You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2181 lines
75KB

  1. /*
  2. * Copyright (C) 2007 Marco Gerards <marco@gnu.org>
  3. * Copyright (C) 2009 David Conrad
  4. * Copyright (C) 2011 Jordi Ortiz
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file
  24. * Dirac Decoder
  25. * @author Marco Gerards <marco@gnu.org>, David Conrad, Jordi Ortiz <nenjordi@gmail.com>
  26. */
  27. #include "avcodec.h"
  28. #include "get_bits.h"
  29. #include "bytestream.h"
  30. #include "internal.h"
  31. #include "golomb.h"
  32. #include "dirac_arith.h"
  33. #include "mpeg12data.h"
  34. #include "libavcodec/mpegvideo.h"
  35. #include "mpegvideoencdsp.h"
  36. #include "dirac_dwt.h"
  37. #include "dirac.h"
  38. #include "diractab.h"
  39. #include "diracdsp.h"
  40. #include "videodsp.h"
  41. /**
  42. * The spec limits this to 3 for frame coding, but in practice can be as high as 6
  43. */
  44. #define MAX_REFERENCE_FRAMES 8
  45. #define MAX_DELAY 5 /* limit for main profile for frame coding (TODO: field coding) */
  46. #define MAX_FRAMES (MAX_REFERENCE_FRAMES + MAX_DELAY + 1)
  47. #define MAX_QUANT 255 /* max quant for VC-2 */
  48. #define MAX_BLOCKSIZE 32 /* maximum xblen/yblen we support */
  49. /**
  50. * DiracBlock->ref flags, if set then the block does MC from the given ref
  51. */
  52. #define DIRAC_REF_MASK_REF1 1
  53. #define DIRAC_REF_MASK_REF2 2
  54. #define DIRAC_REF_MASK_GLOBAL 4
  55. /**
  56. * Value of Picture.reference when Picture is not a reference picture, but
  57. * is held for delayed output.
  58. */
  59. #define DELAYED_PIC_REF 4
  60. #define CALC_PADDING(size, depth) \
  61. (((size + (1 << depth) - 1) >> depth) << depth)
  62. #define DIVRNDUP(a, b) (((a) + (b) - 1) / (b))
  63. typedef struct {
  64. AVFrame *avframe;
  65. int interpolated[3]; /* 1 if hpel[] is valid */
  66. uint8_t *hpel[3][4];
  67. uint8_t *hpel_base[3][4];
  68. int reference;
  69. } DiracFrame;
  70. typedef struct {
  71. union {
  72. int16_t mv[2][2];
  73. int16_t dc[3];
  74. } u; /* anonymous unions aren't in C99 :( */
  75. uint8_t ref;
  76. } DiracBlock;
  77. typedef struct SubBand {
  78. int level;
  79. int orientation;
  80. int stride; /* in bytes */
  81. int width;
  82. int height;
  83. int pshift;
  84. int quant;
  85. uint8_t *ibuf;
  86. struct SubBand *parent;
  87. /* for low delay */
  88. unsigned length;
  89. const uint8_t *coeff_data;
  90. } SubBand;
  91. typedef struct Plane {
  92. DWTPlane idwt;
  93. int width;
  94. int height;
  95. ptrdiff_t stride;
  96. /* block length */
  97. uint8_t xblen;
  98. uint8_t yblen;
  99. /* block separation (block n+1 starts after this many pixels in block n) */
  100. uint8_t xbsep;
  101. uint8_t ybsep;
  102. /* amount of overspill on each edge (half of the overlap between blocks) */
  103. uint8_t xoffset;
  104. uint8_t yoffset;
  105. SubBand band[MAX_DWT_LEVELS][4];
  106. } Plane;
  107. typedef struct DiracContext {
  108. AVCodecContext *avctx;
  109. MpegvideoEncDSPContext mpvencdsp;
  110. VideoDSPContext vdsp;
  111. DiracDSPContext diracdsp;
  112. DiracVersionInfo version;
  113. GetBitContext gb;
  114. AVDiracSeqHeader seq;
  115. int seen_sequence_header;
  116. int frame_number; /* number of the next frame to display */
  117. Plane plane[3];
  118. int chroma_x_shift;
  119. int chroma_y_shift;
  120. int bit_depth; /* bit depth */
  121. int pshift; /* pixel shift = bit_depth > 8 */
