You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

5214 lines
147KB

  1. @chapter Filtering Introduction
  2. @c man begin FILTERING INTRODUCTION
  3. Filtering in FFmpeg is enabled through the libavfilter library.
  4. Libavfilter is the filtering API of FFmpeg. It is the substitute of
  5. the now deprecated 'vhooks' and started as a Google Summer of Code
  6. project.
  7. Audio filtering integration into the main FFmpeg repository is a work in
  8. progress, so audio API and ABI should not be considered stable yet.
  9. In libavfilter, it is possible for filters to have multiple inputs and
  10. multiple outputs.
  11. To illustrate the sorts of things that are possible, we can
  12. use a complex filter graph. For example, the following one:
  13. @example
  14. input --> split --> fifo -----------------------> overlay --> output
  15. | ^
  16. | |
  17. +------> fifo --> crop --> vflip --------+
  18. @end example
  19. splits the stream in two streams, sends one stream through the crop filter
  20. and the vflip filter before merging it back with the other stream by
  21. overlaying it on top. You can use the following command to achieve this:
  22. @example
  23. ffmpeg -i input -vf "[in] split [T1], fifo, [T2] overlay=0:H/2 [out]; [T1] fifo, crop=iw:ih/2:0:ih/2, vflip [T2]" output
  24. @end example
  25. The result will be that in output the top half of the video is mirrored
  26. onto the bottom half.
  27. Filters are loaded using the @var{-vf} or @var{-af} option passed to
  28. @command{ffmpeg} or to @command{ffplay}. Filters in the same linear
  29. chain are separated by commas. In our example, @var{split, fifo,
  30. overlay} are in one linear chain, and @var{fifo, crop, vflip} are in
  31. another. The points where the linear chains join are labeled by names
  32. enclosed in square brackets. In our example, that is @var{[T1]} and
  33. @var{[T2]}. The special labels @var{[in]} and @var{[out]} are the points
  34. where video is input and output.
  35. Some filters take in input a list of parameters: they are specified
  36. after the filter name and an equal sign, and are separated from each other
  37. by a colon.
  38. There exist so-called @var{source filters} that do not have an
  39. audio/video input, and @var{sink filters} that will not have audio/video
  40. output.
  41. @c man end FILTERING INTRODUCTION
  42. @chapter graph2dot
  43. @c man begin GRAPH2DOT
  44. The @file{graph2dot} program included in the FFmpeg @file{tools}
  45. directory can be used to parse a filter graph description and issue a
  46. corresponding textual representation in the dot language.
  47. Invoke the command:
  48. @example
  49. graph2dot -h
  50. @end example
  51. to see how to use @file{graph2dot}.
  52. You can then pass the dot description to the @file{dot} program (from
  53. the graphviz suite of programs) and obtain a graphical representation
  54. of the filter graph.
  55. For example the sequence of commands:
  56. @example
  57. echo @var{GRAPH_DESCRIPTION} | \
  58. tools/graph2dot -o graph.tmp && \
  59. dot -Tpng graph.tmp -o graph.png && \
  60. display graph.png
  61. @end example
  62. can be used to create and display an image representing the graph
  63. described by the @var{GRAPH_DESCRIPTION} string. Note that this string must be
  64. a complete self-contained graph, with its inputs and outputs explicitly defined.
  65. For example if your command line is of the form:
  66. @example
  67. ffmpeg -i infile -vf scale=640:360 outfile
  68. @end example
  69. your @var{GRAPH_DESCRIPTION} string will need to be of the form:
  70. @example
  71. nullsrc,scale=640:360,nullsink
  72. @end example
  73. you may also need to set the @var{nullsrc} parameters and add a @var{format}
  74. filter in order to simulate a specific input file.
  75. @c man end GRAPH2DOT
  76. @chapter Filtergraph description
  77. @c man begin FILTERGRAPH DESCRIPTION
  78. A filtergraph is a directed graph of connected filters. It can contain
  79. cycles, and there can be multiple links between a pair of
  80. filters. Each link has one input pad on one side connecting it to one
  81. filter from which it takes its input, and one output pad on the other
  82. side connecting it to the one filter accepting its output.
  83. Each filter in a filtergraph is an instance of a filter class
  84. registered in the application, which defines the features and the
  85. number of input and output pads of the filter.
  86. A filter with no input pads is called a "source", a filter with no
  87. output pads is called a "sink".
  88. @anchor{Filtergraph syntax}
  89. @section Filtergraph syntax
  90. A filtergraph can be represented using a textual representation, which is
  91. recognized by the @option{-filter}/@option{-vf} and @option{-filter_complex}
  92. options in @command{ffmpeg} and @option{-vf} in @command{ffplay}, and by the
  93. @code{avfilter_graph_parse()}/@code{avfilter_graph_parse2()} function defined in
  94. @file{libavfilter/avfiltergraph.h}.
  95. A filterchain consists of a sequence of connected filters, each one
  96. connected to the previous one in the sequence. A filterchain is
  97. represented by a list of ","-separated filter descriptions.
  98. A filtergraph consists of a sequence of filterchains. A sequence of
  99. filterchains is represented by a list of ";"-separated filterchain
  100. descriptions.
  101. A filter is represented by a string of the form:
  102. [@var{in_link_1}]...[@var{in_link_N}]@var{filter_name}=@var{arguments}[@var{out_link_1}]...[@var{out_link_M}]
  103. @var{filter_name} is the name of the filter class of which the
  104. described filter is an instance of, and has to be the name of one of
  105. the filter classes registered in the program.
  106. The name of the filter class is optionally followed by a string
  107. "=@var{arguments}".
  108. @var{arguments} is a string which contains the parameters used to
  109. initialize the filter instance, and are described in the filter
  110. descriptions below.
  111. The list of arguments can be quoted using the character "'" as initial
  112. and ending mark, and the character '\' for escaping the characters
  113. within the quoted text; otherwise the argument string is considered
  114. terminated when the next special character (belonging to the set
  115. "[]=;,") is encountered.
  116. The name and arguments of the filter are optionally preceded and
  117. followed by a list of link labels.
  118. A link label allows to name a link and associate it to a filter output
  119. or input pad. The preceding labels @var{in_link_1}
  120. ... @var{in_link_N}, are associated to the filter input pads,
  121. the following labels @var{out_link_1} ... @var{out_link_M}, are
  122. associated to the output pads.
  123. When two link labels with the same name are found in the
  124. filtergraph, a link between the corresponding input and output pad is
  125. created.
  126. If an output pad is not labelled, it is linked by default to the first
  127. unlabelled input pad of the next filter in the filterchain.
  128. For example in the filterchain:
  129. @example
  130. nullsrc, split[L1], [L2]overlay, nullsink
  131. @end example
  132. the split filter instance has two output pads, and the overlay filter
  133. instance two input pads. The first output pad of split is labelled
  134. "L1", the first input pad of overlay is labelled "L2", and the second
  135. output pad of split is linked to the second input pad of overlay,
  136. which are both unlabelled.
  137. In a complete filterchain all the unlabelled filter input and output
  138. pads must be connected. A filtergraph is considered valid if all the
  139. filter input and output pads of all the filterchains are connected.
  140. Libavfilter will automatically insert scale filters where format
  141. conversion is required. It is possible to specify swscale flags
  142. for those automatically inserted scalers by prepending
  143. @code{sws_flags=@var{flags};}
  144. to the filtergraph description.
  145. Follows a BNF description for the filtergraph syntax:
  146. @example
  147. @var{NAME} ::= sequence of alphanumeric characters and '_'
  148. @var{LINKLABEL} ::= "[" @var{NAME} "]"
  149. @var{LINKLABELS} ::= @var{LINKLABEL} [@var{LINKLABELS}]
  150. @var{FILTER_ARGUMENTS} ::= sequence of chars (eventually quoted)
  151. @var{FILTER} ::= [@var{LINKNAMES}] @var{NAME} ["=" @var{ARGUMENTS}] [@var{LINKNAMES}]
  152. @var{FILTERCHAIN} ::= @var{FILTER} [,@var{FILTERCHAIN}]
  153. @var{FILTERGRAPH} ::= [sws_flags=@var{flags};] @var{FILTERCHAIN} [;@var{FILTERGRAPH}]
  154. @end example
  155. @section Notes on filtergraph escaping
  156. Some filter arguments require the use of special characters, typically
  157. @code{:} to separate key=value pairs in a named options list. In this
  158. case the user should perform a first level escaping when specifying
  159. the filter arguments. For example, consider the following literal
  160. string to be embedded in the @ref{drawtext} filter arguments:
  161. @example
  162. this is a 'string': may contain one, or more, special characters
  163. @end example
  164. Since @code{:} is special for the filter arguments syntax, it needs to
  165. be escaped, so you get:
  166. @example
  167. text=this is a \'string\'\: may contain one, or more, special characters
  168. @end example
  169. A second level of escaping is required when embedding the filter
  170. arguments in a filtergraph description, in order to escape all the
  171. filtergraph special characters. Thus the example above becomes:
  172. @example
  173. drawtext=text=this is a \\\'string\\\'\\: may contain one\, or more\, special characters
  174. @end example
  175. Finally an additional level of escaping may be needed when writing the
  176. filtergraph description in a shell command, which depends on the
  177. escaping rules of the adopted shell. For example, assuming that
  178. @code{\} is special and needs to be escaped with another @code{\}, the
  179. previous string will finally result in:
  180. @example
  181. -vf "drawtext=text=this is a \\\\\\'string\\\\\\'\\\\: may contain one\\, or more\\, special characters"
  182. @end example
  183. Sometimes, it might be more convenient to employ quoting in place of
  184. escaping. For example the string:
  185. @example
  186. Caesar: tu quoque, Brute, fili mi
  187. @end example
  188. Can be quoted in the filter arguments as:
  189. @example
  190. text='Caesar: tu quoque, Brute, fili mi'
  191. @end example
  192. And finally inserted in a filtergraph like:
  193. @example
  194. drawtext=text=\'Caesar: tu quoque\, Brute\, fili mi\'
  195. @end example
  196. See the @ref{quoting_and_escaping, Quoting and escaping} section for
  197. more information about the escaping and quoting rules adopted by
  198. FFmpeg.
  199. @c man end FILTERGRAPH DESCRIPTION
  200. @chapter Audio Filters
  201. @c man begin AUDIO FILTERS
  202. When you configure your FFmpeg build, you can disable any of the
  203. existing filters using @code{--disable-filters}.
  204. The configure output will show the audio filters included in your
  205. build.
  206. Below is a description of the currently available audio filters.
  207. @section aconvert
  208. Convert the input audio format to the specified formats.
  209. The filter accepts a string of the form:
  210. "@var{sample_format}:@var{channel_layout}".
  211. @var{sample_format} specifies the sample format, and can be a string or the
  212. corresponding numeric value defined in @file{libavutil/samplefmt.h}. Use 'p'
  213. suffix for a planar sample format.
  214. @var{channel_layout} specifies the channel layout, and can be a string
  215. or the corresponding number value defined in @file{libavutil/channel_layout.h}.
  216. The special parameter "auto", signifies that the filter will
  217. automatically select the output format depending on the output filter.
  218. Some examples follow.
  219. @itemize
  220. @item
  221. Convert input to float, planar, stereo:
  222. @example
  223. aconvert=fltp:stereo
  224. @end example
  225. @item
  226. Convert input to unsigned 8-bit, automatically select out channel layout:
  227. @example
  228. aconvert=u8:auto
  229. @end example
  230. @end itemize
  231. @section aformat
  232. Convert the input audio to one of the specified formats. The framework will
  233. negotiate the most appropriate format to minimize conversions.
  234. The filter accepts the following named parameters:
  235. @table @option
  236. @item sample_fmts
  237. A comma-separated list of requested sample formats.
  238. @item sample_rates
  239. A comma-separated list of requested sample rates.
  240. @item channel_layouts
  241. A comma-separated list of requested channel layouts.
  242. @end table
  243. If a parameter is omitted, all values are allowed.
  244. For example to force the output to either unsigned 8-bit or signed 16-bit stereo:
  245. @example
  246. aformat=sample_fmts\=u8\,s16:channel_layouts\=stereo
  247. @end example
  248. @section amerge
  249. Merge two or more audio streams into a single multi-channel stream.
  250. The filter accepts the following named options:
  251. @table @option
  252. @item inputs
  253. Set the number of inputs. Default is 2.
  254. @end table
  255. If the channel layouts of the inputs are disjoint, and therefore compatible,
  256. the channel layout of the output will be set accordingly and the channels
  257. will be reordered as necessary. If the channel layouts of the inputs are not
  258. disjoint, the output will have all the channels of the first input then all
  259. the channels of the second input, in that order, and the channel layout of
  260. the output will be the default value corresponding to the total number of
  261. channels.
  262. For example, if the first input is in 2.1 (FL+FR+LF) and the second input
  263. is FC+BL+BR, then the output will be in 5.1, with the channels in the
  264. following order: a1, a2, b1, a3, b2, b3 (a1 is the first channel of the
  265. first input, b1 is the first channel of the second input).
  266. On the other hand, if both input are in stereo, the output channels will be
  267. in the default order: a1, a2, b1, b2, and the channel layout will be
  268. arbitrarily set to 4.0, which may or may not be the expected value.
  269. All inputs must have the same sample rate, and format.
  270. If inputs do not have the same duration, the output will stop with the
  271. shortest.
  272. Example: merge two mono files into a stereo stream:
  273. @example
  274. amovie=left.wav [l] ; amovie=right.mp3 [r] ; [l] [r] amerge
  275. @end example
  276. Example: multiple merges:
  277. @example
  278. ffmpeg -f lavfi -i "
  279. amovie=input.mkv:si=0 [a0];
  280. amovie=input.mkv:si=1 [a1];
  281. amovie=input.mkv:si=2 [a2];
  282. amovie=input.mkv:si=3 [a3];
  283. amovie=input.mkv:si=4 [a4];
  284. amovie=input.mkv:si=5 [a5];
  285. [a0][a1][a2][a3][a4][a5] amerge=inputs=6" -c:a pcm_s16le output.mkv
  286. @end example
  287. @section amix
  288. Mixes multiple audio inputs into a single output.
  289. For example
  290. @example
  291. ffmpeg -i INPUT1 -i INPUT2 -i INPUT3 -filter_complex amix=inputs=3:duration=first:dropout_transition=3 OUTPUT
  292. @end example
  293. will mix 3 input audio streams to a single output with the same duration as the
  294. first input and a dropout transition time of 3 seconds.
  295. The filter accepts the following named parameters:
  296. @table @option
  297. @item inputs
  298. Number of inputs. If unspecified, it defaults to 2.
  299. @item duration
  300. How to determine the end-of-stream.
  301. @table @option
  302. @item longest
  303. Duration of longest input. (default)
  304. @item shortest
  305. Duration of shortest input.
  306. @item first
  307. Duration of first input.
  308. @end table
  309. @item dropout_transition
  310. Transition time, in seconds, for volume renormalization when an input
  311. stream ends. The default value is 2 seconds.
  312. @end table
  313. @section anull
  314. Pass the audio source unchanged to the output.
  315. @section aresample
  316. Resample the input audio to the specified sample rate.
  317. The filter accepts exactly one parameter, the output sample rate. If not
  318. specified then the filter will automatically convert between its input
  319. and output sample rates.
  320. For example, to resample the input audio to 44100Hz:
  321. @example
  322. aresample=44100
  323. @end example
  324. @section asetnsamples
  325. Set the number of samples per each output audio frame.
  326. The last output packet may contain a different number of samples, as
  327. the filter will flush all the remaining samples when the input audio
  328. signal its end.
  329. The filter accepts parameters as a list of @var{key}=@var{value} pairs,
  330. separated by ":".
  331. @table @option
  332. @item nb_out_samples, n
  333. Set the number of frames per each output audio frame. The number is
  334. intended as the number of samples @emph{per each channel}.
  335. Default value is 1024.
  336. @item pad, p
  337. If set to 1, the filter will pad the last audio frame with zeroes, so
  338. that the last frame will contain the same number of samples as the
  339. previous ones. Default value is 1.
  340. @end table
  341. For example, to set the number of per-frame samples to 1234 and
  342. disable padding for the last frame, use:
  343. @example
  344. asetnsamples=n=1234:p=0
  345. @end example
  346. @section ashowinfo
  347. Show a line containing various information for each input audio frame.
  348. The input audio is not modified.
  349. The shown line contains a sequence of key/value pairs of the form
  350. @var{key}:@var{value}.
  351. A description of each shown parameter follows:
  352. @table @option
  353. @item n
  354. sequential number of the input frame, starting from 0
  355. @item pts
  356. Presentation timestamp of the input frame, in time base units; the time base
  357. depends on the filter input pad, and is usually 1/@var{sample_rate}.
  358. @item pts_time
  359. presentation timestamp of the input frame in seconds
  360. @item pos
  361. position of the frame in the input stream, -1 if this information in
  362. unavailable and/or meaningless (for example in case of synthetic audio)
  363. @item fmt
  364. sample format
  365. @item chlayout
  366. channel layout
  367. @item rate
  368. sample rate for the audio frame
  369. @item nb_samples
  370. number of samples (per channel) in the frame
  371. @item checksum
  372. Adler-32 checksum (printed in hexadecimal) of the audio data. For planar audio
  373. the data is treated as if all the planes were concatenated.
  374. @item plane_checksums
  375. A list of Adler-32 checksums for each data plane.
  376. @end table
  377. @section asplit
  378. Split input audio into several identical outputs.
  379. The filter accepts a single parameter which specifies the number of outputs. If
  380. unspecified, it defaults to 2.
  381. For example:
  382. @example
  383. [in] asplit [out0][out1]
  384. @end example
  385. will create two separate outputs from the same input.
  386. To create 3 or more outputs, you need to specify the number of
  387. outputs, like in:
  388. @example
  389. [in] asplit=3 [out0][out1][out2]
  390. @end example
  391. @example
  392. ffmpeg -i INPUT -filter_complex asplit=5 OUTPUT
  393. @end example
  394. will create 5 copies of the input audio.
  395. @section astreamsync
  396. Forward two audio streams and control the order the buffers are forwarded.
  397. The argument to the filter is an expression deciding which stream should be
  398. forwarded next: if the result is negative, the first stream is forwarded; if
  399. the result is positive or zero, the second stream is forwarded. It can use
  400. the following variables:
  401. @table @var
  402. @item b1 b2
  403. number of buffers forwarded so far on each stream
  404. @item s1 s2
  405. number of samples forwarded so far on each stream
  406. @item t1 t2
  407. current timestamp of each stream
  408. @end table
  409. The default value is @code{t1-t2}, which means to always forward the stream
  410. that has a smaller timestamp.
  411. Example: stress-test @code{amerge} by randomly sending buffers on the wrong
  412. input, while avoiding too much of a desynchronization:
  413. @example
  414. amovie=file.ogg [a] ; amovie=file.mp3 [b] ;
  415. [a] [b] astreamsync=(2*random(1))-1+tanh(5*(t1-t2)) [a2] [b2] ;
  416. [a2] [b2] amerge
  417. @end example
  418. @section atempo
  419. Adjust audio tempo.
  420. The filter accepts exactly one parameter, the audio tempo. If not
  421. specified then the filter will assume nominal 1.0 tempo. Tempo must
  422. be in the [0.5, 2.0] range.
  423. For example, to slow down audio to 80% tempo:
  424. @example
  425. atempo=0.8
  426. @end example
  427. For example, to speed up audio to 125% tempo:
  428. @example
  429. atempo=1.25
  430. @end example
  431. @section earwax
  432. Make audio easier to listen to on headphones.
  433. This filter adds `cues' to 44.1kHz stereo (i.e. audio CD format) audio
  434. so that when listened to on headphones the stereo image is moved from
  435. inside your head (standard for headphones) to outside and in front of
  436. the listener (standard for speakers).
  437. Ported from SoX.
  438. @section pan
  439. Mix channels with specific gain levels. The filter accepts the output
  440. channel layout followed by a set of channels definitions.
  441. This filter is also designed to remap efficiently the channels of an audio
  442. stream.
  443. The filter accepts parameters of the form:
  444. "@var{l}:@var{outdef}:@var{outdef}:..."
  445. @table @option
  446. @item l
  447. output channel layout or number of channels
  448. @item outdef
  449. output channel specification, of the form:
  450. "@var{out_name}=[@var{gain}*]@var{in_name}[+[@var{gain}*]@var{in_name}...]"
  451. @item out_name
  452. output channel to define, either a channel name (FL, FR, etc.) or a channel
  453. number (c0, c1, etc.)
  454. @item gain
  455. multiplicative coefficient for the channel, 1 leaving the volume unchanged
  456. @item in_name
  457. input channel to use, see out_name for details; it is not possible to mix
  458. named and numbered input channels
  459. @end table
  460. If the `=' in a channel specification is replaced by `<', then the gains for
  461. that specification will be renormalized so that the total is 1, thus
  462. avoiding clipping noise.
  463. @subsection Mixing examples
  464. For example, if you want to down-mix from stereo to mono, but with a bigger
  465. factor for the left channel:
  466. @example
  467. pan=1:c0=0.9*c0+0.1*c1
  468. @end example
  469. A customized down-mix to stereo that works automatically for 3-, 4-, 5- and
  470. 7-channels surround:
  471. @example
  472. pan=stereo: FL < FL + 0.5*FC + 0.6*BL + 0.6*SL : FR < FR + 0.5*FC + 0.6*BR + 0.6*SR
  473. @end example
  474. Note that @command{ffmpeg} integrates a default down-mix (and up-mix) system
  475. that should be preferred (see "-ac" option) unless you have very specific
  476. needs.
