You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1050 lines
38KB

  1. /*
  2. * MPEG-4 Parametric Stereo decoding functions
  3. * Copyright (c) 2010 Alex Converse <alex.converse@gmail.com>
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. *
  21. * Note: Rounding-to-nearest used unless otherwise stated
  22. *
  23. */
  24. #include <stdint.h>
  25. #include "libavutil/common.h"
  26. #include "libavutil/mathematics.h"
  27. #include "avcodec.h"
  28. #include "get_bits.h"
  29. #include "aacps.h"
  30. #if USE_FIXED
  31. #include "aacps_fixed_tablegen.h"
  32. #else
  33. #include "libavutil/internal.h"
  34. #include "aacps_tablegen.h"
  35. #endif /* USE_FIXED */
  36. #include "aacpsdata.c"
  37. #define PS_BASELINE 0 ///< Operate in Baseline PS mode
  38. ///< Baseline implies 10 or 20 stereo bands,
  39. ///< mixing mode A, and no ipd/opd
  40. #define numQMFSlots 32 //numTimeSlots * RATE
  41. static const int8_t num_env_tab[2][4] = {
  42. { 0, 1, 2, 4, },
  43. { 1, 2, 3, 4, },
  44. };
  45. static const int8_t nr_iidicc_par_tab[] = {
  46. 10, 20, 34, 10, 20, 34,
  47. };
  48. static const int8_t nr_iidopd_par_tab[] = {
  49. 5, 11, 17, 5, 11, 17,
  50. };
  51. enum {
  52. huff_iid_df1,
  53. huff_iid_dt1,
  54. huff_iid_df0,
  55. huff_iid_dt0,
  56. huff_icc_df,
  57. huff_icc_dt,
  58. huff_ipd_df,
  59. huff_ipd_dt,
  60. huff_opd_df,
  61. huff_opd_dt,
  62. };
  63. static const int huff_iid[] = {
  64. huff_iid_df0,
  65. huff_iid_df1,
  66. huff_iid_dt0,
  67. huff_iid_dt1,
  68. };
  69. static VLC vlc_ps[10];
  70. #define READ_PAR_DATA(PAR, OFFSET, MASK, ERR_CONDITION) \
  71. /** \
  72. * Read Inter-channel Intensity Difference/Inter-Channel Coherence/ \
  73. * Inter-channel Phase Difference/Overall Phase Difference parameters from the \
  74. * bitstream. \
  75. * \
  76. * @param avctx contains the current codec context \
  77. * @param gb pointer to the input bitstream \
  78. * @param ps pointer to the Parametric Stereo context \
  79. * @param PAR pointer to the parameter to be read \
  80. * @param e envelope to decode \
  81. * @param dt 1: time delta-coded, 0: frequency delta-coded \
  82. */ \
  83. static int read_ ## PAR ## _data(AVCodecContext *avctx, GetBitContext *gb, PSContext *ps, \
  84. int8_t (*PAR)[PS_MAX_NR_IIDICC], int table_idx, int e, int dt) \
  85. { \
  86. int b, num = ps->nr_ ## PAR ## _par; \
  87. VLC_TYPE (*vlc_table)[2] = vlc_ps[table_idx].table; \
  88. if (dt) { \
  89. int e_prev = e ? e - 1 : ps->num_env_old - 1; \
  90. e_prev = FFMAX(e_prev, 0); \
  91. for (b = 0; b < num; b++) { \
  92. int val = PAR[e_prev][b] + get_vlc2(gb, vlc_table, 9, 3) - OFFSET; \
  93. if (MASK) val &= MASK; \
  94. PAR[e][b] = val; \
  95. if (ERR_CONDITION) \
  96. goto err; \
  97. } \
  98. } else { \
  99. int val = 0; \
  100. for (b = 0; b < num; b++) { \
  101. val += get_vlc2(gb, vlc_table, 9, 3) - OFFSET; \
  102. if (MASK) val &= MASK; \
  103. PAR[e][b] = val; \
  104. if (ERR_CONDITION) \
  105. goto err; \
  106. } \
  107. } \
  108. return 0; \
  109. err: \
  110. av_log(avctx, AV_LOG_ERROR, "illegal "#PAR"\n"); \
  111. return -1; \
  112. }
  113. READ_PAR_DATA(iid, huff_offset[table_idx], 0, FFABS(ps->iid_par[e][b]) > 7 + 8 * ps->iid_quant)
  114. READ_PAR_DATA(icc, huff_offset[table_idx], 0, ps->icc_par[e][b] > 7U)
  115. READ_PAR_DATA(ipdopd, 0, 0x07, 0)
  116. static int ps_read_extension_data(GetBitContext *gb, PSContext *ps, int ps_extension_id)
  117. {
  118. int e;
  119. int count = get_bits_count(gb);
  120. if (ps_extension_id)
  121. return 0;
  122. ps->enable_ipdopd = get_bits1(gb);
  123. if (ps->enable_ipdopd) {
  124. for (e = 0; e < ps->num_env; e++) {
  125. int dt = get_bits1(gb);
  126. read_ipdopd_data(NULL, gb, ps, ps->ipd_par, dt ? huff_ipd_dt : huff_ipd_df, e, dt);
  127. dt = get_bits1(gb);
  128. read_ipdopd_data(NULL, gb, ps, ps->opd_par, dt ? huff_opd_dt : huff_opd_df, e, dt);
  129. }
  130. }
  131. skip_bits1(gb); //reserved_ps
  132. return get_bits_count(gb) - count;
  133. }
  134. static void ipdopd_reset(int8_t *ipd_hist, int8_t *opd_hist)
  135. {
  136. int i;
  137. for (i = 0; i < PS_MAX_NR_IPDOPD; i++) {
  138. opd_hist[i] = 0;
  139. ipd_hist[i] = 0;
  140. }
  141. }
  142. int AAC_RENAME(ff_ps_read_data)(AVCodecContext *avctx, GetBitContext *gb_host, PSContext *ps, int bits_left)
  143. {
  144. int e;
  145. int bit_count_start = get_bits_count(gb_host);
  146. int header;
  147. int bits_consumed;
  148. GetBitContext gbc = *gb_host, *gb = &gbc;
  149. header = get_bits1(gb);
  150. if (header) { //enable_ps_header
  151. ps->enable_iid = get_bits1(gb);
