You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1032 lines
36KB

  1. /*
  2. * VC3/DNxHD encoder
  3. * Copyright (c) 2007 Baptiste Coudurier <baptiste dot coudurier at smartjog dot com>
  4. * Copyright (c) 2011 MirriAd Ltd
  5. *
  6. * VC-3 encoder funded by the British Broadcasting Corporation
  7. * 10 bit support added by MirriAd Ltd, Joseph Artsimovich <joseph@mirriad.com>
  8. *
  9. * This file is part of FFmpeg.
  10. *
  11. * FFmpeg is free software; you can redistribute it and/or
  12. * modify it under the terms of the GNU Lesser General Public
  13. * License as published by the Free Software Foundation; either
  14. * version 2.1 of the License, or (at your option) any later version.
  15. *
  16. * FFmpeg is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  19. * Lesser General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU Lesser General Public
  22. * License along with FFmpeg; if not, write to the Free Software
  23. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  24. */
  25. //#define DEBUG
  26. #define RC_VARIANCE 1 // use variance or ssd for fast rc
  27. #include "libavutil/opt.h"
  28. #include "avcodec.h"
  29. #include "dsputil.h"
  30. #include "internal.h"
  31. #include "mpegvideo.h"
  32. #include "dnxhdenc.h"
  33. #include "internal.h"
  34. #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
  35. #define DNX10BIT_QMAT_SHIFT 18 // The largest value that will not lead to overflow for 10bit samples.
  36. static const AVOption options[]={
  37. {"nitris_compat", "encode with Avid Nitris compatibility", offsetof(DNXHDEncContext, nitris_compat), AV_OPT_TYPE_INT, {.i64 = 0}, 0, 1, VE},
  38. {NULL}
  39. };
  40. static const AVClass class = {
  41. .class_name = "dnxhd",
  42. .item_name = av_default_item_name,
  43. .option = options,
  44. .version = LIBAVUTIL_VERSION_INT,
  45. };
  46. #define LAMBDA_FRAC_BITS 10
  47. static void dnxhd_8bit_get_pixels_8x4_sym(DCTELEM *av_restrict block, const uint8_t *pixels, int line_size)
  48. {
  49. int i;
  50. for (i = 0; i < 4; i++) {
  51. block[0] = pixels[0]; block[1] = pixels[1];
  52. block[2] = pixels[2]; block[3] = pixels[3];
  53. block[4] = pixels[4]; block[5] = pixels[5];
  54. block[6] = pixels[6]; block[7] = pixels[7];
  55. pixels += line_size;
  56. block += 8;
  57. }
  58. memcpy(block, block - 8, sizeof(*block) * 8);
  59. memcpy(block + 8, block - 16, sizeof(*block) * 8);
  60. memcpy(block + 16, block - 24, sizeof(*block) * 8);
  61. memcpy(block + 24, block - 32, sizeof(*block) * 8);
  62. }
  63. static av_always_inline void dnxhd_10bit_get_pixels_8x4_sym(DCTELEM *av_restrict block, const uint8_t *pixels, int line_size)
  64. {
  65. int i;
  66. const uint16_t* pixels16 = (const uint16_t*)pixels;
  67. line_size >>= 1;
  68. for (i = 0; i < 4; i++) {
  69. block[0] = pixels16[0]; block[1] = pixels16[1];
  70. block[2] = pixels16[2]; block[3] = pixels16[3];
  71. block[4] = pixels16[4]; block[5] = pixels16[5];
  72. block[6] = pixels16[6]; block[7] = pixels16[7];
  73. pixels16 += line_size;
  74. block += 8;
  75. }
  76. memcpy(block, block - 8, sizeof(*block) * 8);
  77. memcpy(block + 8, block - 16, sizeof(*block) * 8);
  78. memcpy(block + 16, block - 24, sizeof(*block) * 8);
  79. memcpy(block + 24, block - 32, sizeof(*block) * 8);
  80. }
  81. static int dnxhd_10bit_dct_quantize(MpegEncContext *ctx, DCTELEM *block,
  82. int n, int qscale, int *overflow)
  83. {
  84. const uint8_t *scantable= ctx->intra_scantable.scantable;
  85. const int *qmat = n<4 ? ctx->q_intra_matrix[qscale] : ctx->q_chroma_intra_matrix[qscale];
  86. int last_non_zero = 0;
  87. int i;
  88. ctx->dsp.fdct(block);
  89. // Divide by 4 with rounding, to compensate scaling of DCT coefficients
  90. block[0] = (block[0] + 2) >> 2;
  91. for (i = 1; i < 64; ++i) {
  92. int j = scantable[i];
  93. int sign = block[j] >> 31;
  94. int level = (block[j] ^ sign) - sign;
  95. level = level * qmat[j] >> DNX10BIT_QMAT_SHIFT;
  96. block[j] = (level ^ sign) - sign;
  97. if (level)
  98. last_non_zero = i;
  99. }
  100. return last_non_zero;
  101. }
  102. static int dnxhd_init_vlc(DNXHDEncContext *ctx)
  103. {
  104. int i, j, level, run;
  105. int max_level = 1<<(ctx->cid_table->bit_depth+2);
  106. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->vlc_codes, max_level*4*sizeof(*ctx->vlc_codes), fail);
