You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1284 lines
47KB

  1. /*
  2. * AMR wideband decoder
  3. * Copyright (c) 2010 Marcelo Galvao Povoa
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A particular PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * AMR wideband decoder
  24. */
  25. #include "libavutil/audioconvert.h"
  26. #include "libavutil/common.h"
  27. #include "libavutil/lfg.h"
  28. #include "avcodec.h"
  29. #include "dsputil.h"
  30. #include "lsp.h"
  31. #include "celp_filters.h"
  32. #include "celp_math.h"
  33. #include "acelp_filters.h"
  34. #include "acelp_vectors.h"
  35. #include "acelp_pitch_delay.h"
  36. #define AMR_USE_16BIT_TABLES
  37. #include "amr.h"
  38. #include "amrwbdata.h"
  39. #include "mips/amrwbdec_mips.h"
  40. typedef struct {
  41. AVFrame avframe; ///< AVFrame for decoded samples
  42. AMRWBFrame frame; ///< AMRWB parameters decoded from bitstream
  43. enum Mode fr_cur_mode; ///< mode index of current frame
  44. uint8_t fr_quality; ///< frame quality index (FQI)
  45. float isf_cur[LP_ORDER]; ///< working ISF vector from current frame
  46. float isf_q_past[LP_ORDER]; ///< quantized ISF vector of the previous frame
  47. float isf_past_final[LP_ORDER]; ///< final processed ISF vector of the previous frame
  48. double isp[4][LP_ORDER]; ///< ISP vectors from current frame
  49. double isp_sub4_past[LP_ORDER]; ///< ISP vector for the 4th subframe of the previous frame
  50. float lp_coef[4][LP_ORDER]; ///< Linear Prediction Coefficients from ISP vector
  51. uint8_t base_pitch_lag; ///< integer part of pitch lag for the next relative subframe
  52. uint8_t pitch_lag_int; ///< integer part of pitch lag of the previous subframe
  53. float excitation_buf[AMRWB_P_DELAY_MAX + LP_ORDER + 2 + AMRWB_SFR_SIZE]; ///< current excitation and all necessary excitation history
  54. float *excitation; ///< points to current excitation in excitation_buf[]
  55. float pitch_vector[AMRWB_SFR_SIZE]; ///< adaptive codebook (pitch) vector for current subframe
  56. float fixed_vector[AMRWB_SFR_SIZE]; ///< algebraic codebook (fixed) vector for current subframe
  57. float prediction_error[4]; ///< quantified prediction errors {20log10(^gamma_gc)} for previous four subframes
  58. float pitch_gain[6]; ///< quantified pitch gains for the current and previous five subframes
  59. float fixed_gain[2]; ///< quantified fixed gains for the current and previous subframes
  60. float tilt_coef; ///< {beta_1} related to the voicing of the previous subframe
  61. float prev_sparse_fixed_gain; ///< previous fixed gain; used by anti-sparseness to determine "onset"
  62. uint8_t prev_ir_filter_nr; ///< previous impulse response filter "impNr": 0 - strong, 1 - medium, 2 - none
  63. float prev_tr_gain; ///< previous initial gain used by noise enhancer for threshold
  64. float samples_az[LP_ORDER + AMRWB_SFR_SIZE]; ///< low-band samples and memory from synthesis at 12.8kHz
  65. float samples_up[UPS_MEM_SIZE + AMRWB_SFR_SIZE]; ///< low-band samples and memory processed for upsampling
  66. float samples_hb[LP_ORDER_16k + AMRWB_SFR_SIZE_16k]; ///< high-band samples and memory from synthesis at 16kHz
  67. float hpf_31_mem[2], hpf_400_mem[2]; ///< previous values in the high pass filters
  68. float demph_mem[1]; ///< previous value in the de-emphasis filter
  69. float bpf_6_7_mem[HB_FIR_SIZE]; ///< previous values in the high-band band pass filter
  70. float lpf_7_mem[HB_FIR_SIZE]; ///< previous values in the high-band low pass filter
  71. AVLFG prng; ///< random number generator for white noise excitation
  72. uint8_t first_frame; ///< flag active during decoding of the first frame
  73. ACELPFContext acelpf_ctx; ///< context for filters for ACELP-based codecs
  74. ACELPVContext acelpv_ctx; ///< context for vector operations for ACELP-based codecs
  75. CELPFContext celpf_ctx; ///< context for filters for CELP-based codecs
  76. CELPMContext celpm_ctx; ///< context for fixed point math operations
  77. } AMRWBContext;
  78. static av_cold int amrwb_decode_init(AVCodecContext *avctx)
  79. {
  80. AMRWBContext *ctx = avctx->priv_data;
  81. int i;
  82. if (avctx->channels > 1) {
  83. av_log_missing_feature(avctx, "multi-channel AMR", 0);
  84. return AVERROR_PATCHWELCOME;
  85. }
  86. avctx->channels = 1;
  87. avctx->channel_layout = AV_CH_LAYOUT_MONO;
  88. if (!avctx->sample_rate)
  89. avctx->sample_rate = 16000;
  90. avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
  91. av_lfg_init(&ctx->prng, 1);
  92. ctx->excitation = &ctx->excitation_buf[AMRWB_P_DELAY_MAX + LP_ORDER + 1];
  93. ctx->first_frame = 1;
  94. for (i = 0; i < LP_ORDER; i++)
  95. ctx->isf_past_final[i] = isf_init[i] * (1.0f / (1 << 15));
  96. for (i = 0; i < 4; i++)
  97. ctx->prediction_error[i] = MIN_ENERGY;
  98. avcodec_get_frame_defaults(&ctx->avframe);
  99. avctx->coded_frame = &ctx->avframe;
  100. ff_acelp_filter_init(&ctx->acelpf_ctx);
  101. ff_acelp_vectors_init(&ctx->acelpv_ctx);
  102. ff_celp_filter_init(&ctx->celpf_ctx);
  103. ff_celp_math_init(&ctx->celpm_ctx);
  104. return 0;
  105. }
  106. /**
  107. * Decode the frame header in the "MIME/storage" format. This format
  108. * is simpler and does not carry the auxiliary frame information.
  109. *
  110. * @param[in] ctx The Context
  111. * @param[in] buf Pointer to the input buffer
  112. *
  113. * @return The decoded header length in bytes
  114. */
  115. static int decode_mime_header(AMRWBContext *ctx, const uint8_t *buf)
  116. {
  117. /* Decode frame header (1st octet) */
  118. ctx->fr_cur_mode = buf[0] >> 3 & 0x0F;
  119. ctx->fr_quality = (buf[0] & 0x4) == 0x4;
  120. return 1;
  121. }
  122. /**
  123. * Decode quantized ISF vectors using 36-bit indexes (6K60 mode only).
  124. *
  125. * @param[in] ind Array of 5 indexes
  126. * @param[out] isf_q Buffer for isf_q[LP_ORDER]
  127. *
  128. */
  129. static void decode_isf_indices_36b(uint16_t *ind, float *isf_q)
  130. {
  131. int i;
  132. for (i = 0; i < 9; i++)
  133. isf_q[i] = dico1_isf[ind[0]][i] * (1.0f / (1 << 15));
  134. for (i = 0; i < 7; i++)
  135. isf_q[i + 9] = dico2_isf[ind[1]][i] * (1.0f / (1 << 15));
  136. for (i = 0; i < 5; i++)
  137. isf_q[i] += dico21_isf_36b[ind[2]][i] * (1.0f / (1 << 15));
  138. for (i = 0; i < 4; i++)
  139. isf_q[i + 5] += dico22_isf_36b[ind[3]][i] * (1.0f / (1 << 15));
  140. for (i = 0; i < 7; i++)
  141. isf_q[i + 9] += dico23_isf_36b[ind[4]][i] * (1.0f / (1 << 15));
  142. }
  143. /**
  144. * Decode quantized ISF vectors using 46-bit indexes (except 6K60 mode).
