You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

587 lines
22KB

  1. /*
  2. * Copyright (c) 2013
  3. * MIPS Technologies, Inc., California.
  4. *
  5. * Redistribution and use in source and binary forms, with or without
  6. * modification, are permitted provided that the following conditions
  7. * are met:
  8. * 1. Redistributions of source code must retain the above copyright
  9. * notice, this list of conditions and the following disclaimer.
  10. * 2. Redistributions in binary form must reproduce the above copyright
  11. * notice, this list of conditions and the following disclaimer in the
  12. * documentation and/or other materials provided with the distribution.
  13. * 3. Neither the name of the MIPS Technologies, Inc., nor the names of its
  14. * contributors may be used to endorse or promote products derived from
  15. * this software without specific prior written permission.
  16. *
  17. * THIS SOFTWARE IS PROVIDED BY THE MIPS TECHNOLOGIES, INC. ``AS IS'' AND
  18. * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  19. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  20. * ARE DISCLAIMED. IN NO EVENT SHALL THE MIPS TECHNOLOGIES, INC. BE LIABLE
  21. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  22. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  23. * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  24. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  25. * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  26. * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  27. * SUCH DAMAGE.
  28. *
  29. * AAC Spectral Band Replication decoding functions (fixed-point)
  30. * Copyright (c) 2008-2009 Robert Swain ( rob opendot cl )
  31. * Copyright (c) 2009-2010 Alex Converse <alex.converse@gmail.com>
  32. *
  33. * This file is part of FFmpeg.
  34. *
  35. * FFmpeg is free software; you can redistribute it and/or
  36. * modify it under the terms of the GNU Lesser General Public
  37. * License as published by the Free Software Foundation; either
  38. * version 2.1 of the License, or (at your option) any later version.
  39. *
  40. * FFmpeg is distributed in the hope that it will be useful,
  41. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  42. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  43. * Lesser General Public License for more details.
  44. *
  45. * You should have received a copy of the GNU Lesser General Public
  46. * License along with FFmpeg; if not, write to the Free Software
  47. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  48. */
  49. /**
  50. * @file
  51. * AAC Spectral Band Replication decoding functions (fixed-point)
  52. * Note: Rounding-to-nearest used unless otherwise stated
  53. * @author Robert Swain ( rob opendot cl )
  54. * @author Stanislav Ocovaj ( stanislav.ocovaj imgtec com )
  55. */
  56. #define USE_FIXED 1
  57. #include "aac.h"
  58. #include "sbr.h"
  59. #include "aacsbr.h"
  60. #include "aacsbrdata.h"
  61. #include "aacsbr_fixed_tablegen.h"
  62. #include "fft.h"
  63. #include "aacps.h"
  64. #include "sbrdsp.h"
  65. #include "libavutil/internal.h"
  66. #include "libavutil/libm.h"
  67. #include "libavutil/avassert.h"
  68. #include <stdint.h>
  69. #include <float.h>
  70. #include <math.h>
  71. static VLC vlc_sbr[10];
  72. static void aacsbr_func_ptr_init(AACSBRContext *c);
  73. static const int CONST_LN2 = Q31(0.6931471806/256); // ln(2)/256
  74. static const int CONST_RECIP_LN2 = Q31(0.7213475204); // 0.5/ln(2)
  75. static const int CONST_SQRT2 = Q30(0.7071067812); // sqrt(2)/2
  76. static const int CONST_076923 = Q31(0.76923076923076923077f);
  77. int fixed_log_table[10] =
  78. {
  79. Q31(1.0/2), Q31(1.0/3), Q31(1.0/4), Q31(1.0/5), Q31(1.0/6),
  80. Q31(1.0/7), Q31(1.0/8), Q31(1.0/9), Q31(1.0/10), Q31(1.0/11)
  81. };
  82. static int fixed_log(int x)
  83. {
  84. int i, ret, xpow, tmp;
  85. ret = x;
  86. xpow = x;
  87. for (i=0; i<10; i+=2){
  88. xpow = (int)(((int64_t)xpow * x + 0x40000000) >> 31);
  89. tmp = (int)(((int64_t)xpow * fixed_log_table[i] + 0x40000000) >> 31);
