ctx->cur_frame_length * avctx->channels *
  1323. av_get_bytes_per_sample(avctx->sample_fmt));
  1324. }
  1325. // check CRC sums if this is the last frame
  1326. if (ctx->cur_frame_length != sconf->frame_length &&
  1327. ctx->crc_org != ctx->crc) {
  1328. av_log(avctx, AV_LOG_ERROR, "CRC error.\n");
  1329. if (avctx->err_recognition & AV_EF_EXPLODE)
  1330. return AVERROR_INVALIDDATA;
  1331. }
  1332. }
  1333. *got_frame_ptr = 1;
  1334. bytes_read = invalid_frame ? buffer_size :
  1335. (get_bits_count(&ctx->gb) + 7) >> 3;
  1336. return bytes_read;
  1337. }
  1338. /** Uninitialize the ALS decoder.
  1339. */
  1340. static av_cold int decode_end(AVCodecContext *avctx)
  1341. {
  1342. ALSDecContext *ctx = avctx->priv_data;
  1343. av_freep(&ctx->sconf.chan_pos);
  1344. ff_bgmc_end(&ctx->bgmc_lut, &ctx->bgmc_lut_status);
  1345. av_freep(&ctx->const_block);
  1346. av_freep(&ctx->shift_lsbs);
  1347. av_freep(&ctx->opt_order);
  1348. av_freep(&ctx->store_prev_samples);
  1349. av_freep(&ctx->use_ltp);
  1350. av_freep(&ctx->ltp_lag);
  1351. av_freep(&ctx->ltp_gain);
  1352. av_freep(&ctx->ltp_gain_buffer);
  1353. av_freep(&ctx->quant_cof);
  1354. av_freep(&ctx->lpc_cof);
  1355. av_freep(&ctx->quant_cof_buffer);
  1356. av_freep(&ctx->lpc_cof_buffer);
  1357. av_freep(&ctx->lpc_cof_reversed_buffer);
  1358. av_freep(&ctx->prev_raw_samples);
  1359. av_freep(&ctx->raw_samples);
  1360. av_freep(&ctx->raw_buffer);
  1361. av_freep(&ctx->chan_data);
  1362. av_freep(&ctx->chan_data_buffer);
  1363. av_freep(&ctx->reverted_channels);
  1364. av_freep(&ctx->crc_buffer);
  1365. return 0;
  1366. }
  1367. /** Initialize the ALS decoder.
  1368. */
  1369. static av_cold int decode_init(AVCodecContext *avctx)
  1370. {
  1371. unsigned int c;
  1372. unsigned int channel_size;
  1373. int num_buffers, ret;
  1374. ALSDecContext *ctx = avctx->priv_data;
  1375. ALSSpecificConfig *sconf = &ctx->sconf;
  1376. ctx->avctx = avctx;
  1377. if (!avctx->extradata) {
  1378. av_log(avctx, AV_LOG_ERROR, "Missing required ALS extradata.\n");
  1379. return AVERROR_INVALIDDATA;
  1380. }
  1381. if ((ret = read_specific_config(ctx)) < 0) {
  1382. av_log(avctx, AV_LOG_ERROR, "Reading ALSSpecificConfig failed.\n");
  1383. goto fail;
  1384. }
  1385. if ((ret = check_specific_config(ctx)) < 0) {
  1386. goto fail;
  1387. }
  1388. if (sconf->bgmc) {
  1389. ret = ff_bgmc_init(avctx, &ctx->bgmc_lut, &ctx->bgmc_lut_status);
  1390. if (ret < 0)
  1391. goto fail;
  1392. }
  1393. if (sconf->floating) {
  1394. avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
  1395. avctx->bits_per_raw_sample = 32;
  1396. } else {
  1397. avctx->sample_fmt = sconf->resolution > 1
  1398. ? AV_SAMPLE_FMT_S32 : AV_SAMPLE_FMT_S16;
  1399. avctx->bits_per_raw_sample = (sconf->resolution + 1) * 8;
  1400. if (avctx->bits_per_raw_sample > 32) {
  1401. av_log(avctx, AV_LOG_ERROR, "Bits per raw sample %d larger than 32.\n",
  1402. avctx->bits_per_raw_sample);
  1403. ret = AVERROR_INVALIDDATA;
  1404. goto fail;
  1405. }
  1406. }
  1407. // set maximum Rice parameter for progressive decoding based on resolution
  1408. // This is not specified in 14496-3 but actually done by the reference
  1409. // codec RM22 revision 2.