  145. *
  146. * @param[in] ind Array of 7 indexes
  147. * @param[out] isf_q Buffer for isf_q[LP_ORDER]
  148. *
  149. */
  150. static void decode_isf_indices_46b(uint16_t *ind, float *isf_q)
  151. {
  152. int i;
  153. for (i = 0; i < 9; i++)
  154. isf_q[i] = dico1_isf[ind[0]][i] * (1.0f / (1 << 15));
  155. for (i = 0; i < 7; i++)
  156. isf_q[i + 9] = dico2_isf[ind[1]][i] * (1.0f / (1 << 15));
  157. for (i = 0; i < 3; i++)
  158. isf_q[i] += dico21_isf[ind[2]][i] * (1.0f / (1 << 15));
  159. for (i = 0; i < 3; i++)
  160. isf_q[i + 3] += dico22_isf[ind[3]][i] * (1.0f / (1 << 15));
  161. for (i = 0; i < 3; i++)
  162. isf_q[i + 6] += dico23_isf[ind[4]][i] * (1.0f / (1 << 15));
  163. for (i = 0; i < 3; i++)
  164. isf_q[i + 9] += dico24_isf[ind[5]][i] * (1.0f / (1 << 15));
  165. for (i = 0; i < 4; i++)
  166. isf_q[i + 12] += dico25_isf[ind[6]][i] * (1.0f / (1 << 15));
  167. }
  168. /**
  169. * Apply mean and past ISF values using the prediction factor.
  170. * Updates past ISF vector.
  171. *
  172. * @param[in,out] isf_q Current quantized ISF
  173. * @param[in,out] isf_past Past quantized ISF
  174. *
  175. */
  176. static void isf_add_mean_and_past(float *isf_q, float *isf_past)
  177. {
  178. int i;
  179. float tmp;
  180. for (i = 0; i < LP_ORDER; i++) {
  181. tmp = isf_q[i];
  182. isf_q[i] += isf_mean[i] * (1.0f / (1 << 15));
  183. isf_q[i] += PRED_FACTOR * isf_past[i];
  184. isf_past[i] = tmp;
  185. }
  186. }
  187. /**
  188. * Interpolate the fourth ISP vector from current and past frames
  189. * to obtain an ISP vector for each subframe.
  190. *
  191. * @param[in,out] isp_q ISPs for each subframe
  192. * @param[in] isp4_past Past ISP for subframe 4
  193. */
  194. static void interpolate_isp(double isp_q[4][LP_ORDER], const double *isp4_past)
  195. {
  196. int i, k;
  197. for (k = 0; k < 3; k++) {
  198. float c = isfp_inter[k];
  199. for (i = 0; i < LP_ORDER; i++)
  200. isp_q[k][i] = (1.0 - c) * isp4_past[i] + c * isp_q[3][i];
  201. }
  202. }
  203. /**
  204. * Decode an adaptive codebook index into pitch lag (except 6k60, 8k85 modes).
  205. * Calculate integer lag and fractional lag always using 1/4 resolution.
  206. * In 1st and 3rd subframes the index is relative to last subframe integer lag.
  207. *
  208. * @param[out] lag_int Decoded integer pitch lag
  209. * @param[out] lag_frac Decoded fractional pitch lag
  210. * @param[in] pitch_index Adaptive codebook pitch index
  211. * @param[in,out] base_lag_int Base integer lag used in relative subframes
  212. * @param[in] subframe Current subframe index (0 to 3)
  213. */
  214. static void decode_pitch_lag_high(int *lag_int, int *lag_frac, int pitch_index,
  215. uint8_t *base_lag_int, int subframe)
  216. {
  217. if (subframe == 0 || subframe == 2) {
  218. if (pitch_index < 376) {
  219. *lag_int = (pitch_index + 137) >> 2;
  220. *lag_frac = pitch_index - (*lag_int << 2) + 136;
  221. } else if (pitch_index < 440) {
  222. *lag_int = (pitch_index + 257 - 376) >> 1;
  223. *lag_frac = (pitch_index - (*lag_int << 1) + 256 - 376) << 1;
  224. /* the actual resolution is 1/2 but expressed as 1/4 */
  225. } else {
  226. *lag_int = pitch_index - 280;
  227. *lag_frac = 0;
  228. }
  229. /* minimum lag for next subframe */
  230. *base_lag_int = av_clip(*lag_int - 8 - (*lag_frac < 0),
  231. AMRWB_P_DELAY_MIN, AMRWB_P_DELAY_MAX - 15);
  232. // XXX: the spec states clearly that *base_lag_int should be
  233. // the nearest integer to *lag_int (minus 8), but the ref code
  234. // actually always uses its floor, I'm following the latter
  235. } else {
  236. *lag_int = (pitch_index + 1) >> 2;
  237. *lag_frac = pitch_index - (*lag_int << 2);
  238. *lag_int += *base_lag_int;
  239. }
  240. }
  241. /**
  242. * Decode an adaptive codebook index into pitch lag for 8k85 and 6k60 modes.
  243. * The description is analogous to decode_pitch_lag_high, but in 6k60 the
  244. * relative index is used for all subframes except the first.
  245. */
  246. static void decode_pitch_lag_low(int *lag_int, int *lag_frac, int pitch_index,
  247. uint8_t *base_lag_int, int subframe, enum Mode mode)
  248. {
  249. if (subframe == 0 || (subframe == 2 && mode != MODE_6k60)) {
  250. if (pitch_index < 116) {
  251. *lag_int = (pitch_index + 69) >> 1;
  252. *lag_frac = (pitch_index - (*lag_int << 1) + 68) << 1;
  253. } else {
  254. *lag_int = pitch_index - 24;
  255. *lag_frac = 0;
  256. }
  257. // XXX: same problem as before
  258. *base_lag_int = av_clip(*lag_int - 8 - (*lag_frac < 0),
  259. AMRWB_P_DELAY_MIN, AMRWB_P_DELAY_MAX - 15);
  260. } else {
  261. *lag_int = (pitch_index + 1) >> 1;
  262. *lag_frac = (pitch_index - (*lag_int << 1)) << 1;
  263. *lag_int += *base_lag_int;
  264. }
  265. }
  266. /**
  267. * Find the pitch vector by interpolating the past excitation at the
  268. * pitch delay, which is obtained in this function.
