You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1100 lines
41KB

  1. /*
  2. * AMR narrowband decoder
  3. * Copyright (c) 2006-2007 Robert Swain
  4. * Copyright (c) 2009 Colin McQuillan
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file
  24. * AMR narrowband decoder
  25. *
  26. * This decoder uses floats for simplicity and so is not bit-exact. One
  27. * difference is that differences in phase can accumulate. The test sequences
  28. * in 3GPP TS 26.074 can still be useful.
  29. *
  30. * - Comparing this file's output to the output of the ref decoder gives a
  31. * PSNR of 30 to 80. Plotting the output samples shows a difference in
  32. * phase in some areas.
  33. *
  34. * - Comparing both decoders against their input, this decoder gives a similar
  35. * PSNR. If the test sequence homing frames are removed (this decoder does
  36. * not detect them), the PSNR is at least as good as the reference on 140
  37. * out of 169 tests.
  38. */
  39. #include <string.h>
  40. #include <math.h>
  41. #include "libavutil/audioconvert.h"
  42. #include "avcodec.h"
  43. #include "dsputil.h"
  44. #include "libavutil/common.h"
  45. #include "libavutil/avassert.h"
  46. #include "celp_math.h"
  47. #include "celp_filters.h"
  48. #include "acelp_filters.h"
  49. #include "acelp_vectors.h"
  50. #include "acelp_pitch_delay.h"
  51. #include "lsp.h"
  52. #include "amr.h"
  53. #include "amrnbdata.h"
  54. #define AMR_BLOCK_SIZE 160 ///< samples per frame
  55. #define AMR_SAMPLE_BOUND 32768.0 ///< threshold for synthesis overflow
  56. /**
  57. * Scale from constructed speech to [-1,1]
  58. *
  59. * AMR is designed to produce 16-bit PCM samples (3GPP TS 26.090 4.2) but
  60. * upscales by two (section 6.2.2).
  61. *
  62. * Fundamentally, this scale is determined by energy_mean through
  63. * the fixed vector contribution to the excitation vector.
  64. */
  65. #define AMR_SAMPLE_SCALE (2.0 / 32768.0)
  66. /** Prediction factor for 12.2kbit/s mode */
  67. #define PRED_FAC_MODE_12k2 0.65
  68. #define LSF_R_FAC (8000.0 / 32768.0) ///< LSF residual tables to Hertz
  69. #define MIN_LSF_SPACING (50.0488 / 8000.0) ///< Ensures stability of LPC filter
  70. #define PITCH_LAG_MIN_MODE_12k2 18 ///< Lower bound on decoded lag search in 12.2kbit/s mode
  71. /** Initial energy in dB. Also used for bad frames (unimplemented). */
  72. #define MIN_ENERGY -14.0
  73. /** Maximum sharpening factor
  74. *
  75. * The specification says 0.8, which should be 13107, but the reference C code
  76. * uses 13017 instead. (Amusingly the same applies to SHARP_MAX in g729dec.c.)
  77. */
  78. #define SHARP_MAX 0.79449462890625
  79. /** Number of impulse response coefficients used for tilt factor */
  80. #define AMR_TILT_RESPONSE 22
  81. /** Tilt factor = 1st reflection coefficient * gamma_t */
  82. #define AMR_TILT_GAMMA_T 0.8
  83. /** Adaptive gain control factor used in post-filter */
  84. #define AMR_AGC_ALPHA 0.9
  85. typedef struct AMRContext {
  86. AVFrame avframe; ///< AVFrame for decoded samples
  87. AMRNBFrame frame; ///< decoded AMR parameters (lsf coefficients, codebook indexes, etc)
  88. uint8_t bad_frame_indicator; ///< bad frame ? 1 : 0
  89. enum Mode cur_frame_mode;
  90. int16_t prev_lsf_r[LP_FILTER_ORDER]; ///< residual LSF vector from previous subframe
  91. double lsp[4][LP_FILTER_ORDER]; ///< lsp vectors from current frame
  92. double prev_lsp_sub4[LP_FILTER_ORDER]; ///< lsp vector for the 4th subframe of the previous frame
  93. float lsf_q[4][LP_FILTER_ORDER]; ///< Interpolated LSF vector for fixed gain smoothing
  94. float lsf_avg[LP_FILTER_ORDER]; ///< vector of averaged lsf vector
  95. float lpc[4][LP_FILTER_ORDER]; ///< lpc coefficient vectors for 4 subframes
  96. uint8_t pitch_lag_int; ///< integer part of pitch lag from current subframe
  97. float excitation_buf[PITCH_DELAY_MAX + LP_FILTER_ORDER + 1 + AMR_SUBFRAME_SIZE]; ///< current excitation and all necessary excitation history
  98. float *excitation; ///< pointer to the current excitation vector in excitation_buf
  99. float pitch_vector[AMR_SUBFRAME_SIZE]; ///< adaptive code book (pitch) vector
  100. float fixed_vector[AMR_SUBFRAME_SIZE]; ///< algebraic codebook (fixed) vector (must be kept zero between frames)
  101. float prediction_error[4]; ///< quantified prediction errors {20log10(^gamma_gc)} for previous four subframes
  102. float pitch_gain[5]; ///< quantified pitch gains for the current and previous four subframes
  103. float fixed_gain[5]; ///< quantified fixed gains for the current and previous four subframes
  104. float beta; ///< previous pitch_gain, bounded by [0.0,SHARP_MAX]
  105. uint8_t diff_count; ///< the number of subframes for which diff has been above 0.65
  106. uint8_t hang_count; ///< the number of subframes since a hangover period started
  107. float prev_sparse_fixed_gain; ///< previous fixed gain; used by anti-sparseness processing to determine "onset"
  108. uint8_t prev_ir_filter_nr; ///< previous impulse response filter "impNr": 0 - strong, 1 - medium, 2 - none
  109. uint8_t ir_filter_onset; ///< flag for impulse response filter strength
  110. float postfilter_mem[10]; ///< previous intermediate values in the formant filter
  111. float tilt_mem; ///< previous input to tilt compensation filter
  112. float postfilter_agc; ///< previous factor used for adaptive gain control