  477. @subsection Remapping examples
  478. The channel remapping will be effective if, and only if:
  479. @itemize
  480. @item gain coefficients are zeroes or ones,
  481. @item only one input per channel output,
  482. @end itemize
  483. If all these conditions are satisfied, the filter will notify the user ("Pure
  484. channel mapping detected"), and use an optimized and lossless method to do the
  485. remapping.
  486. For example, if you have a 5.1 source and want a stereo audio stream by
  487. dropping the extra channels:
  488. @example
  489. pan="stereo: c0=FL : c1=FR"
  490. @end example
  491. Given the same source, you can also switch front left and front right channels
  492. and keep the input channel layout:
  493. @example
  494. pan="5.1: c0=c1 : c1=c0 : c2=c2 : c3=c3 : c4=c4 : c5=c5"
  495. @end example
  496. If the input is a stereo audio stream, you can mute the front left channel (and
  497. still keep the stereo channel layout) with:
  498. @example
  499. pan="stereo:c1=c1"
  500. @end example
  501. Still with a stereo audio stream input, you can copy the right channel in both
  502. front left and right:
  503. @example
  504. pan="stereo: c0=FR : c1=FR"
  505. @end example
  506. @section silencedetect
  507. Detect silence in an audio stream.
  508. This filter logs a message when it detects that the input audio volume is less
  509. or equal to a noise tolerance value for a duration greater or equal to the
  510. minimum detected noise duration.
  511. The printed times and duration are expressed in seconds.
  512. @table @option
  513. @item duration, d
  514. Set silence duration until notification (default is 2 seconds).
  515. @item noise, n
  516. Set noise tolerance. Can be specified in dB (in case "dB" is appended to the
  517. specified value) or amplitude ratio. Default is -60dB, or 0.001.
  518. @end table
  519. Detect 5 seconds of silence with -50dB noise tolerance:
  520. @example
  521. silencedetect=n=-50dB:d=5
  522. @end example
  523. Complete example with @command{ffmpeg} to detect silence with 0.0001 noise
  524. tolerance in @file{silence.mp3}:
  525. @example
  526. ffmpeg -f lavfi -i amovie=silence.mp3,silencedetect=noise=0.0001 -f null -
  527. @end example
  528. @section volume
  529. Adjust the input audio volume.
  530. The filter accepts exactly one parameter @var{vol}, which expresses
  531. how the audio volume will be increased or decreased.
  532. Output values are clipped to the maximum value.
  533. If @var{vol} is expressed as a decimal number, the output audio
  534. volume is given by the relation:
  535. @example
  536. @var{output_volume} = @var{vol} * @var{input_volume}
  537. @end example
  538. If @var{vol} is expressed as a decimal number followed by the string
  539. "dB", the value represents the requested change in decibels of the
  540. input audio power, and the output audio volume is given by the
  541. relation:
  542. @example
  543. @var{output_volume} = 10^(@var{vol}/20) * @var{input_volume}
  544. @end example
  545. Otherwise @var{vol} is considered an expression and its evaluated
  546. value is used for computing the output audio volume according to the
  547. first relation.
  548. Default value for @var{vol} is 1.0.
  549. @subsection Examples
  550. @itemize
  551. @item
  552. Half the input audio volume:
  553. @example
  554. volume=0.5
  555. @end example
  556. The above example is equivalent to:
  557. @example
  558. volume=1/2
  559. @end example
  560. @item
  561. Decrease input audio power by 12 decibels:
  562. @example
  563. volume=-12dB
  564. @end example
  565. @end itemize
  566. @section volumedetect
  567. Detect the volume of the input video.
  568. The filter has no parameters. The input is not modified. Statistics about
  569. the volume will be printed in the log when the input stream end is reached.
  570. In particular it will show the mean volume (root mean square), maximum
  571. volume (on a per-sample basis), and the beginning of an histogram of the
  572. registered volume values (from the maximum value to a cumulated 1/1000 of
  573. the samples).
  574. All volumes are in decibels relative to the maximum PCM value.
  575. Here is an excerpt of the output:
  576. @example
  577. [Parsed_volumedetect_0 @ 0xa23120] mean_volume: -27 dB
  578. [Parsed_volumedetect_0 @ 0xa23120] max_volume: -4 dB
  579. [Parsed_volumedetect_0 @ 0xa23120] histogram_4db: 6
  580. [Parsed_volumedetect_0 @ 0xa23120] histogram_5db: 62
  581. [Parsed_volumedetect_0 @ 0xa23120] histogram_6db: 286
  582. [Parsed_volumedetect_0 @ 0xa23120] histogram_7db: 1042
  583. [Parsed_volumedetect_0 @ 0xa23120] histogram_8db: 2551
  584. [Parsed_volumedetect_0 @ 0xa23120] histogram_9db: 4609
  585. [Parsed_volumedetect_0 @ 0xa23120] histogram_10db: 8409
  586. @end example
  587. It means that:
  588. @itemize
  589. @item
  590. The mean square energy is approximately -27 dB, or 10^-2.7.
  591. @item
  592. The largest sample is at -4 dB, or more precisely between -4 dB and -5 dB.
  593. @item
  594. There are 6 samples at -4 dB, 62 at -5 dB, 286 at -6 dB, etc.
  595. @end itemize
  596. In other words, raising the volume by +4 dB does not cause any clipping,
  597. raising it by +5 dB causes clipping for 6 samples, etc.
  598. @section asyncts
  599. Synchronize audio data with timestamps by squeezing/stretching it and/or
  600. dropping samples/adding silence when needed.
  601. The filter accepts the following named parameters:
  602. @table @option
  603. @item compensate
  604. Enable stretching/squeezing the data to make it match the timestamps. Disabled
  605. by default. When disabled, time gaps are covered with silence.
  606. @item min_delta
  607. Minimum difference between timestamps and audio data (in seconds) to trigger
  608. adding/dropping samples. Default value is 0.1. If you get non-perfect sync with
  609. this filter, try setting this parameter to 0.
  610. @item max_comp
  611. Maximum compensation in samples per second. Relevant only with compensate=1.
  612. Default value 500.
  613. @item first_pts
  614. Assume the first pts should be this value.
  615. This allows for padding/trimming at the start of stream. By default, no
  616. assumption is made about the first frame's expected pts, so no padding or
  617. trimming is done. For example, this could be set to 0 to pad the beginning with
  618. silence if an audio stream starts after the video stream.
  619. @end table
  620. @section channelsplit
  621. Split each channel in input audio stream into a separate output stream.
  622. This filter accepts the following named parameters:
  623. @table @option
  624. @item channel_layout
  625. Channel layout of the input stream. Default is "stereo".
  626. @end table
  627. For example, assuming a stereo input MP3 file
  628. @example
  629. ffmpeg -i in.mp3 -filter_complex channelsplit out.mkv
  630. @end example
  631. will create an output Matroska file with two audio streams, one containing only
  632. the left channel and the other the right channel.
  633. To split a 5.1 WAV file into per-channel files
  634. @example
  635. ffmpeg -i in.wav -filter_complex
  636. 'channelsplit=channel_layout=5.1[FL][FR][FC][LFE][SL][SR]'
  637. -map '[FL]' front_left.wav -map '[FR]' front_right.wav -map '[FC]'
  638. front_center.wav -map '[LFE]' lfe.wav -map '[SL]' side_left.wav -map '[SR]'
  639. side_right.wav
  640. @end example
  641. @section channelmap
  642. Remap input channels to new locations.
  643. This filter accepts the following named parameters:
  644. @table @option
  645. @item channel_layout
  646. Channel layout of the output stream.
  647. @item map
  648. Map channels from input to output. The argument is a comma-separated list of
  649. mappings, each in the @code{@var{in_channel}-@var{out_channel}} or
  650. @var{in_channel} form. @var{in_channel} can be either the name of the input
  651. channel (e.g. FL for front left) or its index in the input channel layout.
  652. @var{out_channel} is the name of the output channel or its index in the output
  653. channel layout. If @var{out_channel} is not given then it is implicitly an
  654. index, starting with zero and increasing by one for each mapping.
  655. @end table
  656. If no mapping is present, the filter will implicitly map input channels to
  657. output channels preserving index.
  658. For example, assuming a 5.1+downmix input MOV file
  659. @example
  660. ffmpeg -i in.mov -filter 'channelmap=map=DL-FL\,DR-FR' out.wav
  661. @end example
  662. will create an output WAV file tagged as stereo from the downmix channels of
  663. the input.
  664. To fix a 5.1 WAV improperly encoded in AAC's native channel order
  665. @example
  666. ffmpeg -i in.wav -filter 'channelmap=1\,2\,0\,5\,3\,4:channel_layout=5.1' out.wav
  667. @end example
  668. @section join
  669. Join multiple input streams into one multi-channel stream.
  670. The filter accepts the following named parameters:
  671. @table @option
  672. @item inputs
  673. Number of input streams. Defaults to 2.
  674. @item channel_layout
  675. Desired output channel layout. Defaults to stereo.
  676. @item map
  677. Map channels from inputs to output. The argument is a comma-separated list of
  678. mappings, each in the @code{@var{input_idx}.@var{in_channel}-@var{out_channel}}
  679. form. @var{input_idx} is the 0-based index of the input stream. @var{in_channel}
  680. can be either the name of the input channel (e.g. FL for front left) or its
  681. index in the specified input stream. @var{out_channel} is the name of the output
  682. channel.
  683. @end table
  684. The filter will attempt to guess the mappings when those are not specified
  685. explicitly. It does so by first trying to find an unused matching input channel
  686. and if that fails it picks the first unused input channel.
  687. E.g. to join 3 inputs (with properly set channel layouts)
  688. @example
  689. ffmpeg -i INPUT1 -i INPUT2 -i INPUT3 -filter_complex join=inputs=3 OUTPUT
  690. @end example
  691. To build a 5.1 output from 6 single-channel streams:
  692. @example
  693. ffmpeg -i fl -i fr -i fc -i sl -i sr -i lfe -filter_complex
  694. 'join=inputs=6:channel_layout=5.1:map=0.0-FL\,1.0-FR\,2.0-FC\,3.0-SL\,4.0-SR\,5.0-LFE'
  695. out
  696. @end example
  697. @section resample
  698. Convert the audio sample format, sample rate and channel layout. This filter is
  699. not meant to be used directly.
  700. @c man end AUDIO FILTERS
  701. @chapter Audio Sources
  702. @c man begin AUDIO SOURCES
  703. Below is a description of the currently available audio sources.
  704. @section abuffer
  705. Buffer audio frames, and make them available to the filter chain.
  706. This source is mainly intended for a programmatic use, in particular
  707. through the interface defined in @file{libavfilter/asrc_abuffer.h}.
  708. It accepts the following mandatory parameters:
  709. @var{sample_rate}:@var{sample_fmt}:@var{channel_layout}
  710. @table @option
  711. @item sample_rate
  712. The sample rate of the incoming audio buffers.
  713. @item sample_fmt
  714. The sample format of the incoming audio buffers.
  715. Either a sample format name or its corresponging integer representation from
  716. the enum AVSampleFormat in @file{libavutil/samplefmt.h}
  717. @item channel_layout
  718. The channel layout of the incoming audio buffers.
  719. Either a channel layout name from channel_layout_map in
  720. @file{libavutil/channel_layout.c} or its corresponding integer representation
  721. from the AV_CH_LAYOUT_* macros in @file{libavutil/channel_layout.h}
  722. @end table
  723. For example:
  724. @example
  725. abuffer=44100:s16p:stereo
  726. @end example
  727. will instruct the source to accept planar 16bit signed stereo at 44100Hz.
  728. Since the sample format with name "s16p" corresponds to the number
  729. 6 and the "stereo" channel layout corresponds to the value 0x3, this is
  730. equivalent to:
  731. @example
  732. abuffer=44100:6:0x3
  733. @end example
  734. @section aevalsrc
  735. Generate an audio signal specified by an expression.
  736. This source accepts in input one or more expressions (one for each
  737. channel), which are evaluated and used to generate a corresponding
  738. audio signal.
  739. It accepts the syntax: @var{exprs}[::@var{options}].
  740. @var{exprs} is a list of expressions separated by ":", one for each
  741. separate channel. In case the @var{channel_layout} is not
  742. specified, the selected channel layout depends on the number of
  743. provided expressions.
  744. @var{options} is an optional sequence of @var{key}=@var{value} pairs,
  745. separated by ":".
  746. The description of the accepted options follows.
  747. @table @option
  748. @item channel_layout, c
  749. Set the channel layout. The number of channels in the specified layout
  750. must be equal to the number of specified expressions.
  751. @item duration, d
  752. Set the minimum duration of the sourced audio. See the function
  753. @code{av_parse_time()} for the accepted format.
  754. Note that the resulting duration may be greater than the specified
  755. duration, as the generated audio is always cut at the end of a
  756. complete frame.
  757. If not specified, or the expressed duration is negative, the audio is
  758. supposed to be generated forever.
  759. @item nb_samples, n
  760. Set the number of samples per channel per each output frame,
  761. default to 1024.
  762. @item sample_rate, s
  763. Specify the sample rate, default to 44100.
  764. @end table
  765. Each expression in @var{exprs} can contain the following constants:
  766. @table @option
  767. @item n
  768. number of the evaluated sample, starting from 0
  769. @item t
  770. time of the evaluated sample expressed in seconds, starting from 0
  771. @item s
  772. sample rate
  773. @end table
  774. @subsection Examples
  775. @itemize
  776. @item
  777. Generate silence:
  778. @example
  779. aevalsrc=0
  780. @end example
  781. @item
  782. Generate a sin signal with frequency of 440 Hz, set sample rate to
  783. 8000 Hz:
  784. @example
  785. aevalsrc="sin(440*2*PI*t)::s=8000"
  786. @end example
  787. @item
  788. Generate a two channels signal, specify the channel layout (Front
  789. Center + Back Center) explicitly:
  790. @example
  791. aevalsrc="sin(420*2*PI*t):cos(430*2*PI*t)::c=FC|BC"
  792. @end example
  793. @item
  794. Generate white noise:
  795. @example
  796. aevalsrc="-2+random(0)"
  797. @end example
  798. @item
  799. Generate an amplitude modulated signal:
  800. @example
  801. aevalsrc="sin(10*2*PI*t)*sin(880*2*PI*t)"
  802. @end example
  803. @item
  804. Generate 2.5 Hz binaural beats on a 360 Hz carrier:
  805. @example
  806. aevalsrc="0.1*sin(2*PI*(360-2.5/2)*t) : 0.1*sin(2*PI*(360+2.5/2)*t)"
  807. @end example
  808. @end itemize
  809. @section anullsrc
  810. Null audio source, return unprocessed audio frames. It is mainly useful
  811. as a template and to be employed in analysis / debugging tools, or as
  812. the source for filters which ignore the input data (for example the sox
  813. synth filter).
  814. It accepts an optional sequence of @var{key}=@var{value} pairs,
  815. separated by ":".
  816. The description of the accepted options follows.
  817. @table @option
  818. @item sample_rate, s
  819. Specify the sample rate, and defaults to 44100.
  820. @item channel_layout, cl
  821. Specify the channel layout, and can be either an integer or a string
  822. representing a channel layout. The default value of @var{channel_layout}
  823. is "stereo".
  824. Check the channel_layout_map definition in
  825. @file{libavutil/channel_layout.c} for the mapping between strings and
  826. channel layout values.
  827. @item nb_samples, n
  828. Set the number of samples per requested frames.
  829. @end table
  830. Follow some examples:
  831. @example
  832. # set the sample rate to 48000 Hz and the channel layout to AV_CH_LAYOUT_MONO.
  833. anullsrc=r=48000:cl=4
  834. # same as
  835. anullsrc=r=48000:cl=mono
  836. @end example
  837. @section abuffer
  838. Buffer audio frames, and make them available to the filter chain.
  839. This source is not intended to be part of user-supplied graph descriptions but
  840. for insertion by calling programs through the interface defined in
  841. @file{libavfilter/buffersrc.h}.
  842. It accepts the following named parameters:
  843. @table @option
  844. @item time_base
  845. Timebase which will be used for timestamps of submitted frames. It must be
  846. either a floating-point number or in @var{numerator}/@var{denominator} form.
  847. @item sample_rate
  848. Audio sample rate.
  849. @item sample_fmt
  850. Name of the sample format, as returned by @code{av_get_sample_fmt_name()}.
  851. @item channel_layout
  852. Channel layout of the audio data, in the form that can be accepted by
  853. @code{av_get_channel_layout()}.
  854. @end table
  855. All the parameters need to be explicitly defined.
  856. @section flite
  857. Synthesize a voice utterance using the libflite library.
  858. To enable compilation of this filter you need to configure FFmpeg with
  859. @code{--enable-libflite}.
  860. Note that the flite library is not thread-safe.
  861. The source accepts parameters as a list of @var{key}=@var{value} pairs,
  862. separated by ":".
  863. The description of the accepted parameters follows.
  864. @table @option
  865. @item list_voices
  866. If set to 1, list the names of the available voices and exit
  867. immediately. Default value is 0.
  868. @item nb_samples, n
  869. Set the maximum number of samples per frame. Default value is 512.
  870. @item textfile
  871. Set the filename containing the text to speak.
  872. @item text
  873. Set the text to speak.
  874. @item voice, v
  875. Set the voice to use for the speech synthesis. Default value is
  876. @code{kal}. See also the @var{list_voices} option.
  877. @end table
  878. @subsection Examples
  879. @itemize
  880. @item
  881. Read from file @file{speech.txt}, and synthetize the text using the
  882. standard flite voice:
  883. @example
  884. flite=textfile=speech.txt
  885. @end example
  886. @item
  887. Read the specified text selecting the @code{slt} voice:
  888. @example
  889. flite=text='So fare thee well, poor devil of a Sub-Sub, whose commentator I am':voice=slt
  890. @end example
  891. @item
  892. Input text to ffmpeg:
  893. @example
  894. ffmpeg -f lavfi -i flite=text='So fare thee well, poor devil of a Sub-Sub, whose commentator I am':voice=slt
  895. @end example
  896. @item
  897. Make @file{ffplay} speak the specified text, using @code{flite} and
  898. the @code{lavfi} device:
  899. @example
  900. ffplay -f lavfi flite=text='No more be grieved for which that thou hast done.'
  901. @end example
  902. @end itemize
  903. For more information about libflite, check:
  904. @url{http://www.speech.cs.cmu.edu/flite/}
  905. @c man end AUDIO SOURCES
  906. @chapter Audio Sinks
  907. @c man begin AUDIO SINKS
  908. Below is a description of the currently available audio sinks.
  909. @section abuffersink
  910. Buffer audio frames, and make them available to the end of filter chain.
  911. This sink is mainly intended for programmatic use, in particular
  912. through the interface defined in @file{libavfilter/buffersink.h}.
  913. It requires a pointer to an AVABufferSinkContext structure, which
  914. defines the incoming buffers' formats, to be passed as the opaque
  915. parameter to @code{avfilter_init_filter} for initialization.
  916. @section anullsink
  917. Null audio sink, do absolutely nothing with the input audio. It is
  918. mainly useful as a template and to be employed in analysis / debugging
  919. tools.
  920. @section abuffersink
  921. This sink is intended for programmatic use. Frames that arrive on this sink can
  922. be retrieved by the calling program using the interface defined in
  923. @file{libavfilter/buffersink.h}.
  924. This filter accepts no parameters.
  925. @c man end AUDIO SINKS
  926. @chapter Video Filters
  927. @c man begin VIDEO FILTERS
  928. When you configure your FFmpeg build, you can disable any of the
  929. existing filters using @code{--disable-filters}.
  930. The configure output will show the video filters included in your
  931. build.
  932. Below is a description of the currently available video filters.
  933. @section alphaextract
  934. Extract the alpha component from the input as a grayscale video. This
  935. is especially useful with the @var{alphamerge} filter.
  936. @section alphamerge
  937. Add or replace the alpha component of the primary input with the
  938. grayscale value of a second input. This is intended for use with
  939. @var{alphaextract} to allow the transmission or storage of frame
  940. sequences that have alpha in a format that doesn't support an alpha
  941. channel.
  942. For example, to reconstruct full frames from a normal YUV-encoded video
  943. and a separate video created with @var{alphaextract}, you might use:
  944. @example
  945. movie=in_alpha.mkv [alpha]; [in][alpha] alphamerge [out]
  946. @end example
  947. Since this filter is designed for reconstruction, it operates on frame
  948. sequences without considering timestamps, and terminates when either
  949. input reaches end of stream. This will cause problems if your encoding
  950. pipeline drops frames. If you're trying to apply an image as an
  951. overlay to a video stream, consider the @var{overlay} filter instead.
  952. @section ass
  953. Same as the @ref{subtitles} filter, except that it doesn't require libavcodec
  954. and libavformat to work. On the other hand, it is limited to ASS (Advanced
  955. Substation Alpha) subtitles files.
  956. @section bbox
  957. Compute the bounding box for the non-black pixels in the input frame
  958. luminance plane.
  959. This filter computes the bounding box containing all the pixels with a
  960. luminance value greater than the minimum allowed value.
  961. The parameters describing the bounding box are printed on the filter
  962. log.
  963. @section blackdetect
  964. Detect video intervals that are (almost) completely black. Can be
  965. useful to detect chapter transitions, commercials, or invalid
  966. recordings. Output lines contains the time for the start, end and
  967. duration of the detected black interval expressed in seconds.
  968. In order to display the output lines, you need to set the loglevel at
  969. least to the AV_LOG_INFO value.