  269. *
  270. * @param[in,out] ctx The context
  271. * @param[in] amr_subframe Current subframe data
  272. * @param[in] subframe Current subframe index (0 to 3)
  273. */
  274. static void decode_pitch_vector(AMRWBContext *ctx,
  275. const AMRWBSubFrame *amr_subframe,
  276. const int subframe)
  277. {
  278. int pitch_lag_int, pitch_lag_frac;
  279. int i;
  280. float *exc = ctx->excitation;
  281. enum Mode mode = ctx->fr_cur_mode;
  282. if (mode <= MODE_8k85) {
  283. decode_pitch_lag_low(&pitch_lag_int, &pitch_lag_frac, amr_subframe->adap,
  284. &ctx->base_pitch_lag, subframe, mode);
  285. } else
  286. decode_pitch_lag_high(&pitch_lag_int, &pitch_lag_frac, amr_subframe->adap,
  287. &ctx->base_pitch_lag, subframe);
  288. ctx->pitch_lag_int = pitch_lag_int;
  289. pitch_lag_int += pitch_lag_frac > 0;
  290. /* Calculate the pitch vector by interpolating the past excitation at the
  291. pitch lag using a hamming windowed sinc function */
  292. ctx->acelpf_ctx.acelp_interpolatef(exc,
  293. exc + 1 - pitch_lag_int,
  294. ac_inter, 4,
  295. pitch_lag_frac + (pitch_lag_frac > 0 ? 0 : 4),
  296. LP_ORDER, AMRWB_SFR_SIZE + 1);
  297. /* Check which pitch signal path should be used
  298. * 6k60 and 8k85 modes have the ltp flag set to 0 */
  299. if (amr_subframe->ltp) {
  300. memcpy(ctx->pitch_vector, exc, AMRWB_SFR_SIZE * sizeof(float));
  301. } else {
  302. for (i = 0; i < AMRWB_SFR_SIZE; i++)
  303. ctx->pitch_vector[i] = 0.18 * exc[i - 1] + 0.64 * exc[i] +
  304. 0.18 * exc[i + 1];
  305. memcpy(exc, ctx->pitch_vector, AMRWB_SFR_SIZE * sizeof(float));
  306. }
  307. }
  308. /** Get x bits in the index interval [lsb,lsb+len-1] inclusive */
  309. #define BIT_STR(x,lsb,len) (((x) >> (lsb)) & ((1 << (len)) - 1))
  310. /** Get the bit at specified position */
  311. #define BIT_POS(x, p) (((x) >> (p)) & 1)
  312. /**
  313. * The next six functions decode_[i]p_track decode exactly i pulses
  314. * positions and amplitudes (-1 or 1) in a subframe track using
  315. * an encoded pulse indexing (TS 26.190 section 5.8.2).
  316. *
  317. * The results are given in out[], in which a negative number means
  318. * amplitude -1 and vice versa (i.e., ampl(x) = x / abs(x) ).
  319. *
  320. * @param[out] out Output buffer (writes i elements)
  321. * @param[in] code Pulse index (no. of bits varies, see below)
  322. * @param[in] m (log2) Number of potential positions
  323. * @param[in] off Offset for decoded positions
  324. */
  325. static inline void decode_1p_track(int *out, int code, int m, int off)
  326. {
  327. int pos = BIT_STR(code, 0, m) + off; ///code: m+1 bits
  328. out[0] = BIT_POS(code, m) ? -pos : pos;
  329. }
  330. static inline void decode_2p_track(int *out, int code, int m, int off) ///code: 2m+1 bits
  331. {
  332. int pos0 = BIT_STR(code, m, m) + off;
  333. int pos1 = BIT_STR(code, 0, m) + off;
  334. out[0] = BIT_POS(code, 2*m) ? -pos0 : pos0;
  335. out[1] = BIT_POS(code, 2*m) ? -pos1 : pos1;
  336. out[1] = pos0 > pos1 ? -out[1] : out[1];
  337. }
  338. static void decode_3p_track(int *out, int code, int m, int off) ///code: 3m+1 bits
  339. {
  340. int half_2p = BIT_POS(code, 2*m - 1) << (m - 1);
  341. decode_2p_track(out, BIT_STR(code, 0, 2*m - 1),
  342. m - 1, off + half_2p);
  343. decode_1p_track(out + 2, BIT_STR(code, 2*m, m + 1), m, off);
  344. }
  345. static void decode_4p_track(int *out, int code, int m, int off) ///code: 4m bits
  346. {
  347. int half_4p, subhalf_2p;
  348. int b_offset = 1 << (m - 1);
  349. switch (BIT_STR(code, 4*m - 2, 2)) { /* case ID (2 bits) */
  350. case 0: /* 0 pulses in A, 4 pulses in B or vice versa */
  351. half_4p = BIT_POS(code, 4*m - 3) << (m - 1); // which has 4 pulses
  352. subhalf_2p = BIT_POS(code, 2*m - 3) << (m - 2);
  353. decode_2p_track(out, BIT_STR(code, 0, 2*m - 3),
  354. m - 2, off + half_4p + subhalf_2p);
  355. decode_2p_track(out + 2, BIT_STR(code, 2*m - 2, 2*m - 1),
  356. m - 1, off + half_4p);
  357. break;
  358. case 1: /* 1 pulse in A, 3 pulses in B */
  359. decode_1p_track(out, BIT_STR(code, 3*m - 2, m),
  360. m - 1, off);
  361. decode_3p_track(out + 1, BIT_STR(code, 0, 3*m - 2),
  362. m - 1, off + b_offset);
  363. break;
  364. case 2: /* 2 pulses in each half */
  365. decode_2p_track(out, BIT_STR(code, 2*m - 1, 2*m - 1),
  366. m - 1, off);
  367. decode_2p_track(out + 2, BIT_STR(code, 0, 2*m - 1),
  368. m - 1, off + b_offset);
  369. break;
  370. case 3: /* 3 pulses in A, 1 pulse in B */
  371. decode_3p_track(out, BIT_STR(code, m, 3*m - 2),
  372. m - 1, off);
  373. decode_1p_track(out + 3, BIT_STR(code, 0, m),
  374. m - 1, off + b_offset);
  375. break;
  376. }
  377. }
  378. static void decode_5p_track(int *out, int code, int m, int off) ///code: 5m bits
  379. {
  380. int half_3p = BIT_POS(code, 5*m - 1) << (m - 1);
  381. decode_3p_track(out, BIT_STR(code, 2*m + 1, 3*m - 2),
  382. m - 1, off + half_3p);
  383. decode_2p_track(out + 3, BIT_STR(code, 0, 2*m + 1), m, off);
  384. }
  385. static void decode_6p_track(int *out, int code, int m, int off) ///code: 6m-2 bits
  386. {
  387. int b_offset = 1 << (m - 1);
  388. /* which half has more pulses in cases 0 to 2 */
  389. int half_more = BIT_POS(code, 6*m - 5) << (m - 1);
  390. int half_other = b_offset - half_more;
  391. switch (BIT_STR(code, 6*m - 4, 2)) { /* case ID (2 bits) */
  392. case 0: /* 0 pulses in A, 6 pulses in B or vice versa */
  393. decode_1p_track(out, BIT_STR(code, 0, m),
  394. m - 1, off + half_more);
  395. decode_5p_track(out + 1, BIT_STR(code, m, 5*m - 5),
  396. m - 1, off + half_more);
  397. break;
  398. case 1: /* 1 pulse in A, 5 pulses in B or vice versa */
  399. decode_1p_track(out, BIT_STR(code, 0, m),
  400. m - 1, off + half_other);
  401. decode_5p_track(out + 1, BIT_STR(code, m, 5*m - 5),
  402. m - 1, off + half_more);
  403. break;
  404. case 2: /* 2 pulses in A, 4 pulses in B or vice versa */
  405. decode_2p_track(out, BIT_STR(code, 0, 2*m - 1),
  406. m - 1, off + half_other);
  407. decode_4p_track(out + 2, BIT_STR(code, 2*m - 1, 4*m - 4),
  408. m - 1, off + half_more);
  409. break;
  410. case 3: /* 3 pulses in A, 3 pulses in B */
  411. decode_3p_track(out, BIT_STR(code, 3*m - 2, 3*m - 2),
  412. m - 1, off);
  413. decode_3p_track(out + 3, BIT_STR(code, 0, 3*m - 2),
  414. m - 1, off + b_offset);
  415. break;
  416. }
  417. }
  418. /**
  419. * Decode the algebraic codebook index to pulse positions and signs,
  420. * then construct the algebraic codebook vector.
