You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

977 lines
32KB

  1. /*
  2. * ATRAC9 decoder
  3. * Copyright (c) 2018 Rostislav Pehlivanov <atomnuker@gmail.com>
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. #include "internal.h"
  22. #include "get_bits.h"
  23. #include "fft.h"
  24. #include "atrac9tab.h"
  25. #include "libavutil/lfg.h"
  26. #include "libavutil/float_dsp.h"
  27. typedef struct ATRAC9ChannelData {
  28. int band_ext;
  29. int q_unit_cnt;
  30. int band_ext_data[4];
  31. int32_t scalefactors[31];
  32. int32_t scalefactors_prev[31];
  33. int precision_coarse[30];
  34. int precision_fine[30];
  35. int precision_mask[30];
  36. int codebookset[30];
  37. int32_t q_coeffs_coarse[256];
  38. int32_t q_coeffs_fine[256];
  39. DECLARE_ALIGNED(32, float, coeffs )[256];
  40. DECLARE_ALIGNED(32, float, prev_win)[128];
  41. } ATRAC9ChannelData;
  42. typedef struct ATRAC9BlockData {
  43. ATRAC9ChannelData channel[2];
  44. /* Base */
  45. int band_count;
  46. int q_unit_cnt;
  47. int q_unit_cnt_prev;
  48. /* Stereo block only */
  49. int stereo_q_unit;
  50. /* Band extension only */
  51. int has_band_ext;
  52. int has_band_ext_data;
  53. int band_ext_q_unit;
  54. /* Gradient */
  55. int grad_mode;
  56. int grad_boundary;
  57. int gradient[31];
  58. /* Stereo */
  59. int cpe_base_channel;
  60. int is_signs[30];
  61. int reuseable;
  62. } ATRAC9BlockData;
  63. typedef struct ATRAC9Context {
  64. AVCodecContext *avctx;
  65. AVFloatDSPContext *fdsp;
  66. FFTContext imdct;
  67. ATRAC9BlockData block[5];
  68. AVLFG lfg;
  69. /* Set on init */
  70. int frame_log2;
  71. int avg_frame_size;
  72. int frame_count;
  73. int samplerate_idx;
  74. const ATRAC9BlockConfig *block_config;
  75. /* Generated on init */
  76. VLC sf_vlc[2][8]; /* Signed/unsigned, length */
  77. VLC coeff_vlc[2][8][4]; /* Cookbook, precision, cookbook index */
  78. uint8_t alloc_curve[48][48];
  79. DECLARE_ALIGNED(32, float, imdct_win)[256];
  80. DECLARE_ALIGNED(32, float, temp)[256];
  81. } ATRAC9Context;
  82. static inline int parse_gradient(ATRAC9Context *s, ATRAC9BlockData *b,
  83. GetBitContext *gb)
  84. {
  85. int grad_range[2];
  86. int grad_value[2];
  87. int values, sign, base;
  88. uint8_t *curve;
  89. float scale;
  90. b->grad_mode = get_bits(gb, 2);
  91. if (b->grad_mode) {
  92. grad_range[0] = get_bits(gb, 5);
  93. grad_range[1] = 31;
  94. grad_value[0] = get_bits(gb, 5);
  95. grad_value[1] = 31;
  96. } else {
  97. grad_range[0] = get_bits(gb, 6);
  98. grad_range[1] = get_bits(gb, 6) + 1;
  99. grad_value[0] = get_bits(gb, 5);
  100. grad_value[1] = get_bits(gb, 5);
  101. }
  102. b->grad_boundary = get_bits(gb, 4);
  103. if (grad_range[0] >= grad_range[1] || grad_range[1] > 31)
  104. return AVERROR_INVALIDDATA;
  105. if (b->grad_boundary > b->q_unit_cnt)
  106. return AVERROR_INVALIDDATA;
  107. values = grad_value[1] - grad_value[0];
  108. sign = 1 - 2*(values < 0);
  109. base = grad_value[0] + sign;
  110. scale = (FFABS(values) - 1) / 31.0f;
  111. curve = s->alloc_curve[grad_range[1] - grad_range[0] - 1];
  112. for (int i = 0; i <= b->q_unit_cnt; i++)
  113. b->gradient[i] = grad_value[i >= grad_range[0]];
  114. for (int i = grad_range[0]; i < grad_range[1]; i++)
  115. b->gradient[i] = base + sign*((int)(scale*curve[i - grad_range[0]]));
  116. return 0;
  117. }
  118. static inline void calc_precision(ATRAC9Context *s, ATRAC9BlockData *b,
  119. ATRAC9ChannelData *c)
  120. {
  121. memset(c->precision_mask, 0, sizeof(c->precision_mask));
  122. for (int i = 1; i < b->q_unit_cnt; i++) {
  123. const int delta = FFABS(c->scalefactors[i] - c->scalefactors[i - 1]) - 1;
  124. if (delta > 0) {
  125. const int neg = c->scalefactors[i - 1] > c->scalefactors[i];
  126. c->precision_mask[i - neg] += FFMIN(delta, 5);