  1410. ctx->s_max = sconf->resolution > 1 ? 31 : 15;
  1411. // set lag value for long-term prediction
  1412. ctx->ltp_lag_length = 8 + (avctx->sample_rate >= 96000) +
  1413. (avctx->sample_rate >= 192000);
  1414. // allocate quantized parcor coefficient buffer
  1415. num_buffers = sconf->mc_coding ? avctx->channels : 1;
  1416. ctx->quant_cof = av_malloc_array(num_buffers, sizeof(*ctx->quant_cof));
  1417. ctx->lpc_cof = av_malloc_array(num_buffers, sizeof(*ctx->lpc_cof));
  1418. ctx->quant_cof_buffer = av_malloc_array(num_buffers * sconf->max_order,
  1419. sizeof(*ctx->quant_cof_buffer));
  1420. ctx->lpc_cof_buffer = av_malloc_array(num_buffers * sconf->max_order,
  1421. sizeof(*ctx->lpc_cof_buffer));
  1422. ctx->lpc_cof_reversed_buffer = av_malloc_array(sconf->max_order,
  1423. sizeof(*ctx->lpc_cof_buffer));
  1424. if (!ctx->quant_cof || !ctx->lpc_cof ||
  1425. !ctx->quant_cof_buffer || !ctx->lpc_cof_buffer ||
  1426. !ctx->lpc_cof_reversed_buffer) {
  1427. av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
  1428. ret = AVERROR(ENOMEM);
  1429. goto fail;
  1430. }
  1431. // assign quantized parcor coefficient buffers
  1432. for (c = 0; c < num_buffers; c++) {
  1433. ctx->quant_cof[c] = ctx->quant_cof_buffer + c * sconf->max_order;
  1434. ctx->lpc_cof[c] = ctx->lpc_cof_buffer + c * sconf->max_order;
  1435. }
  1436. // allocate and assign lag and gain data buffer for ltp mode
  1437. ctx->const_block = av_malloc_array(num_buffers, sizeof(*ctx->const_block));
  1438. ctx->shift_lsbs = av_malloc_array(num_buffers, sizeof(*ctx->shift_lsbs));
  1439. ctx->opt_order = av_malloc_array(num_buffers, sizeof(*ctx->opt_order));
  1440. ctx->store_prev_samples = av_malloc_array(num_buffers, sizeof(*ctx->store_prev_samples));
  1441. ctx->use_ltp = av_mallocz_array(num_buffers, sizeof(*ctx->use_ltp));
  1442. ctx->ltp_lag = av_malloc_array(num_buffers, sizeof(*ctx->ltp_lag));
  1443. ctx->ltp_gain = av_malloc_array(num_buffers, sizeof(*ctx->ltp_gain));
  1444. ctx->ltp_gain_buffer = av_malloc_array(num_buffers * 5, sizeof(*ctx->ltp_gain_buffer));
  1445. if (!ctx->const_block || !ctx->shift_lsbs ||
  1446. !ctx->opt_order || !ctx->store_prev_samples ||
  1447. !ctx->use_ltp || !ctx->ltp_lag ||
  1448. !ctx->ltp_gain || !ctx->ltp_gain_buffer) {
  1449. av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
  1450. ret = AVERROR(ENOMEM);
  1451. goto fail;
  1452. }
  1453. for (c = 0; c < num_buffers; c++)
  1454. ctx->ltp_gain[c] = ctx->ltp_gain_buffer + c * 5;
  1455. // allocate and assign channel data buffer for mcc mode
  1456. if (sconf->mc_coding) {
  1457. ctx->chan_data_buffer = av_mallocz_array(num_buffers * num_buffers,
  1458. sizeof(*ctx->chan_data_buffer));