  152. if (ps->enable_iid) {
  153. int iid_mode = get_bits(gb, 3);
  154. if (iid_mode > 5) {
  155. av_log(avctx, AV_LOG_ERROR, "iid_mode %d is reserved.\n",
  156. iid_mode);
  157. goto err;
  158. }
  159. ps->nr_iid_par = nr_iidicc_par_tab[iid_mode];
  160. ps->iid_quant = iid_mode > 2;
  161. ps->nr_ipdopd_par = nr_iidopd_par_tab[iid_mode];
  162. }
  163. ps->enable_icc = get_bits1(gb);
  164. if (ps->enable_icc) {
  165. ps->icc_mode = get_bits(gb, 3);
  166. if (ps->icc_mode > 5) {
  167. av_log(avctx, AV_LOG_ERROR, "icc_mode %d is reserved.\n",
  168. ps->icc_mode);
  169. goto err;
  170. }
  171. ps->nr_icc_par = nr_iidicc_par_tab[ps->icc_mode];
  172. }
  173. ps->enable_ext = get_bits1(gb);
  174. }
  175. ps->frame_class = get_bits1(gb);
  176. ps->num_env_old = ps->num_env;
  177. ps->num_env = num_env_tab[ps->frame_class][get_bits(gb, 2)];
  178. ps->border_position[0] = -1;
  179. if (ps->frame_class) {
  180. for (e = 1; e <= ps->num_env; e++)
  181. ps->border_position[e] = get_bits(gb, 5);
  182. } else
  183. for (e = 1; e <= ps->num_env; e++)
  184. ps->border_position[e] = (e * numQMFSlots >> ff_log2_tab[ps->num_env]) - 1;
  185. if (ps->enable_iid) {
  186. for (e = 0; e < ps->num_env; e++) {
  187. int dt = get_bits1(gb);
  188. if (read_iid_data(avctx, gb, ps, ps->iid_par, huff_iid[2*dt+ps->iid_quant], e, dt))
  189. goto err;
  190. }
  191. } else
  192. memset(ps->iid_par, 0, sizeof(ps->iid_par));
  193. if (ps->enable_icc)
  194. for (e = 0; e < ps->num_env; e++) {
  195. int dt = get_bits1(gb);
  196. if (read_icc_data(avctx, gb, ps, ps->icc_par, dt ? huff_icc_dt : huff_icc_df, e, dt))
  197. goto err;
  198. }
  199. else
  200. memset(ps->icc_par, 0, sizeof(ps->icc_par));
  201. if (ps->enable_ext) {
  202. int cnt = get_bits(gb, 4);
  203. if (cnt == 15) {
  204. cnt += get_bits(gb, 8);
  205. }
  206. cnt *= 8;
  207. while (cnt > 7) {
  208. int ps_extension_id = get_bits(gb, 2);
  209. cnt -= 2 + ps_read_extension_data(gb, ps, ps_extension_id);
  210. }
  211. if (cnt < 0) {
  212. av_log(avctx, AV_LOG_ERROR, "ps extension overflow %d\n", cnt);
  213. goto err;
  214. }
  215. skip_bits(gb, cnt);
  216. }
  217. ps->enable_ipdopd &= !PS_BASELINE;
  218. //Fix up envelopes
  219. if (!ps->num_env || ps->border_position[ps->num_env] < numQMFSlots - 1) {
  220. //Create a fake envelope
  221. int source = ps->num_env ? ps->num_env - 1 : ps->num_env_old - 1;
  222. int b;
  223. if (source >= 0 && source != ps->num_env) {
  224. if (ps->enable_iid) {
  225. memcpy(ps->iid_par+ps->num_env, ps->iid_par+source, sizeof(ps->iid_par[0]));
  226. }
  227. if (ps->enable_icc) {
  228. memcpy(ps->icc_par+ps->num_env, ps->icc_par+source, sizeof(ps->icc_par[0]));
  229. }
  230. if (ps->enable_ipdopd) {
  231. memcpy(ps->ipd_par+ps->num_env, ps->ipd_par+source, sizeof(ps->ipd_par[0]));
  232. memcpy(ps->opd_par+ps->num_env, ps->opd_par+source, sizeof(ps->opd_par[0]));
  233. }
  234. }
  235. if (ps->enable_iid){
  236. for (b = 0; b < ps->nr_iid_par; b++) {
  237. if (FFABS(ps->iid_par[ps->num_env][b]) > 7 + 8 * ps->iid_quant) {
  238. av_log(avctx, AV_LOG_ERROR, "iid_par invalid\n");
  239. goto err;
  240. }
  241. }
  242. }
  243. if (ps->enable_icc){
  244. for (b = 0; b < ps->nr_iid_par; b++) {
  245. if (ps->icc_par[ps->num_env][b] > 7U) {
  246. av_log(avctx, AV_LOG_ERROR, "icc_par invalid\n");
  247. goto err;
  248. }
  249. }
  250. }
  251. ps->num_env++;
  252. ps->border_position[ps->num_env] = numQMFSlots - 1;
  253. }
  254. ps->is34bands_old = ps->is34bands;
  255. if (!PS_BASELINE && (ps->enable_iid || ps->enable_icc))
  256. ps->is34bands = (ps->enable_iid && ps->nr_iid_par == 34) ||
  257. (ps->enable_icc && ps->nr_icc_par == 34);
  258. //Baseline
  259. if (!ps->enable_ipdopd) {
  260. memset(ps->ipd_par, 0, sizeof(ps->ipd_par));
  261. memset(ps->opd_par, 0, sizeof(ps->opd_par));
  262. }
  263. if (header)
  264. ps->start = 1;
  265. bits_consumed = get_bits_count(gb) - bit_count_start;
  266. if (bits_consumed <= bits_left) {
  267. skip_bits_long(gb_host, bits_consumed);
  268. return bits_consumed;
  269. }
  270. av_log(avctx, AV_LOG_ERROR, "Expected to read %d PS bits actually read %d.\n", bits_left, bits_consumed);
  271. err:
  272. ps->start = 0;
  273. skip_bits_long(gb_host, bits_left);
  274. memset(ps->iid_par, 0, sizeof(ps->iid_par));
  275. memset(ps->icc_par, 0, sizeof(ps->icc_par));
  276. memset(ps->ipd_par, 0, sizeof(ps->ipd_par));
  277. memset(ps->opd_par, 0, sizeof(ps->opd_par));
  278. return bits_left;
  279. }
  280. /** Split one subband into 2 subsubbands with a symmetric real filter.