  127. }
  128. }
  129. if (b->grad_mode) {
  130. for (int i = 0; i < b->q_unit_cnt; i++) {
  131. c->precision_coarse[i] = c->scalefactors[i];
  132. c->precision_coarse[i] += c->precision_mask[i] - b->gradient[i];
  133. if (c->precision_coarse[i] < 0)
  134. continue;
  135. switch (b->grad_mode) {
  136. case 1:
  137. c->precision_coarse[i] >>= 1;
  138. break;
  139. case 2:
  140. c->precision_coarse[i] = (3 * c->precision_coarse[i]) >> 3;
  141. break;
  142. case 3:
  143. c->precision_coarse[i] >>= 2;
  144. break;
  145. }
  146. }
  147. } else {
  148. for (int i = 0; i < b->q_unit_cnt; i++)
  149. c->precision_coarse[i] = c->scalefactors[i] - b->gradient[i];
  150. }
  151. for (int i = 0; i < b->q_unit_cnt; i++)
  152. c->precision_coarse[i] = FFMAX(c->precision_coarse[i], 1);
  153. for (int i = 0; i < b->grad_boundary; i++)
  154. c->precision_coarse[i]++;
  155. for (int i = 0; i < b->q_unit_cnt; i++) {
  156. c->precision_fine[i] = 0;
  157. if (c->precision_coarse[i] > 15) {
  158. c->precision_fine[i] = FFMIN(c->precision_coarse[i], 30) - 15;
  159. c->precision_coarse[i] = 15;
  160. }
  161. }
  162. }
  163. static inline int parse_band_ext(ATRAC9Context *s, ATRAC9BlockData *b,
  164. GetBitContext *gb, int stereo)
  165. {
  166. int ext_band = 0;
  167. if (b->has_band_ext) {
  168. if (b->q_unit_cnt < 13 || b->q_unit_cnt > 20)
  169. return AVERROR_INVALIDDATA;
  170. ext_band = at9_tab_band_ext_group[b->q_unit_cnt - 13][2];
  171. if (stereo) {
  172. b->channel[1].band_ext = get_bits(gb, 2);
  173. b->channel[1].band_ext = ext_band > 2 ? b->channel[1].band_ext : 4;
  174. } else {
  175. skip_bits1(gb);
  176. }
  177. }
  178. b->has_band_ext_data = get_bits1(gb);
  179. if (!b->has_band_ext_data)
  180. return 0;
  181. if (!b->has_band_ext) {
  182. skip_bits(gb, 2);
  183. skip_bits_long(gb, get_bits(gb, 5));
  184. return 0;
  185. }
  186. b->channel[0].band_ext = get_bits(gb, 2);
  187. b->channel[0].band_ext = ext_band > 2 ? b->channel[0].band_ext : 4;
  188. if (!get_bits(gb, 5)) {
  189. for (int i = 0; i <= stereo; i++) {
  190. ATRAC9ChannelData *c = &b->channel[i];
  191. const int count = at9_tab_band_ext_cnt[c->band_ext][ext_band];
  192. for (int j = 0; j < count; j++) {
  193. int len = at9_tab_band_ext_lengths[c->band_ext][ext_band][j];
  194. c->band_ext_data[j] = av_clip_uintp2_c(c->band_ext_data[j], len);
  195. }
  196. }
  197. return 0;
  198. }
  199. for (int i = 0; i <= stereo; i++) {
  200. ATRAC9ChannelData *c = &b->channel[i];
  201. const int count = at9_tab_band_ext_cnt[c->band_ext][ext_band];
  202. for (int j = 0; j < count; j++) {
  203. int len = at9_tab_band_ext_lengths[c->band_ext][ext_band][j];
  204. c->band_ext_data[j] = get_bits(gb, len);
  205. }
  206. }
  207. return 0;
  208. }
  209. static inline int read_scalefactors(ATRAC9Context *s, ATRAC9BlockData *b,
  210. ATRAC9ChannelData *c, GetBitContext *gb,
  211. int channel_idx, int first_in_pkt)
  212. {
  213. static const uint8_t mode_map[2][4] = { { 0, 1, 2, 3 }, { 0, 2, 3, 4 } };
  214. const int mode = mode_map[channel_idx][get_bits(gb, 2)];
  215. memset(c->scalefactors, 0, sizeof(c->scalefactors));
  216. if (first_in_pkt && (mode == 4 || ((mode == 3) && !channel_idx))) {
  217. av_log(s->avctx, AV_LOG_ERROR, "Invalid scalefactor coding mode!\n");
  218. return AVERROR_INVALIDDATA;
  219. }
  220. switch (mode) {
  221. case 0: { /* VLC delta offset */
  222. const uint8_t *sf_weights = at9_tab_sf_weights[get_bits(gb, 3)];
  223. const int base = get_bits(gb, 5);
  224. const int len = get_bits(gb, 2) + 3;
  225. const VLC *tab = &s->sf_vlc[0][len];
  226. c->scalefactors[0] = get_bits(gb, len);
  227. for (int i = 1; i < b->band_ext_q_unit; i++) {
  228. int val = c->scalefactors[i - 1] + get_vlc2(gb, tab->table, 9, 2);
  229. c->scalefactors[i] = val & ((1 << len) - 1);
