You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

977 lines
29KB

  1. /*
  2. * Duck/ON2 TrueMotion 2 Decoder
  3. * Copyright (c) 2005 Konstantin Shishkov
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * Duck TrueMotion2 decoder.
  24. */
  25. #include "avcodec.h"
  26. #include "bytestream.h"
  27. #include "get_bits.h"
  28. #include "dsputil.h"
  29. #define TM2_ESCAPE 0x80000000
  30. #define TM2_DELTAS 64
  31. /* Huffman-coded streams of different types of blocks */
  32. enum TM2_STREAMS{ TM2_C_HI = 0, TM2_C_LO, TM2_L_HI, TM2_L_LO,
  33. TM2_UPD, TM2_MOT, TM2_TYPE, TM2_NUM_STREAMS};
  34. /* Block types */
  35. enum TM2_BLOCKS{ TM2_HI_RES = 0, TM2_MED_RES, TM2_LOW_RES, TM2_NULL_RES,
  36. TM2_UPDATE, TM2_STILL, TM2_MOTION};
  37. typedef struct TM2Context{
  38. AVCodecContext *avctx;
  39. AVFrame pic;
  40. GetBitContext gb;
  41. DSPContext dsp;
  42. uint8_t *buffer;
  43. int buffer_size;
  44. /* TM2 streams */
  45. int *tokens[TM2_NUM_STREAMS];
  46. int tok_lens[TM2_NUM_STREAMS];
  47. int tok_ptrs[TM2_NUM_STREAMS];
  48. int deltas[TM2_NUM_STREAMS][TM2_DELTAS];
  49. /* for blocks decoding */
  50. int D[4];
  51. int CD[4];
  52. int *last;
  53. int *clast;
  54. /* data for current and previous frame */
  55. int *Y1_base, *U1_base, *V1_base, *Y2_base, *U2_base, *V2_base;
  56. int *Y1, *U1, *V1, *Y2, *U2, *V2;
  57. int y_stride, uv_stride;
  58. int cur;
  59. } TM2Context;
  60. /**
  61. * Huffman codes for each of streams
  62. */
  63. typedef struct TM2Codes{
  64. VLC vlc; ///< table for FFmpeg bitstream reader
  65. int bits;
  66. int *recode; ///< table for converting from code indexes to values
  67. int length;
  68. } TM2Codes;
  69. /**
  70. * structure for gathering Huffman codes information
  71. */
  72. typedef struct TM2Huff{
  73. int val_bits; ///< length of literal
  74. int max_bits; ///< maximum length of code
  75. int min_bits; ///< minimum length of code
  76. int nodes; ///< total number of nodes in tree
  77. int num; ///< current number filled
  78. int max_num; ///< total number of codes
  79. int *nums; ///< literals
  80. uint32_t *bits; ///< codes
  81. int *lens; ///< codelengths
  82. } TM2Huff;
  83. static int tm2_read_tree(TM2Context *ctx, uint32_t prefix, int length, TM2Huff *huff)
  84. {
  85. if(length > huff->max_bits) {
  86. av_log(ctx->avctx, AV_LOG_ERROR, "Tree exceeded its given depth (%i)\n", huff->max_bits);
  87. return -1;
  88. }
  89. if(!get_bits1(&ctx->gb)) { /* literal */
  90. if (length == 0) {
  91. length = 1;
  92. }
  93. if(huff->num >= huff->max_num) {
  94. av_log(ctx->avctx, AV_LOG_DEBUG, "Too many literals\n");
  95. return -1;
  96. }
  97. huff->nums[huff->num] = get_bits_long(&ctx->gb, huff->val_bits);
  98. huff->bits[huff->num] = prefix;
  99. huff->lens[huff->num] = length;
  100. huff->num++;
  101. return 0;
  102. } else { /* non-terminal node */
  103. if(tm2_read_tree(ctx, prefix << 1, length + 1, huff) == -1)
  104. return -1;
  105. if(tm2_read_tree(ctx, (prefix << 1) | 1, length + 1, huff) == -1)
  106. return -1;
  107. }
  108. return 0;
  109. }
  110. static int tm2_build_huff_table(TM2Context *ctx, TM2Codes *code)
  111. {
  112. TM2Huff huff;
  113. int res = 0;
  114. huff.val_bits = get_bits(&ctx->gb, 5);
  115. huff.max_bits = get_bits(&ctx->gb, 5);
  116. huff.min_bits = get_bits(&ctx->gb, 5);
  117. huff.nodes = get_bits_long(&ctx->gb, 17);
  118. huff.num = 0;
  119. /* check for correct codes parameters */
  120. if((huff.val_bits < 1) || (huff.val_bits > 32) ||
  121. (huff.max_bits < 0) || (huff.max_bits > 25)) {
  122. av_log(ctx->avctx, AV_LOG_ERROR, "Incorrect tree parameters - literal length: %i, max code length: %i\n",