  970. This filter accepts a list of options in the form of
  971. @var{key}=@var{value} pairs separated by ":". A description of the
  972. accepted options follows.
  973. @table @option
  974. @item black_min_duration, d
  975. Set the minimum detected black duration expressed in seconds. It must
  976. be a non-negative floating point number.
  977. Default value is 2.0.
  978. @item picture_black_ratio_th, pic_th
  979. Set the threshold for considering a picture "black".
  980. Express the minimum value for the ratio:
  981. @example
  982. @var{nb_black_pixels} / @var{nb_pixels}
  983. @end example
  984. for which a picture is considered black.
  985. Default value is 0.98.
  986. @item pixel_black_th, pix_th
  987. Set the threshold for considering a pixel "black".
  988. The threshold expresses the maximum pixel luminance value for which a
  989. pixel is considered "black". The provided value is scaled according to
  990. the following equation:
  991. @example
  992. @var{absolute_threshold} = @var{luminance_minimum_value} + @var{pixel_black_th} * @var{luminance_range_size}
  993. @end example
  994. @var{luminance_range_size} and @var{luminance_minimum_value} depend on
  995. the input video format, the range is [0-255] for YUV full-range
  996. formats and [16-235] for YUV non full-range formats.
  997. Default value is 0.10.
  998. @end table
  999. The following example sets the maximum pixel threshold to the minimum
  1000. value, and detects only black intervals of 2 or more seconds:
  1001. @example
  1002. blackdetect=d=2:pix_th=0.00
  1003. @end example
  1004. @section blackframe
  1005. Detect frames that are (almost) completely black. Can be useful to
  1006. detect chapter transitions or commercials. Output lines consist of
  1007. the frame number of the detected frame, the percentage of blackness,
  1008. the position in the file if known or -1 and the timestamp in seconds.
  1009. In order to display the output lines, you need to set the loglevel at
  1010. least to the AV_LOG_INFO value.
  1011. The filter accepts the syntax:
  1012. @example
  1013. blackframe[=@var{amount}:[@var{threshold}]]
  1014. @end example
  1015. @var{amount} is the percentage of the pixels that have to be below the
  1016. threshold, and defaults to 98.
  1017. @var{threshold} is the threshold below which a pixel value is
  1018. considered black, and defaults to 32.
  1019. @section boxblur
  1020. Apply boxblur algorithm to the input video.
  1021. This filter accepts the parameters:
  1022. @var{luma_radius}:@var{luma_power}:@var{chroma_radius}:@var{chroma_power}:@var{alpha_radius}:@var{alpha_power}
  1023. Chroma and alpha parameters are optional, if not specified they default
  1024. to the corresponding values set for @var{luma_radius} and
  1025. @var{luma_power}.
  1026. @var{luma_radius}, @var{chroma_radius}, and @var{alpha_radius} represent
  1027. the radius in pixels of the box used for blurring the corresponding
  1028. input plane. They are expressions, and can contain the following
  1029. constants:
  1030. @table @option
  1031. @item w, h
  1032. the input width and height in pixels
  1033. @item cw, ch
  1034. the input chroma image width and height in pixels
  1035. @item hsub, vsub
  1036. horizontal and vertical chroma subsample values. For example for the
  1037. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  1038. @end table
  1039. The radius must be a non-negative number, and must not be greater than
  1040. the value of the expression @code{min(w,h)/2} for the luma and alpha planes,
  1041. and of @code{min(cw,ch)/2} for the chroma planes.
  1042. @var{luma_power}, @var{chroma_power}, and @var{alpha_power} represent
  1043. how many times the boxblur filter is applied to the corresponding
  1044. plane.
  1045. Some examples follow:
  1046. @itemize
  1047. @item
  1048. Apply a boxblur filter with luma, chroma, and alpha radius
  1049. set to 2:
  1050. @example
  1051. boxblur=2:1
  1052. @end example
  1053. @item
  1054. Set luma radius to 2, alpha and chroma radius to 0
  1055. @example
  1056. boxblur=2:1:0:0:0:0
  1057. @end example
  1058. @item
  1059. Set luma and chroma radius to a fraction of the video dimension
  1060. @example
  1061. boxblur=min(h\,w)/10:1:min(cw\,ch)/10:1
  1062. @end example
  1063. @end itemize
  1064. @section colormatrix
  1065. The colormatrix filter allows conversion between any of the following color
  1066. space: BT.709 (@var{bt709}), BT.601 (@var{bt601}), SMPTE-240M (@var{smpte240m})
  1067. and FCC (@var{fcc}).
  1068. The syntax of the parameters is @var{source}:@var{destination}:
  1069. @example
  1070. colormatrix=bt601:smpte240m
  1071. @end example
  1072. @section copy
  1073. Copy the input source unchanged to the output. Mainly useful for
  1074. testing purposes.
  1075. @section crop
  1076. Crop the input video to @var{out_w}:@var{out_h}:@var{x}:@var{y}:@var{keep_aspect}
  1077. The @var{keep_aspect} parameter is optional, if specified and set to a
  1078. non-zero value will force the output display aspect ratio to be the
  1079. same of the input, by changing the output sample aspect ratio.
  1080. The @var{out_w}, @var{out_h}, @var{x}, @var{y} parameters are
  1081. expressions containing the following constants:
  1082. @table @option
  1083. @item x, y
  1084. the computed values for @var{x} and @var{y}. They are evaluated for
  1085. each new frame.
  1086. @item in_w, in_h
  1087. the input width and height
  1088. @item iw, ih
  1089. same as @var{in_w} and @var{in_h}
  1090. @item out_w, out_h
  1091. the output (cropped) width and height
  1092. @item ow, oh
  1093. same as @var{out_w} and @var{out_h}
  1094. @item a
  1095. same as @var{iw} / @var{ih}
  1096. @item sar
  1097. input sample aspect ratio
  1098. @item dar
  1099. input display aspect ratio, it is the same as (@var{iw} / @var{ih}) * @var{sar}
  1100. @item hsub, vsub
  1101. horizontal and vertical chroma subsample values. For example for the
  1102. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  1103. @item n
  1104. the number of input frame, starting from 0
  1105. @item pos
  1106. the position in the file of the input frame, NAN if unknown
  1107. @item t
  1108. timestamp expressed in seconds, NAN if the input timestamp is unknown
  1109. @end table
  1110. The @var{out_w} and @var{out_h} parameters specify the expressions for
  1111. the width and height of the output (cropped) video. They are
  1112. evaluated just at the configuration of the filter.
  1113. The default value of @var{out_w} is "in_w", and the default value of
  1114. @var{out_h} is "in_h".
  1115. The expression for @var{out_w} may depend on the value of @var{out_h},
  1116. and the expression for @var{out_h} may depend on @var{out_w}, but they
  1117. cannot depend on @var{x} and @var{y}, as @var{x} and @var{y} are
  1118. evaluated after @var{out_w} and @var{out_h}.
  1119. The @var{x} and @var{y} parameters specify the expressions for the
  1120. position of the top-left corner of the output (non-cropped) area. They
  1121. are evaluated for each frame. If the evaluated value is not valid, it
  1122. is approximated to the nearest valid value.
  1123. The default value of @var{x} is "(in_w-out_w)/2", and the default
  1124. value for @var{y} is "(in_h-out_h)/2", which set the cropped area at
  1125. the center of the input image.
  1126. The expression for @var{x} may depend on @var{y}, and the expression
  1127. for @var{y} may depend on @var{x}.
  1128. Follow some examples:
  1129. @example
  1130. # crop the central input area with size 100x100
  1131. crop=100:100
  1132. # crop the central input area with size 2/3 of the input video
  1133. "crop=2/3*in_w:2/3*in_h"
  1134. # crop the input video central square
  1135. crop=in_h
  1136. # delimit the rectangle with the top-left corner placed at position
  1137. # 100:100 and the right-bottom corner corresponding to the right-bottom
  1138. # corner of the input image.
  1139. crop=in_w-100:in_h-100:100:100
  1140. # crop 10 pixels from the left and right borders, and 20 pixels from
  1141. # the top and bottom borders
  1142. "crop=in_w-2*10:in_h-2*20"
  1143. # keep only the bottom right quarter of the input image
  1144. "crop=in_w/2:in_h/2:in_w/2:in_h/2"
  1145. # crop height for getting Greek harmony
  1146. "crop=in_w:1/PHI*in_w"
  1147. # trembling effect
  1148. "crop=in_w/2:in_h/2:(in_w-out_w)/2+((in_w-out_w)/2)*sin(n/10):(in_h-out_h)/2 +((in_h-out_h)/2)*sin(n/7)"
  1149. # erratic camera effect depending on timestamp
  1150. "crop=in_w/2:in_h/2:(in_w-out_w)/2+((in_w-out_w)/2)*sin(t*10):(in_h-out_h)/2 +((in_h-out_h)/2)*sin(t*13)"
  1151. # set x depending on the value of y
  1152. "crop=in_w/2:in_h/2:y:10+10*sin(n/10)"
  1153. @end example
  1154. @section cropdetect
  1155. Auto-detect crop size.
  1156. Calculate necessary cropping parameters and prints the recommended
  1157. parameters through the logging system. The detected dimensions
  1158. correspond to the non-black area of the input video.
  1159. It accepts the syntax:
  1160. @example
  1161. cropdetect[=@var{limit}[:@var{round}[:@var{reset}]]]
  1162. @end example
  1163. @table @option
  1164. @item limit
  1165. Threshold, which can be optionally specified from nothing (0) to
  1166. everything (255), defaults to 24.
  1167. @item round
  1168. Value which the width/height should be divisible by, defaults to
  1169. 16. The offset is automatically adjusted to center the video. Use 2 to
  1170. get only even dimensions (needed for 4:2:2 video). 16 is best when
  1171. encoding to most video codecs.
  1172. @item reset
  1173. Counter that determines after how many frames cropdetect will reset
  1174. the previously detected largest video area and start over to detect
  1175. the current optimal crop area. Defaults to 0.
  1176. This can be useful when channel logos distort the video area. 0
  1177. indicates never reset and return the largest area encountered during
  1178. playback.
  1179. @end table
  1180. @section decimate
  1181. This filter drops frames that do not differ greatly from the previous
  1182. frame in order to reduce framerate. The main use of this filter is
  1183. for very-low-bitrate encoding (e.g. streaming over dialup modem), but
  1184. it could in theory be used for fixing movies that were
  1185. inverse-telecined incorrectly.
  1186. It accepts the following parameters:
  1187. @var{max}:@var{hi}:@var{lo}:@var{frac}.
  1188. @table @option
  1189. @item max
  1190. Set the maximum number of consecutive frames which can be dropped (if
  1191. positive), or the minimum interval between dropped frames (if
  1192. negative). If the value is 0, the frame is dropped unregarding the
  1193. number of previous sequentially dropped frames.
  1194. Default value is 0.
  1195. @item hi, lo, frac
  1196. Set the dropping threshold values.
  1197. Values for @var{hi} and @var{lo} are for 8x8 pixel blocks and
  1198. represent actual pixel value differences, so a threshold of 64
  1199. corresponds to 1 unit of difference for each pixel, or the same spread
  1200. out differently over the block.
  1201. A frame is a candidate for dropping if no 8x8 blocks differ by more
  1202. than a threshold of @var{hi}, and if no more than @var{frac} blocks (1
  1203. meaning the whole image) differ by more than a threshold of @var{lo}.
  1204. Default value for @var{hi} is 64*12, default value for @var{lo} is
  1205. 64*5, and default value for @var{frac} is 0.33.
  1206. @end table
  1207. @section delogo
  1208. Suppress a TV station logo by a simple interpolation of the surrounding
  1209. pixels. Just set a rectangle covering the logo and watch it disappear
  1210. (and sometimes something even uglier appear - your mileage may vary).
  1211. The filter accepts parameters as a string of the form
  1212. "@var{x}:@var{y}:@var{w}:@var{h}:@var{band}", or as a list of
  1213. @var{key}=@var{value} pairs, separated by ":".
  1214. The description of the accepted parameters follows.
  1215. @table @option
  1216. @item x, y
  1217. Specify the top left corner coordinates of the logo. They must be
  1218. specified.
  1219. @item w, h
  1220. Specify the width and height of the logo to clear. They must be
  1221. specified.
  1222. @item band, t
  1223. Specify the thickness of the fuzzy edge of the rectangle (added to
  1224. @var{w} and @var{h}). The default value is 4.
  1225. @item show
  1226. When set to 1, a green rectangle is drawn on the screen to simplify
  1227. finding the right @var{x}, @var{y}, @var{w}, @var{h} parameters, and
  1228. @var{band} is set to 4. The default value is 0.
  1229. @end table
  1230. Some examples follow.
  1231. @itemize
  1232. @item
  1233. Set a rectangle covering the area with top left corner coordinates 0,0
  1234. and size 100x77, setting a band of size 10:
  1235. @example
  1236. delogo=0:0:100:77:10
  1237. @end example
  1238. @item
  1239. As the previous example, but use named options:
  1240. @example
  1241. delogo=x=0:y=0:w=100:h=77:band=10
  1242. @end example
  1243. @end itemize
  1244. @section deshake
  1245. Attempt to fix small changes in horizontal and/or vertical shift. This
  1246. filter helps remove camera shake from hand-holding a camera, bumping a
  1247. tripod, moving on a vehicle, etc.
  1248. The filter accepts parameters as a string of the form
  1249. "@var{x}:@var{y}:@var{w}:@var{h}:@var{rx}:@var{ry}:@var{edge}:@var{blocksize}:@var{contrast}:@var{search}:@var{filename}"
  1250. A description of the accepted parameters follows.
  1251. @table @option
  1252. @item x, y, w, h
  1253. Specify a rectangular area where to limit the search for motion
  1254. vectors.
  1255. If desired the search for motion vectors can be limited to a
  1256. rectangular area of the frame defined by its top left corner, width
  1257. and height. These parameters have the same meaning as the drawbox
  1258. filter which can be used to visualise the position of the bounding
  1259. box.
  1260. This is useful when simultaneous movement of subjects within the frame
  1261. might be confused for camera motion by the motion vector search.
  1262. If any or all of @var{x}, @var{y}, @var{w} and @var{h} are set to -1
  1263. then the full frame is used. This allows later options to be set
  1264. without specifying the bounding box for the motion vector search.
  1265. Default - search the whole frame.
  1266. @item rx, ry
  1267. Specify the maximum extent of movement in x and y directions in the
  1268. range 0-64 pixels. Default 16.
  1269. @item edge
  1270. Specify how to generate pixels to fill blanks at the edge of the
  1271. frame. An integer from 0 to 3 as follows:
  1272. @table @option
  1273. @item 0
  1274. Fill zeroes at blank locations
  1275. @item 1
  1276. Original image at blank locations
  1277. @item 2
  1278. Extruded edge value at blank locations
  1279. @item 3
  1280. Mirrored edge at blank locations
  1281. @end table
  1282. The default setting is mirror edge at blank locations.
  1283. @item blocksize
  1284. Specify the blocksize to use for motion search. Range 4-128 pixels,
  1285. default 8.
  1286. @item contrast
  1287. Specify the contrast threshold for blocks. Only blocks with more than
  1288. the specified contrast (difference between darkest and lightest
  1289. pixels) will be considered. Range 1-255, default 125.
  1290. @item search
  1291. Specify the search strategy 0 = exhaustive search, 1 = less exhaustive
  1292. search. Default - exhaustive search.
  1293. @item filename
  1294. If set then a detailed log of the motion search is written to the
  1295. specified file.
  1296. @end table
  1297. @section drawbox
  1298. Draw a colored box on the input image.
  1299. The filter accepts parameters as a list of @var{key}=@var{value} pairs,
  1300. separated by ":".
  1301. The description of the accepted parameters follows.
  1302. @table @option
  1303. @item x, y
  1304. Specify the top left corner coordinates of the box. Default to 0.
  1305. @item width, w
  1306. @item height, h
  1307. Specify the width and height of the box, if 0 they are interpreted as
  1308. the input width and height. Default to 0.
  1309. @item color, c
  1310. Specify the color of the box to write, it can be the name of a color
  1311. (case insensitive match) or a 0xRRGGBB[AA] sequence. If the special
  1312. value @code{invert} is used, the box edge color is the same as the
  1313. video with inverted luma.
  1314. @item thickness, t
  1315. Set the thickness of the box edge. Default value is @code{4}.
  1316. @end table
  1317. If the key of the first options is omitted, the arguments are
  1318. interpreted according to the following syntax:
  1319. @example
  1320. drawbox=@var{x}:@var{y}:@var{width}:@var{height}:@var{color}:@var{thickness}
  1321. @end example
  1322. Some examples follow:
  1323. @itemize
  1324. @item
  1325. Draw a black box around the edge of the input image:
  1326. @example
  1327. drawbox
  1328. @end example
  1329. @item
  1330. Draw a box with color red and an opacity of 50%:
  1331. @example
  1332. drawbox=10:20:200:60:red@@0.5
  1333. @end example
  1334. The previous example can be specified as:
  1335. @example
  1336. drawbox=x=10:y=20:w=200:h=60:color=red@@0.5
  1337. @end example
  1338. @item
  1339. Fill the box with pink color:
  1340. @example
  1341. drawbox=x=10:y=10:w=100:h=100:color=pink@@0.5:t=max
  1342. @end example
  1343. @end itemize
  1344. @anchor{drawtext}
  1345. @section drawtext
  1346. Draw text string or text from specified file on top of video using the
  1347. libfreetype library.
  1348. To enable compilation of this filter you need to configure FFmpeg with
  1349. @code{--enable-libfreetype}.
  1350. @subsection Syntax
  1351. The filter accepts parameters as a list of @var{key}=@var{value} pairs,
  1352. separated by ":".
  1353. The description of the accepted parameters follows.
  1354. @table @option
  1355. @item box
  1356. Used to draw a box around text using background color.
  1357. Value should be either 1 (enable) or 0 (disable).
  1358. The default value of @var{box} is 0.
  1359. @item boxcolor
  1360. The color to be used for drawing box around text.
  1361. Either a string (e.g. "yellow") or in 0xRRGGBB[AA] format
  1362. (e.g. "0xff00ff"), possibly followed by an alpha specifier.
  1363. The default value of @var{boxcolor} is "white".
  1364. @item draw
  1365. Set an expression which specifies if the text should be drawn. If the
  1366. expression evaluates to 0, the text is not drawn. This is useful for
  1367. specifying that the text should be drawn only when specific conditions
  1368. are met.
  1369. Default value is "1".
  1370. See below for the list of accepted constants and functions.
  1371. @item expansion
  1372. Select how the @var{text} is expanded. Can be either @code{none},
  1373. @code{strftime} (default for compatibity reasons but deprecated) or
  1374. @code{normal}. See the @ref{drawtext_expansion, Text expansion} section
  1375. below for details.
  1376. @item fix_bounds
  1377. If true, check and fix text coords to avoid clipping.
  1378. @item fontcolor
  1379. The color to be used for drawing fonts.
  1380. Either a string (e.g. "red") or in 0xRRGGBB[AA] format
  1381. (e.g. "0xff000033"), possibly followed by an alpha specifier.
  1382. The default value of @var{fontcolor} is "black".
  1383. @item fontfile
  1384. The font file to be used for drawing text. Path must be included.
  1385. This parameter is mandatory.
  1386. @item fontsize
  1387. The font size to be used for drawing text.
  1388. The default value of @var{fontsize} is 16.
  1389. @item ft_load_flags
  1390. Flags to be used for loading the fonts.
  1391. The flags map the corresponding flags supported by libfreetype, and are
  1392. a combination of the following values:
  1393. @table @var
  1394. @item default
  1395. @item no_scale
  1396. @item no_hinting
  1397. @item render
  1398. @item no_bitmap
  1399. @item vertical_layout
  1400. @item force_autohint
  1401. @item crop_bitmap
  1402. @item pedantic
  1403. @item ignore_global_advance_width
  1404. @item no_recurse
  1405. @item ignore_transform
  1406. @item monochrome
  1407. @item linear_design
  1408. @item no_autohint
  1409. @item end table
  1410. @end table
  1411. Default value is "render".
  1412. For more information consult the documentation for the FT_LOAD_*
  1413. libfreetype flags.
  1414. @item shadowcolor
  1415. The color to be used for drawing a shadow behind the drawn text. It
  1416. can be a color name (e.g. "yellow") or a string in the 0xRRGGBB[AA]
  1417. form (e.g. "0xff00ff"), possibly followed by an alpha specifier.
  1418. The default value of @var{shadowcolor} is "black".
  1419. @item shadowx, shadowy
  1420. The x and y offsets for the text shadow position with respect to the
  1421. position of the text. They can be either positive or negative
  1422. values. Default value for both is "0".
  1423. @item tabsize
  1424. The size in number of spaces to use for rendering the tab.
  1425. Default value is 4.
  1426. @item timecode
  1427. Set the initial timecode representation in "hh:mm:ss[:;.]ff"
  1428. format. It can be used with or without text parameter. @var{timecode_rate}
  1429. option must be specified.
  1430. @item timecode_rate, rate, r
  1431. Set the timecode frame rate (timecode only).
  1432. @item text
  1433. The text string to be drawn. The text must be a sequence of UTF-8
  1434. encoded characters.
  1435. This parameter is mandatory if no file is specified with the parameter
  1436. @var{textfile}.
  1437. @item textfile
  1438. A text file containing text to be drawn. The text must be a sequence
  1439. of UTF-8 encoded characters.
  1440. This parameter is mandatory if no text string is specified with the
  1441. parameter @var{text}.