  107. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->vlc_bits, max_level*4*sizeof(*ctx->vlc_bits) , fail);
  108. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->run_codes, 63*2, fail);
  109. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->run_bits, 63, fail);
  110. ctx->vlc_codes += max_level*2;
  111. ctx->vlc_bits += max_level*2;
  112. for (level = -max_level; level < max_level; level++) {
  113. for (run = 0; run < 2; run++) {
  114. int index = (level<<1)|run;
  115. int sign, offset = 0, alevel = level;
  116. MASK_ABS(sign, alevel);
  117. if (alevel > 64) {
  118. offset = (alevel-1)>>6;
  119. alevel -= offset<<6;
  120. }
  121. for (j = 0; j < 257; j++) {
  122. if (ctx->cid_table->ac_level[j] >> 1 == alevel &&
  123. (!offset || (ctx->cid_table->ac_flags[j] & 1) && offset) &&
  124. (!run || (ctx->cid_table->ac_flags[j] & 2) && run)) {
  125. av_assert1(!ctx->vlc_codes[index]);
  126. if (alevel) {
  127. ctx->vlc_codes[index] = (ctx->cid_table->ac_codes[j]<<1)|(sign&1);
  128. ctx->vlc_bits [index] = ctx->cid_table->ac_bits[j]+1;
  129. } else {
  130. ctx->vlc_codes[index] = ctx->cid_table->ac_codes[j];
  131. ctx->vlc_bits [index] = ctx->cid_table->ac_bits [j];
  132. }
  133. break;
  134. }
  135. }
  136. av_assert0(!alevel || j < 257);
  137. if (offset) {
  138. ctx->vlc_codes[index] = (ctx->vlc_codes[index]<<ctx->cid_table->index_bits)|offset;
  139. ctx->vlc_bits [index]+= ctx->cid_table->index_bits;
  140. }
  141. }
  142. }
  143. for (i = 0; i < 62; i++) {
  144. int run = ctx->cid_table->run[i];
  145. av_assert0(run < 63);
  146. ctx->run_codes[run] = ctx->cid_table->run_codes[i];
  147. ctx->run_bits [run] = ctx->cid_table->run_bits[i];
  148. }
  149. return 0;
  150. fail:
  151. return -1;
  152. }
  153. static int dnxhd_init_qmat(DNXHDEncContext *ctx, int lbias, int cbias)
  154. {
  155. // init first elem to 1 to avoid div by 0 in convert_matrix
  156. uint16_t weight_matrix[64] = {1,}; // convert_matrix needs uint16_t*
  157. int qscale, i;
  158. const uint8_t *luma_weight_table = ctx->cid_table->luma_weight;
  159. const uint8_t *chroma_weight_table = ctx->cid_table->chroma_weight;
  160. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_l, (ctx->m.avctx->qmax+1) * 64 * sizeof(int), fail);
  161. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_c, (ctx->m.avctx->qmax+1) * 64 * sizeof(int), fail);
  162. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_l16, (ctx->m.avctx->qmax+1) * 64 * 2 * sizeof(uint16_t), fail);
  163. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_c16, (ctx->m.avctx->qmax+1) * 64 * 2 * sizeof(uint16_t), fail);
  164. if (ctx->cid_table->bit_depth == 8) {
  165. for (i = 1; i < 64; i++) {
  166. int j = ctx->m.dsp.idct_permutation[ff_zigzag_direct[i]];
  167. weight_matrix[j] = ctx->cid_table->luma_weight[i];
  168. }
  169. ff_convert_matrix(&ctx->m.dsp, ctx->qmatrix_l, ctx->qmatrix_l16, weight_matrix,
  170. ctx->m.intra_quant_bias, 1, ctx->m.avctx->qmax, 1);
  171. for (i = 1; i < 64; i++) {
  172. int j = ctx->m.dsp.idct_permutation[ff_zigzag_direct[i]];
  173. weight_matrix[j] = ctx->cid_table->chroma_weight[i];
  174. }
  175. ff_convert_matrix(&ctx->m.dsp, ctx->qmatrix_c, ctx->qmatrix_c16, weight_matrix,
  176. ctx->m.intra_quant_bias, 1, ctx->m.avctx->qmax, 1);
  177. for (qscale = 1; qscale <= ctx->m.avctx->qmax; qscale++) {
  178. for (i = 0; i < 64; i++) {
  179. ctx->qmatrix_l [qscale] [i] <<= 2; ctx->qmatrix_c [qscale] [i] <<= 2;
  180. ctx->qmatrix_l16[qscale][0][i] <<= 2; ctx->qmatrix_l16[qscale][1][i] <<= 2;
  181. ctx->qmatrix_c16[qscale][0][i] <<= 2; ctx->qmatrix_c16[qscale][1][i] <<= 2;
  182. }
  183. }
  184. } else {
  185. // 10-bit
  186. for (qscale = 1; qscale <= ctx->m.avctx->qmax; qscale++) {
  187. for (i = 1; i < 64; i++) {
  188. int j = ctx->m.dsp.idct_permutation[ff_zigzag_direct[i]];
  189. // The quantization formula from the VC-3 standard is:
  190. // quantized = sign(block[i]) * floor(abs(block[i]/s) * p / (qscale * weight_table[i]))
  191. // Where p is 32 for 8-bit samples and 8 for 10-bit ones.
  192. // The s factor compensates scaling of DCT coefficients done by the DCT routines,
  193. // and therefore is not present in standard. It's 8 for 8-bit samples and 4 for 10-bit ones.