  123. huff.val_bits, huff.max_bits);
  124. return -1;
  125. }
  126. if((huff.nodes <= 0) || (huff.nodes > 0x10000)) {
  127. av_log(ctx->avctx, AV_LOG_ERROR, "Incorrect number of Huffman tree nodes: %i\n", huff.nodes);
  128. return -1;
  129. }
  130. /* one-node tree */
  131. if(huff.max_bits == 0)
  132. huff.max_bits = 1;
  133. /* allocate space for codes - it is exactly ceil(nodes / 2) entries */
  134. huff.max_num = (huff.nodes + 1) >> 1;
  135. huff.nums = av_mallocz(huff.max_num * sizeof(int));
  136. huff.bits = av_mallocz(huff.max_num * sizeof(uint32_t));
  137. huff.lens = av_mallocz(huff.max_num * sizeof(int));
  138. if(tm2_read_tree(ctx, 0, 0, &huff) == -1)
  139. res = -1;
  140. if(huff.num != huff.max_num) {
  141. av_log(ctx->avctx, AV_LOG_ERROR, "Got less codes than expected: %i of %i\n",
  142. huff.num, huff.max_num);
  143. res = -1;
  144. }
  145. /* convert codes to vlc_table */
  146. if(res != -1) {
  147. int i;
  148. res = init_vlc(&code->vlc, huff.max_bits, huff.max_num,
  149. huff.lens, sizeof(int), sizeof(int),
  150. huff.bits, sizeof(uint32_t), sizeof(uint32_t), 0);
  151. if(res < 0) {
  152. av_log(ctx->avctx, AV_LOG_ERROR, "Cannot build VLC table\n");
  153. res = -1;
  154. } else
  155. res = 0;
  156. if(res != -1) {
  157. code->bits = huff.max_bits;
  158. code->length = huff.max_num;
  159. code->recode = av_malloc(code->length * sizeof(int));
  160. for(i = 0; i < code->length; i++)
  161. code->recode[i] = huff.nums[i];
  162. }
  163. }
  164. /* free allocated memory */
  165. av_free(huff.nums);
  166. av_free(huff.bits);
  167. av_free(huff.lens);
  168. return res;
  169. }
  170. static void tm2_free_codes(TM2Codes *code)
  171. {
  172. av_free(code->recode);
  173. if(code->vlc.table)
  174. ff_free_vlc(&code->vlc);
  175. }
  176. static inline int tm2_get_token(GetBitContext *gb, TM2Codes *code)
  177. {
  178. int val;
  179. val = get_vlc2(gb, code->vlc.table, code->bits, 1);
  180. return code->recode[val];
  181. }
  182. static inline int tm2_read_header(TM2Context *ctx, const uint8_t *buf)
  183. {
  184. uint32_t magic;
  185. magic = AV_RL32(buf);
  186. buf += 4;
  187. if(magic == 0x00000100) { /* old header */
  188. av_log_missing_feature(ctx->avctx, "TM2 old header", 1);
  189. return 40;
  190. } else if(magic == 0x00000101) { /* new header */
  191. return 40;
  192. } else {
  193. av_log (ctx->avctx, AV_LOG_ERROR, "Not a TM2 header: 0x%08X\n", magic);
  194. return -1;
  195. }
  196. }
  197. static int tm2_read_deltas(TM2Context *ctx, int stream_id) {
  198. int d, mb;
  199. int i, v;
  200. d = get_bits(&ctx->gb, 9);
  201. mb = get_bits(&ctx->gb, 5);
  202. if((d < 1) || (d > TM2_DELTAS) || (mb < 1) || (mb > 32)) {
  203. av_log(ctx->avctx, AV_LOG_ERROR, "Incorrect delta table: %i deltas x %i bits\n", d, mb);
  204. return -1;
  205. }
  206. for(i = 0; i < d; i++) {
  207. v = get_bits_long(&ctx->gb, mb);
  208. if(v & (1 << (mb - 1)))
  209. ctx->deltas[stream_id][i] = v - (1 << mb);
  210. else
  211. ctx->deltas[stream_id][i] = v;
  212. }
  213. for(; i < TM2_DELTAS; i++)
  214. ctx->deltas[stream_id][i] = 0;
  215. return 0;
  216. }
  217. static int tm2_read_stream(TM2Context *ctx, const uint8_t *buf, int stream_id, int buf_size)
  218. {
  219. int i;
  220. int skip = 0;
  221. int len, toks, pos;
  222. TM2Codes codes;
  223. GetByteContext gb;
  224. if (buf_size < 4) {
  225. av_log(ctx->avctx, AV_LOG_ERROR, "not enough space for len left\n");
  226. return AVERROR_INVALIDDATA;
  227. }
  228. /* get stream length in dwords */
  229. bytestream2_init(&gb, buf, buf_size);
  230. len = bytestream2_get_be32(&gb);