  1442. If both @var{text} and @var{textfile} are specified, an error is thrown.
  1443. @item x, y
  1444. The expressions which specify the offsets where text will be drawn
  1445. within the video frame. They are relative to the top/left border of the
  1446. output image.
  1447. The default value of @var{x} and @var{y} is "0".
  1448. See below for the list of accepted constants and functions.
  1449. @end table
  1450. The parameters for @var{x} and @var{y} are expressions containing the
  1451. following constants and functions:
  1452. @table @option
  1453. @item dar
  1454. input display aspect ratio, it is the same as (@var{w} / @var{h}) * @var{sar}
  1455. @item hsub, vsub
  1456. horizontal and vertical chroma subsample values. For example for the
  1457. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  1458. @item line_h, lh
  1459. the height of each text line
  1460. @item main_h, h, H
  1461. the input height
  1462. @item main_w, w, W
  1463. the input width
  1464. @item max_glyph_a, ascent
  1465. the maximum distance from the baseline to the highest/upper grid
  1466. coordinate used to place a glyph outline point, for all the rendered
  1467. glyphs.
  1468. It is a positive value, due to the grid's orientation with the Y axis
  1469. upwards.
  1470. @item max_glyph_d, descent
  1471. the maximum distance from the baseline to the lowest grid coordinate
  1472. used to place a glyph outline point, for all the rendered glyphs.
  1473. This is a negative value, due to the grid's orientation, with the Y axis
  1474. upwards.
  1475. @item max_glyph_h
  1476. maximum glyph height, that is the maximum height for all the glyphs
  1477. contained in the rendered text, it is equivalent to @var{ascent} -
  1478. @var{descent}.
  1479. @item max_glyph_w
  1480. maximum glyph width, that is the maximum width for all the glyphs
  1481. contained in the rendered text
  1482. @item n
  1483. the number of input frame, starting from 0
  1484. @item rand(min, max)
  1485. return a random number included between @var{min} and @var{max}
  1486. @item sar
  1487. input sample aspect ratio
  1488. @item t
  1489. timestamp expressed in seconds, NAN if the input timestamp is unknown
  1490. @item text_h, th
  1491. the height of the rendered text
  1492. @item text_w, tw
  1493. the width of the rendered text
  1494. @item x, y
  1495. the x and y offset coordinates where the text is drawn.
  1496. These parameters allow the @var{x} and @var{y} expressions to refer
  1497. each other, so you can for example specify @code{y=x/dar}.
  1498. @end table
  1499. If libavfilter was built with @code{--enable-fontconfig}, then
  1500. @option{fontfile} can be a fontconfig pattern or omitted.
  1501. @anchor{drawtext_expansion}
  1502. @subsection Text expansion
  1503. If @option{expansion} is set to @code{strftime} (which is the default for
  1504. now), the filter recognizes strftime() sequences in the provided text and
  1505. expands them accordingly. Check the documentation of strftime(). This
  1506. feature is deprecated.
  1507. If @option{expansion} is set to @code{none}, the text is printed verbatim.
  1508. If @option{expansion} is set to @code{normal} (which will be the default),
  1509. the following expansion mechanism is used.
  1510. The backslash character '\', followed by any character, always expands to
  1511. the second character.
  1512. Sequence of the form @code{%@{...@}} are expanded. The text between the
  1513. braces is a function name, possibly followed by arguments separated by ':'.
  1514. If the arguments contain special characters or delimiters (':' or '@}'),
  1515. they should be escaped.
  1516. Note that they probably must also be escaped as the value for the
  1517. @option{text} option in the filter argument string and as the filter
  1518. argument in the filter graph description, and possibly also for the shell,
  1519. that makes up to four levels of escaping; using a text file avoids these
  1520. problems.
  1521. The following functions are available:
  1522. @table @command
  1523. @item expr, e
  1524. The expression evaluation result.
  1525. It must take one argument specifying the expression to be evaluated,
  1526. which accepts the same constants and functions as the @var{x} and
  1527. @var{y} values. Note that not all constants should be used, for
  1528. example the text size is not known when evaluating the expression, so
  1529. the constants @var{text_w} and @var{text_h} will have an undefined
  1530. value.
  1531. @item gmtime
  1532. The time at which the filter is running, expressed in UTC.
  1533. It can accept an argument: a strftime() format string.
  1534. @item localtime
  1535. The time at which the filter is running, expressed in the local time zone.
  1536. It can accept an argument: a strftime() format string.
  1537. @item n, frame_num
  1538. The frame number, starting from 0.
  1539. @item pts
  1540. The timestamp of the current frame, in seconds, with microsecond accuracy.
  1541. @end table
  1542. @subsection Examples
  1543. Some examples follow.
  1544. @itemize
  1545. @item
  1546. Draw "Test Text" with font FreeSerif, using the default values for the
  1547. optional parameters.
  1548. @example
  1549. drawtext="fontfile=/usr/share/fonts/truetype/freefont/FreeSerif.ttf: text='Test Text'"
  1550. @end example
  1551. @item
  1552. Draw 'Test Text' with font FreeSerif of size 24 at position x=100
  1553. and y=50 (counting from the top-left corner of the screen), text is
  1554. yellow with a red box around it. Both the text and the box have an
  1555. opacity of 20%.
  1556. @example
  1557. drawtext="fontfile=/usr/share/fonts/truetype/freefont/FreeSerif.ttf: text='Test Text':\
  1558. x=100: y=50: fontsize=24: fontcolor=yellow@@0.2: box=1: boxcolor=red@@0.2"
  1559. @end example
  1560. Note that the double quotes are not necessary if spaces are not used
  1561. within the parameter list.
  1562. @item
  1563. Show the text at the center of the video frame:
  1564. @example
  1565. drawtext="fontsize=30:fontfile=FreeSerif.ttf:text='hello world':x=(w-text_w)/2:y=(h-text_h-line_h)/2"
  1566. @end example
  1567. @item
  1568. Show a text line sliding from right to left in the last row of the video
  1569. frame. The file @file{LONG_LINE} is assumed to contain a single line
  1570. with no newlines.
  1571. @example
  1572. drawtext="fontsize=15:fontfile=FreeSerif.ttf:text=LONG_LINE:y=h-line_h:x=-50*t"
  1573. @end example
  1574. @item
  1575. Show the content of file @file{CREDITS} off the bottom of the frame and scroll up.
  1576. @example
  1577. drawtext="fontsize=20:fontfile=FreeSerif.ttf:textfile=CREDITS:y=h-20*t"
  1578. @end example
  1579. @item
  1580. Draw a single green letter "g", at the center of the input video.
  1581. The glyph baseline is placed at half screen height.
  1582. @example
  1583. drawtext="fontsize=60:fontfile=FreeSerif.ttf:fontcolor=green:text=g:x=(w-max_glyph_w)/2:y=h/2-ascent"
  1584. @end example
  1585. @item
  1586. Show text for 1 second every 3 seconds:
  1587. @example
  1588. drawtext="fontfile=FreeSerif.ttf:fontcolor=white:x=100:y=x/dar:draw=lt(mod(t\,3)\,1):text='blink'"
  1589. @end example
  1590. @item
  1591. Use fontconfig to set the font. Note that the colons need to be escaped.
  1592. @example
  1593. drawtext='fontfile=Linux Libertine O-40\:style=Semibold:text=FFmpeg'
  1594. @end example
  1595. @item
  1596. Print the date of a real-time encoding (see strftime(3)):
  1597. @example
  1598. drawtext='fontfile=FreeSans.ttf:expansion=normal:text=%@{localtime:%a %b %d %Y@}'
  1599. @end example
  1600. @end itemize
  1601. For more information about libfreetype, check:
  1602. @url{http://www.freetype.org/}.
  1603. For more information about fontconfig, check:
  1604. @url{http://freedesktop.org/software/fontconfig/fontconfig-user.html}.
  1605. @section edgedetect
  1606. Detect and draw edges. The filter uses the Canny Edge Detection algorithm.
  1607. This filter accepts the following optional named parameters:
  1608. @table @option
  1609. @item low, high
  1610. Set low and high threshold values used by the Canny thresholding
  1611. algorithm.
  1612. The high threshold selects the "strong" edge pixels, which are then
  1613. connected through 8-connectivity with the "weak" edge pixels selected
  1614. by the low threshold.
  1615. @var{low} and @var{high} threshold values must be choosen in the range
  1616. [0,1], and @var{low} should be lesser or equal to @var{high}.
  1617. Default value for @var{low} is @code{20/255}, and default value for @var{high}
  1618. is @code{50/255}.
  1619. @end table
  1620. Example:
  1621. @example
  1622. edgedetect=low=0.1:high=0.4
  1623. @end example
  1624. @section fade
  1625. Apply fade-in/out effect to input video.
  1626. It accepts the parameters:
  1627. @var{type}:@var{start_frame}:@var{nb_frames}[:@var{options}]
  1628. @var{type} specifies if the effect type, can be either "in" for
  1629. fade-in, or "out" for a fade-out effect.
  1630. @var{start_frame} specifies the number of the start frame for starting
  1631. to apply the fade effect.
  1632. @var{nb_frames} specifies the number of frames for which the fade
  1633. effect has to last. At the end of the fade-in effect the output video
  1634. will have the same intensity as the input video, at the end of the
  1635. fade-out transition the output video will be completely black.
  1636. @var{options} is an optional sequence of @var{key}=@var{value} pairs,
  1637. separated by ":". The description of the accepted options follows.
  1638. @table @option
  1639. @item type, t
  1640. See @var{type}.
  1641. @item start_frame, s
  1642. See @var{start_frame}.
  1643. @item nb_frames, n
  1644. See @var{nb_frames}.
  1645. @item alpha
  1646. If set to 1, fade only alpha channel, if one exists on the input.
  1647. Default value is 0.
  1648. @end table
  1649. A few usage examples follow, usable too as test scenarios.
  1650. @example
  1651. # fade in first 30 frames of video
  1652. fade=in:0:30
  1653. # fade out last 45 frames of a 200-frame video
  1654. fade=out:155:45
  1655. # fade in first 25 frames and fade out last 25 frames of a 1000-frame video
  1656. fade=in:0:25, fade=out:975:25
  1657. # make first 5 frames black, then fade in from frame 5-24
  1658. fade=in:5:20
  1659. # fade in alpha over first 25 frames of video
  1660. fade=in:0:25:alpha=1
  1661. @end example
  1662. @section field
  1663. Extract a single field from an interlaced image using stride
  1664. arithmetic to avoid wasting CPU time. The output frames are marked as
  1665. non-interlaced.
  1666. This filter accepts the following named options:
  1667. @table @option
  1668. @item type
  1669. Specify whether to extract the top (if the value is @code{0} or
  1670. @code{top}) or the bottom field (if the value is @code{1} or
  1671. @code{bottom}).
  1672. @end table
  1673. If the option key is not specified, the first value sets the @var{type}
  1674. option. For example:
  1675. @example
  1676. field=bottom
  1677. @end example
  1678. is equivalent to:
  1679. @example
  1680. field=type=bottom
  1681. @end example
  1682. @section fieldorder
  1683. Transform the field order of the input video.
  1684. It accepts one parameter which specifies the required field order that
  1685. the input interlaced video will be transformed to. The parameter can
  1686. assume one of the following values:
  1687. @table @option
  1688. @item 0 or bff
  1689. output bottom field first
  1690. @item 1 or tff
  1691. output top field first
  1692. @end table
  1693. Default value is "tff".
  1694. Transformation is achieved by shifting the picture content up or down
  1695. by one line, and filling the remaining line with appropriate picture content.
  1696. This method is consistent with most broadcast field order converters.
  1697. If the input video is not flagged as being interlaced, or it is already
  1698. flagged as being of the required output field order then this filter does
  1699. not alter the incoming video.
  1700. This filter is very useful when converting to or from PAL DV material,
  1701. which is bottom field first.
  1702. For example:
  1703. @example
  1704. ffmpeg -i in.vob -vf "fieldorder=bff" out.dv
  1705. @end example
  1706. @section fifo
  1707. Buffer input images and send them when they are requested.
  1708. This filter is mainly useful when auto-inserted by the libavfilter
  1709. framework.
  1710. The filter does not take parameters.
  1711. @section format
  1712. Convert the input video to one of the specified pixel formats.
  1713. Libavfilter will try to pick one that is supported for the input to
  1714. the next filter.
  1715. The filter accepts a list of pixel format names, separated by ":",
  1716. for example "yuv420p:monow:rgb24".
  1717. Some examples follow:
  1718. @example
  1719. # convert the input video to the format "yuv420p"
  1720. format=yuv420p
  1721. # convert the input video to any of the formats in the list
  1722. format=yuv420p:yuv444p:yuv410p
  1723. @end example
  1724. @section fps
  1725. Convert the video to specified constant framerate by duplicating or dropping
  1726. frames as necessary.
  1727. This filter accepts the following named parameters:
  1728. @table @option
  1729. @item fps
  1730. Desired output framerate.
  1731. @item round
  1732. Rounding method. The default is @code{near}.
  1733. @end table
  1734. @section framestep
  1735. Select one frame every N.
  1736. This filter accepts in input a string representing a positive
  1737. integer. Default argument is @code{1}.
  1738. @anchor{frei0r}
  1739. @section frei0r
  1740. Apply a frei0r effect to the input video.
  1741. To enable compilation of this filter you need to install the frei0r
  1742. header and configure FFmpeg with @code{--enable-frei0r}.
  1743. The filter supports the syntax:
  1744. @example
  1745. @var{filter_name}[@{:|=@}@var{param1}:@var{param2}:...:@var{paramN}]
  1746. @end example
  1747. @var{filter_name} is the name of the frei0r effect to load. If the
  1748. environment variable @env{FREI0R_PATH} is defined, the frei0r effect
  1749. is searched in each one of the directories specified by the colon (or
  1750. semicolon on Windows platforms) separated list in @env{FREIOR_PATH},
  1751. otherwise in the standard frei0r paths, which are in this order:
  1752. @file{HOME/.frei0r-1/lib/}, @file{/usr/local/lib/frei0r-1/},
  1753. @file{/usr/lib/frei0r-1/}.
  1754. @var{param1}, @var{param2}, ... , @var{paramN} specify the parameters
  1755. for the frei0r effect.
  1756. A frei0r effect parameter can be a boolean (whose values are specified
  1757. with "y" and "n"), a double, a color (specified by the syntax
  1758. @var{R}/@var{G}/@var{B}, @var{R}, @var{G}, and @var{B} being float
  1759. numbers from 0.0 to 1.0) or by an @code{av_parse_color()} color
  1760. description), a position (specified by the syntax @var{X}/@var{Y},
  1761. @var{X} and @var{Y} being float numbers) and a string.
  1762. The number and kind of parameters depend on the loaded effect. If an
  1763. effect parameter is not specified the default value is set.
  1764. Some examples follow:
  1765. @itemize
  1766. @item
  1767. Apply the distort0r effect, set the first two double parameters:
  1768. @example
  1769. frei0r=distort0r:0.5:0.01
  1770. @end example
  1771. @item
  1772. Apply the colordistance effect, take a color as first parameter:
  1773. @example
  1774. frei0r=colordistance:0.2/0.3/0.4
  1775. frei0r=colordistance:violet
  1776. frei0r=colordistance:0x112233
  1777. @end example
  1778. @item
  1779. Apply the perspective effect, specify the top left and top right image
  1780. positions:
  1781. @example
  1782. frei0r=perspective:0.2/0.2:0.8/0.2
  1783. @end example
  1784. @end itemize
  1785. For more information see:
  1786. @url{http://frei0r.dyne.org}
  1787. @section geq
  1788. The filter takes one, two or three equations as parameter, separated by ':'.
  1789. The first equation is mandatory and applies to the luma plane. The two
  1790. following are respectively for chroma blue and chroma red planes.
  1791. The filter syntax allows named parameters:
  1792. @table @option
  1793. @item lum_expr
  1794. the luminance expression
  1795. @item cb_expr
  1796. the chrominance blue expression
  1797. @item cr_expr
  1798. the chrominance red expression
  1799. @end table
  1800. If one of the chrominance expression is not defined, it falls back on the other
  1801. one. If none of them are specified, they will evaluate the luminance
  1802. expression.
  1803. The expressions can use the following variables and functions:
  1804. @table @option
  1805. @item N
  1806. The sequential number of the filtered frame, starting from @code{0}.
  1807. @item X, Y
  1808. The coordinates of the current sample.
  1809. @item W, H
  1810. The width and height of the image.
  1811. @item SW, SH
  1812. Width and height scale depending on the currently filtered plane. It is the
  1813. ratio between the corresponding luma plane number of pixels and the current
  1814. plane ones. E.g. for YUV4:2:0 the values are @code{1,1} for the luma plane, and
  1815. @code{0.5,0.5} for chroma planes.
  1816. @item T
  1817. Time of the current frame, expressed in seconds.
  1818. @item p(x, y)
  1819. Return the value of the pixel at location (@var{x},@var{y}) of the current
  1820. plane.
  1821. @item lum(x, y)
  1822. Return the value of the pixel at location (@var{x},@var{y}) of the luminance
  1823. plane.
  1824. @item cb(x, y)
  1825. Return the value of the pixel at location (@var{x},@var{y}) of the
  1826. blue-difference chroma plane.
  1827. @item cr(x, y)
  1828. Return the value of the pixel at location (@var{x},@var{y}) of the
  1829. red-difference chroma plane.
  1830. @end table
  1831. For functions, if @var{x} and @var{y} are outside the area, the value will be
  1832. automatically clipped to the closer edge.
  1833. Some examples follow:
  1834. @itemize
  1835. @item
  1836. Flip the image horizontally:
  1837. @example
  1838. geq=p(W-X\,Y)
  1839. @end example
  1840. @item
  1841. Generate a bidimensional sine wave, with angle @code{PI/3} and a
  1842. wavelength of 100 pixels:
  1843. @example
  1844. geq=128 + 100*sin(2*(PI/100)*(cos(PI/3)*(X-50*T) + sin(PI/3)*Y)):128:128
  1845. @end example
  1846. @item
  1847. Generate a fancy enigmatic moving light:
  1848. @example
  1849. nullsrc=s=256x256,geq=random(1)/hypot(X-cos(N*0.07)*W/2-W/2\,Y-sin(N*0.09)*H/2-H/2)^2*1000000*sin(N*0.02):128:128
  1850. @end example
  1851. @end itemize
  1852. @section gradfun
  1853. Fix the banding artifacts that are sometimes introduced into nearly flat
  1854. regions by truncation to 8bit color depth.
  1855. Interpolate the gradients that should go where the bands are, and
  1856. dither them.
  1857. This filter is designed for playback only. Do not use it prior to
  1858. lossy compression, because compression tends to lose the dither and
  1859. bring back the bands.
  1860. The filter takes two optional parameters, separated by ':':
  1861. @var{strength}:@var{radius}
  1862. @var{strength} is the maximum amount by which the filter will change
  1863. any one pixel. Also the threshold for detecting nearly flat
  1864. regions. Acceptable values range from .51 to 255, default value is
  1865. 1.2, out-of-range values will be clipped to the valid range.
  1866. @var{radius} is the neighborhood to fit the gradient to. A larger
  1867. radius makes for smoother gradients, but also prevents the filter from
  1868. modifying the pixels near detailed regions. Acceptable values are
  1869. 8-32, default value is 16, out-of-range values will be clipped to the
  1870. valid range.
  1871. @example
  1872. # default parameters
  1873. gradfun=1.2:16
  1874. # omitting radius
  1875. gradfun=1.2
  1876. @end example
  1877. @section hflip
  1878. Flip the input video horizontally.
  1879. For example to horizontally flip the input video with @command{ffmpeg}:
  1880. @example
  1881. ffmpeg -i in.avi -vf "hflip" out.avi
  1882. @end example
  1883. @section hqdn3d
  1884. High precision/quality 3d denoise filter. This filter aims to reduce
  1885. image noise producing smooth images and making still images really
  1886. still. It should enhance compressibility.
  1887. It accepts the following optional parameters:
  1888. @var{luma_spatial}:@var{chroma_spatial}:@var{luma_tmp}:@var{chroma_tmp}
  1889. @table @option
  1890. @item luma_spatial
  1891. a non-negative float number which specifies spatial luma strength,
  1892. defaults to 4.0
  1893. @item chroma_spatial
  1894. a non-negative float number which specifies spatial chroma strength,
  1895. defaults to 3.0*@var{luma_spatial}/4.0
  1896. @item luma_tmp
  1897. a float number which specifies luma temporal strength, defaults to
  1898. 6.0*@var{luma_spatial}/4.0
  1899. @item chroma_tmp
  1900. a float number which specifies chroma temporal strength, defaults to
  1901. @var{luma_tmp}*@var{chroma_spatial}/@var{luma_spatial}
  1902. @end table
  1903. @section hue
  1904. Modify the hue and/or the saturation of the input.
  1905. This filter accepts the following optional named options:
  1906. @table @option
  1907. @item h
  1908. Specify the hue angle as a number of degrees. It accepts a float
  1909. number or an expression, and defaults to 0.0.
  1910. @item H
  1911. Specify the hue angle as a number of degrees. It accepts a float
  1912. number or an expression, and defaults to 0.0.
  1913. @item s
  1914. Specify the saturation in the [-10,10] range. It accepts a float number and
  1915. defaults to 1.0.