  194. // We want values of ctx->qtmatrix_l and ctx->qtmatrix_r to be:
  195. // ((1 << DNX10BIT_QMAT_SHIFT) * (p / s)) / (qscale * weight_table[i])
  196. // For 10-bit samples, p / s == 2
  197. ctx->qmatrix_l[qscale][j] = (1 << (DNX10BIT_QMAT_SHIFT + 1)) / (qscale * luma_weight_table[i]);
  198. ctx->qmatrix_c[qscale][j] = (1 << (DNX10BIT_QMAT_SHIFT + 1)) / (qscale * chroma_weight_table[i]);
  199. }
  200. }
  201. }
  202. ctx->m.q_chroma_intra_matrix16 = ctx->qmatrix_c16;
  203. ctx->m.q_chroma_intra_matrix = ctx->qmatrix_c;
  204. ctx->m.q_intra_matrix16 = ctx->qmatrix_l16;
  205. ctx->m.q_intra_matrix = ctx->qmatrix_l;
  206. return 0;
  207. fail:
  208. return -1;
  209. }
  210. static int dnxhd_init_rc(DNXHDEncContext *ctx)
  211. {
  212. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_rc, 8160*ctx->m.avctx->qmax*sizeof(RCEntry), fail);
  213. if (ctx->m.avctx->mb_decision != FF_MB_DECISION_RD)
  214. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_cmp, ctx->m.mb_num*sizeof(RCCMPEntry), fail);
  215. ctx->frame_bits = (ctx->cid_table->coding_unit_size - 640 - 4 - ctx->min_padding) * 8;
  216. ctx->qscale = 1;
  217. ctx->lambda = 2<<LAMBDA_FRAC_BITS; // qscale 2
  218. return 0;
  219. fail:
  220. return -1;
  221. }
  222. static int dnxhd_encode_init(AVCodecContext *avctx)
  223. {
  224. DNXHDEncContext *ctx = avctx->priv_data;
  225. int i, index, bit_depth;
  226. switch (avctx->pix_fmt) {
  227. case AV_PIX_FMT_YUV422P:
  228. bit_depth = 8;
  229. break;
  230. case AV_PIX_FMT_YUV422P10:
  231. bit_depth = 10;
  232. break;
  233. default:
  234. av_log(avctx, AV_LOG_ERROR, "pixel format is incompatible with DNxHD\n");
  235. return -1;
  236. }
  237. ctx->cid = ff_dnxhd_find_cid(avctx, bit_depth);
  238. if (!ctx->cid) {
  239. av_log(avctx, AV_LOG_ERROR, "video parameters incompatible with DNxHD\n");
  240. return -1;
  241. }
  242. av_log(avctx, AV_LOG_DEBUG, "cid %d\n", ctx->cid);
  243. index = ff_dnxhd_get_cid_table(ctx->cid);
  244. av_assert0(index >= 0);
  245. ctx->cid_table = &ff_dnxhd_cid_table[index];
  246. ctx->m.avctx = avctx;
  247. ctx->m.mb_intra = 1;
  248. ctx->m.h263_aic = 1;
  249. avctx->bits_per_raw_sample = ctx->cid_table->bit_depth;
  250. ff_dct_common_init(&ctx->m);
  251. ff_dct_encode_init(&ctx->m);
  252. if (!ctx->m.dct_quantize)
  253. ctx->m.dct_quantize = ff_dct_quantize_c;
  254. if (ctx->cid_table->bit_depth == 10) {
  255. ctx->m.dct_quantize = dnxhd_10bit_dct_quantize;
  256. ctx->get_pixels_8x4_sym = dnxhd_10bit_get_pixels_8x4_sym;
  257. ctx->block_width_l2 = 4;
  258. } else {
  259. ctx->get_pixels_8x4_sym = dnxhd_8bit_get_pixels_8x4_sym;
  260. ctx->block_width_l2 = 3;
  261. }
  262. if (ARCH_X86)
  263. ff_dnxhdenc_init_x86(ctx);
  264. ctx->m.mb_height = (avctx->height + 15) / 16;
  265. ctx->m.mb_width = (avctx->width + 15) / 16;
  266. if (avctx->flags & CODEC_FLAG_INTERLACED_DCT) {
  267. ctx->interlaced = 1;
  268. ctx->m.mb_height /= 2;
  269. }
  270. ctx->m.mb_num = ctx->m.mb_height * ctx->m.mb_width;
  271. if (avctx->intra_quant_bias != FF_DEFAULT_QUANT_BIAS)
  272. ctx->m.intra_quant_bias = avctx->intra_quant_bias;
  273. if (dnxhd_init_qmat(ctx, ctx->m.intra_quant_bias, 0) < 0) // XXX tune lbias/cbias
  274. return -1;
  275. // Avid Nitris hardware decoder requires a minimum amount of padding in the coding unit payload
  276. if (ctx->nitris_compat)
  277. ctx->min_padding = 1600;
  278. if (dnxhd_init_vlc(ctx) < 0)
  279. return -1;
  280. if (dnxhd_init_rc(ctx) < 0)
  281. return -1;
  282. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->slice_size, ctx->m.mb_height*sizeof(uint32_t), fail);
  283. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->slice_offs, ctx->m.mb_height*sizeof(uint32_t), fail);
  284. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_bits, ctx->m.mb_num *sizeof(uint16_t), fail);
  285. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_qscale, ctx->m.mb_num *sizeof(uint8_t), fail);
  286. ctx->frame.key_frame = 1;
  287. ctx->frame.pict_type = AV_PICTURE_TYPE_I;
  288. ctx->m.avctx->coded_frame = &ctx->frame;
  289. if (avctx->thread_count > MAX_THREADS) {
  290. av_log(avctx, AV_LOG_ERROR, "too many threads\n");
  291. return -1;
  292. }
  293. ctx->thread[0] = ctx;
  294. for (i = 1; i < avctx->thread_count; i++) {
  295. ctx->thread[i] = av_malloc(sizeof(DNXHDEncContext));
  296. memcpy(ctx->thread[i], ctx, sizeof(DNXHDEncContext));
  297. }
  298. return 0;
  299. fail: //for FF_ALLOCZ_OR_GOTO
  300. return -1;
  301. }
  302. static int dnxhd_write_header(AVCodecContext *avctx, uint8_t *buf)
  303. {
  304. DNXHDEncContext *ctx = avctx->priv_data;
  305. const uint8_t header_prefix[5] = { 0x00,0x00,0x02,0x80,0x01 };
  306. memset(buf, 0, 640);
  307. memcpy(buf, header_prefix, 5);
  308. buf[5] = ctx->interlaced ? ctx->cur_field+2 : 0x01;
  309. buf[6] = 0x80; // crc flag off
  310. buf[7] = 0xa0; // reserved
  311. AV_WB16(buf + 0x18, avctx->height>>ctx->interlaced); // ALPF
  312. AV_WB16(buf + 0x1a, avctx->width); // SPL
  313. AV_WB16(buf + 0x1d, avctx->height>>ctx->interlaced); // NAL
  314. buf[0x21] = ctx->cid_table->bit_depth == 10 ? 0x58 : 0x38;