  231. skip = len * 4 + 4;
  232. if(len == 0)
  233. return 4;
  234. if (len >= INT_MAX/4-1 || len < 0 || skip > buf_size) {
  235. av_log(ctx->avctx, AV_LOG_ERROR, "invalid stream size\n");
  236. return AVERROR_INVALIDDATA;
  237. }
  238. toks = bytestream2_get_be32(&gb);
  239. if(toks & 1) {
  240. len = bytestream2_get_be32(&gb);
  241. if(len == TM2_ESCAPE) {
  242. len = bytestream2_get_be32(&gb);
  243. }
  244. if(len > 0) {
  245. pos = bytestream2_tell(&gb);
  246. if (skip <= pos)
  247. return AVERROR_INVALIDDATA;
  248. init_get_bits(&ctx->gb, buf + pos, (skip - pos) * 8);
  249. if(tm2_read_deltas(ctx, stream_id) == -1)
  250. return AVERROR_INVALIDDATA;
  251. bytestream2_skip(&gb, ((get_bits_count(&ctx->gb) + 31) >> 5) << 2);
  252. }
  253. }
  254. /* skip unused fields */
  255. len = bytestream2_get_be32(&gb);
  256. if(len == TM2_ESCAPE) { /* some unknown length - could be escaped too */
  257. bytestream2_skip(&gb, 8); /* unused by decoder */
  258. } else {
  259. bytestream2_skip(&gb, 4); /* unused by decoder */
  260. }
  261. pos = bytestream2_tell(&gb);
  262. if (skip <= pos)
  263. return AVERROR_INVALIDDATA;
  264. init_get_bits(&ctx->gb, buf + pos, (skip - pos) * 8);
  265. if(tm2_build_huff_table(ctx, &codes) == -1)
  266. return AVERROR_INVALIDDATA;
  267. bytestream2_skip(&gb, ((get_bits_count(&ctx->gb) + 31) >> 5) << 2);
  268. toks >>= 1;
  269. /* check if we have sane number of tokens */
  270. if((toks < 0) || (toks > 0xFFFFFF)){
  271. av_log(ctx->avctx, AV_LOG_ERROR, "Incorrect number of tokens: %i\n", toks);
  272. tm2_free_codes(&codes);
  273. return AVERROR_INVALIDDATA;
  274. }
  275. ctx->tokens[stream_id] = av_realloc(ctx->tokens[stream_id], toks * sizeof(int));
  276. ctx->tok_lens[stream_id] = toks;
  277. len = bytestream2_get_be32(&gb);
  278. if(len > 0) {
  279. pos = bytestream2_tell(&gb);
  280. if (skip <= pos)
  281. return AVERROR_INVALIDDATA;
  282. init_get_bits(&ctx->gb, buf + pos, (skip - pos) * 8);
  283. for(i = 0; i < toks; i++) {
  284. if (get_bits_left(&ctx->gb) <= 0) {
  285. av_log(ctx->avctx, AV_LOG_ERROR, "Incorrect number of tokens: %i\n", toks);
  286. return AVERROR_INVALIDDATA;
  287. }
  288. ctx->tokens[stream_id][i] = tm2_get_token(&ctx->gb, &codes);
  289. if (stream_id <= TM2_MOT && ctx->tokens[stream_id][i] >= TM2_DELTAS) {
  290. av_log(ctx->avctx, AV_LOG_ERROR, "Invalid delta token index %d for type %d, n=%d\n",
  291. ctx->tokens[stream_id][i], stream_id, i);
  292. return AVERROR_INVALIDDATA;
  293. }
  294. }
  295. } else {
  296. for(i = 0; i < toks; i++) {
  297. ctx->tokens[stream_id][i] = codes.recode[0];
  298. if (stream_id <= TM2_MOT && ctx->tokens[stream_id][i] >= TM2_DELTAS) {
  299. av_log(ctx->avctx, AV_LOG_ERROR, "Invalid delta token index %d for type %d, n=%d\n",
  300. ctx->tokens[stream_id][i], stream_id, i);
  301. return AVERROR_INVALIDDATA;
  302. }
  303. }
  304. }
  305. tm2_free_codes(&codes);
  306. return skip;
  307. }
  308. static inline int GET_TOK(TM2Context *ctx,int type) {
  309. if(ctx->tok_ptrs[type] >= ctx->tok_lens[type]) {
  310. av_log(ctx->avctx, AV_LOG_ERROR, "Read token from stream %i out of bounds (%i>=%i)\n", type, ctx->tok_ptrs[type], ctx->tok_lens[type]);
  311. return 0;
  312. }
  313. if(type <= TM2_MOT) {
  314. if (ctx->tokens[type][ctx->tok_ptrs[type]] >= TM2_DELTAS) {
  315. av_log(ctx->avctx, AV_LOG_ERROR, "token %d is too large\n", ctx->tokens[type][ctx->tok_ptrs[type]]);
  316. return 0;
  317. }
  318. return ctx->deltas[type][ctx->tokens[type][ctx->tok_ptrs[type]++]];
  319. }
  320. return ctx->tokens[type][ctx->tok_ptrs[type]++];
  321. }
  322. /* blocks decoding routines */