  1916. @end table
  1917. The @var{h}, @var{H} and @var{s} parameters are expressions containing the
  1918. following constants:
  1919. @table @option
  1920. @item n
  1921. frame count of the input frame starting from 0
  1922. @item pts
  1923. presentation timestamp of the input frame expressed in time base units
  1924. @item r
  1925. frame rate of the input video, NAN if the input frame rate is unknown
  1926. @item t
  1927. timestamp expressed in seconds, NAN if the input timestamp is unknown
  1928. @item tb
  1929. time base of the input video
  1930. @end table
  1931. The options can also be set using the syntax: @var{hue}:@var{saturation}
  1932. In this case @var{hue} is expressed in degrees.
  1933. Some examples follow:
  1934. @itemize
  1935. @item
  1936. Set the hue to 90 degrees and the saturation to 1.0:
  1937. @example
  1938. hue=h=90:s=1
  1939. @end example
  1940. @item
  1941. Same command but expressing the hue in radians:
  1942. @example
  1943. hue=H=PI/2:s=1
  1944. @end example
  1945. @item
  1946. Same command without named options, hue must be expressed in degrees:
  1947. @example
  1948. hue=90:1
  1949. @end example
  1950. @item
  1951. Note that "h:s" syntax does not support expressions for the values of
  1952. h and s, so the following example will issue an error:
  1953. @example
  1954. hue=PI/2:1
  1955. @end example
  1956. @item
  1957. Rotate hue and make the saturation swing between 0
  1958. and 2 over a period of 1 second:
  1959. @example
  1960. hue="H=2*PI*t: s=sin(2*PI*t)+1"
  1961. @end example
  1962. @item
  1963. Apply a 3 seconds saturation fade-in effect starting at 0:
  1964. @example
  1965. hue="s=min(t/3\,1)"
  1966. @end example
  1967. The general fade-in expression can be written as:
  1968. @example
  1969. hue="s=min(0\, max((t-START)/DURATION\, 1))"
  1970. @end example
  1971. @item
  1972. Apply a 3 seconds saturation fade-out effect starting at 5 seconds:
  1973. @example
  1974. hue="s=max(0\, min(1\, (8-t)/3))"
  1975. @end example
  1976. The general fade-out expression can be written as:
  1977. @example
  1978. hue="s=max(0\, min(1\, (START+DURATION-t)/DURATION))"
  1979. @end example
  1980. @end itemize
  1981. @subsection Commands
  1982. This filter supports the following command:
  1983. @table @option
  1984. @item reinit
  1985. Modify the hue and/or the saturation of the input video.
  1986. The command accepts the same named options and syntax than when calling the
  1987. filter from the command-line.
  1988. If a parameter is omitted, it is kept at its current value.
  1989. @end table
  1990. @section idet
  1991. Interlaceing detect filter. This filter tries to detect if the input is
  1992. interlaced or progressive. Top or bottom field first.
  1993. @section lut, lutrgb, lutyuv
  1994. Compute a look-up table for binding each pixel component input value
  1995. to an output value, and apply it to input video.
  1996. @var{lutyuv} applies a lookup table to a YUV input video, @var{lutrgb}
  1997. to an RGB input video.
  1998. These filters accept in input a ":"-separated list of options, which
  1999. specify the expressions used for computing the lookup table for the
  2000. corresponding pixel component values.
  2001. The @var{lut} filter requires either YUV or RGB pixel formats in
  2002. input, and accepts the options:
  2003. @table @option
  2004. @item @var{c0} (first pixel component)
  2005. @item @var{c1} (second pixel component)
  2006. @item @var{c2} (third pixel component)
  2007. @item @var{c3} (fourth pixel component, corresponds to the alpha component)
  2008. @end table
  2009. The exact component associated to each option depends on the format in
  2010. input.
  2011. The @var{lutrgb} filter requires RGB pixel formats in input, and
  2012. accepts the options:
  2013. @table @option
  2014. @item @var{r} (red component)
  2015. @item @var{g} (green component)
  2016. @item @var{b} (blue component)
  2017. @item @var{a} (alpha component)
  2018. @end table
  2019. The @var{lutyuv} filter requires YUV pixel formats in input, and
  2020. accepts the options:
  2021. @table @option
  2022. @item @var{y} (Y/luminance component)
  2023. @item @var{u} (U/Cb component)
  2024. @item @var{v} (V/Cr component)
  2025. @item @var{a} (alpha component)
  2026. @end table
  2027. The expressions can contain the following constants and functions:
  2028. @table @option
  2029. @item w, h
  2030. the input width and height
  2031. @item val
  2032. input value for the pixel component
  2033. @item clipval
  2034. the input value clipped in the @var{minval}-@var{maxval} range
  2035. @item maxval
  2036. maximum value for the pixel component
  2037. @item minval
  2038. minimum value for the pixel component
  2039. @item negval
  2040. the negated value for the pixel component value clipped in the
  2041. @var{minval}-@var{maxval} range , it corresponds to the expression
  2042. "maxval-clipval+minval"
  2043. @item clip(val)
  2044. the computed value in @var{val} clipped in the
  2045. @var{minval}-@var{maxval} range
  2046. @item gammaval(gamma)
  2047. the computed gamma correction value of the pixel component value
  2048. clipped in the @var{minval}-@var{maxval} range, corresponds to the
  2049. expression
  2050. "pow((clipval-minval)/(maxval-minval)\,@var{gamma})*(maxval-minval)+minval"
  2051. @end table
  2052. All expressions default to "val".
  2053. Some examples follow:
  2054. @example
  2055. # negate input video
  2056. lutrgb="r=maxval+minval-val:g=maxval+minval-val:b=maxval+minval-val"
  2057. lutyuv="y=maxval+minval-val:u=maxval+minval-val:v=maxval+minval-val"
  2058. # the above is the same as
  2059. lutrgb="r=negval:g=negval:b=negval"
  2060. lutyuv="y=negval:u=negval:v=negval"
  2061. # negate luminance
  2062. lutyuv=y=negval
  2063. # remove chroma components, turns the video into a graytone image
  2064. lutyuv="u=128:v=128"
  2065. # apply a luma burning effect
  2066. lutyuv="y=2*val"
  2067. # remove green and blue components
  2068. lutrgb="g=0:b=0"
  2069. # set a constant alpha channel value on input
  2070. format=rgba,lutrgb=a="maxval-minval/2"
  2071. # correct luminance gamma by a 0.5 factor
  2072. lutyuv=y=gammaval(0.5)
  2073. @end example
  2074. @section mp
  2075. Apply an MPlayer filter to the input video.
  2076. This filter provides a wrapper around most of the filters of
  2077. MPlayer/MEncoder.
  2078. This wrapper is considered experimental. Some of the wrapped filters
  2079. may not work properly and we may drop support for them, as they will
  2080. be implemented natively into FFmpeg. Thus you should avoid
  2081. depending on them when writing portable scripts.
  2082. The filters accepts the parameters:
  2083. @var{filter_name}[:=]@var{filter_params}
  2084. @var{filter_name} is the name of a supported MPlayer filter,
  2085. @var{filter_params} is a string containing the parameters accepted by
  2086. the named filter.
  2087. The list of the currently supported filters follows:
  2088. @table @var
  2089. @item denoise3d
  2090. @item detc
  2091. @item dint
  2092. @item divtc
  2093. @item down3dright
  2094. @item dsize
  2095. @item eq2
  2096. @item eq
  2097. @item fil
  2098. @item fspp
  2099. @item harddup
  2100. @item il
  2101. @item ilpack
  2102. @item ivtc
  2103. @item kerndeint
  2104. @item mcdeint
  2105. @item noise
  2106. @item ow
  2107. @item perspective
  2108. @item phase
  2109. @item pp7
  2110. @item pullup
  2111. @item qp
  2112. @item sab
  2113. @item softpulldown
  2114. @item softskip
  2115. @item spp
  2116. @item telecine
  2117. @item tinterlace
  2118. @item unsharp
  2119. @item uspp
  2120. @end table
  2121. The parameter syntax and behavior for the listed filters are the same
  2122. of the corresponding MPlayer filters. For detailed instructions check
  2123. the "VIDEO FILTERS" section in the MPlayer manual.
  2124. Some examples follow:
  2125. @itemize
  2126. @item
  2127. Adjust gamma, brightness, contrast:
  2128. @example
  2129. mp=eq2=1.0:2:0.5
  2130. @end example
  2131. @item
  2132. Add temporal noise to input video:
  2133. @example
  2134. mp=noise=20t
  2135. @end example
  2136. @end itemize
  2137. See also mplayer(1), @url{http://www.mplayerhq.hu/}.
  2138. @section negate
  2139. Negate input video.
  2140. This filter accepts an integer in input, if non-zero it negates the
  2141. alpha component (if available). The default value in input is 0.
  2142. @section noformat
  2143. Force libavfilter not to use any of the specified pixel formats for the
  2144. input to the next filter.
  2145. The filter accepts a list of pixel format names, separated by ":",
  2146. for example "yuv420p:monow:rgb24".
  2147. Some examples follow:
  2148. @example
  2149. # force libavfilter to use a format different from "yuv420p" for the
  2150. # input to the vflip filter
  2151. noformat=yuv420p,vflip
  2152. # convert the input video to any of the formats not contained in the list
  2153. noformat=yuv420p:yuv444p:yuv410p
  2154. @end example
  2155. @section null
  2156. Pass the video source unchanged to the output.
  2157. @section ocv
  2158. Apply video transform using libopencv.
  2159. To enable this filter install libopencv library and headers and
  2160. configure FFmpeg with @code{--enable-libopencv}.
  2161. The filter takes the parameters: @var{filter_name}@{:=@}@var{filter_params}.
  2162. @var{filter_name} is the name of the libopencv filter to apply.
  2163. @var{filter_params} specifies the parameters to pass to the libopencv
  2164. filter. If not specified the default values are assumed.
  2165. Refer to the official libopencv documentation for more precise
  2166. information:
  2167. @url{http://opencv.willowgarage.com/documentation/c/image_filtering.html}
  2168. Follows the list of supported libopencv filters.
  2169. @anchor{dilate}
  2170. @subsection dilate
  2171. Dilate an image by using a specific structuring element.
  2172. This filter corresponds to the libopencv function @code{cvDilate}.
  2173. It accepts the parameters: @var{struct_el}:@var{nb_iterations}.
  2174. @var{struct_el} represents a structuring element, and has the syntax:
  2175. @var{cols}x@var{rows}+@var{anchor_x}x@var{anchor_y}/@var{shape}
  2176. @var{cols} and @var{rows} represent the number of columns and rows of
  2177. the structuring element, @var{anchor_x} and @var{anchor_y} the anchor
  2178. point, and @var{shape} the shape for the structuring element, and
  2179. can be one of the values "rect", "cross", "ellipse", "custom".
  2180. If the value for @var{shape} is "custom", it must be followed by a
  2181. string of the form "=@var{filename}". The file with name
  2182. @var{filename} is assumed to represent a binary image, with each
  2183. printable character corresponding to a bright pixel. When a custom
  2184. @var{shape} is used, @var{cols} and @var{rows} are ignored, the number
  2185. or columns and rows of the read file are assumed instead.
  2186. The default value for @var{struct_el} is "3x3+0x0/rect".
  2187. @var{nb_iterations} specifies the number of times the transform is
  2188. applied to the image, and defaults to 1.
  2189. Follow some example:
  2190. @example
  2191. # use the default values
  2192. ocv=dilate
  2193. # dilate using a structuring element with a 5x5 cross, iterate two times
  2194. ocv=dilate=5x5+2x2/cross:2
  2195. # read the shape from the file diamond.shape, iterate two times
  2196. # the file diamond.shape may contain a pattern of characters like this:
  2197. # *
  2198. # ***
  2199. # *****
  2200. # ***
  2201. # *
  2202. # the specified cols and rows are ignored (but not the anchor point coordinates)
  2203. ocv=0x0+2x2/custom=diamond.shape:2
  2204. @end example
  2205. @subsection erode
  2206. Erode an image by using a specific structuring element.
  2207. This filter corresponds to the libopencv function @code{cvErode}.
  2208. The filter accepts the parameters: @var{struct_el}:@var{nb_iterations},
  2209. with the same syntax and semantics as the @ref{dilate} filter.
  2210. @subsection smooth
  2211. Smooth the input video.
  2212. The filter takes the following parameters:
  2213. @var{type}:@var{param1}:@var{param2}:@var{param3}:@var{param4}.
  2214. @var{type} is the type of smooth filter to apply, and can be one of
  2215. the following values: "blur", "blur_no_scale", "median", "gaussian",
  2216. "bilateral". The default value is "gaussian".
  2217. @var{param1}, @var{param2}, @var{param3}, and @var{param4} are
  2218. parameters whose meanings depend on smooth type. @var{param1} and
  2219. @var{param2} accept integer positive values or 0, @var{param3} and
  2220. @var{param4} accept float values.
  2221. The default value for @var{param1} is 3, the default value for the
  2222. other parameters is 0.
  2223. These parameters correspond to the parameters assigned to the
  2224. libopencv function @code{cvSmooth}.
  2225. @anchor{overlay}
  2226. @section overlay
  2227. Overlay one video on top of another.
  2228. It takes two inputs and one output, the first input is the "main"
  2229. video on which the second input is overlayed.
  2230. It accepts the parameters: @var{x}:@var{y}[:@var{options}].
  2231. @var{x} is the x coordinate of the overlayed video on the main video,
  2232. @var{y} is the y coordinate. @var{x} and @var{y} are expressions containing
  2233. the following parameters:
  2234. @table @option
  2235. @item main_w, main_h
  2236. main input width and height
  2237. @item W, H
  2238. same as @var{main_w} and @var{main_h}
  2239. @item overlay_w, overlay_h
  2240. overlay input width and height
  2241. @item w, h
  2242. same as @var{overlay_w} and @var{overlay_h}
  2243. @end table
  2244. @var{options} is an optional list of @var{key}=@var{value} pairs,
  2245. separated by ":".
  2246. The description of the accepted options follows.
  2247. @table @option
  2248. @item rgb
  2249. If set to 1, force the filter to accept inputs in the RGB
  2250. color space. Default value is 0.
  2251. @end table
  2252. Be aware that frames are taken from each input video in timestamp
  2253. order, hence, if their initial timestamps differ, it is a a good idea
  2254. to pass the two inputs through a @var{setpts=PTS-STARTPTS} filter to
  2255. have them begin in the same zero timestamp, as it does the example for
  2256. the @var{movie} filter.
  2257. Follow some examples:
  2258. @example
  2259. # draw the overlay at 10 pixels from the bottom right
  2260. # corner of the main video.
  2261. overlay=main_w-overlay_w-10:main_h-overlay_h-10
  2262. # insert a transparent PNG logo in the bottom left corner of the input
  2263. ffmpeg -i input -i logo -filter_complex 'overlay=10:main_h-overlay_h-10' output
  2264. # insert 2 different transparent PNG logos (second logo on bottom
  2265. # right corner):
  2266. ffmpeg -i input -i logo1 -i logo2 -filter_complex
  2267. 'overlay=10:H-h-10,overlay=W-w-10:H-h-10' output
  2268. # add a transparent color layer on top of the main video,
  2269. # WxH specifies the size of the main input to the overlay filter
  2270. color=red@@.3:WxH [over]; [in][over] overlay [out]
  2271. # play an original video and a filtered version (here with the deshake filter)
  2272. # side by side
  2273. ffplay input.avi -vf 'split[a][b]; [a]pad=iw*2:ih[src]; [b]deshake[filt]; [src][filt]overlay=w'
  2274. # the previous example is the same as:
  2275. ffplay input.avi -vf 'split[b], pad=iw*2[src], [b]deshake, [src]overlay=w'
  2276. @end example
  2277. You can chain together more overlays but the efficiency of such
  2278. approach is yet to be tested.
  2279. @section pad
  2280. Add paddings to the input image, and places the original input at the
  2281. given coordinates @var{x}, @var{y}.
  2282. It accepts the following parameters:
  2283. @var{width}:@var{height}:@var{x}:@var{y}:@var{color}.
  2284. The parameters @var{width}, @var{height}, @var{x}, and @var{y} are
  2285. expressions containing the following constants:
  2286. @table @option
  2287. @item in_w, in_h
  2288. the input video width and height
  2289. @item iw, ih
  2290. same as @var{in_w} and @var{in_h}
  2291. @item out_w, out_h
  2292. the output width and height, that is the size of the padded area as
  2293. specified by the @var{width} and @var{height} expressions
  2294. @item ow, oh
  2295. same as @var{out_w} and @var{out_h}
  2296. @item x, y
  2297. x and y offsets as specified by the @var{x} and @var{y}
  2298. expressions, or NAN if not yet specified
  2299. @item a
  2300. same as @var{iw} / @var{ih}
  2301. @item sar
  2302. input sample aspect ratio
  2303. @item dar
  2304. input display aspect ratio, it is the same as (@var{iw} / @var{ih}) * @var{sar}
  2305. @item hsub, vsub
  2306. horizontal and vertical chroma subsample values. For example for the
  2307. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  2308. @end table
  2309. Follows the description of the accepted parameters.
  2310. @table @option
  2311. @item width, height
  2312. Specify the size of the output image with the paddings added. If the
  2313. value for @var{width} or @var{height} is 0, the corresponding input size
  2314. is used for the output.
  2315. The @var{width} expression can reference the value set by the
  2316. @var{height} expression, and vice versa.
  2317. The default value of @var{width} and @var{height} is 0.
  2318. @item x, y
  2319. Specify the offsets where to place the input image in the padded area
  2320. with respect to the top/left border of the output image.
  2321. The @var{x} expression can reference the value set by the @var{y}
  2322. expression, and vice versa.
  2323. The default value of @var{x} and @var{y} is 0.
  2324. @item color
  2325. Specify the color of the padded area, it can be the name of a color
  2326. (case insensitive match) or a 0xRRGGBB[AA] sequence.
  2327. The default value of @var{color} is "black".
  2328. @end table
  2329. @subsection Examples
  2330. @itemize
  2331. @item
  2332. Add paddings with color "violet" to the input video. Output video
  2333. size is 640x480, the top-left corner of the input video is placed at
  2334. column 0, row 40:
  2335. @example
  2336. pad=640:480:0:40:violet
  2337. @end example
  2338. @item
  2339. Pad the input to get an output with dimensions increased by 3/2,
  2340. and put the input video at the center of the padded area:
  2341. @example
  2342. pad="3/2*iw:3/2*ih:(ow-iw)/2:(oh-ih)/2"
  2343. @end example
  2344. @item
  2345. Pad the input to get a squared output with size equal to the maximum
  2346. value between the input width and height, and put the input video at
  2347. the center of the padded area:
  2348. @example
  2349. pad="max(iw\,ih):ow:(ow-iw)/2:(oh-ih)/2"
  2350. @end example
  2351. @item
  2352. Pad the input to get a final w/h ratio of 16:9:
  2353. @example
  2354. pad="ih*16/9:ih:(ow-iw)/2:(oh-ih)/2"
  2355. @end example
  2356. @item
  2357. In case of anamorphic video, in order to set the output display aspect
  2358. correctly, it is necessary to use @var{sar} in the expression,
  2359. according to the relation:
  2360. @example
  2361. (ih * X / ih) * sar = output_dar
  2362. X = output_dar / sar
  2363. @end example
  2364. Thus the previous example needs to be modified to:
  2365. @example
  2366. pad="ih*16/9/sar:ih:(ow-iw)/2:(oh-ih)/2"
  2367. @end example
  2368. @item
  2369. Double output size and put the input video in the bottom-right
  2370. corner of the output padded area:
  2371. @example
  2372. pad="2*iw:2*ih:ow-iw:oh-ih"
  2373. @end example
  2374. @end itemize
  2375. @section pixdesctest
  2376. Pixel format descriptor test filter, mainly useful for internal
  2377. testing. The output video should be equal to the input video.
  2378. For example:
  2379. @example
  2380. format=monow, pixdesctest
  2381. @end example
  2382. can be used to test the monowhite pixel format descriptor definition.
  2383. @section removelogo
  2384. Suppress a TV station logo, using an image file to determine which
  2385. pixels comprise the logo. It works by filling in the pixels that
  2386. comprise the logo with neighboring pixels.
  2387. This filter requires one argument which specifies the filter bitmap
  2388. file, which can be any image format supported by libavformat. The
  2389. width and height of the image file must match those of the video
  2390. stream being processed.
  2391. Pixels in the provided bitmap image with a value of zero are not
  2392. considered part of the logo, non-zero pixels are considered part of
  2393. the logo. If you use white (255) for the logo and black (0) for the
  2394. rest, you will be safe. For making the filter bitmap, it is
  2395. recommended to take a screen capture of a black frame with the logo
  2396. visible, and then using a threshold filter followed by the erode
  2397. filter once or twice.
  2398. If needed, little splotches can be fixed manually. Remember that if
  2399. logo pixels are not covered, the filter quality will be much
  2400. reduced. Marking too many pixels as part of the logo does not hurt as
  2401. much, but it will increase the amount of blurring needed to cover over
  2402. the image and will destroy more information than necessary, and extra
  2403. pixels will slow things down on a large logo.
  2404. @section scale
  2405. Scale (resize) the input video, using the libswscale library.
  2406. The scale filter forces the output display aspect ratio to be the same
  2407. of the input, by changing the output sample aspect ratio.
  2408. This filter accepts a list of named options in the form of
  2409. @var{key}=@var{value} pairs separated by ":". If the key for the first
  2410. two options is not specified, the assumed keys for the first two
  2411. values are @code{w} and @code{h}. If the first option has no key and
  2412. can be interpreted like a video size specification, it will be used
  2413. to set the video size.
  2414. A description of the accepted options follows.
  2415. @table @option
  2416. @item width, w
  2417. Set the video width expression, default value is @code{iw}. See below
  2418. for the list of accepted constants.