  315. buf[0x22] = 0x88 + (ctx->interlaced<<2);
  316. AV_WB32(buf + 0x28, ctx->cid); // CID
  317. buf[0x2c] = ctx->interlaced ? 0 : 0x80;
  318. buf[0x5f] = 0x01; // UDL
  319. buf[0x167] = 0x02; // reserved
  320. AV_WB16(buf + 0x16a, ctx->m.mb_height * 4 + 4); // MSIPS
  321. buf[0x16d] = ctx->m.mb_height; // Ns
  322. buf[0x16f] = 0x10; // reserved
  323. ctx->msip = buf + 0x170;
  324. return 0;
  325. }
  326. static av_always_inline void dnxhd_encode_dc(DNXHDEncContext *ctx, int diff)
  327. {
  328. int nbits;
  329. if (diff < 0) {
  330. nbits = av_log2_16bit(-2*diff);
  331. diff--;
  332. } else {
  333. nbits = av_log2_16bit(2*diff);
  334. }
  335. put_bits(&ctx->m.pb, ctx->cid_table->dc_bits[nbits] + nbits,
  336. (ctx->cid_table->dc_codes[nbits]<<nbits) + (diff & ((1 << nbits) - 1)));
  337. }
  338. static av_always_inline void dnxhd_encode_block(DNXHDEncContext *ctx, DCTELEM *block, int last_index, int n)
  339. {
  340. int last_non_zero = 0;
  341. int slevel, i, j;
  342. dnxhd_encode_dc(ctx, block[0] - ctx->m.last_dc[n]);
  343. ctx->m.last_dc[n] = block[0];
  344. for (i = 1; i <= last_index; i++) {
  345. j = ctx->m.intra_scantable.permutated[i];
  346. slevel = block[j];
  347. if (slevel) {
  348. int run_level = i - last_non_zero - 1;
  349. int rlevel = (slevel<<1)|!!run_level;
  350. put_bits(&ctx->m.pb, ctx->vlc_bits[rlevel], ctx->vlc_codes[rlevel]);
  351. if (run_level)
  352. put_bits(&ctx->m.pb, ctx->run_bits[run_level], ctx->run_codes[run_level]);
  353. last_non_zero = i;
  354. }
  355. }
  356. put_bits(&ctx->m.pb, ctx->vlc_bits[0], ctx->vlc_codes[0]); // EOB
  357. }
  358. static av_always_inline void dnxhd_unquantize_c(DNXHDEncContext *ctx, DCTELEM *block, int n, int qscale, int last_index)
  359. {
  360. const uint8_t *weight_matrix;
  361. int level;
  362. int i;
  363. weight_matrix = (n&2) ? ctx->cid_table->chroma_weight : ctx->cid_table->luma_weight;
  364. for (i = 1; i <= last_index; i++) {
  365. int j = ctx->m.intra_scantable.permutated[i];
  366. level = block[j];
  367. if (level) {
  368. if (level < 0) {
  369. level = (1-2*level) * qscale * weight_matrix[i];
  370. if (ctx->cid_table->bit_depth == 10) {
  371. if (weight_matrix[i] != 8)
  372. level += 8;
  373. level >>= 4;
  374. } else {
  375. if (weight_matrix[i] != 32)
  376. level += 32;
  377. level >>= 6;
  378. }
  379. level = -level;
  380. } else {
  381. level = (2*level+1) * qscale * weight_matrix[i];
  382. if (ctx->cid_table->bit_depth == 10) {
  383. if (weight_matrix[i] != 8)
  384. level += 8;
  385. level >>= 4;
  386. } else {
  387. if (weight_matrix[i] != 32)
  388. level += 32;
  389. level >>= 6;
  390. }
  391. }
  392. block[j] = level;
  393. }
  394. }
  395. }
  396. static av_always_inline int dnxhd_ssd_block(DCTELEM *qblock, DCTELEM *block)
  397. {
  398. int score = 0;
  399. int i;
  400. for (i = 0; i < 64; i++)
  401. score += (block[i] - qblock[i]) * (block[i] - qblock[i]);
  402. return score;
  403. }
  404. static av_always_inline int dnxhd_calc_ac_bits(DNXHDEncContext *ctx, DCTELEM *block, int last_index)
  405. {
  406. int last_non_zero = 0;
  407. int bits = 0;
  408. int i, j, level;
  409. for (i = 1; i <= last_index; i++) {
  410. j = ctx->m.intra_scantable.permutated[i];
  411. level = block[j];
  412. if (level) {
  413. int run_level = i - last_non_zero - 1;
  414. bits += ctx->vlc_bits[(level<<1)|!!run_level]+ctx->run_bits[run_level];
  415. last_non_zero = i;
  416. }
  417. }
  418. return bits;
  419. }
  420. static av_always_inline void dnxhd_get_blocks(DNXHDEncContext *ctx, int mb_x, int mb_y)
  421. {
  422. const int bs = ctx->block_width_l2;
  423. const int bw = 1 << bs;
  424. const uint8_t *ptr_y = ctx->thread[0]->src[0] + ((mb_y << 4) * ctx->m.linesize) + (mb_x << bs+1);
  425. const uint8_t *ptr_u = ctx->thread[0]->src[1] + ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << bs);
  426. const uint8_t *ptr_v = ctx->thread[0]->src[2] + ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << bs);
  427. DSPContext *dsp = &ctx->m.dsp;
  428. dsp->get_pixels(ctx->blocks[0], ptr_y, ctx->m.linesize);
  429. dsp->get_pixels(ctx->blocks[1], ptr_y + bw, ctx->m.linesize);
  430. dsp->get_pixels(ctx->blocks[2], ptr_u, ctx->m.uvlinesize);
  431. dsp->get_pixels(ctx->blocks[3], ptr_v, ctx->m.uvlinesize);
  432. if (mb_y+1 == ctx->m.mb_height && ctx->m.avctx->height == 1080) {
  433. if (ctx->interlaced) {
  434. ctx->get_pixels_8x4_sym(ctx->blocks[4], ptr_y + ctx->dct_y_offset, ctx->m.linesize);
  435. ctx->get_pixels_8x4_sym(ctx->blocks[5], ptr_y + ctx->dct_y_offset + bw, ctx->m.linesize);
  436. ctx->get_pixels_8x4_sym(ctx->blocks[6], ptr_u + ctx->dct_uv_offset, ctx->m.uvlinesize);
  437. ctx->get_pixels_8x4_sym(ctx->blocks[7], ptr_v + ctx->dct_uv_offset, ctx->m.uvlinesize);
  438. } else {
  439. dsp->clear_block(ctx->blocks[4]);
  440. dsp->clear_block(ctx->blocks[5]);
  441. dsp->clear_block(ctx->blocks[6]);
  442. dsp->clear_block(ctx->blocks[7]);
  443. }
  444. } else {
  445. dsp->get_pixels(ctx->blocks[4], ptr_y + ctx->dct_y_offset, ctx->m.linesize);