  421. *
  422. * @param[out] fixed_vector Buffer for the fixed codebook excitation
  423. * @param[in] pulse_hi MSBs part of the pulse index array (higher modes only)
  424. * @param[in] pulse_lo LSBs part of the pulse index array
  425. * @param[in] mode Mode of the current frame
  426. */
  427. static void decode_fixed_vector(float *fixed_vector, const uint16_t *pulse_hi,
  428. const uint16_t *pulse_lo, const enum Mode mode)
  429. {
  430. /* sig_pos stores for each track the decoded pulse position indexes
  431. * (1-based) multiplied by its corresponding amplitude (+1 or -1) */
  432. int sig_pos[4][6];
  433. int spacing = (mode == MODE_6k60) ? 2 : 4;
  434. int i, j;
  435. switch (mode) {
  436. case MODE_6k60:
  437. for (i = 0; i < 2; i++)
  438. decode_1p_track(sig_pos[i], pulse_lo[i], 5, 1);
  439. break;
  440. case MODE_8k85:
  441. for (i = 0; i < 4; i++)
  442. decode_1p_track(sig_pos[i], pulse_lo[i], 4, 1);
  443. break;
  444. case MODE_12k65:
  445. for (i = 0; i < 4; i++)
  446. decode_2p_track(sig_pos[i], pulse_lo[i], 4, 1);
  447. break;
  448. case MODE_14k25:
  449. for (i = 0; i < 2; i++)
  450. decode_3p_track(sig_pos[i], pulse_lo[i], 4, 1);
  451. for (i = 2; i < 4; i++)
  452. decode_2p_track(sig_pos[i], pulse_lo[i], 4, 1);
  453. break;
  454. case MODE_15k85:
  455. for (i = 0; i < 4; i++)
  456. decode_3p_track(sig_pos[i], pulse_lo[i], 4, 1);
  457. break;
  458. case MODE_18k25:
  459. for (i = 0; i < 4; i++)
  460. decode_4p_track(sig_pos[i], (int) pulse_lo[i] +
  461. ((int) pulse_hi[i] << 14), 4, 1);
  462. break;
  463. case MODE_19k85:
  464. for (i = 0; i < 2; i++)
  465. decode_5p_track(sig_pos[i], (int) pulse_lo[i] +
  466. ((int) pulse_hi[i] << 10), 4, 1);
  467. for (i = 2; i < 4; i++)
  468. decode_4p_track(sig_pos[i], (int) pulse_lo[i] +
  469. ((int) pulse_hi[i] << 14), 4, 1);
  470. break;
  471. case MODE_23k05:
  472. case MODE_23k85:
  473. for (i = 0; i < 4; i++)
  474. decode_6p_track(sig_pos[i], (int) pulse_lo[i] +
  475. ((int) pulse_hi[i] << 11), 4, 1);
  476. break;
  477. }
  478. memset(fixed_vector, 0, sizeof(float) * AMRWB_SFR_SIZE);
  479. for (i = 0; i < 4; i++)
  480. for (j = 0; j < pulses_nb_per_mode_tr[mode][i]; j++) {
  481. int pos = (FFABS(sig_pos[i][j]) - 1) * spacing + i;
  482. fixed_vector[pos] += sig_pos[i][j] < 0 ? -1.0 : 1.0;
  483. }
  484. }
  485. /**
  486. * Decode pitch gain and fixed gain correction factor.
  487. *
  488. * @param[in] vq_gain Vector-quantized index for gains
  489. * @param[in] mode Mode of the current frame
  490. * @param[out] fixed_gain_factor Decoded fixed gain correction factor
  491. * @param[out] pitch_gain Decoded pitch gain
  492. */
  493. static void decode_gains(const uint8_t vq_gain, const enum Mode mode,
  494. float *fixed_gain_factor, float *pitch_gain)
  495. {
  496. const int16_t *gains = (mode <= MODE_8k85 ? qua_gain_6b[vq_gain] :
  497. qua_gain_7b[vq_gain]);
  498. *pitch_gain = gains[0] * (1.0f / (1 << 14));
  499. *fixed_gain_factor = gains[1] * (1.0f / (1 << 11));
  500. }
  501. /**
  502. * Apply pitch sharpening filters to the fixed codebook vector.
  503. *
  504. * @param[in] ctx The context
  505. * @param[in,out] fixed_vector Fixed codebook excitation
  506. */
  507. // XXX: Spec states this procedure should be applied when the pitch
  508. // lag is less than 64, but this checking seems absent in reference and AMR-NB
  509. static void pitch_sharpening(AMRWBContext *ctx, float *fixed_vector)
  510. {
  511. int i;
  512. /* Tilt part */
  513. for (i = AMRWB_SFR_SIZE - 1; i != 0; i--)
  514. fixed_vector[i] -= fixed_vector[i - 1] * ctx->tilt_coef;
  515. /* Periodicity enhancement part */
  516. for (i = ctx->pitch_lag_int; i < AMRWB_SFR_SIZE; i++)
  517. fixed_vector[i] += fixed_vector[i - ctx->pitch_lag_int] * 0.85;
  518. }
  519. /**
  520. * Calculate the voicing factor (-1.0 = unvoiced to 1.0 = voiced).
  521. *
  522. * @param[in] p_vector, f_vector Pitch and fixed excitation vectors
  523. * @param[in] p_gain, f_gain Pitch and fixed gains
  524. * @param[in] ctx The context
  525. */
  526. // XXX: There is something wrong with the precision here! The magnitudes
  527. // of the energies are not correct. Please check the reference code carefully
  528. static float voice_factor(float *p_vector, float p_gain,
  529. float *f_vector, float f_gain,
  530. CELPMContext *ctx)
  531. {
  532. double p_ener = (double) ctx->dot_productf(p_vector, p_vector,
  533. AMRWB_SFR_SIZE) *
  534. p_gain * p_gain;
  535. double f_ener = (double) ctx->dot_productf(f_vector, f_vector,
  536. AMRWB_SFR_SIZE) *
  537. f_gain * f_gain;
  538. return (p_ener - f_ener) / (p_ener + f_ener);
  539. }
  540. /**
  541. * Reduce fixed vector sparseness by smoothing with one of three IR filters,
  542. * also known as "adaptive phase dispersion".