  113. float high_pass_mem[2]; ///< previous intermediate values in the high-pass filter
  114. float samples_in[LP_FILTER_ORDER + AMR_SUBFRAME_SIZE]; ///< floating point samples
  115. ACELPFContext acelpf_ctx; ///< context for filters for ACELP-based codecs
  116. ACELPVContext acelpv_ctx; ///< context for vector operations for ACELP-based codecs
  117. CELPFContext celpf_ctx; ///< context for filters for CELP-based codecs
  118. CELPMContext celpm_ctx; ///< context for fixed point math operations
  119. } AMRContext;
  120. /** Double version of ff_weighted_vector_sumf() */
  121. static void weighted_vector_sumd(double *out, const double *in_a,
  122. const double *in_b, double weight_coeff_a,
  123. double weight_coeff_b, int length)
  124. {
  125. int i;
  126. for (i = 0; i < length; i++)
  127. out[i] = weight_coeff_a * in_a[i]
  128. + weight_coeff_b * in_b[i];
  129. }
  130. static av_cold int amrnb_decode_init(AVCodecContext *avctx)
  131. {
  132. AMRContext *p = avctx->priv_data;
  133. int i;
  134. if (avctx->channels > 1) {
  135. av_log_missing_feature(avctx, "multi-channel AMR", 0);
  136. return AVERROR_PATCHWELCOME;
  137. }
  138. avctx->channels = 1;
  139. avctx->channel_layout = AV_CH_LAYOUT_MONO;
  140. if (!avctx->sample_rate)
  141. avctx->sample_rate = 8000;
  142. avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
  143. // p->excitation always points to the same position in p->excitation_buf
  144. p->excitation = &p->excitation_buf[PITCH_DELAY_MAX + LP_FILTER_ORDER + 1];
  145. for (i = 0; i < LP_FILTER_ORDER; i++) {
  146. p->prev_lsp_sub4[i] = lsp_sub4_init[i] * 1000 / (float)(1 << 15);
  147. p->lsf_avg[i] = p->lsf_q[3][i] = lsp_avg_init[i] / (float)(1 << 15);
  148. }
  149. for (i = 0; i < 4; i++)
  150. p->prediction_error[i] = MIN_ENERGY;
  151. avcodec_get_frame_defaults(&p->avframe);
  152. avctx->coded_frame = &p->avframe;
  153. ff_acelp_filter_init(&p->acelpf_ctx);
  154. ff_acelp_vectors_init(&p->acelpv_ctx);
  155. ff_celp_filter_init(&p->celpf_ctx);
  156. ff_celp_math_init(&p->celpm_ctx);
  157. return 0;
  158. }
  159. /**
  160. * Unpack an RFC4867 speech frame into the AMR frame mode and parameters.
  161. *
  162. * The order of speech bits is specified by 3GPP TS 26.101.
  163. *
  164. * @param p the context
  165. * @param buf pointer to the input buffer
  166. * @param buf_size size of the input buffer
  167. *
  168. * @return the frame mode
  169. */
  170. static enum Mode unpack_bitstream(AMRContext *p, const uint8_t *buf,
  171. int buf_size)
  172. {
  173. enum Mode mode;
  174. // Decode the first octet.
  175. mode = buf[0] >> 3 & 0x0F; // frame type
  176. p->bad_frame_indicator = (buf[0] & 0x4) != 0x4; // quality bit
  177. if (mode >= N_MODES || buf_size < frame_sizes_nb[mode] + 1) {
  178. return NO_DATA;
  179. }
  180. if (mode < MODE_DTX)
  181. ff_amr_bit_reorder((uint16_t *) &p->frame, sizeof(AMRNBFrame), buf + 1,
  182. amr_unpacking_bitmaps_per_mode[mode]);
  183. return mode;
  184. }
  185. /// @name AMR pitch LPC coefficient decoding functions
  186. /// @{
  187. /**
  188. * Interpolate the LSF vector (used for fixed gain smoothing).
  189. * The interpolation is done over all four subframes even in MODE_12k2.
  190. *
  191. * @param[in] ctx The Context
  192. * @param[in,out] lsf_q LSFs in [0,1] for each subframe
  193. * @param[in] lsf_new New LSFs in [0,1] for subframe 4
  194. */
  195. static void interpolate_lsf(ACELPVContext *ctx, float lsf_q[4][LP_FILTER_ORDER], float *lsf_new)
  196. {
  197. int i;
  198. for (i = 0; i < 4; i++)
  199. ctx->weighted_vector_sumf(lsf_q[i], lsf_q[3], lsf_new,
  200. 0.25 * (3 - i), 0.25 * (i + 1),
  201. LP_FILTER_ORDER);
  202. }
  203. /**
  204. * Decode a set of 5 split-matrix quantized lsf indexes into an lsp vector.
  205. *
  206. * @param p the context
  207. * @param lsp output LSP vector
  208. * @param lsf_no_r LSF vector without the residual vector added
  209. * @param lsf_quantizer pointers to LSF dictionary tables
  210. * @param quantizer_offset offset in tables
  211. * @param sign for the 3 dictionary table
  212. * @param update store data for computing the next frame's LSFs
  213. */
  214. static void lsf2lsp_for_mode12k2(AMRContext *p, double lsp[LP_FILTER_ORDER],
  215. const float lsf_no_r[LP_FILTER_ORDER],
  216. const int16_t *lsf_quantizer[5],
  217. const int quantizer_offset,
  218. const int sign, const int update)
  219. {
  220. int16_t lsf_r[LP_FILTER_ORDER]; // residual LSF vector
  221. float lsf_q[LP_FILTER_ORDER]; // quantified LSF vector
  222. int i;
  223. for (i = 0; i < LP_FILTER_ORDER >> 1; i++)
  224. memcpy(&lsf_r[i << 1], &lsf_quantizer[i][quantizer_offset],
  225. 2 * sizeof(*lsf_r));
  226. if (sign) {
  227. lsf_r[4] *= -1;
  228. lsf_r[5] *= -1;
  229. }
  230. if (update)
  231. memcpy(p->prev_lsf_r, lsf_r, LP_FILTER_ORDER * sizeof(*lsf_r));
  232. for (i = 0; i < LP_FILTER_ORDER; i++)
  233. lsf_q[i] = lsf_r[i] * (LSF_R_FAC / 8000.0) + lsf_no_r[i] * (1.0 / 8000.0);
  234. ff_set_min_dist_lsf(lsf_q, MIN_LSF_SPACING, LP_FILTER_ORDER);
  235. if (update)
  236. interpolate_lsf(&p->acelpv_ctx, p->lsf_q, lsf_q);
  237. ff_acelp_lsf2lspd(lsp, lsf_q, LP_FILTER_ORDER);
  238. }
  239. /**
  240. * Decode a set of 5 split-matrix quantized lsf indexes into 2 lsp vectors.