  446. dsp->get_pixels(ctx->blocks[5], ptr_y + ctx->dct_y_offset + bw, ctx->m.linesize);
  447. dsp->get_pixels(ctx->blocks[6], ptr_u + ctx->dct_uv_offset, ctx->m.uvlinesize);
  448. dsp->get_pixels(ctx->blocks[7], ptr_v + ctx->dct_uv_offset, ctx->m.uvlinesize);
  449. }
  450. }
  451. static av_always_inline int dnxhd_switch_matrix(DNXHDEncContext *ctx, int i)
  452. {
  453. const static uint8_t component[8]={0,0,1,2,0,0,1,2};
  454. return component[i];
  455. }
  456. static int dnxhd_calc_bits_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr)
  457. {
  458. DNXHDEncContext *ctx = avctx->priv_data;
  459. int mb_y = jobnr, mb_x;
  460. int qscale = ctx->qscale;
  461. LOCAL_ALIGNED_16(DCTELEM, block, [64]);
  462. ctx = ctx->thread[threadnr];
  463. ctx->m.last_dc[0] =
  464. ctx->m.last_dc[1] =
  465. ctx->m.last_dc[2] = 1 << (ctx->cid_table->bit_depth + 2);
  466. for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
  467. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  468. int ssd = 0;
  469. int ac_bits = 0;
  470. int dc_bits = 0;
  471. int i;
  472. dnxhd_get_blocks(ctx, mb_x, mb_y);
  473. for (i = 0; i < 8; i++) {
  474. DCTELEM *src_block = ctx->blocks[i];
  475. int overflow, nbits, diff, last_index;
  476. int n = dnxhd_switch_matrix(ctx, i);
  477. memcpy(block, src_block, 64*sizeof(*block));
  478. last_index = ctx->m.dct_quantize(&ctx->m, block, 4&(2*i), qscale, &overflow);
  479. ac_bits += dnxhd_calc_ac_bits(ctx, block, last_index);
  480. diff = block[0] - ctx->m.last_dc[n];
  481. if (diff < 0) nbits = av_log2_16bit(-2*diff);
  482. else nbits = av_log2_16bit( 2*diff);
  483. av_assert1(nbits < ctx->cid_table->bit_depth + 4);
  484. dc_bits += ctx->cid_table->dc_bits[nbits] + nbits;
  485. ctx->m.last_dc[n] = block[0];
  486. if (avctx->mb_decision == FF_MB_DECISION_RD || !RC_VARIANCE) {
  487. dnxhd_unquantize_c(ctx, block, i, qscale, last_index);
  488. ctx->m.dsp.idct(block);
  489. ssd += dnxhd_ssd_block(block, src_block);
  490. }
  491. }
  492. ctx->mb_rc[qscale][mb].ssd = ssd;
  493. ctx->mb_rc[qscale][mb].bits = ac_bits+dc_bits+12+8*ctx->vlc_bits[0];
  494. }
  495. return 0;
  496. }
  497. static int dnxhd_encode_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr)
  498. {
  499. DNXHDEncContext *ctx = avctx->priv_data;
  500. int mb_y = jobnr, mb_x;
  501. ctx = ctx->thread[threadnr];
  502. init_put_bits(&ctx->m.pb, (uint8_t *)arg + 640 + ctx->slice_offs[jobnr], ctx->slice_size[jobnr]);
  503. ctx->m.last_dc[0] =
  504. ctx->m.last_dc[1] =
  505. ctx->m.last_dc[2] = 1 << (ctx->cid_table->bit_depth + 2);
  506. for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
  507. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  508. int qscale = ctx->mb_qscale[mb];
  509. int i;
  510. put_bits(&ctx->m.pb, 12, qscale<<1);
  511. dnxhd_get_blocks(ctx, mb_x, mb_y);
  512. for (i = 0; i < 8; i++) {
  513. DCTELEM *block = ctx->blocks[i];
  514. int overflow, n = dnxhd_switch_matrix(ctx, i);
  515. int last_index = ctx->m.dct_quantize(&ctx->m, block, 4&(2*i), qscale, &overflow);
  516. //START_TIMER;
  517. dnxhd_encode_block(ctx, block, last_index, n);
  518. //STOP_TIMER("encode_block");
  519. }
  520. }
  521. if (put_bits_count(&ctx->m.pb)&31)
  522. put_bits(&ctx->m.pb, 32-(put_bits_count(&ctx->m.pb)&31), 0);
  523. flush_put_bits(&ctx->m.pb);
  524. return 0;
  525. }
  526. static void dnxhd_setup_threads_slices(DNXHDEncContext *ctx)
  527. {
  528. int mb_y, mb_x;
  529. int offset = 0;
  530. for (mb_y = 0; mb_y < ctx->m.mb_height; mb_y++) {
  531. int thread_size;
  532. ctx->slice_offs[mb_y] = offset;
  533. ctx->slice_size[mb_y] = 0;
  534. for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
  535. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  536. ctx->slice_size[mb_y] += ctx->mb_bits[mb];
  537. }
  538. ctx->slice_size[mb_y] = (ctx->slice_size[mb_y]+31)&~31;
  539. ctx->slice_size[mb_y] >>= 3;
  540. thread_size = ctx->slice_size[mb_y];
  541. offset += thread_size;
  542. }
  543. }
  544. static int dnxhd_mb_var_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr)
  545. {
  546. DNXHDEncContext *ctx = avctx->priv_data;
  547. int mb_y = jobnr, mb_x;
  548. ctx = ctx->thread[threadnr];
  549. if (ctx->cid_table->bit_depth == 8) {
  550. uint8_t *pix = ctx->thread[0]->src[0] + ((mb_y<<4) * ctx->m.linesize);
  551. for (mb_x = 0; mb_x < ctx->m.mb_width; ++mb_x, pix += 16) {
  552. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  553. int sum = ctx->m.dsp.pix_sum(pix, ctx->m.linesize);
  554. int varc = (ctx->m.dsp.pix_norm1(pix, ctx->m.linesize) - (((unsigned)sum*sum)>>8)+128)>>8;
  555. ctx->mb_cmp[mb].value = varc;
  556. ctx->mb_cmp[mb].mb = mb;
  557. }
  558. } else { // 10-bit
  559. int const linesize = ctx->m.linesize >> 1;
  560. for (mb_x = 0; mb_x < ctx->m.mb_width; ++mb_x) {
  561. uint16_t *pix = (uint16_t*)ctx->thread[0]->src[0] + ((mb_y << 4) * linesize) + (mb_x << 4);
  562. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  563. int sum = 0;
  564. int sqsum = 0;
  565. int mean, sqmean;
  566. int i, j;
  567. // Macroblocks are 16x16 pixels, unlike DCT blocks which are 8x8.