  543. *
  544. * @param[in] ctx The context
  545. * @param[in,out] fixed_vector Unfiltered fixed vector
  546. * @param[out] buf Space for modified vector if necessary
  547. *
  548. * @return The potentially overwritten filtered fixed vector address
  549. */
  550. static float *anti_sparseness(AMRWBContext *ctx,
  551. float *fixed_vector, float *buf)
  552. {
  553. int ir_filter_nr;
  554. if (ctx->fr_cur_mode > MODE_8k85) // no filtering in higher modes
  555. return fixed_vector;
  556. if (ctx->pitch_gain[0] < 0.6) {
  557. ir_filter_nr = 0; // strong filtering
  558. } else if (ctx->pitch_gain[0] < 0.9) {
  559. ir_filter_nr = 1; // medium filtering
  560. } else
  561. ir_filter_nr = 2; // no filtering
  562. /* detect 'onset' */
  563. if (ctx->fixed_gain[0] > 3.0 * ctx->fixed_gain[1]) {
  564. if (ir_filter_nr < 2)
  565. ir_filter_nr++;
  566. } else {
  567. int i, count = 0;
  568. for (i = 0; i < 6; i++)
  569. if (ctx->pitch_gain[i] < 0.6)
  570. count++;
  571. if (count > 2)
  572. ir_filter_nr = 0;
  573. if (ir_filter_nr > ctx->prev_ir_filter_nr + 1)
  574. ir_filter_nr--;
  575. }
  576. /* update ir filter strength history */
  577. ctx->prev_ir_filter_nr = ir_filter_nr;
  578. ir_filter_nr += (ctx->fr_cur_mode == MODE_8k85);
  579. if (ir_filter_nr < 2) {
  580. int i;
  581. const float *coef = ir_filters_lookup[ir_filter_nr];
  582. /* Circular convolution code in the reference
  583. * decoder was modified to avoid using one
  584. * extra array. The filtered vector is given by:
  585. *
  586. * c2(n) = sum(i,0,len-1){ c(i) * coef( (n - i + len) % len ) }
  587. */
  588. memset(buf, 0, sizeof(float) * AMRWB_SFR_SIZE);
  589. for (i = 0; i < AMRWB_SFR_SIZE; i++)
  590. if (fixed_vector[i])
  591. ff_celp_circ_addf(buf, buf, coef, i, fixed_vector[i],
  592. AMRWB_SFR_SIZE);
  593. fixed_vector = buf;
  594. }
  595. return fixed_vector;
  596. }
  597. /**
  598. * Calculate a stability factor {teta} based on distance between
  599. * current and past isf. A value of 1 shows maximum signal stability.
  600. */
  601. static float stability_factor(const float *isf, const float *isf_past)
  602. {
  603. int i;
  604. float acc = 0.0;
  605. for (i = 0; i < LP_ORDER - 1; i++)
  606. acc += (isf[i] - isf_past[i]) * (isf[i] - isf_past[i]);
  607. // XXX: This part is not so clear from the reference code
  608. // the result is more accurate changing the "/ 256" to "* 512"
  609. return FFMAX(0.0, 1.25 - acc * 0.8 * 512);
  610. }
  611. /**
  612. * Apply a non-linear fixed gain smoothing in order to reduce
  613. * fluctuation in the energy of excitation.
  614. *
  615. * @param[in] fixed_gain Unsmoothed fixed gain
  616. * @param[in,out] prev_tr_gain Previous threshold gain (updated)
  617. * @param[in] voice_fac Frame voicing factor
  618. * @param[in] stab_fac Frame stability factor
  619. *
  620. * @return The smoothed gain
  621. */
  622. static float noise_enhancer(float fixed_gain, float *prev_tr_gain,
  623. float voice_fac, float stab_fac)
  624. {
  625. float sm_fac = 0.5 * (1 - voice_fac) * stab_fac;
  626. float g0;
  627. // XXX: the following fixed-point constants used to in(de)crement
  628. // gain by 1.5dB were taken from the reference code, maybe it could
  629. // be simpler
  630. if (fixed_gain < *prev_tr_gain) {
  631. g0 = FFMIN(*prev_tr_gain, fixed_gain + fixed_gain *
  632. (6226 * (1.0f / (1 << 15)))); // +1.5 dB
  633. } else
  634. g0 = FFMAX(*prev_tr_gain, fixed_gain *
  635. (27536 * (1.0f / (1 << 15)))); // -1.5 dB
  636. *prev_tr_gain = g0; // update next frame threshold
  637. return sm_fac * g0 + (1 - sm_fac) * fixed_gain;
  638. }
  639. /**
  640. * Filter the fixed_vector to emphasize the higher frequencies.
  641. *
  642. * @param[in,out] fixed_vector Fixed codebook vector
  643. * @param[in] voice_fac Frame voicing factor
  644. */
  645. static void pitch_enhancer(float *fixed_vector, float voice_fac)
  646. {
  647. int i;
  648. float cpe = 0.125 * (1 + voice_fac);
  649. float last = fixed_vector[0]; // holds c(i - 1)
  650. fixed_vector[0] -= cpe * fixed_vector[1];
  651. for (i = 1; i < AMRWB_SFR_SIZE - 1; i++) {
  652. float cur = fixed_vector[i];
  653. fixed_vector[i] -= cpe * (last + fixed_vector[i + 1]);
  654. last = cur;
  655. }
  656. fixed_vector[AMRWB_SFR_SIZE - 1] -= cpe * last;
  657. }
  658. /**
  659. * Conduct 16th order linear predictive coding synthesis from excitation.
  660. *
  661. * @param[in] ctx Pointer to the AMRWBContext
  662. * @param[in] lpc Pointer to the LPC coefficients
  663. * @param[out] excitation Buffer for synthesis final excitation
  664. * @param[in] fixed_gain Fixed codebook gain for synthesis
  665. * @param[in] fixed_vector Algebraic codebook vector
  666. * @param[in,out] samples Pointer to the output samples and memory
  667. */
  668. static void synthesis(AMRWBContext *ctx, float *lpc, float *excitation,
  669. float fixed_gain, const float *fixed_vector,
  670. float *samples)
  671. {
  672. ctx->acelpv_ctx.weighted_vector_sumf(excitation, ctx->pitch_vector, fixed_vector,
  673. ctx->pitch_gain[0], fixed_gain, AMRWB_SFR_SIZE);
  674. /* emphasize pitch vector contribution in low bitrate modes */
  675. if (ctx->pitch_gain[0] > 0.5 && ctx->fr_cur_mode <= MODE_8k85) {
  676. int i;
  677. float energy = ctx->celpm_ctx.dot_productf(excitation, excitation,
  678. AMRWB_SFR_SIZE);
  679. // XXX: Weird part in both ref code and spec. A unknown parameter
  680. // {beta} seems to be identical to the current pitch gain
  681. float pitch_factor = 0.25 * ctx->pitch_gain[0] * ctx->pitch_gain[0];
  682. for (i = 0; i < AMRWB_SFR_SIZE; i++)
  683. excitation[i] += pitch_factor * ctx->pitch_vector[i];
  684. ff_scale_vector_to_given_sum_of_squares(excitation, excitation,
  685. energy, AMRWB_SFR_SIZE);
  686. }
  687. ctx->celpf_ctx.celp_lp_synthesis_filterf(samples, lpc, excitation,
  688. AMRWB_SFR_SIZE, LP_ORDER);
  689. }
  690. /**
  691. * Apply to synthesis a de-emphasis filter of the form:
  692. * H(z) = 1 / (1 - m * z^-1)
  693. *
  694. * @param[out] out Output buffer
  695. * @param[in] in Input samples array with in[-1]
  696. * @param[in] m Filter coefficient
  697. * @param[in,out] mem State from last filtering
  698. */
  699. static void de_emphasis(float *out, float *in, float m, float mem[1])
  700. {
  701. int i;
  702. out[0] = in[0] + m * mem[0];
  703. for (i = 1; i < AMRWB_SFR_SIZE; i++)
  704. out[i] = in[i] + out[i - 1] * m;
  705. mem[0] = out[AMRWB_SFR_SIZE - 1];
  706. }
  707. /**
  708. * Upsample a signal by 5/4 ratio (from 12.8kHz to 16kHz) using
  709. * a FIR interpolation filter. Uses past data from before *in address.