  241. *
  242. * @param p pointer to the AMRContext
  243. */
  244. static void lsf2lsp_5(AMRContext *p)
  245. {
  246. const uint16_t *lsf_param = p->frame.lsf;
  247. float lsf_no_r[LP_FILTER_ORDER]; // LSFs without the residual vector
  248. const int16_t *lsf_quantizer[5];
  249. int i;
  250. lsf_quantizer[0] = lsf_5_1[lsf_param[0]];
  251. lsf_quantizer[1] = lsf_5_2[lsf_param[1]];
  252. lsf_quantizer[2] = lsf_5_3[lsf_param[2] >> 1];
  253. lsf_quantizer[3] = lsf_5_4[lsf_param[3]];
  254. lsf_quantizer[4] = lsf_5_5[lsf_param[4]];
  255. for (i = 0; i < LP_FILTER_ORDER; i++)
  256. lsf_no_r[i] = p->prev_lsf_r[i] * LSF_R_FAC * PRED_FAC_MODE_12k2 + lsf_5_mean[i];
  257. lsf2lsp_for_mode12k2(p, p->lsp[1], lsf_no_r, lsf_quantizer, 0, lsf_param[2] & 1, 0);
  258. lsf2lsp_for_mode12k2(p, p->lsp[3], lsf_no_r, lsf_quantizer, 2, lsf_param[2] & 1, 1);
  259. // interpolate LSP vectors at subframes 1 and 3
  260. weighted_vector_sumd(p->lsp[0], p->prev_lsp_sub4, p->lsp[1], 0.5, 0.5, LP_FILTER_ORDER);
  261. weighted_vector_sumd(p->lsp[2], p->lsp[1] , p->lsp[3], 0.5, 0.5, LP_FILTER_ORDER);
  262. }
  263. /**
  264. * Decode a set of 3 split-matrix quantized lsf indexes into an lsp vector.
  265. *
  266. * @param p pointer to the AMRContext
  267. */
  268. static void lsf2lsp_3(AMRContext *p)
  269. {
  270. const uint16_t *lsf_param = p->frame.lsf;
  271. int16_t lsf_r[LP_FILTER_ORDER]; // residual LSF vector
  272. float lsf_q[LP_FILTER_ORDER]; // quantified LSF vector
  273. const int16_t *lsf_quantizer;
  274. int i, j;
  275. lsf_quantizer = (p->cur_frame_mode == MODE_7k95 ? lsf_3_1_MODE_7k95 : lsf_3_1)[lsf_param[0]];
  276. memcpy(lsf_r, lsf_quantizer, 3 * sizeof(*lsf_r));
  277. lsf_quantizer = lsf_3_2[lsf_param[1] << (p->cur_frame_mode <= MODE_5k15)];
  278. memcpy(lsf_r + 3, lsf_quantizer, 3 * sizeof(*lsf_r));
  279. lsf_quantizer = (p->cur_frame_mode <= MODE_5k15 ? lsf_3_3_MODE_5k15 : lsf_3_3)[lsf_param[2]];
  280. memcpy(lsf_r + 6, lsf_quantizer, 4 * sizeof(*lsf_r));
  281. // calculate mean-removed LSF vector and add mean
  282. for (i = 0; i < LP_FILTER_ORDER; i++)
  283. lsf_q[i] = (lsf_r[i] + p->prev_lsf_r[i] * pred_fac[i]) * (LSF_R_FAC / 8000.0) + lsf_3_mean[i] * (1.0 / 8000.0);
  284. ff_set_min_dist_lsf(lsf_q, MIN_LSF_SPACING, LP_FILTER_ORDER);
  285. // store data for computing the next frame's LSFs
  286. interpolate_lsf(&p->acelpv_ctx, p->lsf_q, lsf_q);
  287. memcpy(p->prev_lsf_r, lsf_r, LP_FILTER_ORDER * sizeof(*lsf_r));
  288. ff_acelp_lsf2lspd(p->lsp[3], lsf_q, LP_FILTER_ORDER);
  289. // interpolate LSP vectors at subframes 1, 2 and 3
  290. for (i = 1; i <= 3; i++)
  291. for(j = 0; j < LP_FILTER_ORDER; j++)
  292. p->lsp[i-1][j] = p->prev_lsp_sub4[j] +
  293. (p->lsp[3][j] - p->prev_lsp_sub4[j]) * 0.25 * i;
  294. }
  295. /// @}
  296. /// @name AMR pitch vector decoding functions
  297. /// @{
  298. /**
  299. * Like ff_decode_pitch_lag(), but with 1/6 resolution
  300. */
  301. static void decode_pitch_lag_1_6(int *lag_int, int *lag_frac, int pitch_index,
  302. const int prev_lag_int, const int subframe)
  303. {
  304. if (subframe == 0 || subframe == 2) {
  305. if (pitch_index < 463) {
  306. *lag_int = (pitch_index + 107) * 10923 >> 16;
  307. *lag_frac = pitch_index - *lag_int * 6 + 105;
  308. } else {
  309. *lag_int = pitch_index - 368;
  310. *lag_frac = 0;
  311. }
  312. } else {
  313. *lag_int = ((pitch_index + 5) * 10923 >> 16) - 1;
  314. *lag_frac = pitch_index - *lag_int * 6 - 3;
  315. *lag_int += av_clip(prev_lag_int - 5, PITCH_LAG_MIN_MODE_12k2,
  316. PITCH_DELAY_MAX - 9);
  317. }
  318. }
  319. static void decode_pitch_vector(AMRContext *p,
  320. const AMRNBSubframe *amr_subframe,
  321. const int subframe)
  322. {
  323. int pitch_lag_int, pitch_lag_frac;
  324. enum Mode mode = p->cur_frame_mode;
  325. if (p->cur_frame_mode == MODE_12k2) {
  326. decode_pitch_lag_1_6(&pitch_lag_int, &pitch_lag_frac,
  327. amr_subframe->p_lag, p->pitch_lag_int,
  328. subframe);
  329. } else
  330. ff_decode_pitch_lag(&pitch_lag_int, &pitch_lag_frac,
  331. amr_subframe->p_lag,
  332. p->pitch_lag_int, subframe,
  333. mode != MODE_4k75 && mode != MODE_5k15,
  334. mode <= MODE_6k7 ? 4 : (mode == MODE_7k95 ? 5 : 6));
  335. p->pitch_lag_int = pitch_lag_int; // store previous lag in a uint8_t
  336. pitch_lag_frac <<= (p->cur_frame_mode != MODE_12k2);
  337. pitch_lag_int += pitch_lag_frac > 0;
  338. /* Calculate the pitch vector by interpolating the past excitation at the
  339. pitch lag using a b60 hamming windowed sinc function. */
  340. p->acelpf_ctx.acelp_interpolatef(p->excitation,
  341. p->excitation + 1 - pitch_lag_int,
  342. ff_b60_sinc, 6,
  343. pitch_lag_frac + 6 - 6*(pitch_lag_frac > 0),
  344. 10, AMR_SUBFRAME_SIZE);
  345. memcpy(p->pitch_vector, p->excitation, AMR_SUBFRAME_SIZE * sizeof(float));
  346. }
  347. /// @}
  348. /// @name AMR algebraic code book (fixed) vector decoding functions
  349. /// @{
  350. /**
  351. * Decode a 10-bit algebraic codebook index from a 10.2 kbit/s frame.