  568. for (i = 0; i < 16; ++i) {
  569. for (j = 0; j < 16; ++j) {
  570. // Turn 16-bit pixels into 10-bit ones.
  571. int const sample = (unsigned)pix[j] >> 6;
  572. sum += sample;
  573. sqsum += sample * sample;
  574. // 2^10 * 2^10 * 16 * 16 = 2^28, which is less than INT_MAX
  575. }
  576. pix += linesize;
  577. }
  578. mean = sum >> 8; // 16*16 == 2^8
  579. sqmean = sqsum >> 8;
  580. ctx->mb_cmp[mb].value = sqmean - mean * mean;
  581. ctx->mb_cmp[mb].mb = mb;
  582. }
  583. }
  584. return 0;
  585. }
  586. static int dnxhd_encode_rdo(AVCodecContext *avctx, DNXHDEncContext *ctx)
  587. {
  588. int lambda, up_step, down_step;
  589. int last_lower = INT_MAX, last_higher = 0;
  590. int x, y, q;
  591. for (q = 1; q < avctx->qmax; q++) {
  592. ctx->qscale = q;
  593. avctx->execute2(avctx, dnxhd_calc_bits_thread, NULL, NULL, ctx->m.mb_height);
  594. }
  595. up_step = down_step = 2<<LAMBDA_FRAC_BITS;
  596. lambda = ctx->lambda;
  597. for (;;) {
  598. int bits = 0;
  599. int end = 0;
  600. if (lambda == last_higher) {
  601. lambda++;
  602. end = 1; // need to set final qscales/bits
  603. }
  604. for (y = 0; y < ctx->m.mb_height; y++) {
  605. for (x = 0; x < ctx->m.mb_width; x++) {
  606. unsigned min = UINT_MAX;
  607. int qscale = 1;
  608. int mb = y*ctx->m.mb_width+x;
  609. for (q = 1; q < avctx->qmax; q++) {
  610. unsigned score = ctx->mb_rc[q][mb].bits*lambda+
  611. ((unsigned)ctx->mb_rc[q][mb].ssd<<LAMBDA_FRAC_BITS);
  612. if (score < min) {
  613. min = score;
  614. qscale = q;
  615. }
  616. }
  617. bits += ctx->mb_rc[qscale][mb].bits;
  618. ctx->mb_qscale[mb] = qscale;
  619. ctx->mb_bits[mb] = ctx->mb_rc[qscale][mb].bits;
  620. }
  621. bits = (bits+31)&~31; // padding
  622. if (bits > ctx->frame_bits)
  623. break;
  624. }
  625. //av_dlog(ctx->m.avctx, "lambda %d, up %u, down %u, bits %d, frame %d\n",
  626. // lambda, last_higher, last_lower, bits, ctx->frame_bits);
  627. if (end) {
  628. if (bits > ctx->frame_bits)
  629. return -1;
  630. break;
  631. }
  632. if (bits < ctx->frame_bits) {
  633. last_lower = FFMIN(lambda, last_lower);
  634. if (last_higher != 0)
  635. lambda = (lambda+last_higher)>>1;
  636. else
  637. lambda -= down_step;
  638. down_step = FFMIN((int64_t)down_step*5, INT_MAX);
  639. up_step = 1<<LAMBDA_FRAC_BITS;
  640. lambda = FFMAX(1, lambda);
  641. if (lambda == last_lower)
  642. break;
  643. } else {
  644. last_higher = FFMAX(lambda, last_higher);
  645. if (last_lower != INT_MAX)
  646. lambda = (lambda+last_lower)>>1;
  647. else if ((int64_t)lambda + up_step > INT_MAX)
  648. return -1;
  649. else
  650. lambda += up_step;
  651. up_step = FFMIN((int64_t)up_step*5, INT_MAX);
  652. down_step = 1<<LAMBDA_FRAC_BITS;
  653. }
  654. }
  655. //av_dlog(ctx->m.avctx, "out lambda %d\n", lambda);
  656. ctx->lambda = lambda;
  657. return 0;
  658. }
  659. static int dnxhd_find_qscale(DNXHDEncContext *ctx)
  660. {
  661. int bits = 0;
  662. int up_step = 1;
  663. int down_step = 1;
  664. int last_higher = 0;
  665. int last_lower = INT_MAX;
  666. int qscale;
  667. int x, y;
  668. qscale = ctx->qscale;
  669. for (;;) {
  670. bits = 0;
  671. ctx->qscale = qscale;
  672. // XXX avoid recalculating bits
  673. ctx->m.avctx->execute2(ctx->m.avctx, dnxhd_calc_bits_thread, NULL, NULL, ctx->m.mb_height);
  674. for (y = 0; y < ctx->m.mb_height; y++) {
  675. for (x = 0; x < ctx->m.mb_width; x++)
  676. bits += ctx->mb_rc[qscale][y*ctx->m.mb_width+x].bits;
  677. bits = (bits+31)&~31; // padding