  122. int zero_res; /* zero residue flag */
  123. int is_arith; /* whether coeffs use arith or golomb coding */
  124. int core_syntax; /* use core syntax only */
  125. int low_delay; /* use the low delay syntax */
  126. int hq_picture; /* high quality picture, enables low_delay */
  127. int ld_picture; /* use low delay picture, turns on low_delay */
  128. int dc_prediction; /* has dc prediction */
  129. int globalmc_flag; /* use global motion compensation */
  130. int num_refs; /* number of reference pictures */
  131. /* wavelet decoding */
  132. unsigned wavelet_depth; /* depth of the IDWT */
  133. unsigned wavelet_idx;
  134. /**
  135. * schroedinger older than 1.0.8 doesn't store
  136. * quant delta if only one codebook exists in a band
  137. */
  138. unsigned old_delta_quant;
  139. unsigned codeblock_mode;
  140. unsigned num_x; /* number of horizontal slices */
  141. unsigned num_y; /* number of vertical slices */
  142. struct {
  143. unsigned width;
  144. unsigned height;
  145. } codeblock[MAX_DWT_LEVELS+1];
  146. struct {
  147. AVRational bytes; /* average bytes per slice */
  148. uint8_t quant[MAX_DWT_LEVELS][4]; /* [DIRAC_STD] E.1 */
  149. } lowdelay;
  150. struct {
  151. unsigned prefix_bytes;
  152. uint64_t size_scaler;
  153. } highquality;
  154. struct {
  155. int pan_tilt[2]; /* pan/tilt vector */
  156. int zrs[2][2]; /* zoom/rotate/shear matrix */
  157. int perspective[2]; /* perspective vector */
  158. unsigned zrs_exp;
  159. unsigned perspective_exp;
  160. } globalmc[2];
  161. /* motion compensation */
  162. uint8_t mv_precision; /* [DIRAC_STD] REFS_WT_PRECISION */
  163. int16_t weight[2]; /* [DIRAC_STD] REF1_WT and REF2_WT */
  164. unsigned weight_log2denom; /* [DIRAC_STD] REFS_WT_PRECISION */
  165. int blwidth; /* number of blocks (horizontally) */
  166. int blheight; /* number of blocks (vertically) */
  167. int sbwidth; /* number of superblocks (horizontally) */
  168. int sbheight; /* number of superblocks (vertically) */
  169. uint8_t *sbsplit;
  170. DiracBlock *blmotion;
  171. uint8_t *edge_emu_buffer[4];
  172. uint8_t *edge_emu_buffer_base;
  173. uint16_t *mctmp; /* buffer holding the MC data multiplied by OBMC weights */
  174. uint8_t *mcscratch;
  175. int buffer_stride;
  176. DECLARE_ALIGNED(16, uint8_t, obmc_weight)[3][MAX_BLOCKSIZE*MAX_BLOCKSIZE];
  177. void (*put_pixels_tab[4])(uint8_t *dst, const uint8_t *src[5], int stride, int h);
  178. void (*avg_pixels_tab[4])(uint8_t *dst, const uint8_t *src[5], int stride, int h);
  179. void (*add_obmc)(uint16_t *dst, const uint8_t *src, int stride, const uint8_t *obmc_weight, int yblen);
  180. dirac_weight_func weight_func;
  181. dirac_biweight_func biweight_func;
  182. DiracFrame *current_picture;
  183. DiracFrame *ref_pics[2];
  184. DiracFrame *ref_frames[MAX_REFERENCE_FRAMES+1];
  185. DiracFrame *delay_frames[MAX_DELAY+1];
  186. DiracFrame all_frames[MAX_FRAMES];
  187. } DiracContext;
  188. enum dirac_subband {
  189. subband_ll = 0,
  190. subband_hl = 1,
  191. subband_lh = 2,
  192. subband_hh = 3,
  193. subband_nb,
  194. };
  195. /* magic number division by 3 from schroedinger */
  196. static inline int divide3(int x)
  197. {
  198. return ((x+1)*21845 + 10922) >> 16;
  199. }
  200. static DiracFrame *remove_frame(DiracFrame *framelist[], int picnum)
  201. {
  202. DiracFrame *remove_pic = NULL;
  203. int i, remove_idx = -1;
  204. for (i = 0; framelist[i]; i++)