  323. /* common Y, U, V pointers initialisation */
  324. #define TM2_INIT_POINTERS() \
  325. int *last, *clast; \
  326. int *Y, *U, *V;\
  327. int Ystride, Ustride, Vstride;\
  328. \
  329. Ystride = ctx->y_stride;\
  330. Vstride = ctx->uv_stride;\
  331. Ustride = ctx->uv_stride;\
  332. Y = (ctx->cur?ctx->Y2:ctx->Y1) + by * 4 * Ystride + bx * 4;\
  333. V = (ctx->cur?ctx->V2:ctx->V1) + by * 2 * Vstride + bx * 2;\
  334. U = (ctx->cur?ctx->U2:ctx->U1) + by * 2 * Ustride + bx * 2;\
  335. last = ctx->last + bx * 4;\
  336. clast = ctx->clast + bx * 4;
  337. #define TM2_INIT_POINTERS_2() \
  338. int *Yo, *Uo, *Vo;\
  339. int oYstride, oUstride, oVstride;\
  340. \
  341. TM2_INIT_POINTERS();\
  342. oYstride = Ystride;\
  343. oVstride = Vstride;\
  344. oUstride = Ustride;\
  345. Yo = (ctx->cur?ctx->Y1:ctx->Y2) + by * 4 * oYstride + bx * 4;\
  346. Vo = (ctx->cur?ctx->V1:ctx->V2) + by * 2 * oVstride + bx * 2;\
  347. Uo = (ctx->cur?ctx->U1:ctx->U2) + by * 2 * oUstride + bx * 2;
  348. /* recalculate last and delta values for next blocks */
  349. #define TM2_RECALC_BLOCK(CHR, stride, last, CD) {\
  350. CD[0] = CHR[1] - last[1];\
  351. CD[1] = (int)CHR[stride + 1] - (int)CHR[1];\
  352. last[0] = (int)CHR[stride + 0];\
  353. last[1] = (int)CHR[stride + 1];}
  354. /* common operations - add deltas to 4x4 block of luma or 2x2 blocks of chroma */
  355. static inline void tm2_apply_deltas(TM2Context *ctx, int* Y, int stride, int *deltas, int *last)
  356. {
  357. int ct, d;
  358. int i, j;
  359. for(j = 0; j < 4; j++){
  360. ct = ctx->D[j];
  361. for(i = 0; i < 4; i++){
  362. d = deltas[i + j * 4];
  363. ct += d;
  364. last[i] += ct;
  365. Y[i] = av_clip_uint8(last[i]);
  366. }
  367. Y += stride;
  368. ctx->D[j] = ct;
  369. }
  370. }
  371. static inline void tm2_high_chroma(int *data, int stride, int *last, int *CD, int *deltas)
  372. {
  373. int i, j;
  374. for(j = 0; j < 2; j++){
  375. for(i = 0; i < 2; i++){
  376. CD[j] += deltas[i + j * 2];
  377. last[i] += CD[j];
  378. data[i] = last[i];
  379. }
  380. data += stride;
  381. }
  382. }
  383. static inline void tm2_low_chroma(int *data, int stride, int *clast, int *CD, int *deltas, int bx)
  384. {
  385. int t;
  386. int l;
  387. int prev;
  388. if(bx > 0)
  389. prev = clast[-3];
  390. else
  391. prev = 0;
  392. t = (CD[0] + CD[1]) >> 1;
  393. l = (prev - CD[0] - CD[1] + clast[1]) >> 1;
  394. CD[1] = CD[0] + CD[1] - t;
  395. CD[0] = t;
  396. clast[0] = l;
  397. tm2_high_chroma(data, stride, clast, CD, deltas);
  398. }
  399. static inline void tm2_hi_res_block(TM2Context *ctx, AVFrame *pic, int bx, int by)
  400. {
  401. int i;
  402. int deltas[16];
  403. TM2_INIT_POINTERS();
  404. /* hi-res chroma */
  405. for(i = 0; i < 4; i++) {
  406. deltas[i] = GET_TOK(ctx, TM2_C_HI);
  407. deltas[i + 4] = GET_TOK(ctx, TM2_C_HI);
  408. }
  409. tm2_high_chroma(U, Ustride, clast, ctx->CD, deltas);
  410. tm2_high_chroma(V, Vstride, clast + 2, ctx->CD + 2, deltas + 4);
  411. /* hi-res luma */
  412. for(i = 0; i < 16; i++)
  413. deltas[i] = GET_TOK(ctx, TM2_L_HI);
  414. tm2_apply_deltas(ctx, Y, Ystride, deltas, last);
  415. }
  416. static inline void tm2_med_res_block(TM2Context *ctx, AVFrame *pic, int bx, int by)
  417. {
  418. int i;
  419. int deltas[16];
  420. TM2_INIT_POINTERS();
  421. /* low-res chroma */
  422. deltas[0] = GET_TOK(ctx, TM2_C_LO);
  423. deltas[1] = deltas[2] = deltas[3] = 0;
  424. tm2_low_chroma(U, Ustride, clast, ctx->CD, deltas, bx);
  425. deltas[0] = GET_TOK(ctx, TM2_C_LO);
  426. deltas[1] = deltas[2] = deltas[3] = 0;
  427. tm2_low_chroma(V, Vstride, clast + 2, ctx->CD + 2, deltas, bx);