  710. *
  711. * @param[out] out Buffer for interpolated signal
  712. * @param[in] in Current signal data (length 0.8*o_size)
  713. * @param[in] o_size Output signal length
  714. * @param[in] ctx The context
  715. */
  716. static void upsample_5_4(float *out, const float *in, int o_size, CELPMContext *ctx)
  717. {
  718. const float *in0 = in - UPS_FIR_SIZE + 1;
  719. int i, j, k;
  720. int int_part = 0, frac_part;
  721. i = 0;
  722. for (j = 0; j < o_size / 5; j++) {
  723. out[i] = in[int_part];
  724. frac_part = 4;
  725. i++;
  726. for (k = 1; k < 5; k++) {
  727. out[i] = ctx->dot_productf(in0 + int_part,
  728. upsample_fir[4 - frac_part],
  729. UPS_MEM_SIZE);
  730. int_part++;
  731. frac_part--;
  732. i++;
  733. }
  734. }
  735. }
  736. /**
  737. * Calculate the high-band gain based on encoded index (23k85 mode) or
  738. * on the low-band speech signal and the Voice Activity Detection flag.
  739. *
  740. * @param[in] ctx The context
  741. * @param[in] synth LB speech synthesis at 12.8k
  742. * @param[in] hb_idx Gain index for mode 23k85 only
  743. * @param[in] vad VAD flag for the frame
  744. */
  745. static float find_hb_gain(AMRWBContext *ctx, const float *synth,
  746. uint16_t hb_idx, uint8_t vad)
  747. {
  748. int wsp = (vad > 0);
  749. float tilt;
  750. if (ctx->fr_cur_mode == MODE_23k85)
  751. return qua_hb_gain[hb_idx] * (1.0f / (1 << 14));
  752. tilt = ctx->celpm_ctx.dot_productf(synth, synth + 1, AMRWB_SFR_SIZE - 1) /
  753. ctx->celpm_ctx.dot_productf(synth, synth, AMRWB_SFR_SIZE);
  754. /* return gain bounded by [0.1, 1.0] */
  755. return av_clipf((1.0 - FFMAX(0.0, tilt)) * (1.25 - 0.25 * wsp), 0.1, 1.0);
  756. }
  757. /**
  758. * Generate the high-band excitation with the same energy from the lower
  759. * one and scaled by the given gain.
  760. *
  761. * @param[in] ctx The context
  762. * @param[out] hb_exc Buffer for the excitation
  763. * @param[in] synth_exc Low-band excitation used for synthesis
  764. * @param[in] hb_gain Wanted excitation gain
  765. */
  766. static void scaled_hb_excitation(AMRWBContext *ctx, float *hb_exc,
  767. const float *synth_exc, float hb_gain)
  768. {
  769. int i;
  770. float energy = ctx->celpm_ctx.dot_productf(synth_exc, synth_exc, AMRWB_SFR_SIZE);
  771. /* Generate a white-noise excitation */
  772. for (i = 0; i < AMRWB_SFR_SIZE_16k; i++)
  773. hb_exc[i] = 32768.0 - (uint16_t) av_lfg_get(&ctx->prng);
  774. ff_scale_vector_to_given_sum_of_squares(hb_exc, hb_exc,
  775. energy * hb_gain * hb_gain,
  776. AMRWB_SFR_SIZE_16k);
  777. }
  778. /**
  779. * Calculate the auto-correlation for the ISF difference vector.
  780. */
  781. static float auto_correlation(float *diff_isf, float mean, int lag)
  782. {
  783. int i;
  784. float sum = 0.0;
  785. for (i = 7; i < LP_ORDER - 2; i++) {
  786. float prod = (diff_isf[i] - mean) * (diff_isf[i - lag] - mean);
  787. sum += prod * prod;
  788. }
  789. return sum;
  790. }
  791. /**
  792. * Extrapolate a ISF vector to the 16kHz range (20th order LP)
  793. * used at mode 6k60 LP filter for the high frequency band.
  794. *
  795. * @param[out] isf Buffer for extrapolated isf; contains LP_ORDER
  796. * values on input
  797. */
  798. static void extrapolate_isf(float isf[LP_ORDER_16k])
  799. {
  800. float diff_isf[LP_ORDER - 2], diff_mean;
  801. float corr_lag[3];
  802. float est, scale;
  803. int i, j, i_max_corr;
  804. isf[LP_ORDER_16k - 1] = isf[LP_ORDER - 1];
  805. /* Calculate the difference vector */
  806. for (i = 0; i < LP_ORDER - 2; i++)
  807. diff_isf[i] = isf[i + 1] - isf[i];
  808. diff_mean = 0.0;
  809. for (i = 2; i < LP_ORDER - 2; i++)
  810. diff_mean += diff_isf[i] * (1.0f / (LP_ORDER - 4));
  811. /* Find which is the maximum autocorrelation */
  812. i_max_corr = 0;
  813. for (i = 0; i < 3; i++) {
  814. corr_lag[i] = auto_correlation(diff_isf, diff_mean, i + 2);
  815. if (corr_lag[i] > corr_lag[i_max_corr])
  816. i_max_corr = i;
  817. }
  818. i_max_corr++;
  819. for (i = LP_ORDER - 1; i < LP_ORDER_16k - 1; i++)
  820. isf[i] = isf[i - 1] + isf[i - 1 - i_max_corr]
  821. - isf[i - 2 - i_max_corr];
  822. /* Calculate an estimate for ISF(18) and scale ISF based on the error */
  823. est = 7965 + (isf[2] - isf[3] - isf[4]) / 6.0;
  824. scale = 0.5 * (FFMIN(est, 7600) - isf[LP_ORDER - 2]) /
  825. (isf[LP_ORDER_16k - 2] - isf[LP_ORDER - 2]);
  826. for (i = LP_ORDER - 1, j = 0; i < LP_ORDER_16k - 1; i++, j++)
  827. diff_isf[j] = scale * (isf[i] - isf[i - 1]);
  828. /* Stability insurance */
  829. for (i = 1; i < LP_ORDER_16k - LP_ORDER; i++)
  830. if (diff_isf[i] + diff_isf[i - 1] < 5.0) {
  831. if (diff_isf[i] > diff_isf[i - 1]) {
  832. diff_isf[i - 1] = 5.0 - diff_isf[i];
  833. } else
  834. diff_isf[i] = 5.0 - diff_isf[i - 1];
  835. }
  836. for (i = LP_ORDER - 1, j = 0; i < LP_ORDER_16k - 1; i++, j++)
  837. isf[i] = isf[i - 1] + diff_isf[j] * (1.0f / (1 << 15));
  838. /* Scale the ISF vector for 16000 Hz */
  839. for (i = 0; i < LP_ORDER_16k - 1; i++)
  840. isf[i] *= 0.8;
  841. }
  842. /**
  843. * Spectral expand the LP coefficients using the equation:
  844. * y[i] = x[i] * (gamma ** i)
  845. *
  846. * @param[out] out Output buffer (may use input array)
  847. * @param[in] lpc LP coefficients array
  848. * @param[in] gamma Weighting factor
  849. * @param[in] size LP array size
  850. */
  851. static void lpc_weighting(float *out, const float *lpc, float gamma, int size)
  852. {
  853. int i;
  854. float fac = gamma;
  855. for (i = 0; i < size; i++) {
  856. out[i] = lpc[i] * fac;
  857. fac *= gamma;
  858. }
  859. }
  860. /**
  861. * Conduct 20th order linear predictive coding synthesis for the high
  862. * frequency band excitation at 16kHz.