  230. }
  231. for (int i = 0; i < b->band_ext_q_unit; i++)
  232. c->scalefactors[i] += base - sf_weights[i];
  233. break;
  234. }
  235. case 1: { /* CLC offset */
  236. const int len = get_bits(gb, 2) + 2;
  237. const int base = len < 5 ? get_bits(gb, 5) : 0;
  238. for (int i = 0; i < b->band_ext_q_unit; i++)
  239. c->scalefactors[i] = base + get_bits(gb, len);
  240. break;
  241. }
  242. case 2:
  243. case 4: { /* VLC dist to baseline */
  244. const int *baseline = mode == 4 ? c->scalefactors_prev :
  245. channel_idx ? b->channel[0].scalefactors :
  246. c->scalefactors_prev;
  247. const int baseline_len = mode == 4 ? b->q_unit_cnt_prev :
  248. channel_idx ? b->band_ext_q_unit :
  249. b->q_unit_cnt_prev;
  250. const int len = get_bits(gb, 2) + 2;
  251. const int unit_cnt = FFMIN(b->band_ext_q_unit, baseline_len);
  252. const VLC *tab = &s->sf_vlc[1][len];
  253. for (int i = 0; i < unit_cnt; i++) {
  254. int dist = get_vlc2(gb, tab->table, 9, 2);
  255. c->scalefactors[i] = baseline[i] + dist;
  256. }
  257. for (int i = unit_cnt; i < b->band_ext_q_unit; i++)
  258. c->scalefactors[i] = get_bits(gb, 5);
  259. break;
  260. }
  261. case 3: { /* VLC offset with baseline */
  262. const int *baseline = channel_idx ? b->channel[0].scalefactors :
  263. c->scalefactors_prev;
  264. const int baseline_len = channel_idx ? b->band_ext_q_unit :
  265. b->q_unit_cnt_prev;
  266. const int base = get_bits(gb, 5) - (1 << (5 - 1));
  267. const int len = get_bits(gb, 2) + 1;
  268. const int unit_cnt = FFMIN(b->band_ext_q_unit, baseline_len);
  269. const VLC *tab = &s->sf_vlc[0][len];
  270. c->scalefactors[0] = get_bits(gb, len);
  271. for (int i = 1; i < unit_cnt; i++) {
  272. int val = c->scalefactors[i - 1] + get_vlc2(gb, tab->table, 9, 2);
  273. c->scalefactors[i] = val & ((1 << len) - 1);
  274. }
  275. for (int i = 0; i < unit_cnt; i++)
  276. c->scalefactors[i] += base + baseline[i];
  277. for (int i = unit_cnt; i < b->band_ext_q_unit; i++)
  278. c->scalefactors[i] = get_bits(gb, 5);
  279. break;
  280. }
  281. }
  282. for (int i = 0; i < b->band_ext_q_unit; i++)
  283. if (c->scalefactors[i] < 0 || c->scalefactors[i] > 31)
  284. return AVERROR_INVALIDDATA;
  285. memcpy(c->scalefactors_prev, c->scalefactors, sizeof(c->scalefactors));
  286. return 0;
  287. }
  288. static inline void calc_codebook_idx(ATRAC9Context *s, ATRAC9BlockData *b,
  289. ATRAC9ChannelData *c)
  290. {
  291. int avg = 0;
  292. const int last_sf = c->scalefactors[c->q_unit_cnt];
  293. memset(c->codebookset, 0, sizeof(c->codebookset));
  294. if (c->q_unit_cnt <= 1)
  295. return;
  296. if (s->samplerate_idx > 7)
  297. return;
  298. c->scalefactors[c->q_unit_cnt] = c->scalefactors[c->q_unit_cnt - 1];
  299. if (c->q_unit_cnt > 12) {
  300. for (int i = 0; i < 12; i++)
  301. avg += c->scalefactors[i];
  302. avg = (avg + 6) / 12;
  303. }
  304. for (int i = 8; i < c->q_unit_cnt; i++) {
  305. const int prev = c->scalefactors[i - 1];
  306. const int cur = c->scalefactors[i ];
  307. const int next = c->scalefactors[i + 1];
  308. const int min = FFMIN(prev, next);
  309. if ((cur - min >= 3 || 2*cur - prev - next >= 3))
  310. c->codebookset[i] = 1;
  311. }
  312. for (int i = 12; i < c->q_unit_cnt; i++) {
  313. const int cur = c->scalefactors[i];
  314. const int cnd = at9_q_unit_to_coeff_cnt[i] == 16;
  315. const int min = FFMIN(c->scalefactors[i + 1], c->scalefactors[i - 1]);
  316. if (c->codebookset[i])
  317. continue;
  318. c->codebookset[i] = (((cur - min) >= 2) && (cur >= (avg - cnd)));
  319. }
  320. c->scalefactors[c->q_unit_cnt] = last_sf;
  321. }
  322. static inline void read_coeffs_coarse(ATRAC9Context *s, ATRAC9BlockData *b,
  323. ATRAC9ChannelData *c, GetBitContext *gb)
  324. {
  325. const int max_prec = s->samplerate_idx > 7 ? 1 : 7;