  428. /* hi-res luma */
  429. for(i = 0; i < 16; i++)
  430. deltas[i] = GET_TOK(ctx, TM2_L_HI);
  431. tm2_apply_deltas(ctx, Y, Ystride, deltas, last);
  432. }
  433. static inline void tm2_low_res_block(TM2Context *ctx, AVFrame *pic, int bx, int by)
  434. {
  435. int i;
  436. int t1, t2;
  437. int deltas[16];
  438. TM2_INIT_POINTERS();
  439. /* low-res chroma */
  440. deltas[0] = GET_TOK(ctx, TM2_C_LO);
  441. deltas[1] = deltas[2] = deltas[3] = 0;
  442. tm2_low_chroma(U, Ustride, clast, ctx->CD, deltas, bx);
  443. deltas[0] = GET_TOK(ctx, TM2_C_LO);
  444. deltas[1] = deltas[2] = deltas[3] = 0;
  445. tm2_low_chroma(V, Vstride, clast + 2, ctx->CD + 2, deltas, bx);
  446. /* low-res luma */
  447. for(i = 0; i < 16; i++)
  448. deltas[i] = 0;
  449. deltas[ 0] = GET_TOK(ctx, TM2_L_LO);
  450. deltas[ 2] = GET_TOK(ctx, TM2_L_LO);
  451. deltas[ 8] = GET_TOK(ctx, TM2_L_LO);
  452. deltas[10] = GET_TOK(ctx, TM2_L_LO);
  453. if(bx > 0)
  454. last[0] = (last[-1] - ctx->D[0] - ctx->D[1] - ctx->D[2] - ctx->D[3] + last[1]) >> 1;
  455. else
  456. last[0] = (last[1] - ctx->D[0] - ctx->D[1] - ctx->D[2] - ctx->D[3])>> 1;
  457. last[2] = (last[1] + last[3]) >> 1;
  458. t1 = ctx->D[0] + ctx->D[1];
  459. ctx->D[0] = t1 >> 1;
  460. ctx->D[1] = t1 - (t1 >> 1);
  461. t2 = ctx->D[2] + ctx->D[3];
  462. ctx->D[2] = t2 >> 1;
  463. ctx->D[3] = t2 - (t2 >> 1);
  464. tm2_apply_deltas(ctx, Y, Ystride, deltas, last);
  465. }
  466. static inline void tm2_null_res_block(TM2Context *ctx, AVFrame *pic, int bx, int by)
  467. {
  468. int i;
  469. int ct;
  470. int left, right, diff;
  471. int deltas[16];
  472. TM2_INIT_POINTERS();
  473. /* null chroma */
  474. deltas[0] = deltas[1] = deltas[2] = deltas[3] = 0;
  475. tm2_low_chroma(U, Ustride, clast, ctx->CD, deltas, bx);
  476. deltas[0] = deltas[1] = deltas[2] = deltas[3] = 0;
  477. tm2_low_chroma(V, Vstride, clast + 2, ctx->CD + 2, deltas, bx);
  478. /* null luma */
  479. for(i = 0; i < 16; i++)
  480. deltas[i] = 0;
  481. ct = ctx->D[0] + ctx->D[1] + ctx->D[2] + ctx->D[3];
  482. if(bx > 0)
  483. left = last[-1] - ct;
  484. else
  485. left = 0;
  486. right = last[3];
  487. diff = right - left;
  488. last[0] = left + (diff >> 2);
  489. last[1] = left + (diff >> 1);
  490. last[2] = right - (diff >> 2);
  491. last[3] = right;
  492. {
  493. int tp = left;
  494. ctx->D[0] = (tp + (ct >> 2)) - left;
  495. left += ctx->D[0];
  496. ctx->D[1] = (tp + (ct >> 1)) - left;
  497. left += ctx->D[1];
  498. ctx->D[2] = ((tp + ct) - (ct >> 2)) - left;
  499. left += ctx->D[2];
  500. ctx->D[3] = (tp + ct) - left;
  501. }
  502. tm2_apply_deltas(ctx, Y, Ystride, deltas, last);
  503. }
  504. static inline void tm2_still_block(TM2Context *ctx, AVFrame *pic, int bx, int by)
  505. {
  506. int i, j;
  507. TM2_INIT_POINTERS_2();
  508. /* update chroma */
  509. for(j = 0; j < 2; j++){
  510. for(i = 0; i < 2; i++){
  511. U[i] = Uo[i];
  512. V[i] = Vo[i];
  513. }
  514. U += Ustride; V += Vstride;
  515. Uo += oUstride; Vo += oVstride;
  516. }
  517. U -= Ustride * 2;
  518. V -= Vstride * 2;
  519. TM2_RECALC_BLOCK(U, Ustride, clast, ctx->CD);
  520. TM2_RECALC_BLOCK(V, Vstride, (clast + 2), (ctx->CD + 2));
  521. /* update deltas */
  522. ctx->D[0] = Yo[3] - last[3];
  523. ctx->D[1] = Yo[3 + oYstride] - Yo[3];
  524. ctx->D[2] = Yo[3 + oYstride * 2] - Yo[3 + oYstride];
  525. ctx->D[3] = Yo[3 + oYstride * 3] - Yo[3 + oYstride * 2];
  526. for(j = 0; j < 4; j++){
  527. for(i = 0; i < 4; i++){
  528. Y[i] = Yo[i];
  529. last[i] = Yo[i];
  530. }
  531. Y += Ystride;
  532. Yo += oYstride;
  533. }
  534. }
  535. static inline void tm2_update_block(TM2Context *ctx, AVFrame *pic, int bx, int by)