  863. *
  864. * @param[in] ctx The context
  865. * @param[in] subframe Current subframe index (0 to 3)
  866. * @param[in,out] samples Pointer to the output speech samples
  867. * @param[in] exc Generated white-noise scaled excitation
  868. * @param[in] isf Current frame isf vector
  869. * @param[in] isf_past Past frame final isf vector
  870. */
  871. static void hb_synthesis(AMRWBContext *ctx, int subframe, float *samples,
  872. const float *exc, const float *isf, const float *isf_past)
  873. {
  874. float hb_lpc[LP_ORDER_16k];
  875. enum Mode mode = ctx->fr_cur_mode;
  876. if (mode == MODE_6k60) {
  877. float e_isf[LP_ORDER_16k]; // ISF vector for extrapolation
  878. double e_isp[LP_ORDER_16k];
  879. ctx->acelpv_ctx.weighted_vector_sumf(e_isf, isf_past, isf, isfp_inter[subframe],
  880. 1.0 - isfp_inter[subframe], LP_ORDER);
  881. extrapolate_isf(e_isf);
  882. e_isf[LP_ORDER_16k - 1] *= 2.0;
  883. ff_acelp_lsf2lspd(e_isp, e_isf, LP_ORDER_16k);
  884. ff_amrwb_lsp2lpc(e_isp, hb_lpc, LP_ORDER_16k);
  885. lpc_weighting(hb_lpc, hb_lpc, 0.9, LP_ORDER_16k);
  886. } else {
  887. lpc_weighting(hb_lpc, ctx->lp_coef[subframe], 0.6, LP_ORDER);
  888. }
  889. ctx->celpf_ctx.celp_lp_synthesis_filterf(samples, hb_lpc, exc, AMRWB_SFR_SIZE_16k,
  890. (mode == MODE_6k60) ? LP_ORDER_16k : LP_ORDER);
  891. }
  892. /**
  893. * Apply a 15th order filter to high-band samples.
  894. * The filter characteristic depends on the given coefficients.
  895. *
  896. * @param[out] out Buffer for filtered output
  897. * @param[in] fir_coef Filter coefficients
  898. * @param[in,out] mem State from last filtering (updated)
  899. * @param[in] in Input speech data (high-band)
  900. *
  901. * @remark It is safe to pass the same array in in and out parameters
  902. */
  903. #ifndef hb_fir_filter
  904. static void hb_fir_filter(float *out, const float fir_coef[HB_FIR_SIZE + 1],
  905. float mem[HB_FIR_SIZE], const float *in)
  906. {
  907. int i, j;
  908. float data[AMRWB_SFR_SIZE_16k + HB_FIR_SIZE]; // past and current samples
  909. memcpy(data, mem, HB_FIR_SIZE * sizeof(float));
  910. memcpy(data + HB_FIR_SIZE, in, AMRWB_SFR_SIZE_16k * sizeof(float));
  911. for (i = 0; i < AMRWB_SFR_SIZE_16k; i++) {
  912. out[i] = 0.0;
  913. for (j = 0; j <= HB_FIR_SIZE; j++)
  914. out[i] += data[i + j] * fir_coef[j];
  915. }
  916. memcpy(mem, data + AMRWB_SFR_SIZE_16k, HB_FIR_SIZE * sizeof(float));
  917. }
  918. #endif /* hb_fir_filter */
  919. /**
  920. * Update context state before the next subframe.
  921. */
  922. static void update_sub_state(AMRWBContext *ctx)
  923. {
  924. memmove(&ctx->excitation_buf[0], &ctx->excitation_buf[AMRWB_SFR_SIZE],
  925. (AMRWB_P_DELAY_MAX + LP_ORDER + 1) * sizeof(float));
  926. memmove(&ctx->pitch_gain[1], &ctx->pitch_gain[0], 5 * sizeof(float));
  927. memmove(&ctx->fixed_gain[1], &ctx->fixed_gain[0], 1 * sizeof(float));
  928. memmove(&ctx->samples_az[0], &ctx->samples_az[AMRWB_SFR_SIZE],
  929. LP_ORDER * sizeof(float));
  930. memmove(&ctx->samples_up[0], &ctx->samples_up[AMRWB_SFR_SIZE],
  931. UPS_MEM_SIZE * sizeof(float));
  932. memmove(&ctx->samples_hb[0], &ctx->samples_hb[AMRWB_SFR_SIZE_16k],
  933. LP_ORDER_16k * sizeof(float));
  934. }
  935. static int amrwb_decode_frame(AVCodecContext *avctx, void *data,
  936. int *got_frame_ptr, AVPacket *avpkt)
  937. {
  938. AMRWBContext *ctx = avctx->priv_data;
  939. AMRWBFrame *cf = &ctx->frame;
  940. const uint8_t *buf = avpkt->data;
  941. int buf_size = avpkt->size;
  942. int expected_fr_size, header_size;
  943. float *buf_out;
  944. float spare_vector[AMRWB_SFR_SIZE]; // extra stack space to hold result from anti-sparseness processing
  945. float fixed_gain_factor; // fixed gain correction factor (gamma)
  946. float *synth_fixed_vector; // pointer to the fixed vector that synthesis should use
  947. float synth_fixed_gain; // the fixed gain that synthesis should use
  948. float voice_fac, stab_fac; // parameters used for gain smoothing
  949. float synth_exc[AMRWB_SFR_SIZE]; // post-processed excitation for synthesis
  950. float hb_exc[AMRWB_SFR_SIZE_16k]; // excitation for the high frequency band
  951. float hb_samples[AMRWB_SFR_SIZE_16k]; // filtered high-band samples from synthesis
  952. float hb_gain;
  953. int sub, i, ret;
  954. /* get output buffer */
  955. ctx->avframe.nb_samples = 4 * AMRWB_SFR_SIZE_16k;
  956. if ((ret = avctx->get_buffer(avctx, &ctx->avframe)) < 0) {
  957. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  958. return ret;
  959. }
  960. buf_out = (float *)ctx->avframe.data[0];
  961. header_size = decode_mime_header(ctx, buf);
  962. if (ctx->fr_cur_mode > MODE_SID) {
  963. av_log(avctx, AV_LOG_ERROR,
  964. "Invalid mode %d\n", ctx->fr_cur_mode);
  965. return AVERROR_INVALIDDATA;
  966. }
  967. expected_fr_size = ((cf_sizes_wb[ctx->fr_cur_mode] + 7) >> 3) + 1;
  968. if (buf_size < expected_fr_size) {
  969. av_log(avctx, AV_LOG_ERROR,
  970. "Frame too small (%d bytes). Truncated file?\n", buf_size);
  971. *got_frame_ptr = 0;
  972. return AVERROR_INVALIDDATA;
  973. }
  974. if (!ctx->fr_quality || ctx->fr_cur_mode > MODE_SID)
  975. av_log(avctx, AV_LOG_ERROR, "Encountered a bad or corrupted frame\n");
  976. if (ctx->fr_cur_mode == MODE_SID) { /* Comfort noise frame */
  977. av_log_missing_feature(avctx, "SID mode", 1);