  352. */
  353. static void decode_10bit_pulse(int code, int pulse_position[8],
  354. int i1, int i2, int i3)
  355. {
  356. // coded using 7+3 bits with the 3 LSBs being, individually, the LSB of 1 of
  357. // the 3 pulses and the upper 7 bits being coded in base 5
  358. const uint8_t *positions = base_five_table[code >> 3];
  359. pulse_position[i1] = (positions[2] << 1) + ( code & 1);
  360. pulse_position[i2] = (positions[1] << 1) + ((code >> 1) & 1);
  361. pulse_position[i3] = (positions[0] << 1) + ((code >> 2) & 1);
  362. }
  363. /**
  364. * Decode the algebraic codebook index to pulse positions and signs and
  365. * construct the algebraic codebook vector for MODE_10k2.
  366. *
  367. * @param fixed_index positions of the eight pulses
  368. * @param fixed_sparse pointer to the algebraic codebook vector
  369. */
  370. static void decode_8_pulses_31bits(const int16_t *fixed_index,
  371. AMRFixed *fixed_sparse)
  372. {
  373. int pulse_position[8];
  374. int i, temp;
  375. decode_10bit_pulse(fixed_index[4], pulse_position, 0, 4, 1);
  376. decode_10bit_pulse(fixed_index[5], pulse_position, 2, 6, 5);
  377. // coded using 5+2 bits with the 2 LSBs being, individually, the LSB of 1 of
  378. // the 2 pulses and the upper 5 bits being coded in base 5
  379. temp = ((fixed_index[6] >> 2) * 25 + 12) >> 5;
  380. pulse_position[3] = temp % 5;
  381. pulse_position[7] = temp / 5;
  382. if (pulse_position[7] & 1)
  383. pulse_position[3] = 4 - pulse_position[3];
  384. pulse_position[3] = (pulse_position[3] << 1) + ( fixed_index[6] & 1);
  385. pulse_position[7] = (pulse_position[7] << 1) + ((fixed_index[6] >> 1) & 1);
  386. fixed_sparse->n = 8;
  387. for (i = 0; i < 4; i++) {
  388. const int pos1 = (pulse_position[i] << 2) + i;
  389. const int pos2 = (pulse_position[i + 4] << 2) + i;
  390. const float sign = fixed_index[i] ? -1.0 : 1.0;
  391. fixed_sparse->x[i ] = pos1;
  392. fixed_sparse->x[i + 4] = pos2;
  393. fixed_sparse->y[i ] = sign;
  394. fixed_sparse->y[i + 4] = pos2 < pos1 ? -sign : sign;
  395. }
  396. }
  397. /**
  398. * Decode the algebraic codebook index to pulse positions and signs,
  399. * then construct the algebraic codebook vector.
  400. *
  401. * nb of pulses | bits encoding pulses
  402. * For MODE_4k75 or MODE_5k15, 2 | 1-3, 4-6, 7
  403. * MODE_5k9, 2 | 1, 2-4, 5-6, 7-9
  404. * MODE_6k7, 3 | 1-3, 4, 5-7, 8, 9-11
  405. * MODE_7k4 or MODE_7k95, 4 | 1-3, 4-6, 7-9, 10, 11-13
  406. *
  407. * @param fixed_sparse pointer to the algebraic codebook vector
  408. * @param pulses algebraic codebook indexes
  409. * @param mode mode of the current frame
  410. * @param subframe current subframe number
  411. */
  412. static void decode_fixed_sparse(AMRFixed *fixed_sparse, const uint16_t *pulses,
  413. const enum Mode mode, const int subframe)
  414. {
  415. av_assert1(MODE_4k75 <= (signed)mode && mode <= MODE_12k2);
  416. if (mode == MODE_12k2) {
  417. ff_decode_10_pulses_35bits(pulses, fixed_sparse, gray_decode, 5, 3);
  418. } else if (mode == MODE_10k2) {
  419. decode_8_pulses_31bits(pulses, fixed_sparse);
  420. } else {
  421. int *pulse_position = fixed_sparse->x;
  422. int i, pulse_subset;
  423. const int fixed_index = pulses[0];
  424. if (mode <= MODE_5k15) {
  425. pulse_subset = ((fixed_index >> 3) & 8) + (subframe << 1);
  426. pulse_position[0] = ( fixed_index & 7) * 5 + track_position[pulse_subset];
  427. pulse_position[1] = ((fixed_index >> 3) & 7) * 5 + track_position[pulse_subset + 1];
  428. fixed_sparse->n = 2;
  429. } else if (mode == MODE_5k9) {
  430. pulse_subset = ((fixed_index & 1) << 1) + 1;
  431. pulse_position[0] = ((fixed_index >> 1) & 7) * 5 + pulse_subset;
  432. pulse_subset = (fixed_index >> 4) & 3;
  433. pulse_position[1] = ((fixed_index >> 6) & 7) * 5 + pulse_subset + (pulse_subset == 3 ? 1 : 0);
  434. fixed_sparse->n = pulse_position[0] == pulse_position[1] ? 1 : 2;
  435. } else if (mode == MODE_6k7) {
  436. pulse_position[0] = (fixed_index & 7) * 5;
  437. pulse_subset = (fixed_index >> 2) & 2;
  438. pulse_position[1] = ((fixed_index >> 4) & 7) * 5 + pulse_subset + 1;
  439. pulse_subset = (fixed_index >> 6) & 2;
  440. pulse_position[2] = ((fixed_index >> 8) & 7) * 5 + pulse_subset + 2;
  441. fixed_sparse->n = 3;
  442. } else { // mode <= MODE_7k95
  443. pulse_position[0] = gray_decode[ fixed_index & 7];
  444. pulse_position[1] = gray_decode[(fixed_index >> 3) & 7] + 1;
  445. pulse_position[2] = gray_decode[(fixed_index >> 6) & 7] + 2;
  446. pulse_subset = (fixed_index >> 9) & 1;
  447. pulse_position[3] = gray_decode[(fixed_index >> 10) & 7] + pulse_subset + 3;
  448. fixed_sparse->n = 4;
  449. }
  450. for (i = 0; i < fixed_sparse->n; i++)
  451. fixed_sparse->y[i] = (pulses[1] >> i) & 1 ? 1.0 : -1.0;
  452. }
  453. }
  454. /**
  455. * Apply pitch lag to obtain the sharpened fixed vector (section 6.1.2)
  456. *
  457. * @param p the context
  458. * @param subframe unpacked amr subframe
  459. * @param mode mode of the current frame
  460. * @param fixed_sparse sparse respresentation of the fixed vector
  461. */
  462. static void pitch_sharpening(AMRContext *p, int subframe, enum Mode mode,
  463. AMRFixed *fixed_sparse)
  464. {
  465. // The spec suggests the current pitch gain is always used, but in other
  466. // modes the pitch and codebook gains are joinly quantized (sec 5.8.2)
  467. // so the codebook gain cannot depend on the quantized pitch gain.