  536. {
  537. int i, j;
  538. int d;
  539. TM2_INIT_POINTERS_2();
  540. /* update chroma */
  541. for(j = 0; j < 2; j++){
  542. for(i = 0; i < 2; i++){
  543. U[i] = Uo[i] + GET_TOK(ctx, TM2_UPD);
  544. V[i] = Vo[i] + GET_TOK(ctx, TM2_UPD);
  545. }
  546. U += Ustride; V += Vstride;
  547. Uo += oUstride; Vo += oVstride;
  548. }
  549. U -= Ustride * 2;
  550. V -= Vstride * 2;
  551. TM2_RECALC_BLOCK(U, Ustride, clast, ctx->CD);
  552. TM2_RECALC_BLOCK(V, Vstride, (clast + 2), (ctx->CD + 2));
  553. /* update deltas */
  554. ctx->D[0] = Yo[3] - last[3];
  555. ctx->D[1] = Yo[3 + oYstride] - Yo[3];
  556. ctx->D[2] = Yo[3 + oYstride * 2] - Yo[3 + oYstride];
  557. ctx->D[3] = Yo[3 + oYstride * 3] - Yo[3 + oYstride * 2];
  558. for(j = 0; j < 4; j++){
  559. d = last[3];
  560. for(i = 0; i < 4; i++){
  561. Y[i] = Yo[i] + GET_TOK(ctx, TM2_UPD);
  562. last[i] = Y[i];
  563. }
  564. ctx->D[j] = last[3] - d;
  565. Y += Ystride;
  566. Yo += oYstride;
  567. }
  568. }
  569. static inline void tm2_motion_block(TM2Context *ctx, AVFrame *pic, int bx, int by)
  570. {
  571. int i, j;
  572. int mx, my;
  573. TM2_INIT_POINTERS_2();
  574. mx = GET_TOK(ctx, TM2_MOT);
  575. my = GET_TOK(ctx, TM2_MOT);
  576. mx = av_clip(mx, -(bx * 4 + 4), ctx->avctx->width - bx * 4);
  577. my = av_clip(my, -(by * 4 + 4), ctx->avctx->height - by * 4);
  578. if (4*bx+mx<0 || 4*by+my<0 || 4*bx+mx+4 > ctx->avctx->width || 4*by+my+4 > ctx->avctx->height) {
  579. av_log(0,0, "MV out of picture\n");
  580. return;
  581. }
  582. Yo += my * oYstride + mx;
  583. Uo += (my >> 1) * oUstride + (mx >> 1);
  584. Vo += (my >> 1) * oVstride + (mx >> 1);
  585. /* copy chroma */
  586. for(j = 0; j < 2; j++){
  587. for(i = 0; i < 2; i++){
  588. U[i] = Uo[i];
  589. V[i] = Vo[i];
  590. }
  591. U += Ustride; V += Vstride;
  592. Uo += oUstride; Vo += oVstride;
  593. }
  594. U -= Ustride * 2;
  595. V -= Vstride * 2;
  596. TM2_RECALC_BLOCK(U, Ustride, clast, ctx->CD);
  597. TM2_RECALC_BLOCK(V, Vstride, (clast + 2), (ctx->CD + 2));
  598. /* copy luma */
  599. for(j = 0; j < 4; j++){
  600. for(i = 0; i < 4; i++){
  601. Y[i] = Yo[i];
  602. }
  603. Y += Ystride;
  604. Yo += oYstride;
  605. }
  606. /* calculate deltas */
  607. Y -= Ystride * 4;
  608. ctx->D[0] = Y[3] - last[3];
  609. ctx->D[1] = Y[3 + Ystride] - Y[3];
  610. ctx->D[2] = Y[3 + Ystride * 2] - Y[3 + Ystride];
  611. ctx->D[3] = Y[3 + Ystride * 3] - Y[3 + Ystride * 2];
  612. for(i = 0; i < 4; i++)
  613. last[i] = Y[i + Ystride * 3];
  614. }
  615. static int tm2_decode_blocks(TM2Context *ctx, AVFrame *p)
  616. {
  617. int i, j;
  618. int w = ctx->avctx->width, h = ctx->avctx->height, bw = w >> 2, bh = h >> 2, cw = w >> 1;
  619. int type;
  620. int keyframe = 1;
  621. int *Y, *U, *V;
  622. uint8_t *dst;
  623. for(i = 0; i < TM2_NUM_STREAMS; i++)
  624. ctx->tok_ptrs[i] = 0;
  625. if (ctx->tok_lens[TM2_TYPE]<bw*bh){
  626. av_log(ctx->avctx,AV_LOG_ERROR,"Got %i tokens for %i blocks\n",ctx->tok_lens[TM2_TYPE],bw*bh);
  627. return -1;
  628. }
  629. memset(ctx->last, 0, 4 * bw * sizeof(int));
  630. memset(ctx->clast, 0, 4 * bw * sizeof(int));
  631. for(j = 0; j < bh; j++) {
  632. memset(ctx->D, 0, 4 * sizeof(int));
  633. memset(ctx->CD, 0, 4 * sizeof(int));
  634. for(i = 0; i < bw; i++) {
  635. type = GET_TOK(ctx, TM2_TYPE);
  636. switch(type) {
  637. case TM2_HI_RES:
  638. tm2_hi_res_block(ctx, p, i, j);
  639. break;
  640. case TM2_MED_RES:
  641. tm2_med_res_block(ctx, p, i, j);
  642. break;
  643. case TM2_LOW_RES:
  644. tm2_low_res_block(ctx, p, i, j);
  645. break;
  646. case TM2_NULL_RES:
  647. tm2_null_res_block(ctx, p, i, j);