  205. if (framelist[i]->avframe->display_picture_number == picnum) {
  206. remove_pic = framelist[i];
  207. remove_idx = i;
  208. }
  209. if (remove_pic)
  210. for (i = remove_idx; framelist[i]; i++)
  211. framelist[i] = framelist[i+1];
  212. return remove_pic;
  213. }
  214. static int add_frame(DiracFrame *framelist[], int maxframes, DiracFrame *frame)
  215. {
  216. int i;
  217. for (i = 0; i < maxframes; i++)
  218. if (!framelist[i]) {
  219. framelist[i] = frame;
  220. return 0;
  221. }
  222. return -1;
  223. }
  224. static int alloc_sequence_buffers(DiracContext *s)
  225. {
  226. int sbwidth = DIVRNDUP(s->seq.width, 4);
  227. int sbheight = DIVRNDUP(s->seq.height, 4);
  228. int i, w, h, top_padding;
  229. /* todo: think more about this / use or set Plane here */
  230. for (i = 0; i < 3; i++) {
  231. int max_xblen = MAX_BLOCKSIZE >> (i ? s->chroma_x_shift : 0);
  232. int max_yblen = MAX_BLOCKSIZE >> (i ? s->chroma_y_shift : 0);
  233. w = s->seq.width >> (i ? s->chroma_x_shift : 0);
  234. h = s->seq.height >> (i ? s->chroma_y_shift : 0);
  235. /* we allocate the max we support here since num decompositions can
  236. * change from frame to frame. Stride is aligned to 16 for SIMD, and
  237. * 1<<MAX_DWT_LEVELS top padding to avoid if(y>0) in arith decoding
  238. * MAX_BLOCKSIZE padding for MC: blocks can spill up to half of that
  239. * on each side */
  240. top_padding = FFMAX(1<<MAX_DWT_LEVELS, max_yblen/2);
  241. w = FFALIGN(CALC_PADDING(w, MAX_DWT_LEVELS), 8); /* FIXME: Should this be 16 for SSE??? */
  242. h = top_padding + CALC_PADDING(h, MAX_DWT_LEVELS) + max_yblen/2;
  243. s->plane[i].idwt.buf_base = av_mallocz_array((w+max_xblen), h * (2 << s->pshift));
  244. s->plane[i].idwt.tmp = av_malloc_array((w+16), 2 << s->pshift);
  245. s->plane[i].idwt.buf = s->plane[i].idwt.buf_base + (top_padding*w)*(2 << s->pshift);
  246. if (!s->plane[i].idwt.buf_base || !s->plane[i].idwt.tmp)
  247. return AVERROR(ENOMEM);
  248. }
  249. /* fixme: allocate using real stride here */
  250. s->sbsplit = av_malloc_array(sbwidth, sbheight);
  251. s->blmotion = av_malloc_array(sbwidth, sbheight * 16 * sizeof(*s->blmotion));
  252. if (!s->sbsplit || !s->blmotion)
  253. return AVERROR(ENOMEM);
  254. return 0;
  255. }
  256. static int alloc_buffers(DiracContext *s, int stride)
  257. {
  258. int w = s->seq.width;
  259. int h = s->seq.height;
  260. av_assert0(stride >= w);
  261. stride += 64;
  262. if (s->buffer_stride >= stride)
  263. return 0;
  264. s->buffer_stride = 0;
  265. av_freep(&s->edge_emu_buffer_base);
  266. memset(s->edge_emu_buffer, 0, sizeof(s->edge_emu_buffer));
  267. av_freep(&s->mctmp);
  268. av_freep(&s->mcscratch);
  269. s->edge_emu_buffer_base = av_malloc_array(stride, MAX_BLOCKSIZE);
  270. s->mctmp = av_malloc_array((stride+MAX_BLOCKSIZE), (h+MAX_BLOCKSIZE) * sizeof(*s->mctmp));
  271. s->mcscratch = av_malloc_array(stride, MAX_BLOCKSIZE);
  272. if (!s->edge_emu_buffer_base || !s->mctmp || !s->mcscratch)
  273. return AVERROR(ENOMEM);
  274. s->buffer_stride = stride;
  275. return 0;
  276. }
  277. static void free_sequence_buffers(DiracContext *s)
  278. {
  279. int i, j, k;
  280. for (i = 0; i < MAX_FRAMES; i++) {
  281. if (s->all_frames[i].avframe->data[0]) {
  282. av_frame_unref(s->all_frames[i].avframe);
  283. memset(s->all_frames[i].interpolated, 0, sizeof(s->all_frames[i].interpolated));
  284. }
  285. for (j = 0; j < 3; j++)
  286. for (k = 1; k < 4; k++)