  326. memset(c->q_coeffs_coarse, 0, sizeof(c->q_coeffs_coarse));
  327. for (int i = 0; i < c->q_unit_cnt; i++) {
  328. int *coeffs = &c->q_coeffs_coarse[at9_q_unit_to_coeff_idx[i]];
  329. const int bands = at9_q_unit_to_coeff_cnt[i];
  330. const int prec = c->precision_coarse[i] + 1;
  331. if (prec <= max_prec) {
  332. const int cb = c->codebookset[i];
  333. const int cbi = at9_q_unit_to_codebookidx[i];
  334. const VLC *tab = &s->coeff_vlc[cb][prec][cbi];
  335. const HuffmanCodebook *huff = &at9_huffman_coeffs[cb][prec][cbi];
  336. const int groups = bands >> huff->value_cnt_pow;
  337. for (int j = 0; j < groups; j++) {
  338. uint16_t val = get_vlc2(gb, tab->table, 9, huff->max_bit_size);
  339. for (int k = 0; k < huff->value_cnt; k++) {
  340. coeffs[k] = sign_extend(val, huff->value_bits);
  341. val >>= huff->value_bits;
  342. }
  343. coeffs += huff->value_cnt;
  344. }
  345. } else {
  346. for (int j = 0; j < bands; j++)
  347. coeffs[j] = sign_extend(get_bits(gb, prec), prec);
  348. }
  349. }
  350. }
  351. static inline void read_coeffs_fine(ATRAC9Context *s, ATRAC9BlockData *b,
  352. ATRAC9ChannelData *c, GetBitContext *gb)
  353. {
  354. memset(c->q_coeffs_fine, 0, sizeof(c->q_coeffs_fine));
  355. for (int i = 0; i < c->q_unit_cnt; i++) {
  356. const int start = at9_q_unit_to_coeff_idx[i + 0];
  357. const int end = at9_q_unit_to_coeff_idx[i + 1];
  358. const int len = c->precision_fine[i] + 1;
  359. if (c->precision_fine[i] <= 0)
  360. continue;
  361. for (int j = start; j < end; j++)
  362. c->q_coeffs_fine[j] = sign_extend(get_bits(gb, len), len);
  363. }
  364. }
  365. static inline void dequantize(ATRAC9Context *s, ATRAC9BlockData *b,
  366. ATRAC9ChannelData *c)
  367. {
  368. memset(c->coeffs, 0, sizeof(c->coeffs));
  369. for (int i = 0; i < c->q_unit_cnt; i++) {
  370. const int start = at9_q_unit_to_coeff_idx[i + 0];
  371. const int end = at9_q_unit_to_coeff_idx[i + 1];
  372. const float coarse_c = at9_quant_step_coarse[c->precision_coarse[i]];
  373. const float fine_c = at9_quant_step_fine[c->precision_fine[i]];
  374. for (int j = start; j < end; j++) {
  375. const float vc = c->q_coeffs_coarse[j] * coarse_c;
  376. const float vf = c->q_coeffs_fine[j] * fine_c;
  377. c->coeffs[j] = vc + vf;
  378. }
  379. }
  380. }
  381. static inline void apply_intensity_stereo(ATRAC9Context *s, ATRAC9BlockData *b,
  382. const int stereo)
  383. {
  384. float *src = b->channel[ b->cpe_base_channel].coeffs;
  385. float *dst = b->channel[!b->cpe_base_channel].coeffs;
  386. if (!stereo)
  387. return;
  388. if (b->q_unit_cnt <= b->stereo_q_unit)
  389. return;
  390. for (int i = b->stereo_q_unit; i < b->q_unit_cnt; i++) {
  391. const int sign = b->is_signs[i];
  392. const int start = at9_q_unit_to_coeff_idx[i + 0];
  393. const int end = at9_q_unit_to_coeff_idx[i + 1];
  394. for (int j = start; j < end; j++)
  395. dst[j] = sign*src[j];
  396. }
  397. }
  398. static inline void apply_scalefactors(ATRAC9Context *s, ATRAC9BlockData *b,
  399. const int stereo)
  400. {
  401. for (int i = 0; i <= stereo; i++) {
  402. float *coeffs = b->channel[i].coeffs;
  403. for (int j = 0; j < b->q_unit_cnt; j++) {
  404. const int start = at9_q_unit_to_coeff_idx[j + 0];
  405. const int end = at9_q_unit_to_coeff_idx[j + 1];
  406. const int scalefactor = b->channel[i].scalefactors[j];
  407. const float scale = at9_scalefactor_c[scalefactor];
  408. for (int k = start; k < end; k++)
  409. coeffs[k] *= scale;
  410. }
  411. }
  412. }
  413. static inline void fill_with_noise(ATRAC9Context *s, ATRAC9ChannelData *c,
  414. int start, int count)
  415. {
  416. float maxval = 0.0f;
  417. for (int i = 0; i < count; i += 2) {
  418. double tmp[2];
  419. av_bmg_get(&s->lfg, tmp);
  420. c->coeffs[start + i + 0] = tmp[0];