  90. ret -= tmp;
  91. xpow = (int)(((int64_t)xpow * x + 0x40000000) >> 31);
  92. tmp = (int)(((int64_t)xpow * fixed_log_table[i+1] + 0x40000000) >> 31);
  93. ret += tmp;
  94. }
  95. return ret;
  96. }
  97. int fixed_exp_table[7] =
  98. {
  99. Q31(1.0/2), Q31(1.0/6), Q31(1.0/24), Q31(1.0/120),
  100. Q31(1.0/720), Q31(1.0/5040), Q31(1.0/40320)
  101. };
  102. static int fixed_exp(int x)
  103. {
  104. int i, ret, xpow, tmp;
  105. ret = 0x800000 + x;
  106. xpow = x;
  107. for (i=0; i<7; i++){
  108. xpow = (int)(((int64_t)xpow * x + 0x400000) >> 23);
  109. tmp = (int)(((int64_t)xpow * fixed_exp_table[i] + 0x40000000) >> 31);
  110. ret += tmp;
  111. }
  112. return ret;
  113. }
  114. static void make_bands(int16_t* bands, int start, int stop, int num_bands)
  115. {
  116. int k, previous, present;
  117. int base, prod, nz = 0;
  118. base = (stop << 23) / start;
  119. while (base < 0x40000000){
  120. base <<= 1;
  121. nz++;
  122. }
  123. base = fixed_log(base - 0x80000000);
  124. base = (((base + 0x80) >> 8) + (8-nz)*CONST_LN2) / num_bands;
  125. base = fixed_exp(base);
  126. previous = start;
  127. prod = start << 23;
  128. for (k = 0; k < num_bands-1; k++) {
  129. prod = (int)(((int64_t)prod * base + 0x400000) >> 23);
  130. present = (prod + 0x400000) >> 23;
  131. bands[k] = present - previous;
  132. previous = present;
  133. }
  134. bands[num_bands-1] = stop - previous;
  135. }
  136. /// Dequantization and stereo decoding (14496-3 sp04 p203)
  137. static void sbr_dequant(SpectralBandReplication *sbr, int id_aac)
  138. {
  139. int k, e;
  140. int ch;
  141. if (id_aac == TYPE_CPE && sbr->bs_coupling) {
  142. int alpha = sbr->data[0].bs_amp_res ? 2 : 1;
  143. int pan_offset = sbr->data[0].bs_amp_res ? 12 : 24;
  144. for (e = 1; e <= sbr->data[0].bs_num_env; e++) {
  145. for (k = 0; k < sbr->n[sbr->data[0].bs_freq_res[e]]; k++) {
  146. SoftFloat temp1, temp2, fac;
  147. temp1.exp = sbr->data[0].env_facs[e][k].mant * alpha + 14;
  148. if (temp1.exp & 1)
  149. temp1.mant = 759250125;
  150. else
  151. temp1.mant = 0x20000000;
  152. temp1.exp = (temp1.exp >> 1) + 1;
  153. temp2.exp = (pan_offset - sbr->data[1].env_facs[e][k].mant) * alpha;
  154. if (temp2.exp & 1)
  155. temp2.mant = 759250125;
  156. else
  157. temp2.mant = 0x20000000;
  158. temp2.exp = (temp2.exp >> 1) + 1;
  159. fac = av_div_sf(temp1, av_add_sf(FLOAT_1, temp2));
  160. sbr->data[0].env_facs[e][k] = fac;
  161. sbr->data[1].env_facs[e][k] = av_mul_sf(fac, temp2);
  162. }
  163. }
  164. for (e = 1; e <= sbr->data[0].bs_num_noise; e++) {
  165. for (k = 0; k < sbr->n_q; k++) {
  166. SoftFloat temp1, temp2, fac;
  167. temp1.exp = NOISE_FLOOR_OFFSET - \
  168. sbr->data[0].noise_facs[e][k].mant + 2;
  169. temp1.mant = 0x20000000;
  170. temp2.exp = 12 - sbr->data[1].noise_facs[e][k].mant + 1;
  171. temp2.mant = 0x20000000;
  172. fac = av_div_sf(temp1, av_add_sf(FLOAT_1, temp2));
  173. sbr->data[0].noise_facs[e][k] = fac;
  174. sbr->data[1].noise_facs[e][k] = av_mul_sf(fac, temp2);
  175. }
  176. }
  177. } else { // SCE or one non-coupled CPE
  178. for (ch = 0; ch < (id_aac == TYPE_CPE) + 1; ch++) {
  179. int alpha = sbr->data[ch].bs_amp_res ? 2 : 1;
  180. for (e = 1; e <= sbr->data[ch].bs_num_env; e++)
  181. for (k = 0; k < sbr->n[sbr->data[ch].bs_freq_res[e]]; k++){
  182. SoftFloat temp1;
  183. temp1.exp = alpha * sbr->data[ch].env_facs[e][k].mant + 12;
  184. if (temp1.exp & 1)
  185. temp1.mant = 759250125;
  186. else
  187. temp1.mant = 0x20000000;
  188. temp1.exp = (temp1.exp >> 1) + 1;
  189. sbr->data[ch].env_facs[e][k] = temp1;
  190. }
  191. for (e = 1; e <= sbr->data[ch].bs_num_noise; e++)
  192. for (k = 0; k < sbr->n_q; k++){
  193. sbr->data[ch].noise_facs[e][k].exp = NOISE_FLOOR_OFFSET - \
  194. sbr->data[ch].noise_facs[e][k].mant + 1;
  195. sbr->data[ch].noise_facs[e][k].mant = 0x20000000;
  196. }
  197. }
  198. }
  199. }
  200. /** High Frequency Generation (14496-3 sp04 p214+) and Inverse Filtering
  201. * (14496-3 sp04 p214)
  202. * Warning: This routine does not seem numerically stable.