  678. if (bits > ctx->frame_bits)
  679. break;
  680. }
  681. //av_dlog(ctx->m.avctx, "%d, qscale %d, bits %d, frame %d, higher %d, lower %d\n",
  682. // ctx->m.avctx->frame_number, qscale, bits, ctx->frame_bits, last_higher, last_lower);
  683. if (bits < ctx->frame_bits) {
  684. if (qscale == 1)
  685. return 1;
  686. if (last_higher == qscale - 1) {
  687. qscale = last_higher;
  688. break;
  689. }
  690. last_lower = FFMIN(qscale, last_lower);
  691. if (last_higher != 0)
  692. qscale = (qscale+last_higher)>>1;
  693. else
  694. qscale -= down_step++;
  695. if (qscale < 1)
  696. qscale = 1;
  697. up_step = 1;
  698. } else {
  699. if (last_lower == qscale + 1)
  700. break;
  701. last_higher = FFMAX(qscale, last_higher);
  702. if (last_lower != INT_MAX)
  703. qscale = (qscale+last_lower)>>1;
  704. else
  705. qscale += up_step++;
  706. down_step = 1;
  707. if (qscale >= ctx->m.avctx->qmax)
  708. return -1;
  709. }
  710. }
  711. //av_dlog(ctx->m.avctx, "out qscale %d\n", qscale);
  712. ctx->qscale = qscale;
  713. return 0;
  714. }
  715. #define BUCKET_BITS 8
  716. #define RADIX_PASSES 4
  717. #define NBUCKETS (1 << BUCKET_BITS)
  718. static inline int get_bucket(int value, int shift)
  719. {
  720. value >>= shift;
  721. value &= NBUCKETS - 1;
  722. return NBUCKETS - 1 - value;
  723. }
  724. static void radix_count(const RCCMPEntry *data, int size, int buckets[RADIX_PASSES][NBUCKETS])
  725. {
  726. int i, j;
  727. memset(buckets, 0, sizeof(buckets[0][0]) * RADIX_PASSES * NBUCKETS);
  728. for (i = 0; i < size; i++) {
  729. int v = data[i].value;
  730. for (j = 0; j < RADIX_PASSES; j++) {
  731. buckets[j][get_bucket(v, 0)]++;
  732. v >>= BUCKET_BITS;
  733. }
  734. av_assert1(!v);
  735. }
  736. for (j = 0; j < RADIX_PASSES; j++) {
  737. int offset = size;
  738. for (i = NBUCKETS - 1; i >= 0; i--)
  739. buckets[j][i] = offset -= buckets[j][i];
  740. av_assert1(!buckets[j][0]);
  741. }
  742. }
  743. static void radix_sort_pass(RCCMPEntry *dst, const RCCMPEntry *data, int size, int buckets[NBUCKETS], int pass)
  744. {
  745. int shift = pass * BUCKET_BITS;
  746. int i;
  747. for (i = 0; i < size; i++) {
  748. int v = get_bucket(data[i].value, shift);
  749. int pos = buckets[v]++;
  750. dst[pos] = data[i];
  751. }
  752. }
  753. static void radix_sort(RCCMPEntry *data, int size)
  754. {
  755. int buckets[RADIX_PASSES][NBUCKETS];
  756. RCCMPEntry *tmp = av_malloc(sizeof(*tmp) * size);
  757. radix_count(data, size, buckets);
  758. radix_sort_pass(tmp, data, size, buckets[0], 0);
  759. radix_sort_pass(data, tmp, size, buckets[1], 1);
  760. if (buckets[2][NBUCKETS - 1] || buckets[3][NBUCKETS - 1]) {
  761. radix_sort_pass(tmp, data, size, buckets[2], 2);
  762. radix_sort_pass(data, tmp, size, buckets[3], 3);
  763. }
  764. av_free(tmp);
  765. }
  766. static int dnxhd_encode_fast(AVCodecContext *avctx, DNXHDEncContext *ctx)
  767. {
  768. int max_bits = 0;
  769. int ret, x, y;
  770. if ((ret = dnxhd_find_qscale(ctx)) < 0)
  771. return -1;
  772. for (y = 0; y < ctx->m.mb_height; y++) {
  773. for (x = 0; x < ctx->m.mb_width; x++) {
  774. int mb = y*ctx->m.mb_width+x;
  775. int delta_bits;
  776. ctx->mb_qscale[mb] = ctx->qscale;
  777. ctx->mb_bits[mb] = ctx->mb_rc[ctx->qscale][mb].bits;
  778. max_bits += ctx->mb_rc[ctx->qscale][mb].bits;
  779. if (!RC_VARIANCE) {
  780. delta_bits = ctx->mb_rc[ctx->qscale][mb].bits-ctx->mb_rc[ctx->qscale+1][mb].bits;
  781. ctx->mb_cmp[mb].mb = mb;
  782. ctx->mb_cmp[mb].value = delta_bits ?