  421. c->coeffs[start + i + 1] = tmp[1];
  422. maxval = FFMAX(FFMAX(FFABS(tmp[0]), FFABS(tmp[1])), maxval);
  423. }
  424. /* Normalize */
  425. for (int i = 0; i < count; i++)
  426. c->coeffs[start + i] /= maxval;
  427. }
  428. static inline void scale_band_ext_coeffs(ATRAC9ChannelData *c, float sf[6],
  429. const int s_unit, const int e_unit)
  430. {
  431. for (int i = s_unit; i < e_unit; i++) {
  432. const int start = at9_q_unit_to_coeff_idx[i + 0];
  433. const int end = at9_q_unit_to_coeff_idx[i + 1];
  434. for (int j = start; j < end; j++)
  435. c->coeffs[j] *= sf[i - s_unit];
  436. }
  437. }
  438. static inline void apply_band_extension(ATRAC9Context *s, ATRAC9BlockData *b,
  439. const int stereo)
  440. {
  441. const int g_units[4] = { /* A, B, C, total units */
  442. b->q_unit_cnt,
  443. at9_tab_band_ext_group[b->q_unit_cnt - 13][0],
  444. at9_tab_band_ext_group[b->q_unit_cnt - 13][1],
  445. FFMAX(g_units[2], 22),
  446. };
  447. const int g_bins[4] = { /* A, B, C, total bins */
  448. at9_q_unit_to_coeff_idx[g_units[0]],
  449. at9_q_unit_to_coeff_idx[g_units[1]],
  450. at9_q_unit_to_coeff_idx[g_units[2]],
  451. at9_q_unit_to_coeff_idx[g_units[3]],
  452. };
  453. for (int ch = 0; ch <= stereo; ch++) {
  454. ATRAC9ChannelData *c = &b->channel[ch];
  455. /* Mirror the spectrum */
  456. for (int i = 0; i < 3; i++)
  457. for (int j = 0; j < (g_bins[i + 1] - g_bins[i + 0]); j++)
  458. c->coeffs[g_bins[i] + j] = c->coeffs[g_bins[i] - j - 1];
  459. switch (c->band_ext) {
  460. case 0: {
  461. float sf[6] = { 0.0f };
  462. const int l = g_units[3] - g_units[0] - 1;
  463. const int n_start = at9_q_unit_to_coeff_idx[g_units[3] - 1];
  464. const int n_cnt = at9_q_unit_to_coeff_cnt[g_units[3] - 1];
  465. switch (at9_tab_band_ext_group[b->q_unit_cnt - 13][2]) {
  466. case 3:
  467. sf[0] = at9_band_ext_scales_m0[0][0][c->band_ext_data[0]];
  468. sf[1] = at9_band_ext_scales_m0[0][1][c->band_ext_data[0]];
  469. sf[2] = at9_band_ext_scales_m0[0][2][c->band_ext_data[1]];
  470. sf[3] = at9_band_ext_scales_m0[0][3][c->band_ext_data[2]];
  471. sf[4] = at9_band_ext_scales_m0[0][4][c->band_ext_data[3]];
  472. break;
  473. case 4:
  474. sf[0] = at9_band_ext_scales_m0[1][0][c->band_ext_data[0]];
  475. sf[1] = at9_band_ext_scales_m0[1][1][c->band_ext_data[0]];
  476. sf[2] = at9_band_ext_scales_m0[1][2][c->band_ext_data[1]];
  477. sf[3] = at9_band_ext_scales_m0[1][3][c->band_ext_data[2]];
  478. sf[4] = at9_band_ext_scales_m0[1][4][c->band_ext_data[3]];
  479. break;
  480. case 5:
  481. sf[0] = at9_band_ext_scales_m0[2][0][c->band_ext_data[0]];
  482. sf[1] = at9_band_ext_scales_m0[2][1][c->band_ext_data[1]];
  483. sf[2] = at9_band_ext_scales_m0[2][2][c->band_ext_data[1]];
  484. break;
  485. }
  486. sf[l] = at9_scalefactor_c[c->scalefactors[g_units[0]]];
  487. fill_with_noise(s, c, n_start, n_cnt);
  488. scale_band_ext_coeffs(c, sf, g_units[0], g_units[3]);
  489. break;
  490. }
  491. case 1: {
  492. float sf[6];
  493. for (int i = g_units[0]; i < g_units[3]; i++)
  494. sf[i - g_units[0]] = at9_scalefactor_c[c->scalefactors[i]];
  495. fill_with_noise(s, c, g_bins[0], g_bins[3] - g_bins[0]);
  496. scale_band_ext_coeffs(c, sf, g_units[0], g_units[3]);
  497. break;
  498. }
  499. case 2: {
  500. const float g_sf[2] = {
  501. at9_band_ext_scales_m2[c->band_ext_data[0]],
  502. at9_band_ext_scales_m2[c->band_ext_data[1]],
  503. };
  504. for (int i = 0; i < 2; i++)
  505. for (int j = g_bins[i + 0]; j < g_bins[i + 1]; j++)
  506. c->coeffs[j] *= g_sf[i];
  507. break;
  508. }
  509. case 3: {
  510. float scale = at9_band_ext_scales_m3[c->band_ext_data[0]][0];
  511. float rate = at9_band_ext_scales_m3[c->band_ext_data[1]][1];
  512. rate = pow(2, rate);
  513. for (int i = g_bins[0]; i < g_bins[3]; i++) {
  514. scale *= rate;
  515. c->coeffs[i] *= scale;