  281. * The filter must have its non-center even coefficients equal to zero. */
  282. static void hybrid2_re(INTFLOAT (*in)[2], INTFLOAT (*out)[32][2], const INTFLOAT filter[8], int len, int reverse)
  283. {
  284. int i, j;
  285. for (i = 0; i < len; i++, in++) {
  286. INT64FLOAT re_in = AAC_MUL31(filter[6], in[6][0]); //real inphase
  287. INT64FLOAT re_op = 0.0f; //real out of phase
  288. INT64FLOAT im_in = AAC_MUL31(filter[6], in[6][1]); //imag inphase
  289. INT64FLOAT im_op = 0.0f; //imag out of phase
  290. for (j = 0; j < 6; j += 2) {
  291. re_op += (INT64FLOAT)filter[j+1] * (in[j+1][0] + in[12-j-1][0]);
  292. im_op += (INT64FLOAT)filter[j+1] * (in[j+1][1] + in[12-j-1][1]);
  293. }
  294. #if USE_FIXED
  295. re_op = (re_op + 0x40000000) >> 31;
  296. im_op = (im_op + 0x40000000) >> 31;
  297. #endif /* USE_FIXED */
  298. out[ reverse][i][0] = (INTFLOAT)(re_in + re_op);
  299. out[ reverse][i][1] = (INTFLOAT)(im_in + im_op);
  300. out[!reverse][i][0] = (INTFLOAT)(re_in - re_op);
  301. out[!reverse][i][1] = (INTFLOAT)(im_in - im_op);
  302. }
  303. }
  304. /** Split one subband into 6 subsubbands with a complex filter */
  305. static void hybrid6_cx(PSDSPContext *dsp, INTFLOAT (*in)[2], INTFLOAT (*out)[32][2],
  306. TABLE_CONST INTFLOAT (*filter)[8][2], int len)
  307. {
  308. int i;
  309. int N = 8;
  310. LOCAL_ALIGNED_16(INTFLOAT, temp, [8], [2]);
  311. for (i = 0; i < len; i++, in++) {
  312. dsp->hybrid_analysis(temp, in, (const INTFLOAT (*)[8][2]) filter, 1, N);
  313. out[0][i][0] = temp[6][0];
  314. out[0][i][1] = temp[6][1];
  315. out[1][i][0] = temp[7][0];
  316. out[1][i][1] = temp[7][1];
  317. out[2][i][0] = temp[0][0];
  318. out[2][i][1] = temp[0][1];
  319. out[3][i][0] = temp[1][0];
  320. out[3][i][1] = temp[1][1];
  321. out[4][i][0] = temp[2][0] + temp[5][0];
  322. out[4][i][1] = temp[2][1] + temp[5][1];
  323. out[5][i][0] = temp[3][0] + temp[4][0];
  324. out[5][i][1] = temp[3][1] + temp[4][1];
  325. }
  326. }
  327. static void hybrid4_8_12_cx(PSDSPContext *dsp,
  328. INTFLOAT (*in)[2], INTFLOAT (*out)[32][2],
  329. TABLE_CONST INTFLOAT (*filter)[8][2], int N, int len)
  330. {
  331. int i;
  332. for (i = 0; i < len; i++, in++) {
  333. dsp->hybrid_analysis(out[0] + i, in, (const INTFLOAT (*)[8][2]) filter, 32, N);
  334. }
  335. }
  336. static void hybrid_analysis(PSDSPContext *dsp, INTFLOAT out[91][32][2],
  337. INTFLOAT in[5][44][2], INTFLOAT L[2][38][64],
  338. int is34, int len)
  339. {
  340. int i, j;
  341. for (i = 0; i < 5; i++) {
  342. for (j = 0; j < 38; j++) {
  343. in[i][j+6][0] = L[0][j][i];
  344. in[i][j+6][1] = L[1][j][i];
  345. }
  346. }
  347. if (is34) {
  348. hybrid4_8_12_cx(dsp, in[0], out, f34_0_12, 12, len);
  349. hybrid4_8_12_cx(dsp, in[1], out+12, f34_1_8, 8, len);
  350. hybrid4_8_12_cx(dsp, in[2], out+20, f34_2_4, 4, len);
  351. hybrid4_8_12_cx(dsp, in[3], out+24, f34_2_4, 4, len);
  352. hybrid4_8_12_cx(dsp, in[4], out+28, f34_2_4, 4, len);
  353. dsp->hybrid_analysis_ileave(out + 27, L, 5, len);
  354. } else {
  355. hybrid6_cx(dsp, in[0], out, f20_0_8, len);
  356. hybrid2_re(in[1], out+6, g1_Q2, len, 1);
  357. hybrid2_re(in[2], out+8, g1_Q2, len, 0);
  358. dsp->hybrid_analysis_ileave(out + 7, L, 3, len);
  359. }
  360. //update in_buf
  361. for (i = 0; i < 5; i++) {
  362. memcpy(in[i], in[i]+32, 6 * sizeof(in[i][0]));
  363. }
  364. }
  365. static void hybrid_synthesis(PSDSPContext *dsp, INTFLOAT out[2][38][64],
  366. INTFLOAT in[91][32][2], int is34, int len)
  367. {
  368. int i, n;
  369. if (is34) {
  370. for (n = 0; n < len; n++) {
  371. memset(out[0][n], 0, 5*sizeof(out[0][n][0]));
  372. memset(out[1][n], 0, 5*sizeof(out[1][n][0]));
  373. for (i = 0; i < 12; i++) {
  374. out[0][n][0] += in[ i][n][0];
  375. out[1][n][0] += in[ i][n][1];
  376. }
  377. for (i = 0; i < 8; i++) {
  378. out[0][n][1] += in[12+i][n][0];
  379. out[1][n][1] += in[12+i][n][1];
  380. }
  381. for (i = 0; i < 4; i++) {
  382. out[0][n][2] += in[20+i][n][0];
  383. out[1][n][2] += in[20+i][n][1];
  384. out[0][n][3] += in[24+i][n][0];
  385. out[1][n][3] += in[24+i][n][1];
  386. out[0][n][4] += in[28+i][n][0];
  387. out[1][n][4] += in[28+i][n][1];
  388. }
  389. }
  390. dsp->hybrid_synthesis_deint(out, in + 27, 5, len);
  391. } else {
  392. for (n = 0; n < len; n++) {
  393. out[0][n][0] = in[0][n][0] + in[1][n][0] + in[2][n][0] +
  394. in[3][n][0] + in[4][n][0] + in[5][n][0];
  395. out[1][n][0] = in[0][n][1] + in[1][n][1] + in[2][n][1] +
  396. in[3][n][1] + in[4][n][1] + in[5][n][1];
  397. out[0][n][1] = in[6][n][0] + in[7][n][0];
  398. out[1][n][1] = in[6][n][1] + in[7][n][1];
  399. out[0][n][2] = in[8][n][0] + in[9][n][0];
  400. out[1][n][2] = in[8][n][1] + in[9][n][1];
  401. }
  402. dsp->hybrid_synthesis_deint(out, in + 7, 3, len);
  403. }
  404. }
  405. /// All-pass filter decay slope
  406. #define DECAY_SLOPE Q30(0.05f)
  407. /// Number of frequency bands that can be addressed by the parameter index, b(k)