  468. if (mode == MODE_12k2)
  469. p->beta = FFMIN(p->pitch_gain[4], 1.0);
  470. fixed_sparse->pitch_lag = p->pitch_lag_int;
  471. fixed_sparse->pitch_fac = p->beta;
  472. // Save pitch sharpening factor for the next subframe
  473. // MODE_4k75 only updates on the 2nd and 4th subframes - this follows from
  474. // the fact that the gains for two subframes are jointly quantized.
  475. if (mode != MODE_4k75 || subframe & 1)
  476. p->beta = av_clipf(p->pitch_gain[4], 0.0, SHARP_MAX);
  477. }
  478. /// @}
  479. /// @name AMR gain decoding functions
  480. /// @{
  481. /**
  482. * fixed gain smoothing
  483. * Note that where the spec specifies the "spectrum in the q domain"
  484. * in section 6.1.4, in fact frequencies should be used.
  485. *
  486. * @param p the context
  487. * @param lsf LSFs for the current subframe, in the range [0,1]
  488. * @param lsf_avg averaged LSFs
  489. * @param mode mode of the current frame
  490. *
  491. * @return fixed gain smoothed
  492. */
  493. static float fixed_gain_smooth(AMRContext *p , const float *lsf,
  494. const float *lsf_avg, const enum Mode mode)
  495. {
  496. float diff = 0.0;
  497. int i;
  498. for (i = 0; i < LP_FILTER_ORDER; i++)
  499. diff += fabs(lsf_avg[i] - lsf[i]) / lsf_avg[i];
  500. // If diff is large for ten subframes, disable smoothing for a 40-subframe
  501. // hangover period.
  502. p->diff_count++;
  503. if (diff <= 0.65)
  504. p->diff_count = 0;
  505. if (p->diff_count > 10) {
  506. p->hang_count = 0;
  507. p->diff_count--; // don't let diff_count overflow
  508. }
  509. if (p->hang_count < 40) {
  510. p->hang_count++;
  511. } else if (mode < MODE_7k4 || mode == MODE_10k2) {
  512. const float smoothing_factor = av_clipf(4.0 * diff - 1.6, 0.0, 1.0);
  513. const float fixed_gain_mean = (p->fixed_gain[0] + p->fixed_gain[1] +
  514. p->fixed_gain[2] + p->fixed_gain[3] +
  515. p->fixed_gain[4]) * 0.2;
  516. return smoothing_factor * p->fixed_gain[4] +
  517. (1.0 - smoothing_factor) * fixed_gain_mean;
  518. }
  519. return p->fixed_gain[4];
  520. }
  521. /**
  522. * Decode pitch gain and fixed gain factor (part of section 6.1.3).
  523. *
  524. * @param p the context
  525. * @param amr_subframe unpacked amr subframe
  526. * @param mode mode of the current frame
  527. * @param subframe current subframe number
  528. * @param fixed_gain_factor decoded gain correction factor
  529. */
  530. static void decode_gains(AMRContext *p, const AMRNBSubframe *amr_subframe,
  531. const enum Mode mode, const int subframe,
  532. float *fixed_gain_factor)
  533. {
  534. if (mode == MODE_12k2 || mode == MODE_7k95) {
  535. p->pitch_gain[4] = qua_gain_pit [amr_subframe->p_gain ]
  536. * (1.0 / 16384.0);
  537. *fixed_gain_factor = qua_gain_code[amr_subframe->fixed_gain]
  538. * (1.0 / 2048.0);
  539. } else {
  540. const uint16_t *gains;
  541. if (mode >= MODE_6k7) {
  542. gains = gains_high[amr_subframe->p_gain];
  543. } else if (mode >= MODE_5k15) {
  544. gains = gains_low [amr_subframe->p_gain];
  545. } else {
  546. // gain index is only coded in subframes 0,2 for MODE_4k75
  547. gains = gains_MODE_4k75[(p->frame.subframe[subframe & 2].p_gain << 1) + (subframe & 1)];
  548. }
  549. p->pitch_gain[4] = gains[0] * (1.0 / 16384.0);
  550. *fixed_gain_factor = gains[1] * (1.0 / 4096.0);
  551. }
  552. }
  553. /// @}
  554. /// @name AMR preprocessing functions
  555. /// @{
  556. /**
  557. * Circularly convolve a sparse fixed vector with a phase dispersion impulse
  558. * response filter (D.6.2 of G.729 and 6.1.5 of AMR).