  648. break;
  649. case TM2_UPDATE:
  650. tm2_update_block(ctx, p, i, j);
  651. keyframe = 0;
  652. break;
  653. case TM2_STILL:
  654. tm2_still_block(ctx, p, i, j);
  655. keyframe = 0;
  656. break;
  657. case TM2_MOTION:
  658. tm2_motion_block(ctx, p, i, j);
  659. keyframe = 0;
  660. break;
  661. default:
  662. av_log(ctx->avctx, AV_LOG_ERROR, "Skipping unknown block type %i\n", type);
  663. }
  664. }
  665. }
  666. /* copy data from our buffer to AVFrame */
  667. Y = (ctx->cur?ctx->Y2:ctx->Y1);
  668. U = (ctx->cur?ctx->U2:ctx->U1);
  669. V = (ctx->cur?ctx->V2:ctx->V1);
  670. dst = p->data[0];
  671. for(j = 0; j < h; j++){
  672. for(i = 0; i < w; i++){
  673. int y = Y[i], u = U[i >> 1], v = V[i >> 1];
  674. dst[3*i+0] = av_clip_uint8(y + v);
  675. dst[3*i+1] = av_clip_uint8(y);
  676. dst[3*i+2] = av_clip_uint8(y + u);
  677. }
  678. /* horizontal edge extension */
  679. Y[-4] = Y[-3] = Y[-2] = Y[-1] = Y[0];
  680. Y[w + 3] = Y[w + 2] = Y[w + 1] = Y[w] = Y[w - 1];
  681. /* vertical edge extension */
  682. if (j == 0) {
  683. memcpy(Y - 4 - 1 * ctx->y_stride, Y - 4, ctx->y_stride);
  684. memcpy(Y - 4 - 2 * ctx->y_stride, Y - 4, ctx->y_stride);
  685. memcpy(Y - 4 - 3 * ctx->y_stride, Y - 4, ctx->y_stride);
  686. memcpy(Y - 4 - 4 * ctx->y_stride, Y - 4, ctx->y_stride);
  687. } else if (j == h - 1) {
  688. memcpy(Y - 4 + 1 * ctx->y_stride, Y - 4, ctx->y_stride);
  689. memcpy(Y - 4 + 2 * ctx->y_stride, Y - 4, ctx->y_stride);
  690. memcpy(Y - 4 + 3 * ctx->y_stride, Y - 4, ctx->y_stride);
  691. memcpy(Y - 4 + 4 * ctx->y_stride, Y - 4, ctx->y_stride);
  692. }
  693. Y += ctx->y_stride;
  694. if (j & 1) {
  695. /* horizontal edge extension */
  696. U[-2] = U[-1] = U[0];
  697. V[-2] = V[-1] = V[0];
  698. U[cw + 1] = U[cw] = U[cw - 1];
  699. V[cw + 1] = V[cw] = V[cw - 1];
  700. /* vertical edge extension */
  701. if (j == 1) {
  702. memcpy(U - 2 - 1 * ctx->uv_stride, U - 2, ctx->uv_stride);
  703. memcpy(V - 2 - 1 * ctx->uv_stride, V - 2, ctx->uv_stride);
  704. memcpy(U - 2 - 2 * ctx->uv_stride, U - 2, ctx->uv_stride);
  705. memcpy(V - 2 - 2 * ctx->uv_stride, V - 2, ctx->uv_stride);
  706. } else if (j == h - 1) {
  707. memcpy(U - 2 + 1 * ctx->uv_stride, U - 2, ctx->uv_stride);
  708. memcpy(V - 2 + 1 * ctx->uv_stride, V - 2, ctx->uv_stride);
  709. memcpy(U - 2 + 2 * ctx->uv_stride, U - 2, ctx->uv_stride);
  710. memcpy(V - 2 + 2 * ctx->uv_stride, V - 2, ctx->uv_stride);
  711. }
  712. U += ctx->uv_stride;
  713. V += ctx->uv_stride;
  714. }
  715. dst += p->linesize[0];
  716. }
  717. return keyframe;
  718. }
  719. static const int tm2_stream_order[TM2_NUM_STREAMS] = {
  720. TM2_C_HI, TM2_C_LO, TM2_L_HI, TM2_L_LO, TM2_UPD, TM2_MOT, TM2_TYPE
  721. };
  722. static int decode_frame(AVCodecContext *avctx,
  723. void *data, int *data_size,
  724. AVPacket *avpkt)
  725. {
  726. const uint8_t *buf = avpkt->data;
  727. int buf_size = avpkt->size & ~3;
  728. TM2Context * const l = avctx->priv_data;
  729. AVFrame * const p = &l->pic;
  730. int i, ret, skip, t;
  731. av_fast_padded_malloc(&l->buffer, &l->buffer_size, buf_size);
  732. if(!l->buffer){
  733. av_log(avctx, AV_LOG_ERROR, "Cannot allocate temporary buffer\n");
  734. return AVERROR(ENOMEM);
  735. }
  736. p->reference = 3;
  737. p->buffer_hints = FF_BUFFER_HINTS_VALID | FF_BUFFER_HINTS_PRESERVE | FF_BUFFER_HINTS_REUSABLE;
  738. if((ret = avctx->reget_buffer(avctx, p)) < 0){
  739. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  740. return ret;
  741. }
  742. l->dsp.bswap_buf((uint32_t*)l->buffer, (const uint32_t*)buf, buf_size >> 2);
  743. skip = tm2_read_header(l, l->buffer);
  744. if(skip == -1){