  2419. @item height, h
  2420. Set the video heiht expression, default value is @code{ih}.
  2421. See below for the list of accepted constants.
  2422. @item interl
  2423. Set the interlacing. It accepts the following values:
  2424. @table @option
  2425. @item 1
  2426. force interlaced aware scaling
  2427. @item 0
  2428. do not apply interlaced scaling
  2429. @item -1
  2430. select interlaced aware scaling depending on whether the source frames
  2431. are flagged as interlaced or not
  2432. @end table
  2433. Default value is @code{0}.
  2434. @item flags
  2435. Set libswscale scaling flags. If not explictly specified the filter
  2436. applies a bilinear scaling algorithm.
  2437. @item size, s
  2438. Set the video size, the value must be a valid abbreviation or in the
  2439. form @var{width}x@var{height}.
  2440. @end table
  2441. The values of the @var{w} and @var{h} options are expressions
  2442. containing the following constants:
  2443. @table @option
  2444. @item in_w, in_h
  2445. the input width and height
  2446. @item iw, ih
  2447. same as @var{in_w} and @var{in_h}
  2448. @item out_w, out_h
  2449. the output (cropped) width and height
  2450. @item ow, oh
  2451. same as @var{out_w} and @var{out_h}
  2452. @item a
  2453. same as @var{iw} / @var{ih}
  2454. @item sar
  2455. input sample aspect ratio
  2456. @item dar
  2457. input display aspect ratio, it is the same as (@var{iw} / @var{ih}) * @var{sar}
  2458. @item hsub, vsub
  2459. horizontal and vertical chroma subsample values. For example for the
  2460. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  2461. @end table
  2462. If the input image format is different from the format requested by
  2463. the next filter, the scale filter will convert the input to the
  2464. requested format.
  2465. If the value for @var{width} or @var{height} is 0, the respective input
  2466. size is used for the output.
  2467. If the value for @var{width} or @var{height} is -1, the scale filter will
  2468. use, for the respective output size, a value that maintains the aspect
  2469. ratio of the input image.
  2470. @subsection Examples
  2471. @itemize
  2472. @item
  2473. Scale the input video to a size of 200x100:
  2474. @example
  2475. scale=200:100
  2476. @end example
  2477. This is equivalent to:
  2478. @example
  2479. scale=w=200:h=100
  2480. @end example
  2481. or:
  2482. @example
  2483. scale=200x100
  2484. @end example
  2485. @item
  2486. Specify a size abbreviation for the output size:
  2487. @example
  2488. scale=qcif
  2489. @end example
  2490. which can also be written as:
  2491. @example
  2492. scale=size=qcif
  2493. @end example
  2494. @item
  2495. Scale the input to 2x:
  2496. @example
  2497. scale=2*iw:2*ih
  2498. @end example
  2499. @item
  2500. The above is the same as:
  2501. @example
  2502. scale=2*in_w:2*in_h
  2503. @end example
  2504. @item
  2505. Scale the input to 2x with forced interlaced scaling:
  2506. @example
  2507. scale=2*iw:2*ih:interl=1
  2508. @end example
  2509. @item
  2510. Scale the input to half size:
  2511. @example
  2512. scale=iw/2:ih/2
  2513. @end example
  2514. @item
  2515. Increase the width, and set the height to the same size:
  2516. @example
  2517. scale=3/2*iw:ow
  2518. @end example
  2519. @item
  2520. Seek for Greek harmony:
  2521. @example
  2522. scale=iw:1/PHI*iw
  2523. scale=ih*PHI:ih
  2524. @end example
  2525. @item
  2526. Increase the height, and set the width to 3/2 of the height:
  2527. @example
  2528. scale=3/2*oh:3/5*ih
  2529. @end example
  2530. @item
  2531. Increase the size, but make the size a multiple of the chroma:
  2532. @example
  2533. scale="trunc(3/2*iw/hsub)*hsub:trunc(3/2*ih/vsub)*vsub"
  2534. @end example
  2535. @item
  2536. Increase the width to a maximum of 500 pixels, keep the same input
  2537. aspect ratio:
  2538. @example
  2539. scale='min(500\, iw*3/2):-1'
  2540. @end example
  2541. @end itemize
  2542. @section select
  2543. Select frames to pass in output.
  2544. It accepts in input an expression, which is evaluated for each input
  2545. frame. If the expression is evaluated to a non-zero value, the frame
  2546. is selected and passed to the output, otherwise it is discarded.
  2547. The expression can contain the following constants:
  2548. @table @option
  2549. @item n
  2550. the sequential number of the filtered frame, starting from 0
  2551. @item selected_n
  2552. the sequential number of the selected frame, starting from 0
  2553. @item prev_selected_n
  2554. the sequential number of the last selected frame, NAN if undefined
  2555. @item TB
  2556. timebase of the input timestamps
  2557. @item pts
  2558. the PTS (Presentation TimeStamp) of the filtered video frame,
  2559. expressed in @var{TB} units, NAN if undefined
  2560. @item t
  2561. the PTS (Presentation TimeStamp) of the filtered video frame,
  2562. expressed in seconds, NAN if undefined
  2563. @item prev_pts
  2564. the PTS of the previously filtered video frame, NAN if undefined
  2565. @item prev_selected_pts
  2566. the PTS of the last previously filtered video frame, NAN if undefined
  2567. @item prev_selected_t
  2568. the PTS of the last previously selected video frame, NAN if undefined
  2569. @item start_pts
  2570. the PTS of the first video frame in the video, NAN if undefined
  2571. @item start_t
  2572. the time of the first video frame in the video, NAN if undefined
  2573. @item pict_type
  2574. the type of the filtered frame, can assume one of the following
  2575. values:
  2576. @table @option
  2577. @item I
  2578. @item P
  2579. @item B
  2580. @item S
  2581. @item SI
  2582. @item SP
  2583. @item BI
  2584. @end table
  2585. @item interlace_type
  2586. the frame interlace type, can assume one of the following values:
  2587. @table @option
  2588. @item PROGRESSIVE
  2589. the frame is progressive (not interlaced)
  2590. @item TOPFIRST
  2591. the frame is top-field-first
  2592. @item BOTTOMFIRST
  2593. the frame is bottom-field-first
  2594. @end table
  2595. @item key
  2596. 1 if the filtered frame is a key-frame, 0 otherwise
  2597. @item pos
  2598. the position in the file of the filtered frame, -1 if the information
  2599. is not available (e.g. for synthetic video)
  2600. @item scene
  2601. value between 0 and 1 to indicate a new scene; a low value reflects a low
  2602. probability for the current frame to introduce a new scene, while a higher
  2603. value means the current frame is more likely to be one (see the example below)
  2604. @end table
  2605. The default value of the select expression is "1".
  2606. Some examples follow:
  2607. @example
  2608. # select all frames in input
  2609. select
  2610. # the above is the same as:
  2611. select=1
  2612. # skip all frames:
  2613. select=0
  2614. # select only I-frames
  2615. select='eq(pict_type\,I)'
  2616. # select one frame every 100
  2617. select='not(mod(n\,100))'
  2618. # select only frames contained in the 10-20 time interval
  2619. select='gte(t\,10)*lte(t\,20)'
  2620. # select only I frames contained in the 10-20 time interval
  2621. select='gte(t\,10)*lte(t\,20)*eq(pict_type\,I)'
  2622. # select frames with a minimum distance of 10 seconds
  2623. select='isnan(prev_selected_t)+gte(t-prev_selected_t\,10)'
  2624. @end example
  2625. Complete example to create a mosaic of the first scenes:
  2626. @example
  2627. ffmpeg -i video.avi -vf select='gt(scene\,0.4)',scale=160:120,tile -frames:v 1 preview.png
  2628. @end example
  2629. Comparing @var{scene} against a value between 0.3 and 0.5 is generally a sane
  2630. choice.
  2631. @section setdar, setsar
  2632. The @code{setdar} filter sets the Display Aspect Ratio for the filter
  2633. output video.
  2634. This is done by changing the specified Sample (aka Pixel) Aspect
  2635. Ratio, according to the following equation:
  2636. @example
  2637. @var{DAR} = @var{HORIZONTAL_RESOLUTION} / @var{VERTICAL_RESOLUTION} * @var{SAR}
  2638. @end example
  2639. Keep in mind that the @code{setdar} filter does not modify the pixel
  2640. dimensions of the video frame. Also the display aspect ratio set by
  2641. this filter may be changed by later filters in the filterchain,
  2642. e.g. in case of scaling or if another "setdar" or a "setsar" filter is
  2643. applied.
  2644. The @code{setsar} filter sets the Sample (aka Pixel) Aspect Ratio for
  2645. the filter output video.
  2646. Note that as a consequence of the application of this filter, the
  2647. output display aspect ratio will change according to the equation
  2648. above.
  2649. Keep in mind that the sample aspect ratio set by the @code{setsar}
  2650. filter may be changed by later filters in the filterchain, e.g. if
  2651. another "setsar" or a "setdar" filter is applied.
  2652. The @code{setdar} and @code{setsar} filters accept a string in the
  2653. form @var{num}:@var{den} expressing an aspect ratio, or the following
  2654. named options, expressed as a sequence of @var{key}=@var{value} pairs,
  2655. separated by ":".
  2656. @table @option
  2657. @item max
  2658. Set the maximum integer value to use for expressing numerator and
  2659. denominator when reducing the expressed aspect ratio to a rational.
  2660. Default value is @code{100}.
  2661. @item r, ratio:
  2662. Set the aspect ratio used by the filter.
  2663. The parameter can be a floating point number string, an expression, or
  2664. a string of the form @var{num}:@var{den}, where @var{num} and
  2665. @var{den} are the numerator and denominator of the aspect ratio. If
  2666. the parameter is not specified, it is assumed the value "0".
  2667. In case the form "@var{num}:@var{den}" the @code{:} character should
  2668. be escaped.
  2669. @end table
  2670. If the keys are omitted in the named options list, the specifed values
  2671. are assumed to be @var{ratio} and @var{max} in that order.
  2672. For example to change the display aspect ratio to 16:9, specify:
  2673. @example
  2674. setdar='16:9'
  2675. @end example
  2676. The example above is equivalent to:
  2677. @example
  2678. setdar=1.77777
  2679. @end example
  2680. To change the sample aspect ratio to 10:11, specify:
  2681. @example
  2682. setsar='10:11'
  2683. @end example
  2684. To set a display aspect ratio of 16:9, and specify a maximum integer value of
  2685. 1000 in the aspect ratio reduction, use the command:
  2686. @example
  2687. setdar=ratio='16:9':max=1000
  2688. @end example
  2689. @section setfield
  2690. Force field for the output video frame.
  2691. The @code{setfield} filter marks the interlace type field for the
  2692. output frames. It does not change the input frame, but only sets the
  2693. corresponding property, which affects how the frame is treated by
  2694. following filters (e.g. @code{fieldorder} or @code{yadif}).
  2695. It accepts a string parameter, which can assume the following values:
  2696. @table @samp
  2697. @item auto
  2698. Keep the same field property.
  2699. @item bff
  2700. Mark the frame as bottom-field-first.
  2701. @item tff
  2702. Mark the frame as top-field-first.
  2703. @item prog
  2704. Mark the frame as progressive.
  2705. @end table
  2706. @section showinfo
  2707. Show a line containing various information for each input video frame.
  2708. The input video is not modified.
  2709. The shown line contains a sequence of key/value pairs of the form
  2710. @var{key}:@var{value}.
  2711. A description of each shown parameter follows:
  2712. @table @option
  2713. @item n
  2714. sequential number of the input frame, starting from 0
  2715. @item pts
  2716. Presentation TimeStamp of the input frame, expressed as a number of
  2717. time base units. The time base unit depends on the filter input pad.
  2718. @item pts_time
  2719. Presentation TimeStamp of the input frame, expressed as a number of
  2720. seconds
  2721. @item pos
  2722. position of the frame in the input stream, -1 if this information in
  2723. unavailable and/or meaningless (for example in case of synthetic video)
  2724. @item fmt
  2725. pixel format name
  2726. @item sar
  2727. sample aspect ratio of the input frame, expressed in the form
  2728. @var{num}/@var{den}
  2729. @item s
  2730. size of the input frame, expressed in the form
  2731. @var{width}x@var{height}
  2732. @item i
  2733. interlaced mode ("P" for "progressive", "T" for top field first, "B"
  2734. for bottom field first)
  2735. @item iskey
  2736. 1 if the frame is a key frame, 0 otherwise
  2737. @item type
  2738. picture type of the input frame ("I" for an I-frame, "P" for a
  2739. P-frame, "B" for a B-frame, "?" for unknown type).
  2740. Check also the documentation of the @code{AVPictureType} enum and of
  2741. the @code{av_get_picture_type_char} function defined in
  2742. @file{libavutil/avutil.h}.
  2743. @item checksum
  2744. Adler-32 checksum (printed in hexadecimal) of all the planes of the input frame
  2745. @item plane_checksum
  2746. Adler-32 checksum (printed in hexadecimal) of each plane of the input frame,
  2747. expressed in the form "[@var{c0} @var{c1} @var{c2} @var{c3}]"
  2748. @end table
  2749. @section smartblur
  2750. Blur the input video without impacting the outlines.
  2751. The filter accepts the following parameters:
  2752. @var{luma_radius}:@var{luma_strength}:@var{luma_threshold}[:@var{chroma_radius}:@var{chroma_strength}:@var{chroma_threshold}]
  2753. Parameters prefixed by @var{luma} indicate that they work on the
  2754. luminance of the pixels whereas parameters prefixed by @var{chroma}
  2755. refer to the chrominance of the pixels.
  2756. If the chroma parameters are not set, the luma parameters are used for
  2757. either the luminance and the chrominance of the pixels.
  2758. @var{luma_radius} or @var{chroma_radius} must be a float number in the
  2759. range [0.1,5.0] that specifies the variance of the gaussian filter
  2760. used to blur the image (slower if larger).
  2761. @var{luma_strength} or @var{chroma_strength} must be a float number in
  2762. the range [-1.0,1.0] that configures the blurring. A value included in
  2763. [0.0,1.0] will blur the image whereas a value included in [-1.0,0.0]
  2764. will sharpen the image.
  2765. @var{luma_threshold} or @var{chroma_threshold} must be an integer in
  2766. the range [-30,30] that is used as a coefficient to determine whether
  2767. a pixel should be blurred or not. A value of 0 will filter all the
  2768. image, a value included in [0,30] will filter flat areas and a value
  2769. included in [-30,0] will filter edges.
  2770. @anchor{subtitles}
  2771. @section subtitles
  2772. Draw subtitles on top of input video using the libass library.
  2773. To enable compilation of this filter you need to configure FFmpeg with
  2774. @code{--enable-libass}. This filter also requires a build with libavcodec and
  2775. libavformat to convert the passed subtitles file to ASS (Advanced Substation
  2776. Alpha) subtitles format.
  2777. This filter accepts the following named options, expressed as a
  2778. sequence of @var{key}=@var{value} pairs, separated by ":".
  2779. @table @option
  2780. @item filename, f
  2781. Set the filename of the subtitle file to read. It must be specified.
  2782. @item original_size
  2783. Specify the size of the original video, the video for which the ASS file
  2784. was composed. Due to a misdesign in ASS aspect ratio arithmetic, this is
  2785. necessary to correctly scale the fonts if the aspect ratio has been changed.
  2786. @end table
  2787. If the first key is not specified, it is assumed that the first value
  2788. specifies the @option{filename}.
  2789. For example, to render the file @file{sub.srt} on top of the input
  2790. video, use the command:
  2791. @example
  2792. subtitles=sub.srt
  2793. @end example
  2794. which is equivalent to:
  2795. @example
  2796. subtitles=filename=sub.srt
  2797. @end example
  2798. @section split
  2799. Split input video into several identical outputs.
  2800. The filter accepts a single parameter which specifies the number of outputs. If
  2801. unspecified, it defaults to 2.
  2802. For example
  2803. @example
  2804. ffmpeg -i INPUT -filter_complex split=5 OUTPUT
  2805. @end example
  2806. will create 5 copies of the input video.
  2807. For example:
  2808. @example
  2809. [in] split [splitout1][splitout2];
  2810. [splitout1] crop=100:100:0:0 [cropout];
  2811. [splitout2] pad=200:200:100:100 [padout];
  2812. @end example
  2813. will create two separate outputs from the same input, one cropped and
  2814. one padded.
  2815. @section super2xsai
  2816. Scale the input by 2x and smooth using the Super2xSaI (Scale and
  2817. Interpolate) pixel art scaling algorithm.
  2818. Useful for enlarging pixel art images without reducing sharpness.
  2819. @section swapuv
  2820. Swap U & V plane.
  2821. @section thumbnail
  2822. Select the most representative frame in a given sequence of consecutive frames.
  2823. It accepts as argument the frames batch size to analyze (default @var{N}=100);
  2824. in a set of @var{N} frames, the filter will pick one of them, and then handle
  2825. the next batch of @var{N} frames until the end.
  2826. Since the filter keeps track of the whole frames sequence, a bigger @var{N}
  2827. value will result in a higher memory usage, so a high value is not recommended.
  2828. The following example extract one picture each 50 frames:
  2829. @example
  2830. thumbnail=50
  2831. @end example
  2832. Complete example of a thumbnail creation with @command{ffmpeg}:
  2833. @example
  2834. ffmpeg -i in.avi -vf thumbnail,scale=300:200 -frames:v 1 out.png
  2835. @end example
  2836. @section tile
  2837. Tile several successive frames together.
  2838. It accepts a list of options in the form of @var{key}=@var{value} pairs
  2839. separated by ":". A description of the accepted options follows.
  2840. @table @option
  2841. @item layout
  2842. Set the grid size (i.e. the number of lines and columns) in the form
  2843. "@var{w}x@var{h}".
  2844. @item margin
  2845. Set the outer border margin in pixels.
  2846. @item padding
  2847. Set the inner border thickness (i.e. the number of pixels between frames). For
  2848. more advanced padding options (such as having different values for the edges),
  2849. refer to the pad video filter.
  2850. @item nb_frames
  2851. Set the maximum number of frames to render in the given area. It must be less
  2852. than or equal to @var{w}x@var{h}. The default value is @code{0}, meaning all
  2853. the area will be used.
  2854. @end table
  2855. Alternatively, the options can be specified as a flat string:
  2856. @var{layout}[:@var{nb_frames}[:@var{margin}[:@var{padding}]]]
  2857. For example, produce 8×8 PNG tiles of all keyframes (@option{-skip_frame
  2858. nokey}) in a movie:
  2859. @example
  2860. ffmpeg -skip_frame nokey -i file.avi -vf 'scale=128:72,tile=8x8' -an -vsync 0 keyframes%03d.png
  2861. @end example
  2862. The @option{-vsync 0} is necessary to prevent @command{ffmpeg} from
  2863. duplicating each output frame to accomodate the originally detected frame
  2864. rate.
  2865. Another example to display @code{5} pictures in an area of @code{3x2} frames,
  2866. with @code{7} pixels between them, and @code{2} pixels of initial margin, using
  2867. mixed flat and named options:
  2868. @example
  2869. tile=3x2:nb_frames=5:padding=7:margin=2
  2870. @end example
  2871. @section tinterlace
  2872. Perform various types of temporal field interlacing.
  2873. Frames are counted starting from 1, so the first input frame is
  2874. considered odd.
  2875. This filter accepts a single parameter specifying the mode. Available
  2876. modes are:
  2877. @table @samp
  2878. @item merge, 0
  2879. Move odd frames into the upper field, even into the lower field,
  2880. generating a double height frame at half framerate.
  2881. @item drop_odd, 1
  2882. Only output even frames, odd frames are dropped, generating a frame with
  2883. unchanged height at half framerate.
  2884. @item drop_even, 2
  2885. Only output odd frames, even frames are dropped, generating a frame with
  2886. unchanged height at half framerate.
  2887. @item pad, 3
  2888. Expand each frame to full height, but pad alternate lines with black,
  2889. generating a frame with double height at the same input framerate.
  2890. @item interleave_top, 4
  2891. Interleave the upper field from odd frames with the lower field from
  2892. even frames, generating a frame with unchanged height at half framerate.
  2893. @item interleave_bottom, 5
  2894. Interleave the lower field from odd frames with the upper field from
  2895. even frames, generating a frame with unchanged height at half framerate.
  2896. @item interlacex2, 6
  2897. Double frame rate with unchanged height. Frames are inserted each
  2898. containing the second temporal field from the previous input frame and
  2899. the first temporal field from the next input frame. This mode relies on
  2900. the top_field_first flag. Useful for interlaced video displays with no
  2901. field synchronisation.
  2902. @end table
  2903. Numeric values are deprecated but are accepted for backward
  2904. compatibility reasons.
  2905. Default mode is @code{merge}.
  2906. @section transpose
  2907. Transpose rows with columns in the input video and optionally flip it.
  2908. This filter accepts the following named parameters:
  2909. @table @option
  2910. @item dir
  2911. Specify the transposition direction. Can assume the following values:
  2912. @table @samp
  2913. @item 0, 4
  2914. Rotate by 90 degrees counterclockwise and vertically flip (default), that is:
  2915. @example
  2916. L.R L.l
  2917. . . -> . .
  2918. l.r R.r
  2919. @end example
  2920. @item 1, 5
  2921. Rotate by 90 degrees clockwise, that is:
  2922. @example
  2923. L.R l.L
  2924. . . -> . .
  2925. l.r r.R
  2926. @end example
  2927. @item 2, 6
  2928. Rotate by 90 degrees counterclockwise, that is:
  2929. @example
  2930. L.R R.r
  2931. . . -> . .