  287. av_freep(&s->all_frames[i].hpel_base[j][k]);
  288. }
  289. memset(s->ref_frames, 0, sizeof(s->ref_frames));
  290. memset(s->delay_frames, 0, sizeof(s->delay_frames));
  291. for (i = 0; i < 3; i++) {
  292. av_freep(&s->plane[i].idwt.buf_base);
  293. av_freep(&s->plane[i].idwt.tmp);
  294. }
  295. s->buffer_stride = 0;
  296. av_freep(&s->sbsplit);
  297. av_freep(&s->blmotion);
  298. av_freep(&s->edge_emu_buffer_base);
  299. av_freep(&s->mctmp);
  300. av_freep(&s->mcscratch);
  301. }
  302. static av_cold int dirac_decode_init(AVCodecContext *avctx)
  303. {
  304. DiracContext *s = avctx->priv_data;
  305. int i;
  306. s->avctx = avctx;
  307. s->frame_number = -1;
  308. ff_diracdsp_init(&s->diracdsp);
  309. ff_mpegvideoencdsp_init(&s->mpvencdsp, avctx);
  310. ff_videodsp_init(&s->vdsp, 8);
  311. for (i = 0; i < MAX_FRAMES; i++) {
  312. s->all_frames[i].avframe = av_frame_alloc();
  313. if (!s->all_frames[i].avframe) {
  314. while (i > 0)
  315. av_frame_free(&s->all_frames[--i].avframe);
  316. return AVERROR(ENOMEM);
  317. }
  318. }
  319. return 0;
  320. }
  321. static void dirac_decode_flush(AVCodecContext *avctx)
  322. {
  323. DiracContext *s = avctx->priv_data;
  324. free_sequence_buffers(s);
  325. s->seen_sequence_header = 0;
  326. s->frame_number = -1;
  327. }
  328. static av_cold int dirac_decode_end(AVCodecContext *avctx)
  329. {
  330. DiracContext *s = avctx->priv_data;
  331. int i;
  332. dirac_decode_flush(avctx);
  333. for (i = 0; i < MAX_FRAMES; i++)
  334. av_frame_free(&s->all_frames[i].avframe);
  335. return 0;
  336. }
  337. static inline int coeff_unpack_golomb(GetBitContext *gb, int qfactor, int qoffset)
  338. {
  339. int coeff = dirac_get_se_golomb(gb);
  340. const int sign = FFSIGN(coeff);
  341. if (coeff)
  342. coeff = sign*((sign * coeff * qfactor + qoffset) >> 2);
  343. return coeff;
  344. }
  345. #define SIGN_CTX(x) (CTX_SIGN_ZERO + ((x) > 0) - ((x) < 0))
  346. #define UNPACK_ARITH(n, type) \
  347. static inline void coeff_unpack_arith_##n(DiracArith *c, int qfactor, int qoffset, \
  348. SubBand *b, type *buf, int x, int y) \
  349. { \
  350. int coeff, sign, sign_pred = 0, pred_ctx = CTX_ZPZN_F1; \
  351. const int mstride = -(b->stride >> (1+b->pshift)); \
  352. if (b->parent) { \
  353. const type *pbuf = (type *)b->parent->ibuf; \
  354. const int stride = b->parent->stride >> (1+b->parent->pshift); \
  355. pred_ctx += !!pbuf[stride * (y>>1) + (x>>1)] << 1; \
  356. } \
  357. if (b->orientation == subband_hl) \
  358. sign_pred = buf[mstride]; \
  359. if (x) { \
  360. pred_ctx += !(buf[-1] | buf[mstride] | buf[-1 + mstride]); \
  361. if (b->orientation == subband_lh) \
  362. sign_pred = buf[-1]; \
  363. } else { \
  364. pred_ctx += !buf[mstride]; \
  365. } \
  366. coeff = dirac_get_arith_uint(c, pred_ctx, CTX_COEFF_DATA); \
  367. if (coeff) { \
  368. coeff = (coeff * qfactor + qoffset) >> 2; \
  369. sign = dirac_get_arith_bit(c, SIGN_CTX(sign_pred)); \
  370. coeff = (coeff ^ -sign) + sign; \
  371. } \
  372. *buf = coeff; \
  373. } \
  374. UNPACK_ARITH(8, int16_t)
  375. UNPACK_ARITH(10, int32_t)
  376. /**
  377. * Decode the coeffs in the rectangle defined by left, right, top, bottom
  378. * [DIRAC_STD] 13.4.3.2 Codeblock unpacking loop. codeblock()
  379. */
  380. static inline void codeblock(DiracContext *s, SubBand *b,
  381. GetBitContext *gb, DiracArith *c,
  382. int left, int right, int top, int bottom,
  383. int blockcnt_one, int is_arith)