  745. return AVERROR_INVALIDDATA;
  746. }
  747. for(i = 0; i < TM2_NUM_STREAMS; i++){
  748. if (skip >= buf_size) {
  749. av_log(avctx, AV_LOG_ERROR, "no space for tm2_read_stream\n");
  750. return AVERROR_INVALIDDATA;
  751. }
  752. t = tm2_read_stream(l, l->buffer + skip, tm2_stream_order[i], buf_size - skip);
  753. if(t < 0){
  754. return t;
  755. }
  756. skip += t;
  757. }
  758. p->key_frame = tm2_decode_blocks(l, p);
  759. if(p->key_frame)
  760. p->pict_type = AV_PICTURE_TYPE_I;
  761. else
  762. p->pict_type = AV_PICTURE_TYPE_P;
  763. l->cur = !l->cur;
  764. *data_size = sizeof(AVFrame);
  765. *(AVFrame*)data = l->pic;
  766. return buf_size;
  767. }
  768. static av_cold int decode_init(AVCodecContext *avctx){
  769. TM2Context * const l = avctx->priv_data;
  770. int i, w = avctx->width, h = avctx->height;
  771. if((avctx->width & 3) || (avctx->height & 3)){
  772. av_log(avctx, AV_LOG_ERROR, "Width and height must be multiple of 4\n");
  773. return AVERROR_INVALIDDATA;
  774. }
  775. l->avctx = avctx;
  776. l->pic.data[0]=NULL;
  777. avctx->pix_fmt = AV_PIX_FMT_BGR24;
  778. avcodec_get_frame_defaults(&l->pic);
  779. ff_dsputil_init(&l->dsp, avctx);
  780. l->last = av_malloc(4 * sizeof(*l->last) * (w >> 2));
  781. l->clast = av_malloc(4 * sizeof(*l->clast) * (w >> 2));
  782. for(i = 0; i < TM2_NUM_STREAMS; i++) {
  783. l->tokens[i] = NULL;
  784. l->tok_lens[i] = 0;
  785. }
  786. w += 8;
  787. h += 8;
  788. l->Y1_base = av_malloc(sizeof(*l->Y1_base) * w * h);
  789. l->Y2_base = av_malloc(sizeof(*l->Y2_base) * w * h);
  790. l->y_stride = w;
  791. w = (w + 1) >> 1;
  792. h = (h + 1) >> 1;
  793. l->U1_base = av_malloc(sizeof(*l->U1_base) * w * h);
  794. l->V1_base = av_malloc(sizeof(*l->V1_base) * w * h);
  795. l->U2_base = av_malloc(sizeof(*l->U2_base) * w * h);
  796. l->V2_base = av_malloc(sizeof(*l->V1_base) * w * h);
  797. l->uv_stride = w;
  798. l->cur = 0;
  799. if (!l->Y1_base || !l->Y2_base || !l->U1_base ||
  800. !l->V1_base || !l->U2_base || !l->V2_base ||
  801. !l->last || !l->clast) {
  802. av_freep(l->Y1_base);
  803. av_freep(l->Y2_base);
  804. av_freep(l->U1_base);
  805. av_freep(l->U2_base);
  806. av_freep(l->V1_base);
  807. av_freep(l->V2_base);
  808. av_freep(l->last);
  809. av_freep(l->clast);
  810. return AVERROR(ENOMEM);
  811. }
  812. l->Y1 = l->Y1_base + l->y_stride * 4 + 4;
  813. l->Y2 = l->Y2_base + l->y_stride * 4 + 4;
  814. l->U1 = l->U1_base + l->uv_stride * 2 + 2;
  815. l->U2 = l->U2_base + l->uv_stride * 2 + 2;
  816. l->V1 = l->V1_base + l->uv_stride * 2 + 2;
  817. l->V2 = l->V2_base + l->uv_stride * 2 + 2;
  818. return 0;
  819. }
  820. static av_cold int decode_end(AVCodecContext *avctx){
  821. TM2Context * const l = avctx->priv_data;
  822. AVFrame *pic = &l->pic;
  823. int i;
  824. av_free(l->last);
  825. av_free(l->clast);
  826. for(i = 0; i < TM2_NUM_STREAMS; i++)
  827. av_free(l->tokens[i]);
  828. if(l->Y1){
  829. av_free(l->Y1_base);
  830. av_free(l->U1_base);
  831. av_free(l->V1_base);
  832. av_free(l->Y2_base);
  833. av_free(l->U2_base);
  834. av_free(l->V2_base);
  835. }
  836. av_freep(&l->buffer);
  837. l->buffer_size = 0;
  838. if (pic->data[0])
  839. avctx->release_buffer(avctx, pic);
  840. return 0;
  841. }
  842. AVCodec ff_truemotion2_decoder = {
  843. .name = "truemotion2",
  844. .type = AVMEDIA_TYPE_VIDEO,
  845. .id = AV_CODEC_ID_TRUEMOTION2,
  846. .priv_data_size = sizeof(TM2Context),
  847. .init = decode_init,
  848. .close = decode_end,
  849. .decode = decode_frame,
  850. .capabilities = CODEC_CAP_DR1,
  851. .long_name = NULL_IF_CONFIG_SMALL("Duck TrueMotion 2.0"),
  852. };