  783. ((ctx->mb_rc[ctx->qscale][mb].ssd-ctx->mb_rc[ctx->qscale+1][mb].ssd)*100)/delta_bits
  784. : INT_MIN; //avoid increasing qscale
  785. }
  786. }
  787. max_bits += 31; //worst padding
  788. }
  789. if (!ret) {
  790. if (RC_VARIANCE)
  791. avctx->execute2(avctx, dnxhd_mb_var_thread, NULL, NULL, ctx->m.mb_height);
  792. radix_sort(ctx->mb_cmp, ctx->m.mb_num);
  793. for (x = 0; x < ctx->m.mb_num && max_bits > ctx->frame_bits; x++) {
  794. int mb = ctx->mb_cmp[x].mb;
  795. max_bits -= ctx->mb_rc[ctx->qscale][mb].bits - ctx->mb_rc[ctx->qscale+1][mb].bits;
  796. ctx->mb_qscale[mb] = ctx->qscale+1;
  797. ctx->mb_bits[mb] = ctx->mb_rc[ctx->qscale+1][mb].bits;
  798. }
  799. }
  800. return 0;
  801. }
  802. static void dnxhd_load_picture(DNXHDEncContext *ctx, const AVFrame *frame)
  803. {
  804. int i;
  805. for (i = 0; i < 3; i++) {
  806. ctx->frame.data[i] = frame->data[i];
  807. ctx->frame.linesize[i] = frame->linesize[i];
  808. }
  809. for (i = 0; i < ctx->m.avctx->thread_count; i++) {
  810. ctx->thread[i]->m.linesize = ctx->frame.linesize[0]<<ctx->interlaced;
  811. ctx->thread[i]->m.uvlinesize = ctx->frame.linesize[1]<<ctx->interlaced;
  812. ctx->thread[i]->dct_y_offset = ctx->m.linesize *8;
  813. ctx->thread[i]->dct_uv_offset = ctx->m.uvlinesize*8;
  814. }
  815. ctx->frame.interlaced_frame = frame->interlaced_frame;
  816. ctx->cur_field = frame->interlaced_frame && !frame->top_field_first;
  817. }
  818. static int dnxhd_encode_picture(AVCodecContext *avctx, AVPacket *pkt,
  819. const AVFrame *frame, int *got_packet)
  820. {
  821. DNXHDEncContext *ctx = avctx->priv_data;
  822. int first_field = 1;
  823. int offset, i, ret;
  824. uint8_t *buf;
  825. if ((ret = ff_alloc_packet2(avctx, pkt, ctx->cid_table->frame_size)) < 0)
  826. return ret;
  827. buf = pkt->data;
  828. dnxhd_load_picture(ctx, frame);
  829. encode_coding_unit:
  830. for (i = 0; i < 3; i++) {
  831. ctx->src[i] = ctx->frame.data[i];
  832. if (ctx->interlaced && ctx->cur_field)
  833. ctx->src[i] += ctx->frame.linesize[i];
  834. }
  835. dnxhd_write_header(avctx, buf);
  836. if (avctx->mb_decision == FF_MB_DECISION_RD)
  837. ret = dnxhd_encode_rdo(avctx, ctx);
  838. else
  839. ret = dnxhd_encode_fast(avctx, ctx);
  840. if (ret < 0) {
  841. av_log(avctx, AV_LOG_ERROR,
  842. "picture could not fit ratecontrol constraints, increase qmax\n");
  843. return -1;
  844. }
  845. dnxhd_setup_threads_slices(ctx);
  846. offset = 0;
  847. for (i = 0; i < ctx->m.mb_height; i++) {
  848. AV_WB32(ctx->msip + i * 4, offset);
  849. offset += ctx->slice_size[i];
  850. av_assert1(!(ctx->slice_size[i] & 3));
  851. }
  852. avctx->execute2(avctx, dnxhd_encode_thread, buf, NULL, ctx->m.mb_height);
  853. av_assert1(640 + offset + 4 <= ctx->cid_table->coding_unit_size);
  854. memset(buf + 640 + offset, 0, ctx->cid_table->coding_unit_size - 4 - offset - 640);
  855. AV_WB32(buf + ctx->cid_table->coding_unit_size - 4, 0x600DC0DE); // EOF
  856. if (ctx->interlaced && first_field) {
  857. first_field = 0;
  858. ctx->cur_field ^= 1;
  859. buf += ctx->cid_table->coding_unit_size;
  860. goto encode_coding_unit;
  861. }
  862. ctx->frame.quality = ctx->qscale*FF_QP2LAMBDA;
  863. pkt->flags |= AV_PKT_FLAG_KEY;
  864. *got_packet = 1;
  865. return 0;
  866. }
  867. static int dnxhd_encode_end(AVCodecContext *avctx)
  868. {
  869. DNXHDEncContext *ctx = avctx->priv_data;
  870. int max_level = 1<<(ctx->cid_table->bit_depth+2);
  871. int i;
  872. av_free(ctx->vlc_codes-max_level*2);
  873. av_free(ctx->vlc_bits -max_level*2);
  874. av_freep(&ctx->run_codes);
  875. av_freep(&ctx->run_bits);
  876. av_freep(&ctx->mb_bits);
  877. av_freep(&ctx->mb_qscale);
  878. av_freep(&ctx->mb_rc);
  879. av_freep(&ctx->mb_cmp);
  880. av_freep(&ctx->slice_size);
  881. av_freep(&ctx->slice_offs);
  882. av_freep(&ctx->qmatrix_c);
  883. av_freep(&ctx->qmatrix_l);
  884. av_freep(&ctx->qmatrix_c16);
  885. av_freep(&ctx->qmatrix_l16);
  886. for (i = 1; i < avctx->thread_count; i++)
  887. av_freep(&ctx->thread[i]);
  888. return 0;
  889. }
  890. static const AVCodecDefault dnxhd_defaults[] = {
  891. { "qmax", "1024" }, /* Maximum quantization scale factor allowed for VC-3 */
  892. { NULL },
  893. };
  894. AVCodec ff_dnxhd_encoder = {
  895. .name = "dnxhd",
  896. .type = AVMEDIA_TYPE_VIDEO,
  897. .id = AV_CODEC_ID_DNXHD,
  898. .priv_data_size = sizeof(DNXHDEncContext),
  899. .init = dnxhd_encode_init,
  900. .encode2 = dnxhd_encode_picture,
  901. .close = dnxhd_encode_end,
  902. .capabilities = CODEC_CAP_SLICE_THREADS,
  903. .pix_fmts = (const enum AVPixelFormat[]){ AV_PIX_FMT_YUV422P,
  904. AV_PIX_FMT_YUV422P10,
  905. AV_PIX_FMT_NONE },
  906. .long_name = NULL_IF_CONFIG_SMALL("VC3/DNxHD"),
  907. .priv_class = &class,
  908. .defaults = dnxhd_defaults,
  909. };