  559. *
  560. * @param out vector with filter applied
  561. * @param in source vector
  562. * @param filter phase filter coefficients
  563. *
  564. * out[n] = sum(i,0,len-1){ in[i] * filter[(len + n - i)%len] }
  565. */
  566. static void apply_ir_filter(float *out, const AMRFixed *in,
  567. const float *filter)
  568. {
  569. float filter1[AMR_SUBFRAME_SIZE], ///< filters at pitch lag*1 and *2
  570. filter2[AMR_SUBFRAME_SIZE];
  571. int lag = in->pitch_lag;
  572. float fac = in->pitch_fac;
  573. int i;
  574. if (lag < AMR_SUBFRAME_SIZE) {
  575. ff_celp_circ_addf(filter1, filter, filter, lag, fac,
  576. AMR_SUBFRAME_SIZE);
  577. if (lag < AMR_SUBFRAME_SIZE >> 1)
  578. ff_celp_circ_addf(filter2, filter, filter1, lag, fac,
  579. AMR_SUBFRAME_SIZE);
  580. }
  581. memset(out, 0, sizeof(float) * AMR_SUBFRAME_SIZE);
  582. for (i = 0; i < in->n; i++) {
  583. int x = in->x[i];
  584. float y = in->y[i];
  585. const float *filterp;
  586. if (x >= AMR_SUBFRAME_SIZE - lag) {
  587. filterp = filter;
  588. } else if (x >= AMR_SUBFRAME_SIZE - (lag << 1)) {
  589. filterp = filter1;
  590. } else
  591. filterp = filter2;
  592. ff_celp_circ_addf(out, out, filterp, x, y, AMR_SUBFRAME_SIZE);
  593. }
  594. }
  595. /**
  596. * Reduce fixed vector sparseness by smoothing with one of three IR filters.
  597. * Also know as "adaptive phase dispersion".
  598. *
  599. * This implements 3GPP TS 26.090 section 6.1(5).
  600. *
  601. * @param p the context
  602. * @param fixed_sparse algebraic codebook vector
  603. * @param fixed_vector unfiltered fixed vector
  604. * @param fixed_gain smoothed gain
  605. * @param out space for modified vector if necessary
  606. */
  607. static const float *anti_sparseness(AMRContext *p, AMRFixed *fixed_sparse,
  608. const float *fixed_vector,
  609. float fixed_gain, float *out)
  610. {
  611. int ir_filter_nr;
  612. if (p->pitch_gain[4] < 0.6) {
  613. ir_filter_nr = 0; // strong filtering
  614. } else if (p->pitch_gain[4] < 0.9) {
  615. ir_filter_nr = 1; // medium filtering
  616. } else
  617. ir_filter_nr = 2; // no filtering
  618. // detect 'onset'
  619. if (fixed_gain > 2.0 * p->prev_sparse_fixed_gain) {
  620. p->ir_filter_onset = 2;
  621. } else if (p->ir_filter_onset)
  622. p->ir_filter_onset--;
  623. if (!p->ir_filter_onset) {
  624. int i, count = 0;
  625. for (i = 0; i < 5; i++)
  626. if (p->pitch_gain[i] < 0.6)
  627. count++;
  628. if (count > 2)
  629. ir_filter_nr = 0;
  630. if (ir_filter_nr > p->prev_ir_filter_nr + 1)
  631. ir_filter_nr--;
  632. } else if (ir_filter_nr < 2)
  633. ir_filter_nr++;
  634. // Disable filtering for very low level of fixed_gain.
  635. // Note this step is not specified in the technical description but is in
  636. // the reference source in the function Ph_disp.
  637. if (fixed_gain < 5.0)
  638. ir_filter_nr = 2;
  639. if (p->cur_frame_mode != MODE_7k4 && p->cur_frame_mode < MODE_10k2
  640. && ir_filter_nr < 2) {
  641. apply_ir_filter(out, fixed_sparse,
  642. (p->cur_frame_mode == MODE_7k95 ?
  643. ir_filters_lookup_MODE_7k95 :
  644. ir_filters_lookup)[ir_filter_nr]);
  645. fixed_vector = out;
  646. }
  647. // update ir filter strength history
  648. p->prev_ir_filter_nr = ir_filter_nr;
  649. p->prev_sparse_fixed_gain = fixed_gain;
  650. return fixed_vector;
  651. }
  652. /// @}
  653. /// @name AMR synthesis functions
  654. /// @{
  655. /**
  656. * Conduct 10th order linear predictive coding synthesis.
  657. *
  658. * @param p pointer to the AMRContext
  659. * @param lpc pointer to the LPC coefficients
  660. * @param fixed_gain fixed codebook gain for synthesis
  661. * @param fixed_vector algebraic codebook vector
  662. * @param samples pointer to the output speech samples
  663. * @param overflow 16-bit overflow flag
  664. */
  665. static int synthesis(AMRContext *p, float *lpc,
  666. float fixed_gain, const float *fixed_vector,
  667. float *samples, uint8_t overflow)
  668. {
  669. int i;
  670. float excitation[AMR_SUBFRAME_SIZE];
  671. // if an overflow has been detected, the pitch vector is scaled down by a
  672. // factor of 4
  673. if (overflow)
  674. for (i = 0; i < AMR_SUBFRAME_SIZE; i++)
  675. p->pitch_vector[i] *= 0.25;
  676. p->acelpv_ctx.weighted_vector_sumf(excitation, p->pitch_vector, fixed_vector,
  677. p->pitch_gain[4], fixed_gain, AMR_SUBFRAME_SIZE);
  678. // emphasize pitch vector contribution
  679. if (p->pitch_gain[4] > 0.5 && !overflow) {
  680. float energy = p->celpm_ctx.dot_productf(excitation, excitation,
  681. AMR_SUBFRAME_SIZE);
  682. float pitch_factor =
  683. p->pitch_gain[4] *
  684. (p->cur_frame_mode == MODE_12k2 ?
  685. 0.25 * FFMIN(p->pitch_gain[4], 1.0) :
  686. 0.5 * FFMIN(p->pitch_gain[4], SHARP_MAX));
  687. for (i = 0; i < AMR_SUBFRAME_SIZE; i++)
  688. excitation[i] += pitch_factor * p->pitch_vector[i];
  689. ff_scale_vector_to_given_sum_of_squares(excitation, excitation, energy,
  690. AMR_SUBFRAME_SIZE);
  691. }
  692. p->celpf_ctx.celp_lp_synthesis_filterf(samples, lpc, excitation,
  693. AMR_SUBFRAME_SIZE,
  694. LP_FILTER_ORDER);
  695. // detect overflow
  696. for (i = 0; i < AMR_SUBFRAME_SIZE; i++)
  697. if (fabsf(samples[i]) > AMR_SAMPLE_BOUND) {
  698. return 1;
  699. }
  700. return 0;
  701. }
  702. /// @}
  703. /// @name AMR update functions
  704. /// @{
  705. /**
  706. * Update buffers and history at the end of decoding a subframe.