  516. }
  517. break;
  518. }
  519. case 4: {
  520. const float m = at9_band_ext_scales_m4[c->band_ext_data[0]];
  521. const float g_sf[3] = { 0.7079468f*m, 0.5011902f*m, 0.3548279f*m };
  522. for (int i = 0; i < 3; i++)
  523. for (int j = g_bins[i + 0]; j < g_bins[i + 1]; j++)
  524. c->coeffs[j] *= g_sf[i];
  525. break;
  526. }
  527. }
  528. }
  529. }
  530. static int atrac9_decode_block(ATRAC9Context *s, GetBitContext *gb,
  531. ATRAC9BlockData *b, AVFrame *frame,
  532. int frame_idx, int block_idx)
  533. {
  534. const int first_in_pkt = !get_bits1(gb);
  535. const int reuse_params = get_bits1(gb);
  536. const int stereo = s->block_config->type[block_idx] == ATRAC9_BLOCK_TYPE_CPE;
  537. if (s->block_config->type[block_idx] == ATRAC9_BLOCK_TYPE_LFE) {
  538. ATRAC9ChannelData *c = &b->channel[0];
  539. const int precision = reuse_params ? 8 : 4;
  540. c->q_unit_cnt = b->q_unit_cnt = 2;
  541. memset(c->scalefactors, 0, sizeof(c->scalefactors));
  542. memset(c->q_coeffs_fine, 0, sizeof(c->q_coeffs_fine));
  543. memset(c->q_coeffs_coarse, 0, sizeof(c->q_coeffs_coarse));
  544. for (int i = 0; i < b->q_unit_cnt; i++) {
  545. c->scalefactors[i] = get_bits(gb, 5);
  546. c->precision_coarse[i] = precision;
  547. c->precision_fine[i] = 0;
  548. }
  549. for (int i = 0; i < c->q_unit_cnt; i++) {
  550. const int start = at9_q_unit_to_coeff_idx[i + 0];
  551. const int end = at9_q_unit_to_coeff_idx[i + 1];
  552. for (int j = start; j < end; j++)
  553. c->q_coeffs_coarse[j] = get_bits(gb, c->precision_coarse[i] + 1);
  554. }
  555. dequantize (s, b, c);
  556. apply_scalefactors(s, b, 0);
  557. goto imdct;
  558. }
  559. if (first_in_pkt && reuse_params) {
  560. av_log(s->avctx, AV_LOG_ERROR, "Invalid block flags!\n");
  561. return AVERROR_INVALIDDATA;
  562. }
  563. /* Band parameters */
  564. if (!reuse_params) {
  565. int stereo_band, ext_band;
  566. const int min_band_count = s->samplerate_idx > 7 ? 1 : 3;
  567. b->reuseable = 0;
  568. b->band_count = get_bits(gb, 4) + min_band_count;
  569. b->q_unit_cnt = at9_tab_band_q_unit_map[b->band_count];
  570. b->band_ext_q_unit = b->stereo_q_unit = b->q_unit_cnt;
  571. if (b->band_count > at9_tab_sri_max_bands[s->samplerate_idx]) {
  572. av_log(s->avctx, AV_LOG_ERROR, "Invalid band count %i!\n",
  573. b->band_count);
  574. return AVERROR_INVALIDDATA;
  575. }
  576. if (stereo) {
  577. stereo_band = get_bits(gb, 4) + min_band_count;
  578. if (stereo_band > b->band_count) {
  579. av_log(s->avctx, AV_LOG_ERROR, "Invalid stereo band %i!\n",
  580. stereo_band);
  581. return AVERROR_INVALIDDATA;
  582. }
  583. b->stereo_q_unit = at9_tab_band_q_unit_map[stereo_band];
  584. }
  585. b->has_band_ext = get_bits1(gb);
  586. if (b->has_band_ext) {
  587. ext_band = get_bits(gb, 4) + min_band_count;
  588. if (ext_band < b->band_count) {
  589. av_log(s->avctx, AV_LOG_ERROR, "Invalid extension band %i!\n",
  590. ext_band);
  591. return AVERROR_INVALIDDATA;
  592. }
  593. b->band_ext_q_unit = at9_tab_band_q_unit_map[ext_band];
  594. }
  595. b->reuseable = 1;
  596. }
  597. if (!b->reuseable) {
  598. av_log(s->avctx, AV_LOG_ERROR, "invalid block reused!\n");
  599. return AVERROR_INVALIDDATA;
  600. }
  601. /* Calculate bit alloc gradient */
  602. if (parse_gradient(s, b, gb))
  603. return AVERROR_INVALIDDATA;
  604. /* IS data */
  605. b->cpe_base_channel = 0;
  606. if (stereo) {
  607. b->cpe_base_channel = get_bits1(gb);
  608. if (get_bits1(gb)) {
  609. for (int i = b->stereo_q_unit; i < b->q_unit_cnt; i++)
  610. b->is_signs[i] = 1 - 2*get_bits1(gb);
  611. } else {
  612. for (int i = 0; i < FF_ARRAY_ELEMS(b->is_signs); i++)
  613. b->is_signs[i] = 1;
  614. }
  615. }
  616. /* Band extension */
  617. if (parse_band_ext(s, b, gb, stereo))
  618. return AVERROR_INVALIDDATA;