  203. */
  204. static void sbr_hf_inverse_filter(SBRDSPContext *dsp,
  205. int (*alpha0)[2], int (*alpha1)[2],
  206. const int X_low[32][40][2], int k0)
  207. {
  208. int k;
  209. int shift, round;
  210. for (k = 0; k < k0; k++) {
  211. SoftFloat phi[3][2][2];
  212. SoftFloat a00, a01, a10, a11;
  213. SoftFloat dk;
  214. dsp->autocorrelate(X_low[k], phi);
  215. dk = av_sub_sf(av_mul_sf(phi[2][1][0], phi[1][0][0]),
  216. av_mul_sf(av_add_sf(av_mul_sf(phi[1][1][0], phi[1][1][0]),
  217. av_mul_sf(phi[1][1][1], phi[1][1][1])), FLOAT_0999999));
  218. if (!dk.mant) {
  219. a10 = FLOAT_0;
  220. a11 = FLOAT_0;
  221. } else {
  222. SoftFloat temp_real, temp_im;
  223. temp_real = av_sub_sf(av_sub_sf(av_mul_sf(phi[0][0][0], phi[1][1][0]),
  224. av_mul_sf(phi[0][0][1], phi[1][1][1])),
  225. av_mul_sf(phi[0][1][0], phi[1][0][0]));
  226. temp_im = av_sub_sf(av_add_sf(av_mul_sf(phi[0][0][0], phi[1][1][1]),
  227. av_mul_sf(phi[0][0][1], phi[1][1][0])),
  228. av_mul_sf(phi[0][1][1], phi[1][0][0]));
  229. a10 = av_div_sf(temp_real, dk);
  230. a11 = av_div_sf(temp_im, dk);
  231. }
  232. if (!phi[1][0][0].mant) {
  233. a00 = FLOAT_0;
  234. a01 = FLOAT_0;
  235. } else {
  236. SoftFloat temp_real, temp_im;
  237. temp_real = av_add_sf(phi[0][0][0],
  238. av_add_sf(av_mul_sf(a10, phi[1][1][0]),
  239. av_mul_sf(a11, phi[1][1][1])));
  240. temp_im = av_add_sf(phi[0][0][1],
  241. av_sub_sf(av_mul_sf(a11, phi[1][1][0]),
  242. av_mul_sf(a10, phi[1][1][1])));
  243. temp_real.mant = -temp_real.mant;
  244. temp_im.mant = -temp_im.mant;
  245. a00 = av_div_sf(temp_real, phi[1][0][0]);
  246. a01 = av_div_sf(temp_im, phi[1][0][0]);
  247. }
  248. shift = a00.exp;
  249. if (shift >= 3)
  250. alpha0[k][0] = 0x7fffffff;
  251. else {
  252. a00.mant <<= 1;
  253. shift = 2-shift;
  254. if (shift == 0)
  255. alpha0[k][0] = a00.mant;
  256. else {
  257. round = 1 << (shift-1);
  258. alpha0[k][0] = (a00.mant + round) >> shift;
  259. }
  260. }
  261. shift = a01.exp;
  262. if (shift >= 3)
  263. alpha0[k][1] = 0x7fffffff;
  264. else {
  265. a01.mant <<= 1;
  266. shift = 2-shift;
  267. if (shift == 0)
  268. alpha0[k][1] = a01.mant;
  269. else {
  270. round = 1 << (shift-1);
  271. alpha0[k][1] = (a01.mant + round) >> shift;
  272. }
  273. }
  274. shift = a10.exp;
  275. if (shift >= 3)
  276. alpha1[k][0] = 0x7fffffff;
  277. else {
  278. a10.mant <<= 1;
  279. shift = 2-shift;
  280. if (shift == 0)
  281. alpha1[k][0] = a10.mant;
  282. else {
  283. round = 1 << (shift-1);
  284. alpha1[k][0] = (a10.mant + round) >> shift;
  285. }
  286. }
  287. shift = a11.exp;
  288. if (shift >= 3)
  289. alpha1[k][1] = 0x7fffffff;
  290. else {
  291. a11.mant <<= 1;
  292. shift = 2-shift;
  293. if (shift == 0)
  294. alpha1[k][1] = a11.mant;
  295. else {
  296. round = 1 << (shift-1);
  297. alpha1[k][1] = (a11.mant + round) >> shift;