  707. *
  708. * @param p pointer to the AMRContext
  709. */
  710. static void update_state(AMRContext *p)
  711. {
  712. memcpy(p->prev_lsp_sub4, p->lsp[3], LP_FILTER_ORDER * sizeof(p->lsp[3][0]));
  713. memmove(&p->excitation_buf[0], &p->excitation_buf[AMR_SUBFRAME_SIZE],
  714. (PITCH_DELAY_MAX + LP_FILTER_ORDER + 1) * sizeof(float));
  715. memmove(&p->pitch_gain[0], &p->pitch_gain[1], 4 * sizeof(float));
  716. memmove(&p->fixed_gain[0], &p->fixed_gain[1], 4 * sizeof(float));
  717. memmove(&p->samples_in[0], &p->samples_in[AMR_SUBFRAME_SIZE],
  718. LP_FILTER_ORDER * sizeof(float));
  719. }
  720. /// @}
  721. /// @name AMR Postprocessing functions
  722. /// @{
  723. /**
  724. * Get the tilt factor of a formant filter from its transfer function
  725. *
  726. * @param p The Context
  727. * @param lpc_n LP_FILTER_ORDER coefficients of the numerator
  728. * @param lpc_d LP_FILTER_ORDER coefficients of the denominator
  729. */
  730. static float tilt_factor(AMRContext *p, float *lpc_n, float *lpc_d)
  731. {
  732. float rh0, rh1; // autocorrelation at lag 0 and 1
  733. // LP_FILTER_ORDER prior zeros are needed for ff_celp_lp_synthesis_filterf
  734. float impulse_buffer[LP_FILTER_ORDER + AMR_TILT_RESPONSE] = { 0 };
  735. float *hf = impulse_buffer + LP_FILTER_ORDER; // start of impulse response
  736. hf[0] = 1.0;
  737. memcpy(hf + 1, lpc_n, sizeof(float) * LP_FILTER_ORDER);
  738. p->celpf_ctx.celp_lp_synthesis_filterf(hf, lpc_d, hf,
  739. AMR_TILT_RESPONSE,
  740. LP_FILTER_ORDER);
  741. rh0 = p->celpm_ctx.dot_productf(hf, hf, AMR_TILT_RESPONSE);
  742. rh1 = p->celpm_ctx.dot_productf(hf, hf + 1, AMR_TILT_RESPONSE - 1);
  743. // The spec only specifies this check for 12.2 and 10.2 kbit/s
  744. // modes. But in the ref source the tilt is always non-negative.
  745. return rh1 >= 0.0 ? rh1 / rh0 * AMR_TILT_GAMMA_T : 0.0;
  746. }
  747. /**
  748. * Perform adaptive post-filtering to enhance the quality of the speech.
  749. * See section 6.2.1.
  750. *
  751. * @param p pointer to the AMRContext
  752. * @param lpc interpolated LP coefficients for this subframe
  753. * @param buf_out output of the filter
  754. */
  755. static void postfilter(AMRContext *p, float *lpc, float *buf_out)
  756. {
  757. int i;
  758. float *samples = p->samples_in + LP_FILTER_ORDER; // Start of input
  759. float speech_gain = p->celpm_ctx.dot_productf(samples, samples,
  760. AMR_SUBFRAME_SIZE);
  761. float pole_out[AMR_SUBFRAME_SIZE + LP_FILTER_ORDER]; // Output of pole filter
  762. const float *gamma_n, *gamma_d; // Formant filter factor table
  763. float lpc_n[LP_FILTER_ORDER], lpc_d[LP_FILTER_ORDER]; // Transfer function coefficients
  764. if (p->cur_frame_mode == MODE_12k2 || p->cur_frame_mode == MODE_10k2) {
  765. gamma_n = ff_pow_0_7;
  766. gamma_d = ff_pow_0_75;
  767. } else {
  768. gamma_n = ff_pow_0_55;
  769. gamma_d = ff_pow_0_7;
  770. }
  771. for (i = 0; i < LP_FILTER_ORDER; i++) {
  772. lpc_n[i] = lpc[i] * gamma_n[i];
  773. lpc_d[i] = lpc[i] * gamma_d[i];
  774. }
  775. memcpy(pole_out, p->postfilter_mem, sizeof(float) * LP_FILTER_ORDER);
  776. p->celpf_ctx.celp_lp_synthesis_filterf(pole_out + LP_FILTER_ORDER, lpc_d, samples,
  777. AMR_SUBFRAME_SIZE, LP_FILTER_ORDER);
  778. memcpy(p->postfilter_mem, pole_out + AMR_SUBFRAME_SIZE,
  779. sizeof(float) * LP_FILTER_ORDER);
  780. p->celpf_ctx.celp_lp_zero_synthesis_filterf(buf_out, lpc_n,
  781. pole_out + LP_FILTER_ORDER,
  782. AMR_SUBFRAME_SIZE, LP_FILTER_ORDER);
  783. ff_tilt_compensation(&p->tilt_mem, tilt_factor(p, lpc_n, lpc_d), buf_out,
  784. AMR_SUBFRAME_SIZE);
  785. ff_adaptive_gain_control(buf_out, buf_out, speech_gain, AMR_SUBFRAME_SIZE,
  786. AMR_AGC_ALPHA, &p->postfilter_agc);
  787. }
  788. /// @}
  789. static int amrnb_decode_frame(AVCodecContext *avctx, void *data,
  790. int *got_frame_ptr, AVPacket *avpkt)
  791. {
  792. AMRContext *p = avctx->priv_data; // pointer to private data
  793. const uint8_t *buf = avpkt->data;
  794. int buf_size = avpkt->size;
  795. float *buf_out; // pointer to the output data buffer
  796. int i, subframe, ret;
  797. float fixed_gain_factor;
  798. AMRFixed fixed_sparse = {0}; // fixed vector up to anti-sparseness processing
  799. float spare_vector[AMR_SUBFRAME_SIZE]; // extra stack space to hold result from anti-sparseness processing
  800. float synth_fixed_gain; // the fixed gain that synthesis should use
  801. const float *synth_fixed_vector; // pointer to the fixed vector that synthesis should use
  802. /* get output buffer */
  803. p->avframe.nb_samples = AMR_BLOCK_SIZE;
  804. if ((ret = avctx->get_buffer(avctx, &p->avframe)) < 0) {
  805. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  806. return ret;
  807. }
  808. buf_out = (float *)p->avframe.data[0];
  809. p->cur_frame_mode = unpack_bitstream(p, buf, buf_size);
  810. if (p->cur_frame_mode == NO_DATA) {
  811. av_log(avctx, AV_LOG_ERROR, "Corrupt bitstream\n");
  812. return AVERROR_INVALIDDATA;
  813. }
  814. if (p->cur_frame_mode == MODE_DTX) {
  815. av_log_missing_feature(avctx, "dtx mode", 0);
  816. av_log(avctx, AV_LOG_INFO, "Note: libopencore_amrnb supports dtx\n");
  817. return AVERROR_PATCHWELCOME;
  818. }
  819. if (p->cur_frame_mode == MODE_12k2) {
  820. lsf2lsp_5(p);
  821. } else
  822. lsf2lsp_3(p);
  823. for (i = 0; i < 4; i++)
  824. ff_acelp_lspd2lpc(p->lsp[i], p->lpc[i], 5);
  825. for (subframe = 0; subframe < 4; subframe++) {
  826. const AMRNBSubframe *amr_subframe = &p->frame.subframe[subframe];
  827. decode_pitch_vector(p, amr_subframe, subframe);
  828. decode_fixed_sparse(&fixed_sparse, amr_subframe->pulses,
  829. p->cur_frame_mode, subframe);
  830. // The fixed gain (section 6.1.3) depends on the fixed vector
  831. // (section 6.1.2), but the fixed vector calculation uses
  832. // pitch sharpening based on the on the pitch gain (section 6.1.3).