  978. return AVERROR_PATCHWELCOME;
  979. }
  980. ff_amr_bit_reorder((uint16_t *) &ctx->frame, sizeof(AMRWBFrame),
  981. buf + header_size, amr_bit_orderings_by_mode[ctx->fr_cur_mode]);
  982. /* Decode the quantized ISF vector */
  983. if (ctx->fr_cur_mode == MODE_6k60) {
  984. decode_isf_indices_36b(cf->isp_id, ctx->isf_cur);
  985. } else {
  986. decode_isf_indices_46b(cf->isp_id, ctx->isf_cur);
  987. }
  988. isf_add_mean_and_past(ctx->isf_cur, ctx->isf_q_past);
  989. ff_set_min_dist_lsf(ctx->isf_cur, MIN_ISF_SPACING, LP_ORDER - 1);
  990. stab_fac = stability_factor(ctx->isf_cur, ctx->isf_past_final);
  991. ctx->isf_cur[LP_ORDER - 1] *= 2.0;
  992. ff_acelp_lsf2lspd(ctx->isp[3], ctx->isf_cur, LP_ORDER);
  993. /* Generate a ISP vector for each subframe */
  994. if (ctx->first_frame) {
  995. ctx->first_frame = 0;
  996. memcpy(ctx->isp_sub4_past, ctx->isp[3], LP_ORDER * sizeof(double));
  997. }
  998. interpolate_isp(ctx->isp, ctx->isp_sub4_past);
  999. for (sub = 0; sub < 4; sub++)
  1000. ff_amrwb_lsp2lpc(ctx->isp[sub], ctx->lp_coef[sub], LP_ORDER);
  1001. for (sub = 0; sub < 4; sub++) {
  1002. const AMRWBSubFrame *cur_subframe = &cf->subframe[sub];
  1003. float *sub_buf = buf_out + sub * AMRWB_SFR_SIZE_16k;
  1004. /* Decode adaptive codebook (pitch vector) */
  1005. decode_pitch_vector(ctx, cur_subframe, sub);
  1006. /* Decode innovative codebook (fixed vector) */
  1007. decode_fixed_vector(ctx->fixed_vector, cur_subframe->pul_ih,
  1008. cur_subframe->pul_il, ctx->fr_cur_mode);
  1009. pitch_sharpening(ctx, ctx->fixed_vector);
  1010. decode_gains(cur_subframe->vq_gain, ctx->fr_cur_mode,
  1011. &fixed_gain_factor, &ctx->pitch_gain[0]);
  1012. ctx->fixed_gain[0] =
  1013. ff_amr_set_fixed_gain(fixed_gain_factor,
  1014. ctx->celpm_ctx.dot_productf(ctx->fixed_vector,
  1015. ctx->fixed_vector,
  1016. AMRWB_SFR_SIZE) /
  1017. AMRWB_SFR_SIZE,
  1018. ctx->prediction_error,
  1019. ENERGY_MEAN, energy_pred_fac);
  1020. /* Calculate voice factor and store tilt for next subframe */
  1021. voice_fac = voice_factor(ctx->pitch_vector, ctx->pitch_gain[0],
  1022. ctx->fixed_vector, ctx->fixed_gain[0],
  1023. &ctx->celpm_ctx);
  1024. ctx->tilt_coef = voice_fac * 0.25 + 0.25;
  1025. /* Construct current excitation */
  1026. for (i = 0; i < AMRWB_SFR_SIZE; i++) {
  1027. ctx->excitation[i] *= ctx->pitch_gain[0];
  1028. ctx->excitation[i] += ctx->fixed_gain[0] * ctx->fixed_vector[i];
  1029. ctx->excitation[i] = truncf(ctx->excitation[i]);
  1030. }
  1031. /* Post-processing of excitation elements */
  1032. synth_fixed_gain = noise_enhancer(ctx->fixed_gain[0], &ctx->prev_tr_gain,
  1033. voice_fac, stab_fac);
  1034. synth_fixed_vector = anti_sparseness(ctx, ctx->fixed_vector,
  1035. spare_vector);
  1036. pitch_enhancer(synth_fixed_vector, voice_fac);
  1037. synthesis(ctx, ctx->lp_coef[sub], synth_exc, synth_fixed_gain,
  1038. synth_fixed_vector, &ctx->samples_az[LP_ORDER]);
  1039. /* Synthesis speech post-processing */
  1040. de_emphasis(&ctx->samples_up[UPS_MEM_SIZE],
  1041. &ctx->samples_az[LP_ORDER], PREEMPH_FAC, ctx->demph_mem);
  1042. ctx->acelpf_ctx.acelp_apply_order_2_transfer_function(&ctx->samples_up[UPS_MEM_SIZE],
  1043. &ctx->samples_up[UPS_MEM_SIZE], hpf_zeros, hpf_31_poles,
  1044. hpf_31_gain, ctx->hpf_31_mem, AMRWB_SFR_SIZE);
  1045. upsample_5_4(sub_buf, &ctx->samples_up[UPS_FIR_SIZE],
  1046. AMRWB_SFR_SIZE_16k, &ctx->celpm_ctx);
  1047. /* High frequency band (6.4 - 7.0 kHz) generation part */
  1048. ctx->acelpf_ctx.acelp_apply_order_2_transfer_function(hb_samples,
  1049. &ctx->samples_up[UPS_MEM_SIZE], hpf_zeros, hpf_400_poles,
  1050. hpf_400_gain, ctx->hpf_400_mem, AMRWB_SFR_SIZE);
  1051. hb_gain = find_hb_gain(ctx, hb_samples,
  1052. cur_subframe->hb_gain, cf->vad);
  1053. scaled_hb_excitation(ctx, hb_exc, synth_exc, hb_gain);
  1054. hb_synthesis(ctx, sub, &ctx->samples_hb[LP_ORDER_16k],
  1055. hb_exc, ctx->isf_cur, ctx->isf_past_final);
  1056. /* High-band post-processing filters */
  1057. hb_fir_filter(hb_samples, bpf_6_7_coef, ctx->bpf_6_7_mem,
  1058. &ctx->samples_hb[LP_ORDER_16k]);
  1059. if (ctx->fr_cur_mode == MODE_23k85)
  1060. hb_fir_filter(hb_samples, lpf_7_coef, ctx->lpf_7_mem,
  1061. hb_samples);
  1062. /* Add the low and high frequency bands */
  1063. for (i = 0; i < AMRWB_SFR_SIZE_16k; i++)
  1064. sub_buf[i] = (sub_buf[i] + hb_samples[i]) * (1.0f / (1 << 15));
  1065. /* Update buffers and history */
  1066. update_sub_state(ctx);
  1067. }
  1068. /* update state for next frame */
  1069. memcpy(ctx->isp_sub4_past, ctx->isp[3], LP_ORDER * sizeof(ctx->isp[3][0]));
  1070. memcpy(ctx->isf_past_final, ctx->isf_cur, LP_ORDER * sizeof(float));
  1071. *got_frame_ptr = 1;
  1072. *(AVFrame *)data = ctx->avframe;
  1073. return expected_fr_size;
  1074. }
  1075. AVCodec ff_amrwb_decoder = {
  1076. .name = "amrwb",
  1077. .type = AVMEDIA_TYPE_AUDIO,
  1078. .id = AV_CODEC_ID_AMR_WB,
  1079. .priv_data_size = sizeof(AMRWBContext),
  1080. .init = amrwb_decode_init,
  1081. .decode = amrwb_decode_frame,
  1082. .capabilities = CODEC_CAP_DR1,
  1083. .long_name = NULL_IF_CONFIG_SMALL("AMR-WB (Adaptive Multi-Rate WideBand)"),
  1084. .sample_fmts = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_FLT,
  1085. AV_SAMPLE_FMT_NONE },
  1086. };