  1459. ctx->chan_data = av_mallocz_array(num_buffers,
  1460. sizeof(*ctx->chan_data));
  1461. ctx->reverted_channels = av_malloc_array(num_buffers,
  1462. sizeof(*ctx->reverted_channels));
  1463. if (!ctx->chan_data_buffer || !ctx->chan_data || !ctx->reverted_channels) {
  1464. av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
  1465. ret = AVERROR(ENOMEM);
  1466. goto fail;
  1467. }
  1468. for (c = 0; c < num_buffers; c++)
  1469. ctx->chan_data[c] = ctx->chan_data_buffer + c * num_buffers;
  1470. } else {
  1471. ctx->chan_data = NULL;
  1472. ctx->chan_data_buffer = NULL;
  1473. ctx->reverted_channels = NULL;
  1474. }
  1475. channel_size = sconf->frame_length + sconf->max_order;
  1476. ctx->prev_raw_samples = av_malloc_array(sconf->max_order, sizeof(*ctx->prev_raw_samples));
  1477. ctx->raw_buffer = av_mallocz_array(avctx->channels * channel_size, sizeof(*ctx->raw_buffer));
  1478. ctx->raw_samples = av_malloc_array(avctx->channels, sizeof(*ctx->raw_samples));
  1479. // allocate previous raw sample buffer
  1480. if (!ctx->prev_raw_samples || !ctx->raw_buffer|| !ctx->raw_samples) {
  1481. av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
  1482. ret = AVERROR(ENOMEM);
  1483. goto fail;
  1484. }
  1485. // assign raw samples buffers
  1486. ctx->raw_samples[0] = ctx->raw_buffer + sconf->max_order;
  1487. for (c = 1; c < avctx->channels; c++)
  1488. ctx->raw_samples[c] = ctx->raw_samples[c - 1] + channel_size;
  1489. // allocate crc buffer
  1490. if (HAVE_BIGENDIAN != sconf->msb_first && sconf->crc_enabled &&
  1491. (avctx->err_recognition & (AV_EF_CRCCHECK|AV_EF_CAREFUL))) {
  1492. ctx->crc_buffer = av_malloc_array(ctx->cur_frame_length *
  1493. avctx->channels *
  1494. av_get_bytes_per_sample(avctx->sample_fmt),
  1495. sizeof(*ctx->crc_buffer));
  1496. if (!ctx->crc_buffer) {
  1497. av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
  1498. ret = AVERROR(ENOMEM);
  1499. goto fail;
  1500. }
  1501. }
  1502. ff_bswapdsp_init(&ctx->bdsp);
  1503. return 0;
  1504. fail:
  1505. decode_end(avctx);
  1506. return ret;
  1507. }
  1508. /** Flush (reset) the frame ID after seeking.
  1509. */
  1510. static av_cold void flush(AVCodecContext *avctx)
  1511. {
  1512. ALSDecContext *ctx = avctx->priv_data;
  1513. ctx->frame_id = 0;
  1514. }
  1515. AVCodec ff_als_decoder = {
  1516. .name = "als",
  1517. .long_name = NULL_IF_CONFIG_SMALL("MPEG-4 Audio Lossless Coding (ALS)"),
  1518. .type = AVMEDIA_TYPE_AUDIO,
  1519. .id = AV_CODEC_ID_MP4ALS,
  1520. .priv_data_size = sizeof(ALSDecContext),
  1521. .init = decode_init,
  1522. .close = decode_end,
  1523. .decode = decode_frame,
  1524. .flush = flush,
  1525. .capabilities = AV_CODEC_CAP_SUBFRAMES | AV_CODEC_CAP_DR1,
  1526. };