  2932. l.r L.l
  2933. @end example
  2934. @item 3, 7
  2935. Rotate by 90 degrees clockwise and vertically flip, that is:
  2936. @example
  2937. L.R r.R
  2938. . . -> . .
  2939. l.r l.L
  2940. @end example
  2941. @end table
  2942. For values between 4-7, the transposition is only done if the input
  2943. video geometry is portrait and not landscape. These values are
  2944. deprecated, the @code{passthrough} option should be used instead.
  2945. @item passthrough
  2946. Do not apply the transposition if the input geometry matches the one
  2947. specified by the specified value. It accepts the following values:
  2948. @table @samp
  2949. @item none
  2950. Always apply transposition.
  2951. @item portrait
  2952. Preserve portrait geometry (when @var{height} >= @var{width}).
  2953. @item landscape
  2954. Preserve landscape geometry (when @var{width} >= @var{height}).
  2955. @end table
  2956. Default value is @code{none}.
  2957. @end table
  2958. @section unsharp
  2959. Sharpen or blur the input video.
  2960. It accepts the following parameters:
  2961. @var{luma_msize_x}:@var{luma_msize_y}:@var{luma_amount}:@var{chroma_msize_x}:@var{chroma_msize_y}:@var{chroma_amount}
  2962. Negative values for the amount will blur the input video, while positive
  2963. values will sharpen. All parameters are optional and default to the
  2964. equivalent of the string '5:5:1.0:5:5:0.0'.
  2965. @table @option
  2966. @item luma_msize_x
  2967. Set the luma matrix horizontal size. It can be an integer between 3
  2968. and 13, default value is 5.
  2969. @item luma_msize_y
  2970. Set the luma matrix vertical size. It can be an integer between 3
  2971. and 13, default value is 5.
  2972. @item luma_amount
  2973. Set the luma effect strength. It can be a float number between -2.0
  2974. and 5.0, default value is 1.0.
  2975. @item chroma_msize_x
  2976. Set the chroma matrix horizontal size. It can be an integer between 3
  2977. and 13, default value is 5.
  2978. @item chroma_msize_y
  2979. Set the chroma matrix vertical size. It can be an integer between 3
  2980. and 13, default value is 5.
  2981. @item chroma_amount
  2982. Set the chroma effect strength. It can be a float number between -2.0
  2983. and 5.0, default value is 0.0.
  2984. @end table
  2985. @example
  2986. # Strong luma sharpen effect parameters
  2987. unsharp=7:7:2.5
  2988. # Strong blur of both luma and chroma parameters
  2989. unsharp=7:7:-2:7:7:-2
  2990. # Use the default values with @command{ffmpeg}
  2991. ffmpeg -i in.avi -vf "unsharp" out.mp4
  2992. @end example
  2993. @section vflip
  2994. Flip the input video vertically.
  2995. @example
  2996. ffmpeg -i in.avi -vf "vflip" out.avi
  2997. @end example
  2998. @section yadif
  2999. Deinterlace the input video ("yadif" means "yet another deinterlacing
  3000. filter").
  3001. It accepts the optional parameters: @var{mode}:@var{parity}:@var{auto}.
  3002. @var{mode} specifies the interlacing mode to adopt, accepts one of the
  3003. following values:
  3004. @table @option
  3005. @item 0
  3006. output 1 frame for each frame
  3007. @item 1
  3008. output 1 frame for each field
  3009. @item 2
  3010. like 0 but skips spatial interlacing check
  3011. @item 3
  3012. like 1 but skips spatial interlacing check
  3013. @end table
  3014. Default value is 0.
  3015. @var{parity} specifies the picture field parity assumed for the input
  3016. interlaced video, accepts one of the following values:
  3017. @table @option
  3018. @item 0
  3019. assume top field first
  3020. @item 1
  3021. assume bottom field first
  3022. @item -1
  3023. enable automatic detection
  3024. @end table
  3025. Default value is -1.
  3026. If interlacing is unknown or decoder does not export this information,
  3027. top field first will be assumed.
  3028. @var{auto} specifies if deinterlacer should trust the interlaced flag
  3029. and only deinterlace frames marked as interlaced
  3030. @table @option
  3031. @item 0
  3032. deinterlace all frames
  3033. @item 1
  3034. only deinterlace frames marked as interlaced
  3035. @end table
  3036. Default value is 0.
  3037. @c man end VIDEO FILTERS
  3038. @chapter Video Sources
  3039. @c man begin VIDEO SOURCES
  3040. Below is a description of the currently available video sources.
  3041. @section buffer
  3042. Buffer video frames, and make them available to the filter chain.
  3043. This source is mainly intended for a programmatic use, in particular
  3044. through the interface defined in @file{libavfilter/vsrc_buffer.h}.
  3045. It accepts a list of options in the form of @var{key}=@var{value} pairs
  3046. separated by ":". A description of the accepted options follows.
  3047. @table @option
  3048. @item video_size
  3049. Specify the size (width and height) of the buffered video frames.
  3050. @item pix_fmt
  3051. A string representing the pixel format of the buffered video frames.
  3052. It may be a number corresponding to a pixel format, or a pixel format
  3053. name.
  3054. @item time_base
  3055. Specify the timebase assumed by the timestamps of the buffered frames.
  3056. @item time_base
  3057. Specify the frame rate expected for the video stream.
  3058. @item pixel_aspect
  3059. Specify the sample aspect ratio assumed by the video frames.
  3060. @item sws_param
  3061. Specify the optional parameters to be used for the scale filter which
  3062. is automatically inserted when an input change is detected in the
  3063. input size or format.
  3064. @end table
  3065. For example:
  3066. @example
  3067. buffer=size=320x240:pix_fmt=yuv410p:time_base=1/24:pixel_aspect=1/1
  3068. @end example
  3069. will instruct the source to accept video frames with size 320x240 and
  3070. with format "yuv410p", assuming 1/24 as the timestamps timebase and
  3071. square pixels (1:1 sample aspect ratio).
  3072. Since the pixel format with name "yuv410p" corresponds to the number 6
  3073. (check the enum AVPixelFormat definition in @file{libavutil/pixfmt.h}),
  3074. this example corresponds to:
  3075. @example
  3076. buffer=size=320x240:pixfmt=6:time_base=1/24:pixel_aspect=1/1
  3077. @end example
  3078. Alternatively, the options can be specified as a flat string, but this
  3079. syntax is deprecated:
  3080. @var{width}:@var{height}:@var{pix_fmt}:@var{time_base.num}:@var{time_base.den}:@var{pixel_aspect.num}:@var{pixel_aspect.den}[:@var{sws_param}]
  3081. @section cellauto
  3082. Create a pattern generated by an elementary cellular automaton.
  3083. The initial state of the cellular automaton can be defined through the
  3084. @option{filename}, and @option{pattern} options. If such options are
  3085. not specified an initial state is created randomly.
  3086. At each new frame a new row in the video is filled with the result of
  3087. the cellular automaton next generation. The behavior when the whole
  3088. frame is filled is defined by the @option{scroll} option.
  3089. This source accepts a list of options in the form of
  3090. @var{key}=@var{value} pairs separated by ":". A description of the
  3091. accepted options follows.
  3092. @table @option
  3093. @item filename, f
  3094. Read the initial cellular automaton state, i.e. the starting row, from
  3095. the specified file.
  3096. In the file, each non-whitespace character is considered an alive
  3097. cell, a newline will terminate the row, and further characters in the
  3098. file will be ignored.
  3099. @item pattern, p
  3100. Read the initial cellular automaton state, i.e. the starting row, from
  3101. the specified string.
  3102. Each non-whitespace character in the string is considered an alive
  3103. cell, a newline will terminate the row, and further characters in the
  3104. string will be ignored.
  3105. @item rate, r
  3106. Set the video rate, that is the number of frames generated per second.
  3107. Default is 25.
  3108. @item random_fill_ratio, ratio
  3109. Set the random fill ratio for the initial cellular automaton row. It
  3110. is a floating point number value ranging from 0 to 1, defaults to
  3111. 1/PHI.
  3112. This option is ignored when a file or a pattern is specified.
  3113. @item random_seed, seed
  3114. Set the seed for filling randomly the initial row, must be an integer
  3115. included between 0 and UINT32_MAX. If not specified, or if explicitly
  3116. set to -1, the filter will try to use a good random seed on a best
  3117. effort basis.
  3118. @item rule
  3119. Set the cellular automaton rule, it is a number ranging from 0 to 255.
  3120. Default value is 110.
  3121. @item size, s
  3122. Set the size of the output video.
  3123. If @option{filename} or @option{pattern} is specified, the size is set
  3124. by default to the width of the specified initial state row, and the
  3125. height is set to @var{width} * PHI.
  3126. If @option{size} is set, it must contain the width of the specified
  3127. pattern string, and the specified pattern will be centered in the
  3128. larger row.
  3129. If a filename or a pattern string is not specified, the size value
  3130. defaults to "320x518" (used for a randomly generated initial state).
  3131. @item scroll
  3132. If set to 1, scroll the output upward when all the rows in the output
  3133. have been already filled. If set to 0, the new generated row will be
  3134. written over the top row just after the bottom row is filled.
  3135. Defaults to 1.
  3136. @item start_full, full
  3137. If set to 1, completely fill the output with generated rows before
  3138. outputting the first frame.
  3139. This is the default behavior, for disabling set the value to 0.
  3140. @item stitch
  3141. If set to 1, stitch the left and right row edges together.
  3142. This is the default behavior, for disabling set the value to 0.
  3143. @end table
  3144. @subsection Examples
  3145. @itemize
  3146. @item
  3147. Read the initial state from @file{pattern}, and specify an output of
  3148. size 200x400.
  3149. @example
  3150. cellauto=f=pattern:s=200x400
  3151. @end example
  3152. @item
  3153. Generate a random initial row with a width of 200 cells, with a fill
  3154. ratio of 2/3:
  3155. @example
  3156. cellauto=ratio=2/3:s=200x200
  3157. @end example
  3158. @item
  3159. Create a pattern generated by rule 18 starting by a single alive cell
  3160. centered on an initial row with width 100:
  3161. @example
  3162. cellauto=p=@@:s=100x400:full=0:rule=18
  3163. @end example
  3164. @item
  3165. Specify a more elaborated initial pattern:
  3166. @example
  3167. cellauto=p='@@@@ @@ @@@@':s=100x400:full=0:rule=18
  3168. @end example
  3169. @end itemize
  3170. @section mandelbrot
  3171. Generate a Mandelbrot set fractal, and progressively zoom towards the
  3172. point specified with @var{start_x} and @var{start_y}.
  3173. This source accepts a list of options in the form of
  3174. @var{key}=@var{value} pairs separated by ":". A description of the
  3175. accepted options follows.
  3176. @table @option
  3177. @item end_pts
  3178. Set the terminal pts value. Default value is 400.
  3179. @item end_scale
  3180. Set the terminal scale value.
  3181. Must be a floating point value. Default value is 0.3.
  3182. @item inner
  3183. Set the inner coloring mode, that is the algorithm used to draw the
  3184. Mandelbrot fractal internal region.
  3185. It shall assume one of the following values:
  3186. @table @option
  3187. @item black
  3188. Set black mode.
  3189. @item convergence
  3190. Show time until convergence.
  3191. @item mincol
  3192. Set color based on point closest to the origin of the iterations.
  3193. @item period
  3194. Set period mode.
  3195. @end table
  3196. Default value is @var{mincol}.
  3197. @item bailout
  3198. Set the bailout value. Default value is 10.0.
  3199. @item maxiter
  3200. Set the maximum of iterations performed by the rendering
  3201. algorithm. Default value is 7189.
  3202. @item outer
  3203. Set outer coloring mode.
  3204. It shall assume one of following values:
  3205. @table @option
  3206. @item iteration_count
  3207. Set iteration cound mode.
  3208. @item normalized_iteration_count
  3209. set normalized iteration count mode.
  3210. @end table
  3211. Default value is @var{normalized_iteration_count}.
  3212. @item rate, r
  3213. Set frame rate, expressed as number of frames per second. Default
  3214. value is "25".
  3215. @item size, s
  3216. Set frame size. Default value is "640x480".
  3217. @item start_scale
  3218. Set the initial scale value. Default value is 3.0.
  3219. @item start_x
  3220. Set the initial x position. Must be a floating point value between
  3221. -100 and 100. Default value is -0.743643887037158704752191506114774.
  3222. @item start_y
  3223. Set the initial y position. Must be a floating point value between
  3224. -100 and 100. Default value is -0.131825904205311970493132056385139.
  3225. @end table
  3226. @section mptestsrc
  3227. Generate various test patterns, as generated by the MPlayer test filter.
  3228. The size of the generated video is fixed, and is 256x256.
  3229. This source is useful in particular for testing encoding features.
  3230. This source accepts an optional sequence of @var{key}=@var{value} pairs,
  3231. separated by ":". The description of the accepted options follows.
  3232. @table @option
  3233. @item rate, r
  3234. Specify the frame rate of the sourced video, as the number of frames
  3235. generated per second. It has to be a string in the format
  3236. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float
  3237. number or a valid video frame rate abbreviation. The default value is
  3238. "25".
  3239. @item duration, d
  3240. Set the video duration of the sourced video. The accepted syntax is:
  3241. @example
  3242. [-]HH:MM:SS[.m...]
  3243. [-]S+[.m...]
  3244. @end example
  3245. See also the function @code{av_parse_time()}.
  3246. If not specified, or the expressed duration is negative, the video is
  3247. supposed to be generated forever.
  3248. @item test, t
  3249. Set the number or the name of the test to perform. Supported tests are:
  3250. @table @option
  3251. @item dc_luma
  3252. @item dc_chroma
  3253. @item freq_luma
  3254. @item freq_chroma
  3255. @item amp_luma
  3256. @item amp_chroma
  3257. @item cbp
  3258. @item mv
  3259. @item ring1
  3260. @item ring2
  3261. @item all
  3262. @end table
  3263. Default value is "all", which will cycle through the list of all tests.
  3264. @end table
  3265. For example the following:
  3266. @example
  3267. testsrc=t=dc_luma
  3268. @end example
  3269. will generate a "dc_luma" test pattern.
  3270. @section frei0r_src
  3271. Provide a frei0r source.
  3272. To enable compilation of this filter you need to install the frei0r
  3273. header and configure FFmpeg with @code{--enable-frei0r}.
  3274. The source supports the syntax:
  3275. @example
  3276. @var{size}:@var{rate}:@var{src_name}[@{=|:@}@var{param1}:@var{param2}:...:@var{paramN}]
  3277. @end example
  3278. @var{size} is the size of the video to generate, may be a string of the
  3279. form @var{width}x@var{height} or a frame size abbreviation.
  3280. @var{rate} is the rate of the video to generate, may be a string of
  3281. the form @var{num}/@var{den} or a frame rate abbreviation.
  3282. @var{src_name} is the name to the frei0r source to load. For more
  3283. information regarding frei0r and how to set the parameters read the
  3284. section @ref{frei0r} in the description of the video filters.
  3285. For example, to generate a frei0r partik0l source with size 200x200
  3286. and frame rate 10 which is overlayed on the overlay filter main input:
  3287. @example
  3288. frei0r_src=200x200:10:partik0l=1234 [overlay]; [in][overlay] overlay
  3289. @end example
  3290. @section life
  3291. Generate a life pattern.
  3292. This source is based on a generalization of John Conway's life game.
  3293. The sourced input represents a life grid, each pixel represents a cell
  3294. which can be in one of two possible states, alive or dead. Every cell
  3295. interacts with its eight neighbours, which are the cells that are
  3296. horizontally, vertically, or diagonally adjacent.
  3297. At each interaction the grid evolves according to the adopted rule,
  3298. which specifies the number of neighbor alive cells which will make a
  3299. cell stay alive or born. The @option{rule} option allows to specify
  3300. the rule to adopt.
  3301. This source accepts a list of options in the form of
  3302. @var{key}=@var{value} pairs separated by ":". A description of the
  3303. accepted options follows.
  3304. @table @option
  3305. @item filename, f
  3306. Set the file from which to read the initial grid state. In the file,
  3307. each non-whitespace character is considered an alive cell, and newline
  3308. is used to delimit the end of each row.
  3309. If this option is not specified, the initial grid is generated
  3310. randomly.
  3311. @item rate, r
  3312. Set the video rate, that is the number of frames generated per second.
  3313. Default is 25.
  3314. @item random_fill_ratio, ratio
  3315. Set the random fill ratio for the initial random grid. It is a
  3316. floating point number value ranging from 0 to 1, defaults to 1/PHI.
  3317. It is ignored when a file is specified.
  3318. @item random_seed, seed
  3319. Set the seed for filling the initial random grid, must be an integer
  3320. included between 0 and UINT32_MAX. If not specified, or if explicitly
  3321. set to -1, the filter will try to use a good random seed on a best
  3322. effort basis.
  3323. @item rule
  3324. Set the life rule.
  3325. A rule can be specified with a code of the kind "S@var{NS}/B@var{NB}",
  3326. where @var{NS} and @var{NB} are sequences of numbers in the range 0-8,
  3327. @var{NS} specifies the number of alive neighbor cells which make a
  3328. live cell stay alive, and @var{NB} the number of alive neighbor cells
  3329. which make a dead cell to become alive (i.e. to "born").
  3330. "s" and "b" can be used in place of "S" and "B", respectively.
  3331. Alternatively a rule can be specified by an 18-bits integer. The 9
  3332. high order bits are used to encode the next cell state if it is alive
  3333. for each number of neighbor alive cells, the low order bits specify
  3334. the rule for "borning" new cells. Higher order bits encode for an
  3335. higher number of neighbor cells.
  3336. For example the number 6153 = @code{(12<<9)+9} specifies a stay alive
  3337. rule of 12 and a born rule of 9, which corresponds to "S23/B03".
  3338. Default value is "S23/B3", which is the original Conway's game of life
  3339. rule, and will keep a cell alive if it has 2 or 3 neighbor alive
  3340. cells, and will born a new cell if there are three alive cells around
  3341. a dead cell.
  3342. @item size, s
  3343. Set the size of the output video.
  3344. If @option{filename} is specified, the size is set by default to the
  3345. same size of the input file. If @option{size} is set, it must contain
  3346. the size specified in the input file, and the initial grid defined in
  3347. that file is centered in the larger resulting area.
  3348. If a filename is not specified, the size value defaults to "320x240"
  3349. (used for a randomly generated initial grid).
  3350. @item stitch
  3351. If set to 1, stitch the left and right grid edges together, and the
  3352. top and bottom edges also. Defaults to 1.
  3353. @item mold
  3354. Set cell mold speed. If set, a dead cell will go from @option{death_color} to
  3355. @option{mold_color} with a step of @option{mold}. @option{mold} can have a
  3356. value from 0 to 255.
  3357. @item life_color
  3358. Set the color of living (or new born) cells.
  3359. @item death_color
  3360. Set the color of dead cells. If @option{mold} is set, this is the first color
  3361. used to represent a dead cell.
  3362. @item mold_color
  3363. Set mold color, for definitely dead and moldy cells.
  3364. @end table
  3365. @subsection Examples
  3366. @itemize
  3367. @item
  3368. Read a grid from @file{pattern}, and center it on a grid of size
  3369. 300x300 pixels:
  3370. @example
  3371. life=f=pattern:s=300x300
  3372. @end example
  3373. @item
  3374. Generate a random grid of size 200x200, with a fill ratio of 2/3:
  3375. @example
  3376. life=ratio=2/3:s=200x200
  3377. @end example
  3378. @item
  3379. Specify a custom rule for evolving a randomly generated grid:
  3380. @example
  3381. life=rule=S14/B34
  3382. @end example
  3383. @item
  3384. Full example with slow death effect (mold) using @command{ffplay}:
  3385. @example
  3386. ffplay -f lavfi life=s=300x200:mold=10:r=60:ratio=0.1:death_color=#C83232:life_color=#00ff00,scale=1200:800:flags=16
  3387. @end example
  3388. @end itemize
  3389. @section color, nullsrc, rgbtestsrc, smptebars, testsrc
  3390. The @code{color} source provides an uniformly colored input.
  3391. The @code{nullsrc} source returns unprocessed video frames. It is
  3392. mainly useful to be employed in analysis / debugging tools, or as the
  3393. source for filters which ignore the input data.
  3394. The @code{rgbtestsrc} source generates an RGB test pattern useful for
  3395. detecting RGB vs BGR issues. You should see a red, green and blue
  3396. stripe from top to bottom.
  3397. The @code{smptebars} source generates a color bars pattern, based on
  3398. the SMPTE Engineering Guideline EG 1-1990.
  3399. The @code{testsrc} source generates a test video pattern, showing a
  3400. color pattern, a scrolling gradient and a timestamp. This is mainly
  3401. intended for testing purposes.
  3402. These sources accept an optional sequence of @var{key}=@var{value} pairs,
  3403. separated by ":". The description of the accepted options follows.
  3404. @table @option
  3405. @item color, c
  3406. Specify the color of the source, only used in the @code{color}
  3407. source. It can be the name of a color (case insensitive match) or a
  3408. 0xRRGGBB[AA] sequence, possibly followed by an alpha specifier. The
  3409. default value is "black".
  3410. @item size, s
  3411. Specify the size of the sourced video, it may be a string of the form
  3412. @var{width}x@var{height}, or the name of a size abbreviation. The
  3413. default value is "320x240".
  3414. @item rate, r
  3415. Specify the frame rate of the sourced video, as the number of frames
  3416. generated per second. It has to be a string in the format
  3417. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float
  3418. number or a valid video frame rate abbreviation. The default value is
  3419. "25".