  833. // So the correct order is: pitch gain, pitch sharpening, fixed gain.
  834. decode_gains(p, amr_subframe, p->cur_frame_mode, subframe,
  835. &fixed_gain_factor);
  836. pitch_sharpening(p, subframe, p->cur_frame_mode, &fixed_sparse);
  837. if (fixed_sparse.pitch_lag == 0) {
  838. av_log(avctx, AV_LOG_ERROR, "The file is corrupted, pitch_lag = 0 is not allowed\n");
  839. return AVERROR_INVALIDDATA;
  840. }
  841. ff_set_fixed_vector(p->fixed_vector, &fixed_sparse, 1.0,
  842. AMR_SUBFRAME_SIZE);
  843. p->fixed_gain[4] =
  844. ff_amr_set_fixed_gain(fixed_gain_factor,
  845. p->celpm_ctx.dot_productf(p->fixed_vector,
  846. p->fixed_vector,
  847. AMR_SUBFRAME_SIZE) /
  848. AMR_SUBFRAME_SIZE,
  849. p->prediction_error,
  850. energy_mean[p->cur_frame_mode], energy_pred_fac);
  851. // The excitation feedback is calculated without any processing such
  852. // as fixed gain smoothing. This isn't mentioned in the specification.
  853. for (i = 0; i < AMR_SUBFRAME_SIZE; i++)
  854. p->excitation[i] *= p->pitch_gain[4];
  855. ff_set_fixed_vector(p->excitation, &fixed_sparse, p->fixed_gain[4],
  856. AMR_SUBFRAME_SIZE);
  857. // In the ref decoder, excitation is stored with no fractional bits.
  858. // This step prevents buzz in silent periods. The ref encoder can
  859. // emit long sequences with pitch factor greater than one. This
  860. // creates unwanted feedback if the excitation vector is nonzero.
  861. // (e.g. test sequence T19_795.COD in 3GPP TS 26.074)
  862. for (i = 0; i < AMR_SUBFRAME_SIZE; i++)
  863. p->excitation[i] = truncf(p->excitation[i]);
  864. // Smooth fixed gain.
  865. // The specification is ambiguous, but in the reference source, the
  866. // smoothed value is NOT fed back into later fixed gain smoothing.
  867. synth_fixed_gain = fixed_gain_smooth(p, p->lsf_q[subframe],
  868. p->lsf_avg, p->cur_frame_mode);
  869. synth_fixed_vector = anti_sparseness(p, &fixed_sparse, p->fixed_vector,
  870. synth_fixed_gain, spare_vector);
  871. if (synthesis(p, p->lpc[subframe], synth_fixed_gain,
  872. synth_fixed_vector, &p->samples_in[LP_FILTER_ORDER], 0))
  873. // overflow detected -> rerun synthesis scaling pitch vector down
  874. // by a factor of 4, skipping pitch vector contribution emphasis
  875. // and adaptive gain control
  876. synthesis(p, p->lpc[subframe], synth_fixed_gain,
  877. synth_fixed_vector, &p->samples_in[LP_FILTER_ORDER], 1);
  878. postfilter(p, p->lpc[subframe], buf_out + subframe * AMR_SUBFRAME_SIZE);
  879. // update buffers and history
  880. ff_clear_fixed_vector(p->fixed_vector, &fixed_sparse, AMR_SUBFRAME_SIZE);
  881. update_state(p);
  882. }
  883. p->acelpf_ctx.acelp_apply_order_2_transfer_function(buf_out,
  884. buf_out, highpass_zeros,
  885. highpass_poles,
  886. highpass_gain * AMR_SAMPLE_SCALE,
  887. p->high_pass_mem, AMR_BLOCK_SIZE);
  888. /* Update averaged lsf vector (used for fixed gain smoothing).
  889. *
  890. * Note that lsf_avg should not incorporate the current frame's LSFs
  891. * for fixed_gain_smooth.
  892. * The specification has an incorrect formula: the reference decoder uses
  893. * qbar(n-1) rather than qbar(n) in section 6.1(4) equation 71. */
  894. p->acelpv_ctx.weighted_vector_sumf(p->lsf_avg, p->lsf_avg, p->lsf_q[3],
  895. 0.84, 0.16, LP_FILTER_ORDER);
  896. *got_frame_ptr = 1;
  897. *(AVFrame *)data = p->avframe;
  898. /* return the amount of bytes consumed if everything was OK */
  899. return frame_sizes_nb[p->cur_frame_mode] + 1; // +7 for rounding and +8 for TOC
  900. }
  901. AVCodec ff_amrnb_decoder = {
  902. .name = "amrnb",
  903. .type = AVMEDIA_TYPE_AUDIO,
  904. .id = AV_CODEC_ID_AMR_NB,
  905. .priv_data_size = sizeof(AMRContext),
  906. .init = amrnb_decode_init,
  907. .decode = amrnb_decode_frame,
  908. .capabilities = CODEC_CAP_DR1,
  909. .long_name = NULL_IF_CONFIG_SMALL("AMR-NB (Adaptive Multi-Rate NarrowBand)"),
  910. .sample_fmts = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_FLT,
  911. AV_SAMPLE_FMT_NONE },
  912. };