  298. }
  299. }
  300. shift = (int)(((int64_t)(alpha1[k][0]>>1) * (alpha1[k][0]>>1) + \
  301. (int64_t)(alpha1[k][1]>>1) * (alpha1[k][1]>>1) + \
  302. 0x40000000) >> 31);
  303. if (shift >= 0x20000000){
  304. alpha1[k][0] = 0;
  305. alpha1[k][1] = 0;
  306. alpha0[k][0] = 0;
  307. alpha0[k][1] = 0;
  308. }
  309. shift = (int)(((int64_t)(alpha0[k][0]>>1) * (alpha0[k][0]>>1) + \
  310. (int64_t)(alpha0[k][1]>>1) * (alpha0[k][1]>>1) + \
  311. 0x40000000) >> 31);
  312. if (shift >= 0x20000000){
  313. alpha1[k][0] = 0;
  314. alpha1[k][1] = 0;
  315. alpha0[k][0] = 0;
  316. alpha0[k][1] = 0;
  317. }
  318. }
  319. }
  320. /// Chirp Factors (14496-3 sp04 p214)
  321. static void sbr_chirp(SpectralBandReplication *sbr, SBRData *ch_data)
  322. {
  323. int i;
  324. int new_bw;
  325. static const int bw_tab[] = { 0, 1610612736, 1932735283, 2104533975 };
  326. int64_t accu;
  327. for (i = 0; i < sbr->n_q; i++) {
  328. if (ch_data->bs_invf_mode[0][i] + ch_data->bs_invf_mode[1][i] == 1)
  329. new_bw = 1288490189;
  330. else
  331. new_bw = bw_tab[ch_data->bs_invf_mode[0][i]];
  332. if (new_bw < ch_data->bw_array[i]){
  333. accu = (int64_t)new_bw * 1610612736;
  334. accu += (int64_t)ch_data->bw_array[i] * 0x20000000;
  335. new_bw = (int)((accu + 0x40000000) >> 31);
  336. } else {
  337. accu = (int64_t)new_bw * 1946157056;
  338. accu += (int64_t)ch_data->bw_array[i] * 201326592;
  339. new_bw = (int)((accu + 0x40000000) >> 31);
  340. }
  341. ch_data->bw_array[i] = new_bw < 0x2000000 ? 0 : new_bw;
  342. }
  343. }
  344. /**
  345. * Calculation of levels of additional HF signal components (14496-3 sp04 p219)
  346. * and Calculation of gain (14496-3 sp04 p219)
  347. */
  348. static void sbr_gain_calc(AACContext *ac, SpectralBandReplication *sbr,
  349. SBRData *ch_data, const int e_a[2])
  350. {
  351. int e, k, m;
  352. // max gain limits : -3dB, 0dB, 3dB, inf dB (limiter off)
  353. static const SoftFloat limgain[4] = { { 760155524, 0 }, { 0x20000000, 1 },
  354. { 758351638, 1 }, { 625000000, 34 } };
  355. for (e = 0; e < ch_data->bs_num_env; e++) {
  356. int delta = !((e == e_a[1]) || (e == e_a[0]));
  357. for (k = 0; k < sbr->n_lim; k++) {
  358. SoftFloat gain_boost, gain_max;
  359. SoftFloat sum[2] = { { 0, 0}, { 0, 0 } };
  360. for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
  361. const SoftFloat temp = av_div_sf(sbr->e_origmapped[e][m],
  362. av_add_sf(FLOAT_1, sbr->q_mapped[e][m]));
  363. sbr->q_m[e][m] = av_sqrt_sf(av_mul_sf(temp, sbr->q_mapped[e][m]));
  364. sbr->s_m[e][m] = av_sqrt_sf(av_mul_sf(temp, av_int2sf(ch_data->s_indexmapped[e + 1][m], 0)));
  365. if (!sbr->s_mapped[e][m]) {
  366. if (delta) {
  367. sbr->gain[e][m] = av_sqrt_sf(av_div_sf(sbr->e_origmapped[e][m],
  368. av_mul_sf(av_add_sf(FLOAT_1, sbr->e_curr[e][m]),
  369. av_add_sf(FLOAT_1, sbr->q_mapped[e][m]))));
  370. } else {