  408. static const int NR_PAR_BANDS[] = { 20, 34 };
  409. static const int NR_IPDOPD_BANDS[] = { 11, 17 };
  410. /// Number of frequency bands that can be addressed by the sub subband index, k
  411. static const int NR_BANDS[] = { 71, 91 };
  412. /// Start frequency band for the all-pass filter decay slope
  413. static const int DECAY_CUTOFF[] = { 10, 32 };
  414. /// Number of all-pass filer bands
  415. static const int NR_ALLPASS_BANDS[] = { 30, 50 };
  416. /// First stereo band using the short one sample delay
  417. static const int SHORT_DELAY_BAND[] = { 42, 62 };
  418. /** Table 8.46 */
  419. static void map_idx_10_to_20(int8_t *par_mapped, const int8_t *par, int full)
  420. {
  421. int b;
  422. if (full)
  423. b = 9;
  424. else {
  425. b = 4;
  426. par_mapped[10] = 0;
  427. }
  428. for (; b >= 0; b--) {
  429. par_mapped[2*b+1] = par_mapped[2*b] = par[b];
  430. }
  431. }
  432. static void map_idx_34_to_20(int8_t *par_mapped, const int8_t *par, int full)
  433. {
  434. par_mapped[ 0] = (2*par[ 0] + par[ 1]) / 3;
  435. par_mapped[ 1] = ( par[ 1] + 2*par[ 2]) / 3;
  436. par_mapped[ 2] = (2*par[ 3] + par[ 4]) / 3;
  437. par_mapped[ 3] = ( par[ 4] + 2*par[ 5]) / 3;
  438. par_mapped[ 4] = ( par[ 6] + par[ 7]) / 2;
  439. par_mapped[ 5] = ( par[ 8] + par[ 9]) / 2;
  440. par_mapped[ 6] = par[10];
  441. par_mapped[ 7] = par[11];
  442. par_mapped[ 8] = ( par[12] + par[13]) / 2;
  443. par_mapped[ 9] = ( par[14] + par[15]) / 2;
  444. par_mapped[10] = par[16];
  445. if (full) {
  446. par_mapped[11] = par[17];
  447. par_mapped[12] = par[18];
  448. par_mapped[13] = par[19];
  449. par_mapped[14] = ( par[20] + par[21]) / 2;
  450. par_mapped[15] = ( par[22] + par[23]) / 2;
  451. par_mapped[16] = ( par[24] + par[25]) / 2;
  452. par_mapped[17] = ( par[26] + par[27]) / 2;
  453. par_mapped[18] = ( par[28] + par[29] + par[30] + par[31]) / 4;
  454. par_mapped[19] = ( par[32] + par[33]) / 2;
  455. }
  456. }
  457. static void map_val_34_to_20(INTFLOAT par[PS_MAX_NR_IIDICC])
  458. {
  459. #if USE_FIXED
  460. par[ 0] = (int)(((int64_t)(par[ 0] + (par[ 1]>>1)) * 1431655765 + \
  461. 0x40000000) >> 31);
  462. par[ 1] = (int)(((int64_t)((par[ 1]>>1) + par[ 2]) * 1431655765 + \
  463. 0x40000000) >> 31);
  464. par[ 2] = (int)(((int64_t)(par[ 3] + (par[ 4]>>1)) * 1431655765 + \
  465. 0x40000000) >> 31);
  466. par[ 3] = (int)(((int64_t)((par[ 4]>>1) + par[ 5]) * 1431655765 + \
  467. 0x40000000) >> 31);
  468. #else
  469. par[ 0] = (2*par[ 0] + par[ 1]) * 0.33333333f;
  470. par[ 1] = ( par[ 1] + 2*par[ 2]) * 0.33333333f;
  471. par[ 2] = (2*par[ 3] + par[ 4]) * 0.33333333f;
  472. par[ 3] = ( par[ 4] + 2*par[ 5]) * 0.33333333f;
  473. #endif /* USE_FIXED */
  474. par[ 4] = AAC_HALF_SUM(par[ 6], par[ 7]);
  475. par[ 5] = AAC_HALF_SUM(par[ 8], par[ 9]);
  476. par[ 6] = par[10];
  477. par[ 7] = par[11];
  478. par[ 8] = AAC_HALF_SUM(par[12], par[13]);
  479. par[ 9] = AAC_HALF_SUM(par[14], par[15]);
  480. par[10] = par[16];
  481. par[11] = par[17];
  482. par[12] = par[18];
  483. par[13] = par[19];
  484. par[14] = AAC_HALF_SUM(par[20], par[21]);
  485. par[15] = AAC_HALF_SUM(par[22], par[23]);
  486. par[16] = AAC_HALF_SUM(par[24], par[25]);
  487. par[17] = AAC_HALF_SUM(par[26], par[27]);
  488. #if USE_FIXED
  489. par[18] = (((par[28]+2)>>2) + ((par[29]+2)>>2) + ((par[30]+2)>>2) + ((par[31]+2)>>2));
  490. #else
  491. par[18] = ( par[28] + par[29] + par[30] + par[31]) * 0.25f;
  492. #endif /* USE_FIXED */
  493. par[19] = AAC_HALF_SUM(par[32], par[33]);
  494. }
  495. static void map_idx_10_to_34(int8_t *par_mapped, const int8_t *par, int full)
  496. {
  497. if (full) {
  498. par_mapped[33] = par[9];
  499. par_mapped[32] = par[9];
  500. par_mapped[31] = par[9];
  501. par_mapped[30] = par[9];
  502. par_mapped[29] = par[9];
  503. par_mapped[28] = par[9];
  504. par_mapped[27] = par[8];
  505. par_mapped[26] = par[8];
  506. par_mapped[25] = par[8];
  507. par_mapped[24] = par[8];
  508. par_mapped[23] = par[7];
  509. par_mapped[22] = par[7];
  510. par_mapped[21] = par[7];
  511. par_mapped[20] = par[7];
  512. par_mapped[19] = par[6];
  513. par_mapped[18] = par[6];
  514. par_mapped[17] = par[5];
  515. par_mapped[16] = par[5];
  516. } else {
  517. par_mapped[16] = 0;
  518. }
  519. par_mapped[15] = par[4];
  520. par_mapped[14] = par[4];
  521. par_mapped[13] = par[4];
  522. par_mapped[12] = par[4];
  523. par_mapped[11] = par[3];
  524. par_mapped[10] = par[3];
  525. par_mapped[ 9] = par[2];
  526. par_mapped[ 8] = par[2];
  527. par_mapped[ 7] = par[2];
  528. par_mapped[ 6] = par[2];
  529. par_mapped[ 5] = par[1];
  530. par_mapped[ 4] = par[1];
  531. par_mapped[ 3] = par[1];
  532. par_mapped[ 2] = par[0];
  533. par_mapped[ 1] = par[0];
  534. par_mapped[ 0] = par[0];
  535. }
  536. static void map_idx_20_to_34(int8_t *par_mapped, const int8_t *par, int full)
  537. {
  538. if (full) {
  539. par_mapped[33] = par[19];
  540. par_mapped[32] = par[19];