  619. /* Scalefactors */
  620. for (int i = 0; i <= stereo; i++) {
  621. ATRAC9ChannelData *c = &b->channel[i];
  622. c->q_unit_cnt = i == b->cpe_base_channel ? b->q_unit_cnt :
  623. b->stereo_q_unit;
  624. if (read_scalefactors(s, b, c, gb, i, first_in_pkt))
  625. return AVERROR_INVALIDDATA;
  626. calc_precision (s, b, c);
  627. calc_codebook_idx (s, b, c);
  628. read_coeffs_coarse(s, b, c, gb);
  629. read_coeffs_fine (s, b, c, gb);
  630. dequantize (s, b, c);
  631. }
  632. b->q_unit_cnt_prev = b->has_band_ext ? b->band_ext_q_unit : b->q_unit_cnt;
  633. apply_intensity_stereo(s, b, stereo);
  634. apply_scalefactors (s, b, stereo);
  635. if (b->has_band_ext && b->has_band_ext_data)
  636. apply_band_extension (s, b, stereo);
  637. imdct:
  638. for (int i = 0; i <= stereo; i++) {
  639. ATRAC9ChannelData *c = &b->channel[i];
  640. const int dst_idx = s->block_config->plane_map[block_idx][i];
  641. const int wsize = 1 << s->frame_log2;
  642. const ptrdiff_t offset = wsize*frame_idx*sizeof(float);
  643. float *dst = (float *)(frame->extended_data[dst_idx] + offset);
  644. s->imdct.imdct_half(&s->imdct, s->temp, c->coeffs);
  645. s->fdsp->vector_fmul_window(dst, c->prev_win, s->temp,
  646. s->imdct_win, wsize >> 1);
  647. memcpy(c->prev_win, s->temp + (wsize >> 1), sizeof(float)*wsize >> 1);
  648. }
  649. return 0;
  650. }
  651. static int atrac9_decode_frame(AVCodecContext *avctx, void *data,
  652. int *got_frame_ptr, AVPacket *avpkt)
  653. {
  654. int ret;
  655. GetBitContext gb;
  656. AVFrame *frame = data;
  657. ATRAC9Context *s = avctx->priv_data;
  658. const int frames = FFMIN(avpkt->size / s->avg_frame_size, s->frame_count);
  659. frame->nb_samples = (1 << s->frame_log2) * frames;
  660. ret = ff_get_buffer(avctx, frame, 0);
  661. if (ret < 0)
  662. return ret;
  663. init_get_bits8(&gb, avpkt->data, avpkt->size);
  664. for (int i = 0; i < frames; i++) {
  665. for (int j = 0; j < s->block_config->count; j++) {
  666. ret = atrac9_decode_block(s, &gb, &s->block[j], frame, i, j);
  667. if (ret)
  668. return ret;
  669. align_get_bits(&gb);
  670. }
  671. }
  672. *got_frame_ptr = 1;
  673. return avctx->block_align;
  674. }
  675. static void atrac9_decode_flush(AVCodecContext *avctx)
  676. {
  677. ATRAC9Context *s = avctx->priv_data;
  678. for (int j = 0; j < s->block_config->count; j++) {
  679. ATRAC9BlockData *b = &s->block[j];
  680. const int stereo = s->block_config->type[j] == ATRAC9_BLOCK_TYPE_CPE;
  681. for (int i = 0; i <= stereo; i++) {
  682. ATRAC9ChannelData *c = &b->channel[i];
  683. memset(c->prev_win, 0, sizeof(c->prev_win));
  684. }
  685. }
  686. }
  687. static av_cold int atrac9_decode_close(AVCodecContext *avctx)
  688. {
  689. ATRAC9Context *s = avctx->priv_data;
  690. for (int i = 1; i < 7; i++)
  691. ff_free_vlc(&s->sf_vlc[0][i]);
  692. for (int i = 2; i < 6; i++)
  693. ff_free_vlc(&s->sf_vlc[1][i]);
  694. for (int i = 0; i < 2; i++)
  695. for (int j = 0; j < 8; j++)
  696. for (int k = 0; k < 4; k++)
  697. ff_free_vlc(&s->coeff_vlc[i][j][k]);
  698. ff_mdct_end(&s->imdct);
  699. av_free(s->fdsp);
  700. return 0;
  701. }
  702. static av_cold int atrac9_decode_init(AVCodecContext *avctx)
  703. {
  704. GetBitContext gb;
  705. ATRAC9Context *s = avctx->priv_data;
  706. int version, block_config_idx, superframe_idx, alloc_c_len;
  707. s->avctx = avctx;
  708. av_lfg_init(&s->lfg, 0xFBADF00D);
  709. if (avctx->block_align <= 0) {
  710. av_log(avctx, AV_LOG_ERROR, "Invalid block align\n");
  711. return AVERROR_INVALIDDATA;
  712. }
  713. if (avctx->extradata_size != 12) {
  714. av_log(avctx, AV_LOG_ERROR, "Invalid extradata length!\n");
  715. return AVERROR_INVALIDDATA;
  716. }
  717. version = AV_RL32(avctx->extradata);
  718. if (version > 2) {
  719. av_log(avctx, AV_LOG_ERROR, "Unsupported version (%i)!\n", version);