  371. sbr->gain[e][m] = av_sqrt_sf(av_div_sf(sbr->e_origmapped[e][m],
  372. av_add_sf(FLOAT_1, sbr->e_curr[e][m])));
  373. }
  374. } else {
  375. sbr->gain[e][m] = av_sqrt_sf(
  376. av_div_sf(
  377. av_mul_sf(sbr->e_origmapped[e][m], sbr->q_mapped[e][m]),
  378. av_mul_sf(
  379. av_add_sf(FLOAT_1, sbr->e_curr[e][m]),
  380. av_add_sf(FLOAT_1, sbr->q_mapped[e][m]))));
  381. }
  382. }
  383. for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
  384. sum[0] = av_add_sf(sum[0], sbr->e_origmapped[e][m]);
  385. sum[1] = av_add_sf(sum[1], sbr->e_curr[e][m]);
  386. }
  387. gain_max = av_mul_sf(limgain[sbr->bs_limiter_gains],
  388. av_sqrt_sf(
  389. av_div_sf(
  390. av_add_sf(FLOAT_EPSILON, sum[0]),
  391. av_add_sf(FLOAT_EPSILON, sum[1]))));
  392. if (av_gt_sf(gain_max, FLOAT_100000))
  393. gain_max = FLOAT_100000;
  394. for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
  395. SoftFloat q_m_max = av_div_sf(
  396. av_mul_sf(sbr->q_m[e][m], gain_max),
  397. sbr->gain[e][m]);
  398. if (av_gt_sf(sbr->q_m[e][m], q_m_max))
  399. sbr->q_m[e][m] = q_m_max;
  400. if (av_gt_sf(sbr->gain[e][m], gain_max))
  401. sbr->gain[e][m] = gain_max;
  402. }
  403. sum[0] = sum[1] = FLOAT_0;
  404. for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
  405. sum[0] = av_add_sf(sum[0], sbr->e_origmapped[e][m]);
  406. sum[1] = av_add_sf(sum[1],
  407. av_mul_sf(
  408. av_mul_sf(sbr->e_curr[e][m],
  409. sbr->gain[e][m]),
  410. sbr->gain[e][m]));
  411. sum[1] = av_add_sf(sum[1],
  412. av_mul_sf(sbr->s_m[e][m], sbr->s_m[e][m]));
  413. if (delta && !sbr->s_m[e][m].mant)
  414. sum[1] = av_add_sf(sum[1],
  415. av_mul_sf(sbr->q_m[e][m], sbr->q_m[e][m]));
  416. }
  417. gain_boost = av_sqrt_sf(
  418. av_div_sf(
  419. av_add_sf(FLOAT_EPSILON, sum[0]),
  420. av_add_sf(FLOAT_EPSILON, sum[1])));
  421. if (av_gt_sf(gain_boost, FLOAT_1584893192))
  422. gain_boost = FLOAT_1584893192;
  423. for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
  424. sbr->gain[e][m] = av_mul_sf(sbr->gain[e][m], gain_boost);
  425. sbr->q_m[e][m] = av_mul_sf(sbr->q_m[e][m], gain_boost);
  426. sbr->s_m[e][m] = av_mul_sf(sbr->s_m[e][m], gain_boost);
  427. }
  428. }
  429. }
  430. }
  431. /// Assembling HF Signals (14496-3 sp04 p220)
  432. static void sbr_hf_assemble(int Y1[38][64][2],
  433. const int X_high[64][40][2],
  434. SpectralBandReplication *sbr, SBRData *ch_data,
  435. const int e_a[2])
  436. {
  437. int e, i, j, m;
  438. const int h_SL = 4 * !sbr->bs_smoothing_mode;
  439. const int kx = sbr->kx[1];
  440. const int m_max = sbr->m[1];
  441. static const SoftFloat h_smooth[5] = {
  442. { 715827883, -1 },
  443. { 647472402, -1 },
  444. { 937030863, -2 },
  445. { 989249804, -3 },
  446. { 546843842, -4 },
  447. };
  448. SoftFloat (*g_temp)[48] = ch_data->g_temp, (*q_temp)[48] = ch_data->q_temp;
  449. int indexnoise = ch_data->f_indexnoise;