  541. par_mapped[31] = par[18];
  542. par_mapped[30] = par[18];
  543. par_mapped[29] = par[18];
  544. par_mapped[28] = par[18];
  545. par_mapped[27] = par[17];
  546. par_mapped[26] = par[17];
  547. par_mapped[25] = par[16];
  548. par_mapped[24] = par[16];
  549. par_mapped[23] = par[15];
  550. par_mapped[22] = par[15];
  551. par_mapped[21] = par[14];
  552. par_mapped[20] = par[14];
  553. par_mapped[19] = par[13];
  554. par_mapped[18] = par[12];
  555. par_mapped[17] = par[11];
  556. }
  557. par_mapped[16] = par[10];
  558. par_mapped[15] = par[ 9];
  559. par_mapped[14] = par[ 9];
  560. par_mapped[13] = par[ 8];
  561. par_mapped[12] = par[ 8];
  562. par_mapped[11] = par[ 7];
  563. par_mapped[10] = par[ 6];
  564. par_mapped[ 9] = par[ 5];
  565. par_mapped[ 8] = par[ 5];
  566. par_mapped[ 7] = par[ 4];
  567. par_mapped[ 6] = par[ 4];
  568. par_mapped[ 5] = par[ 3];
  569. par_mapped[ 4] = (par[ 2] + par[ 3]) / 2;
  570. par_mapped[ 3] = par[ 2];
  571. par_mapped[ 2] = par[ 1];
  572. par_mapped[ 1] = (par[ 0] + par[ 1]) / 2;
  573. par_mapped[ 0] = par[ 0];
  574. }
  575. static void map_val_20_to_34(INTFLOAT par[PS_MAX_NR_IIDICC])
  576. {
  577. par[33] = par[19];
  578. par[32] = par[19];
  579. par[31] = par[18];
  580. par[30] = par[18];
  581. par[29] = par[18];
  582. par[28] = par[18];
  583. par[27] = par[17];
  584. par[26] = par[17];
  585. par[25] = par[16];
  586. par[24] = par[16];
  587. par[23] = par[15];
  588. par[22] = par[15];
  589. par[21] = par[14];
  590. par[20] = par[14];
  591. par[19] = par[13];
  592. par[18] = par[12];
  593. par[17] = par[11];
  594. par[16] = par[10];
  595. par[15] = par[ 9];
  596. par[14] = par[ 9];
  597. par[13] = par[ 8];
  598. par[12] = par[ 8];
  599. par[11] = par[ 7];
  600. par[10] = par[ 6];
  601. par[ 9] = par[ 5];
  602. par[ 8] = par[ 5];
  603. par[ 7] = par[ 4];
  604. par[ 6] = par[ 4];
  605. par[ 5] = par[ 3];
  606. par[ 4] = AAC_HALF_SUM(par[ 2], par[ 3]);
  607. par[ 3] = par[ 2];
  608. par[ 2] = par[ 1];
  609. par[ 1] = AAC_HALF_SUM(par[ 0], par[ 1]);
  610. }
  611. static void decorrelation(PSContext *ps, INTFLOAT (*out)[32][2], const INTFLOAT (*s)[32][2], int is34)
  612. {
  613. LOCAL_ALIGNED_16(INTFLOAT, power, [34], [PS_QMF_TIME_SLOTS]);
  614. LOCAL_ALIGNED_16(INTFLOAT, transient_gain, [34], [PS_QMF_TIME_SLOTS]);
  615. INTFLOAT *peak_decay_nrg = ps->peak_decay_nrg;
  616. INTFLOAT *power_smooth = ps->power_smooth;
  617. INTFLOAT *peak_decay_diff_smooth = ps->peak_decay_diff_smooth;
  618. INTFLOAT (*delay)[PS_QMF_TIME_SLOTS + PS_MAX_DELAY][2] = ps->delay;
  619. INTFLOAT (*ap_delay)[PS_AP_LINKS][PS_QMF_TIME_SLOTS + PS_MAX_AP_DELAY][2] = ps->ap_delay;
  620. #if !USE_FIXED
  621. const float transient_impact = 1.5f;
  622. const float a_smooth = 0.25f; ///< Smoothing coefficient
  623. #endif /* USE_FIXED */
  624. const int8_t *k_to_i = is34 ? k_to_i_34 : k_to_i_20;
  625. int i, k, m, n;
  626. int n0 = 0, nL = 32;
  627. const INTFLOAT peak_decay_factor = Q31(0.76592833836465f);
  628. memset(power, 0, 34 * sizeof(*power));
  629. if (is34 != ps->is34bands_old) {
  630. memset(ps->peak_decay_nrg, 0, sizeof(ps->peak_decay_nrg));
  631. memset(ps->power_smooth, 0, sizeof(ps->power_smooth));
  632. memset(ps->peak_decay_diff_smooth, 0, sizeof(ps->peak_decay_diff_smooth));
  633. memset(ps->delay, 0, sizeof(ps->delay));
  634. memset(ps->ap_delay, 0, sizeof(ps->ap_delay));
  635. }
  636. for (k = 0; k < NR_BANDS[is34]; k++) {
  637. int i = k_to_i[k];
  638. ps->dsp.add_squares(power[i], s[k], nL - n0);
  639. }
  640. //Transient detection
  641. #if USE_FIXED
  642. for (i = 0; i < NR_PAR_BANDS[is34]; i++) {
  643. for (n = n0; n < nL; n++) {
  644. int decayed_peak;
  645. int denom;
  646. decayed_peak = (int)(((int64_t)peak_decay_factor * \
  647. peak_decay_nrg[i] + 0x40000000) >> 31);
  648. peak_decay_nrg[i] = FFMAX(decayed_peak, power[i][n]);
  649. power_smooth[i] += (power[i][n] - power_smooth[i] + 2) >> 2;
  650. peak_decay_diff_smooth[i] += (peak_decay_nrg[i] - power[i][n] - \
  651. peak_decay_diff_smooth[i] + 2) >> 2;
  652. denom = peak_decay_diff_smooth[i] + (peak_decay_diff_smooth[i] >> 1);
  653. if (denom > power_smooth[i]) {
  654. int p = power_smooth[i];
  655. while (denom < 0x40000000) {
  656. denom <<= 1;
  657. p <<= 1;
  658. }
  659. transient_gain[i][n] = p / (denom >> 16);
  660. }
  661. else {
  662. transient_gain[i][n] = 1 << 16;
  663. }
  664. }
  665. }
  666. #else
  667. for (i = 0; i < NR_PAR_BANDS[is34]; i++) {
  668. for (n = n0; n < nL; n++) {
  669. float decayed_peak = peak_decay_factor * peak_decay_nrg[i];
  670. float denom;
  671. peak_decay_nrg[i] = FFMAX(decayed_peak, power[i][n]);
  672. power_smooth[i] += a_smooth * (power[i][n] - power_smooth[i]);
  673. peak_decay_diff_smooth[i] += a_smooth * (peak_decay_nrg[i] - power[i][n] - peak_decay_diff_smooth[i]);
  674. denom = transient_impact * peak_decay_diff_smooth[i];
  675. transient_gain[i][n] = (denom > power_smooth[i]) ?