  3420. @item sar
  3421. Set the sample aspect ratio of the sourced video.
  3422. @item duration, d
  3423. Set the video duration of the sourced video. The accepted syntax is:
  3424. @example
  3425. [-]HH[:MM[:SS[.m...]]]
  3426. [-]S+[.m...]
  3427. @end example
  3428. See also the function @code{av_parse_time()}.
  3429. If not specified, or the expressed duration is negative, the video is
  3430. supposed to be generated forever.
  3431. @item decimals, n
  3432. Set the number of decimals to show in the timestamp, only used in the
  3433. @code{testsrc} source.
  3434. The displayed timestamp value will correspond to the original
  3435. timestamp value multiplied by the power of 10 of the specified
  3436. value. Default value is 0.
  3437. @end table
  3438. For example the following:
  3439. @example
  3440. testsrc=duration=5.3:size=qcif:rate=10
  3441. @end example
  3442. will generate a video with a duration of 5.3 seconds, with size
  3443. 176x144 and a frame rate of 10 frames per second.
  3444. The following graph description will generate a red source
  3445. with an opacity of 0.2, with size "qcif" and a frame rate of 10
  3446. frames per second.
  3447. @example
  3448. color=c=red@@0.2:s=qcif:r=10
  3449. @end example
  3450. If the input content is to be ignored, @code{nullsrc} can be used. The
  3451. following command generates noise in the luminance plane by employing
  3452. the @code{geq} filter:
  3453. @example
  3454. nullsrc=s=256x256, geq=random(1)*255:128:128
  3455. @end example
  3456. @c man end VIDEO SOURCES
  3457. @chapter Video Sinks
  3458. @c man begin VIDEO SINKS
  3459. Below is a description of the currently available video sinks.
  3460. @section buffersink
  3461. Buffer video frames, and make them available to the end of the filter
  3462. graph.
  3463. This sink is mainly intended for a programmatic use, in particular
  3464. through the interface defined in @file{libavfilter/buffersink.h}.
  3465. It does not require a string parameter in input, but you need to
  3466. specify a pointer to a list of supported pixel formats terminated by
  3467. -1 in the opaque parameter provided to @code{avfilter_init_filter}
  3468. when initializing this sink.
  3469. @section nullsink
  3470. Null video sink, do absolutely nothing with the input video. It is
  3471. mainly useful as a template and to be employed in analysis / debugging
  3472. tools.
  3473. @c man end VIDEO SINKS
  3474. @chapter Multimedia Filters
  3475. @c man begin MULTIMEDIA FILTERS
  3476. Below is a description of the currently available multimedia filters.
  3477. @section asendcmd, sendcmd
  3478. Send commands to filters in the filtergraph.
  3479. These filters read commands to be sent to other filters in the
  3480. filtergraph.
  3481. @code{asendcmd} must be inserted between two audio filters,
  3482. @code{sendcmd} must be inserted between two video filters, but apart
  3483. from that they act the same way.
  3484. The specification of commands can be provided in the filter arguments
  3485. with the @var{commands} option, or in a file specified by the
  3486. @var{filename} option.
  3487. These filters accept the following options:
  3488. @table @option
  3489. @item commands, c
  3490. Set the commands to be read and sent to the other filters.
  3491. @item filename, f
  3492. Set the filename of the commands to be read and sent to the other
  3493. filters.
  3494. @end table
  3495. @subsection Commands syntax
  3496. A commands description consists of a sequence of interval
  3497. specifications, comprising a list of commands to be executed when a
  3498. particular event related to that interval occurs. The occurring event
  3499. is typically the current frame time entering or leaving a given time
  3500. interval.
  3501. An interval is specified by the following syntax:
  3502. @example
  3503. @var{START}[-@var{END}] @var{COMMANDS};
  3504. @end example
  3505. The time interval is specified by the @var{START} and @var{END} times.
  3506. @var{END} is optional and defaults to the maximum time.
  3507. The current frame time is considered within the specified interval if
  3508. it is included in the interval [@var{START}, @var{END}), that is when
  3509. the time is greater or equal to @var{START} and is lesser than
  3510. @var{END}.
  3511. @var{COMMANDS} consists of a sequence of one or more command
  3512. specifications, separated by ",", relating to that interval. The
  3513. syntax of a command specification is given by:
  3514. @example
  3515. [@var{FLAGS}] @var{TARGET} @var{COMMAND} @var{ARG}
  3516. @end example
  3517. @var{FLAGS} is optional and specifies the type of events relating to
  3518. the time interval which enable sending the specified command, and must
  3519. be a non-null sequence of identifier flags separated by "+" or "|" and
  3520. enclosed between "[" and "]".
  3521. The following flags are recognized:
  3522. @table @option
  3523. @item enter
  3524. The command is sent when the current frame timestamp enters the
  3525. specified interval. In other words, the command is sent when the
  3526. previous frame timestamp was not in the given interval, and the
  3527. current is.
  3528. @item leave
  3529. The command is sent when the current frame timestamp leaves the
  3530. specified interval. In other words, the command is sent when the
  3531. previous frame timestamp was in the given interval, and the
  3532. current is not.
  3533. @end table
  3534. If @var{FLAGS} is not specified, a default value of @code{[enter]} is
  3535. assumed.
  3536. @var{TARGET} specifies the target of the command, usually the name of
  3537. the filter class or a specific filter instance name.
  3538. @var{COMMAND} specifies the name of the command for the target filter.
  3539. @var{ARG} is optional and specifies the optional list of argument for
  3540. the given @var{COMMAND}.
  3541. Between one interval specification and another, whitespaces, or
  3542. sequences of characters starting with @code{#} until the end of line,
  3543. are ignored and can be used to annotate comments.
  3544. A simplified BNF description of the commands specification syntax
  3545. follows:
  3546. @example
  3547. @var{COMMAND_FLAG} ::= "enter" | "leave"
  3548. @var{COMMAND_FLAGS} ::= @var{COMMAND_FLAG} [(+|"|")@var{COMMAND_FLAG}]
  3549. @var{COMMAND} ::= ["[" @var{COMMAND_FLAGS} "]"] @var{TARGET} @var{COMMAND} [@var{ARG}]
  3550. @var{COMMANDS} ::= @var{COMMAND} [,@var{COMMANDS}]
  3551. @var{INTERVAL} ::= @var{START}[-@var{END}] @var{COMMANDS}
  3552. @var{INTERVALS} ::= @var{INTERVAL}[;@var{INTERVALS}]
  3553. @end example
  3554. @subsection Examples
  3555. @itemize
  3556. @item
  3557. Specify audio tempo change at second 4:
  3558. @example
  3559. asendcmd=c='4.0 atempo tempo 1.5',atempo
  3560. @end example
  3561. @item
  3562. Specify a list of drawtext and hue commands in a file.
  3563. @example
  3564. # show text in the interval 5-10
  3565. 5.0-10.0 [enter] drawtext reinit 'fontfile=FreeSerif.ttf:text=hello world',
  3566. [leave] drawtext reinit 'fontfile=FreeSerif.ttf:text=';
  3567. # desaturate the image in the interval 15-20
  3568. 15.0-20.0 [enter] hue reinit s=0,
  3569. [enter] drawtext reinit 'fontfile=FreeSerif.ttf:text=nocolor',
  3570. [leave] hue reinit s=1,
  3571. [leave] drawtext reinit 'fontfile=FreeSerif.ttf:text=color';
  3572. # apply an exponential saturation fade-out effect, starting from time 25
  3573. 25 [enter] hue s=exp(t-25)
  3574. @end example
  3575. A filtergraph allowing to read and process the above command list
  3576. stored in a file @file{test.cmd}, can be specified with:
  3577. @example
  3578. sendcmd=f=test.cmd,drawtext=fontfile=FreeSerif.ttf:text='',hue
  3579. @end example
  3580. @end itemize
  3581. @section asetpts, setpts
  3582. Change the PTS (presentation timestamp) of the input frames.
  3583. @code{asetpts} works on audio frames, @code{setpts} on video frames.
  3584. Accept in input an expression evaluated through the eval API, which
  3585. can contain the following constants:
  3586. @table @option
  3587. @item FRAME_RATE
  3588. frame rate, only defined for constant frame-rate video
  3589. @item PTS
  3590. the presentation timestamp in input
  3591. @item N
  3592. the count of the input frame, starting from 0.
  3593. @item NB_CONSUMED_SAMPLES
  3594. the number of consumed samples, not including the current frame (only
  3595. audio)
  3596. @item NB_SAMPLES
  3597. the number of samples in the current frame (only audio)
  3598. @item SAMPLE_RATE
  3599. audio sample rate
  3600. @item STARTPTS
  3601. the PTS of the first frame
  3602. @item STARTT
  3603. the time in seconds of the first frame
  3604. @item INTERLACED
  3605. tell if the current frame is interlaced
  3606. @item T
  3607. the time in seconds of the current frame
  3608. @item TB
  3609. the time base
  3610. @item POS
  3611. original position in the file of the frame, or undefined if undefined
  3612. for the current frame
  3613. @item PREV_INPTS
  3614. previous input PTS
  3615. @item PREV_INT
  3616. previous input time in seconds
  3617. @item PREV_OUTPTS
  3618. previous output PTS
  3619. @item PREV_OUTT
  3620. previous output time in seconds
  3621. @end table
  3622. @subsection Examples
  3623. @itemize
  3624. @item
  3625. Start counting PTS from zero
  3626. @example
  3627. setpts=PTS-STARTPTS
  3628. @end example
  3629. @item
  3630. Apply fast motion effect:
  3631. @example
  3632. setpts=0.5*PTS
  3633. @end example
  3634. @item
  3635. Apply slow motion effect:
  3636. @example
  3637. setpts=2.0*PTS
  3638. @end example
  3639. @item
  3640. Set fixed rate of 25 frames per second:
  3641. @example
  3642. setpts=N/(25*TB)
  3643. @end example
  3644. @item
  3645. Set fixed rate 25 fps with some jitter:
  3646. @example
  3647. setpts='1/(25*TB) * (N + 0.05 * sin(N*2*PI/25))'
  3648. @end example
  3649. @item
  3650. Apply an offset of 10 seconds to the input PTS:
  3651. @example
  3652. setpts=PTS+10/TB
  3653. @end example
  3654. @end itemize
  3655. @section ebur128
  3656. EBU R128 scanner filter. This filter takes an audio stream as input and outputs
  3657. it unchanged. By default, it logs a message at a frequency of 10Hz with the
  3658. Momentary loudness (identified by @code{M}), Short-term loudness (@code{S}),
  3659. Integrated loudness (@code{I}) and Loudness Range (@code{LRA}).
  3660. The filter also has a video output (see the @var{video} option) with a real
  3661. time graph to observe the loudness evolution. The graphic contains the logged
  3662. message mentioned above, so it is not printed anymore when this option is set,
  3663. unless the verbose logging is set. The main graphing area contains the
  3664. short-term loudness (3 seconds of analysis), and the gauge on the right is for
  3665. the momentary loudness (400 milliseconds).
  3666. More information about the Loudness Recommendation EBU R128 on
  3667. @url{http://tech.ebu.ch/loudness}.
  3668. The filter accepts the following named parameters:
  3669. @table @option
  3670. @item video
  3671. Activate the video output. The audio stream is passed unchanged whether this
  3672. option is set or no. The video stream will be the first output stream if
  3673. activated. Default is @code{0}.
  3674. @item size
  3675. Set the video size. This option is for video only. Default and minimum
  3676. resolution is @code{640x480}.
  3677. @item meter
  3678. Set the EBU scale meter. Default is @code{9}. Common values are @code{9} and
  3679. @code{18}, respectively for EBU scale meter +9 and EBU scale meter +18. Any
  3680. other integer value between this range is allowed.
  3681. @end table
  3682. Example of real-time graph using @command{ffplay}, with a EBU scale meter +18:
  3683. @example
  3684. ffplay -f lavfi -i "amovie=input.mp3,ebur128=video=1:meter=18 [out0][out1]"
  3685. @end example
  3686. Run an analysis with @command{ffmpeg}:
  3687. @example
  3688. ffmpeg -nostats -i input.mp3 -filter_complex ebur128 -f null -
  3689. @end example
  3690. @section settb, asettb
  3691. Set the timebase to use for the output frames timestamps.
  3692. It is mainly useful for testing timebase configuration.
  3693. It accepts in input an arithmetic expression representing a rational.
  3694. The expression can contain the constants "AVTB" (the
  3695. default timebase), "intb" (the input timebase) and "sr" (the sample rate,
  3696. audio only).
  3697. The default value for the input is "intb".
  3698. @subsection Examples
  3699. @itemize
  3700. @item
  3701. Set the timebase to 1/25:
  3702. @example
  3703. settb=1/25
  3704. @end example
  3705. @item
  3706. Set the timebase to 1/10:
  3707. @example
  3708. settb=0.1
  3709. @end example
  3710. @item
  3711. Set the timebase to 1001/1000:
  3712. @example
  3713. settb=1+0.001
  3714. @end example
  3715. @item
  3716. Set the timebase to 2*intb:
  3717. @example
  3718. settb=2*intb
  3719. @end example
  3720. @item
  3721. Set the default timebase value:
  3722. @example
  3723. settb=AVTB
  3724. @end example
  3725. @end itemize
  3726. @section concat
  3727. Concatenate audio and video streams, joining them together one after the
  3728. other.
  3729. The filter works on segments of synchronized video and audio streams. All
  3730. segments must have the same number of streams of each type, and that will
  3731. also be the number of streams at output.
  3732. The filter accepts the following named parameters:
  3733. @table @option
  3734. @item n
  3735. Set the number of segments. Default is 2.
  3736. @item v
  3737. Set the number of output video streams, that is also the number of video
  3738. streams in each segment. Default is 1.
  3739. @item a
  3740. Set the number of output audio streams, that is also the number of video
  3741. streams in each segment. Default is 0.
  3742. @item unsafe
  3743. Activate unsafe mode: do not fail if segments have a different format.
  3744. @end table
  3745. The filter has @var{v}+@var{a} outputs: first @var{v} video outputs, then
  3746. @var{a} audio outputs.
  3747. There are @var{n}×(@var{v}+@var{a}) inputs: first the inputs for the first
  3748. segment, in the same order as the outputs, then the inputs for the second
  3749. segment, etc.
  3750. Related streams do not always have exactly the same duration, for various
  3751. reasons including codec frame size or sloppy authoring. For that reason,
  3752. related synchronized streams (e.g. a video and its audio track) should be
  3753. concatenated at once. The concat filter will use the duration of the longest
  3754. stream in each segment (except the last one), and if necessary pad shorter
  3755. audio streams with silence.
  3756. For this filter to work correctly, all segments must start at timestamp 0.
  3757. All corresponding streams must have the same parameters in all segments; the
  3758. filtering system will automatically select a common pixel format for video
  3759. streams, and a common sample format, sample rate and channel layout for
  3760. audio streams, but other settings, such as resolution, must be converted
  3761. explicitly by the user.
  3762. Different frame rates are acceptable but will result in variable frame rate
  3763. at output; be sure to configure the output file to handle it.
  3764. Examples:
  3765. @itemize
  3766. @item
  3767. Concatenate an opening, an episode and an ending, all in bilingual version
  3768. (video in stream 0, audio in streams 1 and 2):
  3769. @example
  3770. ffmpeg -i opening.mkv -i episode.mkv -i ending.mkv -filter_complex \
  3771. '[0:0] [0:1] [0:2] [1:0] [1:1] [1:2] [2:0] [2:1] [2:2]
  3772. concat=n=3:v=1:a=2 [v] [a1] [a2]' \
  3773. -map '[v]' -map '[a1]' -map '[a2]' output.mkv
  3774. @end example
  3775. @item
  3776. Concatenate two parts, handling audio and video separately, using the
  3777. (a)movie sources, and adjusting the resolution:
  3778. @example
  3779. movie=part1.mp4, scale=512:288 [v1] ; amovie=part1.mp4 [a1] ;
  3780. movie=part2.mp4, scale=512:288 [v2] ; amovie=part2.mp4 [a2] ;
  3781. [v1] [v2] concat [outv] ; [a1] [a2] concat=v=0:a=1 [outa]
  3782. @end example
  3783. Note that a desync will happen at the stitch if the audio and video streams
  3784. do not have exactly the same duration in the first file.
  3785. @end itemize
  3786. @section showspectrum
  3787. Convert input audio to a video output, representing the audio frequency
  3788. spectrum.
  3789. The filter accepts the following named parameters:
  3790. @table @option
  3791. @item size, s
  3792. Specify the video size for the output. Default value is @code{640x480}.
  3793. @item slide
  3794. Specify if the spectrum should slide along the window. Default value is
  3795. @code{0}.
  3796. @end table
  3797. The usage is very similar to the showwaves filter; see the examples in that
  3798. section.
  3799. @section showwaves
  3800. Convert input audio to a video output, representing the samples waves.
  3801. The filter accepts the following named parameters:
  3802. @table @option
  3803. @item n
  3804. Set the number of samples which are printed on the same column. A
  3805. larger value will decrease the frame rate. Must be a positive
  3806. integer. This option can be set only if the value for @var{rate}
  3807. is not explicitly specified.
  3808. @item rate, r
  3809. Set the (approximate) output frame rate. This is done by setting the
  3810. option @var{n}. Default value is "25".
  3811. @item size, s
  3812. Specify the video size for the output. Default value is "600x240".
  3813. @end table
  3814. Some examples follow.
  3815. @itemize
  3816. @item
  3817. Output the input file audio and the corresponding video representation
  3818. at the same time:
  3819. @example
  3820. amovie=a.mp3,asplit[out0],showwaves[out1]
  3821. @end example
  3822. @item
  3823. Create a synthetic signal and show it with showwaves, forcing a
  3824. framerate of 30 frames per second:
  3825. @example
  3826. aevalsrc=sin(1*2*PI*t)*sin(880*2*PI*t):cos(2*PI*200*t),asplit[out0],showwaves=r=30[out1]
  3827. @end example
  3828. @end itemize
  3829. @c man end MULTIMEDIA FILTERS
  3830. @chapter Multimedia Sources
  3831. @c man begin MULTIMEDIA SOURCES
  3832. Below is a description of the currently available multimedia sources.
  3833. @section amovie
  3834. This is the same as @ref{src_movie} source, except it selects an audio
  3835. stream by default.
  3836. @anchor{src_movie}
  3837. @section movie
  3838. Read audio and/or video stream(s) from a movie container.
  3839. It accepts the syntax: @var{movie_name}[:@var{options}] where
  3840. @var{movie_name} is the name of the resource to read (not necessarily
  3841. a file but also a device or a stream accessed through some protocol),
  3842. and @var{options} is an optional sequence of @var{key}=@var{value}
  3843. pairs, separated by ":".
  3844. The description of the accepted options follows.
  3845. @table @option
  3846. @item format_name, f
  3847. Specifies the format assumed for the movie to read, and can be either
  3848. the name of a container or an input device. If not specified the
  3849. format is guessed from @var{movie_name} or by probing.
  3850. @item seek_point, sp
  3851. Specifies the seek point in seconds, the frames will be output
  3852. starting from this seek point, the parameter is evaluated with
  3853. @code{av_strtod} so the numerical value may be suffixed by an IS
  3854. postfix. Default value is "0".
  3855. @item streams, s
  3856. Specifies the streams to read. Several streams can be specified, separated
  3857. by "+". The source will then have as many outputs, in the same order. The
  3858. syntax is explained in the @ref{Stream specifiers} chapter. Two special
  3859. names, "dv" and "da" specify respectively the default (best suited) video
  3860. and audio stream. Default is "dv", or "da" if the filter is called as
  3861. "amovie".
  3862. @item stream_index, si
  3863. Specifies the index of the video stream to read. If the value is -1,
  3864. the best suited video stream will be automatically selected. Default
  3865. value is "-1". Deprecated. If the filter is called "amovie", it will select
  3866. audio instead of video.
  3867. @item loop
  3868. Specifies how many times to read the stream in sequence.
  3869. If the value is less than 1, the stream will be read again and again.
  3870. Default value is "1".
  3871. Note that when the movie is looped the source timestamps are not
  3872. changed, so it will generate non monotonically increasing timestamps.
  3873. @end table
  3874. This filter allows to overlay a second video on top of main input of
  3875. a filtergraph as shown in this graph:
  3876. @example
  3877. input -----------> deltapts0 --> overlay --> output
  3878. ^
  3879. |
  3880. movie --> scale--> deltapts1 -------+
  3881. @end example
  3882. Some examples follow.
  3883. @itemize
  3884. @item
  3885. Skip 3.2 seconds from the start of the avi file in.avi, and overlay it
  3886. on top of the input labelled as "in":
  3887. @example
  3888. movie=in.avi:seek_point=3.2, scale=180:-1, setpts=PTS-STARTPTS [movie];
  3889. [in] setpts=PTS-STARTPTS, [movie] overlay=16:16 [out]
  3890. @end example
  3891. @item
  3892. Read from a video4linux2 device, and overlay it on top of the input
  3893. labelled as "in":
  3894. @example
  3895. movie=/dev/video0:f=video4linux2, scale=180:-1, setpts=PTS-STARTPTS [movie];
  3896. [in] setpts=PTS-STARTPTS, [movie] overlay=16:16 [out]
  3897. @end example
  3898. @item
  3899. Read the first video stream and the audio stream with id 0x81 from
  3900. dvd.vob; the video is connected to the pad named "video" and the audio is
  3901. connected to the pad named "audio":
  3902. @example
  3903. movie=dvd.vob:s=v:0+#0x81 [video] [audio]
  3904. @end example
  3905. @end itemize
  3906. @c man end MULTIMEDIA SOURCES