  450. int indexsine = ch_data->f_indexsine;
  451. if (sbr->reset) {
  452. for (i = 0; i < h_SL; i++) {
  453. memcpy(g_temp[i + 2*ch_data->t_env[0]], sbr->gain[0], m_max * sizeof(sbr->gain[0][0]));
  454. memcpy(q_temp[i + 2*ch_data->t_env[0]], sbr->q_m[0], m_max * sizeof(sbr->q_m[0][0]));
  455. }
  456. } else if (h_SL) {
  457. for (i = 0; i < 4; i++) {
  458. memcpy(g_temp[i + 2 * ch_data->t_env[0]],
  459. g_temp[i + 2 * ch_data->t_env_num_env_old],
  460. sizeof(g_temp[0]));
  461. memcpy(q_temp[i + 2 * ch_data->t_env[0]],
  462. q_temp[i + 2 * ch_data->t_env_num_env_old],
  463. sizeof(q_temp[0]));
  464. }
  465. }
  466. for (e = 0; e < ch_data->bs_num_env; e++) {
  467. for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
  468. memcpy(g_temp[h_SL + i], sbr->gain[e], m_max * sizeof(sbr->gain[0][0]));
  469. memcpy(q_temp[h_SL + i], sbr->q_m[e], m_max * sizeof(sbr->q_m[0][0]));
  470. }
  471. }
  472. for (e = 0; e < ch_data->bs_num_env; e++) {
  473. for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
  474. SoftFloat g_filt_tab[48];
  475. SoftFloat q_filt_tab[48];
  476. SoftFloat *g_filt, *q_filt;
  477. if (h_SL && e != e_a[0] && e != e_a[1]) {
  478. g_filt = g_filt_tab;
  479. q_filt = q_filt_tab;
  480. for (m = 0; m < m_max; m++) {
  481. const int idx1 = i + h_SL;
  482. g_filt[m].mant = g_filt[m].exp = 0;
  483. q_filt[m].mant = q_filt[m].exp = 0;
  484. for (j = 0; j <= h_SL; j++) {
  485. g_filt[m] = av_add_sf(g_filt[m],
  486. av_mul_sf(g_temp[idx1 - j][m],
  487. h_smooth[j]));
  488. q_filt[m] = av_add_sf(q_filt[m],
  489. av_mul_sf(q_temp[idx1 - j][m],
  490. h_smooth[j]));
  491. }
  492. }
  493. } else {
  494. g_filt = g_temp[i + h_SL];
  495. q_filt = q_temp[i];
  496. }
  497. sbr->dsp.hf_g_filt(Y1[i] + kx, X_high + kx, g_filt, m_max,
  498. i + ENVELOPE_ADJUSTMENT_OFFSET);
  499. if (e != e_a[0] && e != e_a[1]) {
  500. sbr->dsp.hf_apply_noise[indexsine](Y1[i] + kx, sbr->s_m[e],
  501. q_filt, indexnoise,
  502. kx, m_max);
  503. } else {
  504. int idx = indexsine&1;
  505. int A = (1-((indexsine+(kx & 1))&2));
  506. int B = (A^(-idx)) + idx;
  507. int *out = &Y1[i][kx][idx];
  508. int shift, round;
  509. SoftFloat *in = sbr->s_m[e];
  510. for (m = 0; m+1 < m_max; m+=2) {
  511. shift = 22 - in[m ].exp;
  512. round = 1 << (shift-1);
  513. out[2*m ] += (in[m ].mant * A + round) >> shift;
  514. shift = 22 - in[m+1].exp;
  515. round = 1 << (shift-1);
  516. out[2*m+2] += (in[m+1].mant * B + round) >> shift;
  517. }
  518. if(m_max&1)
  519. {
  520. shift = 22 - in[m ].exp;
  521. round = 1 << (shift-1);
  522. out[2*m ] += (in[m ].mant * A + round) >> shift;
  523. }
  524. }
  525. indexnoise = (indexnoise + m_max) & 0x1ff;
  526. indexsine = (indexsine + 1) & 3;
  527. }
  528. }
  529. ch_data->f_indexnoise = indexnoise;
  530. ch_data->f_indexsine = indexsine;
  531. }
  532. #include "aacsbr_template.c"