  676. power_smooth[i] / denom : 1.0f;
  677. }
  678. }
  679. #endif /* USE_FIXED */
  680. //Decorrelation and transient reduction
  681. // PS_AP_LINKS - 1
  682. // -----
  683. // | | Q_fract_allpass[k][m]*z^-link_delay[m] - a[m]*g_decay_slope[k]
  684. //H[k][z] = z^-2 * phi_fract[k] * | | ----------------------------------------------------------------
  685. // | | 1 - a[m]*g_decay_slope[k]*Q_fract_allpass[k][m]*z^-link_delay[m]
  686. // m = 0
  687. //d[k][z] (out) = transient_gain_mapped[k][z] * H[k][z] * s[k][z]
  688. for (k = 0; k < NR_ALLPASS_BANDS[is34]; k++) {
  689. int b = k_to_i[k];
  690. #if USE_FIXED
  691. int g_decay_slope;
  692. if (k - DECAY_CUTOFF[is34] <= 0) {
  693. g_decay_slope = 1 << 30;
  694. }
  695. else if (k - DECAY_CUTOFF[is34] >= 20) {
  696. g_decay_slope = 0;
  697. }
  698. else {
  699. g_decay_slope = (1 << 30) - DECAY_SLOPE * (k - DECAY_CUTOFF[is34]);
  700. }
  701. #else
  702. float g_decay_slope = 1.f - DECAY_SLOPE * (k - DECAY_CUTOFF[is34]);
  703. g_decay_slope = av_clipf(g_decay_slope, 0.f, 1.f);
  704. #endif /* USE_FIXED */
  705. memcpy(delay[k], delay[k]+nL, PS_MAX_DELAY*sizeof(delay[k][0]));
  706. memcpy(delay[k]+PS_MAX_DELAY, s[k], numQMFSlots*sizeof(delay[k][0]));
  707. for (m = 0; m < PS_AP_LINKS; m++) {
  708. memcpy(ap_delay[k][m], ap_delay[k][m]+numQMFSlots, 5*sizeof(ap_delay[k][m][0]));
  709. }
  710. ps->dsp.decorrelate(out[k], delay[k] + PS_MAX_DELAY - 2, ap_delay[k],
  711. phi_fract[is34][k],
  712. (const INTFLOAT (*)[2]) Q_fract_allpass[is34][k],
  713. transient_gain[b], g_decay_slope, nL - n0);
  714. }
  715. for (; k < SHORT_DELAY_BAND[is34]; k++) {
  716. int i = k_to_i[k];
  717. memcpy(delay[k], delay[k]+nL, PS_MAX_DELAY*sizeof(delay[k][0]));
  718. memcpy(delay[k]+PS_MAX_DELAY, s[k], numQMFSlots*sizeof(delay[k][0]));
  719. //H = delay 14
  720. ps->dsp.mul_pair_single(out[k], delay[k] + PS_MAX_DELAY - 14,
  721. transient_gain[i], nL - n0);
  722. }
  723. for (; k < NR_BANDS[is34]; k++) {
  724. int i = k_to_i[k];
  725. memcpy(delay[k], delay[k]+nL, PS_MAX_DELAY*sizeof(delay[k][0]));
  726. memcpy(delay[k]+PS_MAX_DELAY, s[k], numQMFSlots*sizeof(delay[k][0]));
  727. //H = delay 1
  728. ps->dsp.mul_pair_single(out[k], delay[k] + PS_MAX_DELAY - 1,
  729. transient_gain[i], nL - n0);
  730. }
  731. }
  732. static void remap34(int8_t (**p_par_mapped)[PS_MAX_NR_IIDICC],
  733. int8_t (*par)[PS_MAX_NR_IIDICC],
  734. int num_par, int num_env, int full)
  735. {
  736. int8_t (*par_mapped)[PS_MAX_NR_IIDICC] = *p_par_mapped;
  737. int e;
  738. if (num_par == 20 || num_par == 11) {
  739. for (e = 0; e < num_env; e++) {
  740. map_idx_20_to_34(par_mapped[e], par[e], full);
  741. }
  742. } else if (num_par == 10 || num_par == 5) {
  743. for (e = 0; e < num_env; e++) {
  744. map_idx_10_to_34(par_mapped[e], par[e], full);
  745. }
  746. } else {
  747. *p_par_mapped = par;
  748. }
  749. }
  750. static void remap20(int8_t (**p_par_mapped)[PS_MAX_NR_IIDICC],
  751. int8_t (*par)[PS_MAX_NR_IIDICC],
  752. int num_par, int num_env, int full)
  753. {
  754. int8_t (*par_mapped)[PS_MAX_NR_IIDICC] = *p_par_mapped;
  755. int e;
  756. if (num_par == 34 || num_par == 17) {
  757. for (e = 0; e < num_env; e++) {
  758. map_idx_34_to_20(par_mapped[e], par[e], full);
  759. }
  760. } else if (num_par == 10 || num_par == 5) {
  761. for (e = 0; e < num_env; e++) {
  762. map_idx_10_to_20(par_mapped[e], par[e], full);
  763. }
  764. } else {
  765. *p_par_mapped = par;
  766. }
  767. }
  768. static void stereo_processing(PSContext *ps, INTFLOAT (*l)[32][2], INTFLOAT (*r)[32][2], int is34)
  769. {
  770. int e, b, k;
  771. INTFLOAT (*H11)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H11;
  772. INTFLOAT (*H12)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H12;
  773. INTFLOAT (*H21)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H21;
  774. INTFLOAT (*H22)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H22;
  775. int8_t *opd_hist = ps->opd_hist;
  776. int8_t *ipd_hist = ps->ipd_hist;
  777. int8_t iid_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC];
  778. int8_t icc_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC];
  779. int8_t ipd_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC];
  780. int8_t opd_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC];