  720. return AVERROR_INVALIDDATA;
  721. }
  722. init_get_bits8(&gb, avctx->extradata + 4, avctx->extradata_size);
  723. if (get_bits(&gb, 8) != 0xFE) {
  724. av_log(avctx, AV_LOG_ERROR, "Incorrect magic byte!\n");
  725. return AVERROR_INVALIDDATA;
  726. }
  727. s->samplerate_idx = get_bits(&gb, 4);
  728. avctx->sample_rate = at9_tab_samplerates[s->samplerate_idx];
  729. block_config_idx = get_bits(&gb, 3);
  730. if (block_config_idx > 5) {
  731. av_log(avctx, AV_LOG_ERROR, "Incorrect block config!\n");
  732. return AVERROR_INVALIDDATA;
  733. }
  734. s->block_config = &at9_block_layout[block_config_idx];
  735. avctx->channel_layout = s->block_config->channel_layout;
  736. avctx->channels = av_get_channel_layout_nb_channels(avctx->channel_layout);
  737. avctx->sample_fmt = AV_SAMPLE_FMT_FLTP;
  738. if (get_bits1(&gb)) {
  739. av_log(avctx, AV_LOG_ERROR, "Incorrect verification bit!\n");
  740. return AVERROR_INVALIDDATA;
  741. }
  742. /* Average frame size in bytes */
  743. s->avg_frame_size = get_bits(&gb, 11) + 1;
  744. superframe_idx = get_bits(&gb, 2);
  745. if (superframe_idx & 1) {
  746. av_log(avctx, AV_LOG_ERROR, "Invalid superframe index!\n");
  747. return AVERROR_INVALIDDATA;
  748. }
  749. s->frame_count = 1 << superframe_idx;
  750. s->frame_log2 = at9_tab_sri_frame_log2[s->samplerate_idx];
  751. if (ff_mdct_init(&s->imdct, s->frame_log2 + 1, 1, 1.0f / 32768.0f))
  752. return AVERROR(ENOMEM);
  753. s->fdsp = avpriv_float_dsp_alloc(avctx->flags & AV_CODEC_FLAG_BITEXACT);
  754. if (!s->fdsp)
  755. return AVERROR(ENOMEM);
  756. /* iMDCT window */
  757. for (int i = 0; i < (1 << s->frame_log2); i++) {
  758. const int len = 1 << s->frame_log2;
  759. const float sidx = ( i + 0.5f) / len;
  760. const float eidx = (len - i - 0.5f) / len;
  761. const float s_c = sinf(sidx*M_PI - M_PI_2)*0.5f + 0.5f;
  762. const float e_c = sinf(eidx*M_PI - M_PI_2)*0.5f + 0.5f;
  763. s->imdct_win[i] = s_c / ((s_c * s_c) + (e_c * e_c));
  764. }
  765. /* Allocation curve */
  766. alloc_c_len = FF_ARRAY_ELEMS(at9_tab_b_dist);
  767. for (int i = 1; i <= alloc_c_len; i++)
  768. for (int j = 0; j < i; j++)
  769. s->alloc_curve[i - 1][j] = at9_tab_b_dist[(j * alloc_c_len) / i];
  770. /* Unsigned scalefactor VLCs */
  771. for (int i = 1; i < 7; i++) {
  772. const HuffmanCodebook *hf = &at9_huffman_sf_unsigned[i];
  773. init_vlc(&s->sf_vlc[0][i], 9, hf->size, hf->bits, 1, 1, hf->codes,
  774. 2, 2, 0);
  775. }
  776. /* Signed scalefactor VLCs */
  777. for (int i = 2; i < 6; i++) {
  778. const HuffmanCodebook *hf = &at9_huffman_sf_signed[i];
  779. int nums = hf->size;
  780. int16_t sym[32];
  781. for (int j = 0; j < nums; j++)
  782. sym[j] = sign_extend(j, hf->value_bits);
  783. ff_init_vlc_sparse(&s->sf_vlc[1][i], 9, hf->size, hf->bits, 1, 1,
  784. hf->codes, 2, 2, sym, sizeof(*sym), sizeof(*sym), 0);
  785. }
  786. /* Coefficient VLCs */
  787. for (int i = 0; i < 2; i++) {
  788. for (int j = 0; j < 8; j++) {
  789. for (int k = 0; k < 4; k++) {
  790. const HuffmanCodebook *hf = &at9_huffman_coeffs[i][j][k];
  791. init_vlc(&s->coeff_vlc[i][j][k], 9, hf->size, hf->bits, 1, 1,
  792. hf->codes, 2, 2, 0);
  793. }
  794. }
  795. }
  796. return 0;
  797. }
  798. AVCodec ff_atrac9_decoder = {
  799. .name = "atrac9",
  800. .long_name = NULL_IF_CONFIG_SMALL("ATRAC9 (Adaptive TRansform Acoustic Coding 9)"),
  801. .type = AVMEDIA_TYPE_AUDIO,
  802. .id = AV_CODEC_ID_ATRAC9,
  803. .priv_data_size = sizeof(ATRAC9Context),
  804. .init = atrac9_decode_init,
  805. .close = atrac9_decode_close,
  806. .decode = atrac9_decode_frame,
  807. .flush = atrac9_decode_flush,
  808. .caps_internal = FF_CODEC_CAP_INIT_THREADSAFE | FF_CODEC_CAP_INIT_CLEANUP,
  809. .capabilities = AV_CODEC_CAP_SUBFRAMES | AV_CODEC_CAP_DR1,
  810. };