  781. int8_t (*iid_mapped)[PS_MAX_NR_IIDICC] = iid_mapped_buf;
  782. int8_t (*icc_mapped)[PS_MAX_NR_IIDICC] = icc_mapped_buf;
  783. int8_t (*ipd_mapped)[PS_MAX_NR_IIDICC] = ipd_mapped_buf;
  784. int8_t (*opd_mapped)[PS_MAX_NR_IIDICC] = opd_mapped_buf;
  785. const int8_t *k_to_i = is34 ? k_to_i_34 : k_to_i_20;
  786. TABLE_CONST INTFLOAT (*H_LUT)[8][4] = (PS_BASELINE || ps->icc_mode < 3) ? HA : HB;
  787. //Remapping
  788. if (ps->num_env_old) {
  789. memcpy(H11[0][0], H11[0][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H11[0][0][0]));
  790. memcpy(H11[1][0], H11[1][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H11[1][0][0]));
  791. memcpy(H12[0][0], H12[0][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H12[0][0][0]));
  792. memcpy(H12[1][0], H12[1][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H12[1][0][0]));
  793. memcpy(H21[0][0], H21[0][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H21[0][0][0]));
  794. memcpy(H21[1][0], H21[1][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H21[1][0][0]));
  795. memcpy(H22[0][0], H22[0][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H22[0][0][0]));
  796. memcpy(H22[1][0], H22[1][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H22[1][0][0]));
  797. }
  798. if (is34) {
  799. remap34(&iid_mapped, ps->iid_par, ps->nr_iid_par, ps->num_env, 1);
  800. remap34(&icc_mapped, ps->icc_par, ps->nr_icc_par, ps->num_env, 1);
  801. if (ps->enable_ipdopd) {
  802. remap34(&ipd_mapped, ps->ipd_par, ps->nr_ipdopd_par, ps->num_env, 0);
  803. remap34(&opd_mapped, ps->opd_par, ps->nr_ipdopd_par, ps->num_env, 0);
  804. }
  805. if (!ps->is34bands_old) {
  806. map_val_20_to_34(H11[0][0]);
  807. map_val_20_to_34(H11[1][0]);
  808. map_val_20_to_34(H12[0][0]);
  809. map_val_20_to_34(H12[1][0]);
  810. map_val_20_to_34(H21[0][0]);
  811. map_val_20_to_34(H21[1][0]);
  812. map_val_20_to_34(H22[0][0]);
  813. map_val_20_to_34(H22[1][0]);
  814. ipdopd_reset(ipd_hist, opd_hist);
  815. }
  816. } else {
  817. remap20(&iid_mapped, ps->iid_par, ps->nr_iid_par, ps->num_env, 1);
  818. remap20(&icc_mapped, ps->icc_par, ps->nr_icc_par, ps->num_env, 1);
  819. if (ps->enable_ipdopd) {
  820. remap20(&ipd_mapped, ps->ipd_par, ps->nr_ipdopd_par, ps->num_env, 0);
  821. remap20(&opd_mapped, ps->opd_par, ps->nr_ipdopd_par, ps->num_env, 0);
  822. }
  823. if (ps->is34bands_old) {
  824. map_val_34_to_20(H11[0][0]);
  825. map_val_34_to_20(H11[1][0]);
  826. map_val_34_to_20(H12[0][0]);
  827. map_val_34_to_20(H12[1][0]);
  828. map_val_34_to_20(H21[0][0]);
  829. map_val_34_to_20(H21[1][0]);
  830. map_val_34_to_20(H22[0][0]);
  831. map_val_34_to_20(H22[1][0]);
  832. ipdopd_reset(ipd_hist, opd_hist);
  833. }
  834. }
  835. //Mixing
  836. for (e = 0; e < ps->num_env; e++) {
  837. for (b = 0; b < NR_PAR_BANDS[is34]; b++) {
  838. INTFLOAT h11, h12, h21, h22;
  839. h11 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps->iid_quant][icc_mapped[e][b]][0];
  840. h12 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps->iid_quant][icc_mapped[e][b]][1];
  841. h21 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps->iid_quant][icc_mapped[e][b]][2];
  842. h22 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps->iid_quant][icc_mapped[e][b]][3];
  843. if (!PS_BASELINE && ps->enable_ipdopd && b < NR_IPDOPD_BANDS[is34]) {
  844. //The spec say says to only run this smoother when enable_ipdopd
  845. //is set but the reference decoder appears to run it constantly
  846. INTFLOAT h11i, h12i, h21i, h22i;
  847. INTFLOAT ipd_adj_re, ipd_adj_im;
  848. int opd_idx = opd_hist[b] * 8 + opd_mapped[e][b];
  849. int ipd_idx = ipd_hist[b] * 8 + ipd_mapped[e][b];
  850. INTFLOAT opd_re = pd_re_smooth[opd_idx];
  851. INTFLOAT opd_im = pd_im_smooth[opd_idx];
  852. INTFLOAT ipd_re = pd_re_smooth[ipd_idx];
  853. INTFLOAT ipd_im = pd_im_smooth[ipd_idx];
  854. opd_hist[b] = opd_idx & 0x3F;
  855. ipd_hist[b] = ipd_idx & 0x3F;
  856. ipd_adj_re = AAC_MADD30(opd_re, ipd_re, opd_im, ipd_im);
  857. ipd_adj_im = AAC_MSUB30(opd_im, ipd_re, opd_re, ipd_im);
  858. h11i = AAC_MUL30(h11, opd_im);
  859. h11 = AAC_MUL30(h11, opd_re);
  860. h12i = AAC_MUL30(h12, ipd_adj_im);
  861. h12 = AAC_MUL30(h12, ipd_adj_re);
  862. h21i = AAC_MUL30(h21, opd_im);
  863. h21 = AAC_MUL30(h21, opd_re);
  864. h22i = AAC_MUL30(h22, ipd_adj_im);
  865. h22 = AAC_MUL30(h22, ipd_adj_re);
  866. H11[1][e+1][b] = h11i;
  867. H12[1][e+1][b] = h12i;
  868. H21[1][e+1][b] = h21i;
  869. H22[1][e+1][b] = h22i;
  870. }
  871. H11[0][e+1][b] = h11;
  872. H12[0][e+1][b] = h12;
  873. H21[0][e+1][b] = h21;
  874. H22[0][e+1][b] = h22;
  875. }
  876. for (k = 0; k < NR_BANDS[is34]; k++) {
  877. LOCAL_ALIGNED_16(INTFLOAT, h, [2], [4]);
  878. LOCAL_ALIGNED_16(INTFLOAT, h_step, [2], [4]);
  879. int start = ps->border_position[e];
  880. int stop = ps->border_position[e+1];
  881. INTFLOAT width = Q30(1.f) / (stop - start);
  882. #if USE_FIXED
  883. width <<= 1;
  884. #endif
  885. b = k_to_i[k];
  886. h[0][0] = H11[0][e][b];
  887. h[0][1] = H12[0][e][b];
  888. h[0][2] = H21[0][e][b];
  889. h[0][3] = H22[0][e][b];
  890. if (!PS_BASELINE && ps->enable_ipdopd) {
  891. //Is this necessary? ps_04_new seems unchanged
  892. if ((is34 && k <= 13 && k >= 9) || (!is34 && k <= 1)) {
  893. h[1][0] = -H11[1][e][b];
  894. h[1][1] = -H12[1][e][b];
  895. h[1][2] = -H21[1][e][b];
  896. h[1][3] = -H22[1][e][b];
  897. } else {
  898. h[1][0] = H11[1][e][b];
  899. h[1][1] = H12[1][e][b];
  900. h[1][2] = H21[1][e][b];
  901. h[1][3] = H22[1][e][b];
  902. }
  903. }
  904. //Interpolation
  905. h_step[0][0] = AAC_MSUB31_V3(H11[0][e+1][b], h[0][0], width);
  906. h_step[0][1] = AAC_MSUB31_V3(H12[0][e+1][b], h[0][1], width);
  907. h_step[0][2] = AAC_MSUB31_V3(H21[0][e+1][b], h[0][2], width);
  908. h_step[0][3] = AAC_MSUB31_V3(H22[0][e+1][b], h[0][3], width);
  909. if (!PS_BASELINE && ps->enable_ipdopd) {
  910. h_step[1][0] = AAC_MSUB31_V3(H11[1][e+1][b], h[1][0], width);
  911. h_step[1][1] = AAC_MSUB31_V3(H12[1][e+1][b], h[1][1], width);
  912. h_step[1][2] = AAC_MSUB31_V3(H21[1][e+1][b], h[1][2], width);
  913. h_step[1][3] = AAC_MSUB31_V3(H22[1][e+1][b], h[1][3], width);
  914. }
  915. ps->dsp.stereo_interpolate[!PS_BASELINE && ps->enable_ipdopd](
  916. l[k] + start + 1, r[k] + start + 1,
  917. h, h_step, stop - start);
  918. }
  919. }
  920. }
  921. int AAC_RENAME(ff_ps_apply)(AVCodecContext *avctx, PSContext *ps, INTFLOAT L[2][38][64], INTFLOAT R[2][38][64], int top)
  922. {
  923. INTFLOAT (*Lbuf)[32][2] = ps->Lbuf;
  924. INTFLOAT (*Rbuf)[32][2] = ps->Rbuf;
  925. const int len = 32;
  926. int is34 = ps->is34bands;
  927. top += NR_BANDS[is34] - 64;
  928. memset(ps->delay+top, 0, (NR_BANDS[is34] - top)*sizeof(ps->delay[0]));
  929. if (top < NR_ALLPASS_BANDS[is34])
  930. memset(ps->ap_delay + top, 0, (NR_ALLPASS_BANDS[is34] - top)*sizeof(ps->ap_delay[0]));
  931. hybrid_analysis(&ps->dsp, Lbuf, ps->in_buf, L, is34, len);
  932. decorrelation(ps, Rbuf, (const INTFLOAT (*)[32][2]) Lbuf, is34);
  933. stereo_processing(ps, Lbuf, Rbuf, is34);
  934. hybrid_synthesis(&ps->dsp, L, Lbuf, is34, len);
  935. hybrid_synthesis(&ps->dsp, R, Rbuf, is34, len);
  936. return 0;
  937. }
  938. #define PS_INIT_VLC_STATIC(num, size) \
  939. INIT_VLC_STATIC(&vlc_ps[num], 9, ps_tmp[num].table_size / ps_tmp[num].elem_size, \
  940. ps_tmp[num].ps_bits, 1, 1, \
  941. ps_tmp[num].ps_codes, ps_tmp[num].elem_size, ps_tmp[num].elem_size, \
  942. size);
  943. #define PS_VLC_ROW(name) \
  944. { name ## _codes, name ## _bits, sizeof(name ## _codes), sizeof(name ## _codes[0]) }
  945. av_cold void AAC_RENAME(ff_ps_init)(void) {
  946. // Syntax initialization
  947. static const struct {
  948. const void *ps_codes, *ps_bits;
  949. const unsigned int table_size, elem_size;
  950. } ps_tmp[] = {
  951. PS_VLC_ROW(huff_iid_df1),
  952. PS_VLC_ROW(huff_iid_dt1),
  953. PS_VLC_ROW(huff_iid_df0),
  954. PS_VLC_ROW(huff_iid_dt0),
  955. PS_VLC_ROW(huff_icc_df),
  956. PS_VLC_ROW(huff_icc_dt),
  957. PS_VLC_ROW(huff_ipd_df),
  958. PS_VLC_ROW(huff_ipd_dt),
  959. PS_VLC_ROW(huff_opd_df),
  960. PS_VLC_ROW(huff_opd_dt),
  961. };
  962. PS_INIT_VLC_STATIC(0, 1544);
  963. PS_INIT_VLC_STATIC(1, 832);
  964. PS_INIT_VLC_STATIC(2, 1024);
  965. PS_INIT_VLC_STATIC(3, 1036);
  966. PS_INIT_VLC_STATIC(4, 544);
  967. PS_INIT_VLC_STATIC(5, 544);
  968. PS_INIT_VLC_STATIC(6, 512);
  969. PS_INIT_VLC_STATIC(7, 512);
  970. PS_INIT_VLC_STATIC(8, 512);
  971. PS_INIT_VLC_STATIC(9, 512);
  972. ps_tableinit();
  973. }
  974. av_cold void AAC_RENAME(ff_ps_ctx_init)(PSContext *ps)
  975. {
  976. AAC_RENAME(ff_psdsp_init)(&ps->dsp);
  977. }