  384. {
  385. int x, y, zero_block;
  386. int qoffset, qfactor;
  387. uint8_t *buf;
  388. /* check for any coded coefficients in this codeblock */
  389. if (!blockcnt_one) {
  390. if (is_arith)
  391. zero_block = dirac_get_arith_bit(c, CTX_ZERO_BLOCK);
  392. else
  393. zero_block = get_bits1(gb);
  394. if (zero_block)
  395. return;
  396. }
  397. if (s->codeblock_mode && !(s->old_delta_quant && blockcnt_one)) {
  398. int quant = b->quant;
  399. if (is_arith)
  400. quant += dirac_get_arith_int(c, CTX_DELTA_Q_F, CTX_DELTA_Q_DATA);
  401. else
  402. quant += dirac_get_se_golomb(gb);
  403. if (quant < 0) {
  404. av_log(s->avctx, AV_LOG_ERROR, "Invalid quant\n");
  405. return;
  406. }
  407. b->quant = quant;
  408. }
  409. if (b->quant > 115) {
  410. av_log(s->avctx, AV_LOG_ERROR, "Unsupported quant %d\n", b->quant);
  411. b->quant = 0;
  412. return;
  413. }
  414. qfactor = ff_dirac_qscale_tab[b->quant];
  415. /* TODO: context pointer? */
  416. if (!s->num_refs)
  417. qoffset = ff_dirac_qoffset_intra_tab[b->quant] + 2;
  418. else
  419. qoffset = ff_dirac_qoffset_inter_tab[b->quant] + 2;
  420. buf = b->ibuf + top * b->stride;
  421. if (is_arith) {
  422. for (y = top; y < bottom; y++) {
  423. for (x = left; x < right; x++) {
  424. if (b->pshift) {
  425. coeff_unpack_arith_10(c, qfactor, qoffset, b, (int32_t*)(buf)+x, x, y);
  426. } else {
  427. coeff_unpack_arith_8(c, qfactor, qoffset, b, (int16_t*)(buf)+x, x, y);
  428. }
  429. }
  430. buf += b->stride;
  431. }
  432. } else {
  433. for (y = top; y < bottom; y++) {
  434. for (x = left; x < right; x++) {
  435. int val = coeff_unpack_golomb(gb, qfactor, qoffset);
  436. if (b->pshift) {
  437. AV_WN32(&buf[4*x], val);
  438. } else {
  439. AV_WN16(&buf[2*x], val);
  440. }
  441. }
  442. buf += b->stride;
  443. }
  444. }
  445. }
  446. /**
  447. * Dirac Specification ->
  448. * 13.3 intra_dc_prediction(band)
  449. */
  450. #define INTRA_DC_PRED(n, type) \
  451. static inline void intra_dc_prediction_##n(SubBand *b) \
  452. { \
  453. type *buf = (type*)b->ibuf; \
  454. int x, y; \
  455. \
  456. for (x = 1; x < b->width; x++) \
  457. buf[x] += buf[x-1]; \
  458. buf += (b->stride >> (1+b->pshift)); \
  459. \
  460. for (y = 1; y < b->height; y++) { \
  461. buf[0] += buf[-(b->stride >> (1+b->pshift))]; \
  462. \
  463. for (x = 1; x < b->width; x++) { \
  464. int pred = buf[x - 1] + buf[x - (b->stride >> (1+b->pshift))] + buf[x - (b->stride >> (1+b->pshift))-1]; \
  465. buf[x] += divide3(pred); \
  466. } \
  467. buf += (b->stride >> (1+b->pshift)); \
  468. } \
  469. } \
  470. INTRA_DC_PRED(8, int16_t)
  471. INTRA_DC_PRED(10, int32_t)
  472. /**
  473. * Dirac Specification ->
  474. * 13.4.2 Non-skipped subbands. subband_coeffs()
  475. */
  476. static av_always_inline void decode_subband_internal(DiracContext *s, SubBand *b, int is_arith)
  477. {
  478. int cb_x, cb_y, left, right, top, bottom;
  479. DiracArith c;
  480. GetBitContext gb;
  481. int cb_width = s->codeblock[b->level + (b->orientation != subband_ll)].width;
  482. int cb_height = s->codeblock[b->level + (b->orientation != subband_ll)].height;
  483. int blockcnt_one = (cb_width + cb_height) == 2;
  484. if (!b->length)
  485. return;
  486. init_get_bits8(&gb, b->coeff_data, b->length);
  487. if (is_arith)
  488. ff_dirac_init_arith_decoder(&c, &gb, b->length);
  489. top = 0;
  490. for (cb_y = 0; cb_y < cb_height; cb_y++) {
  491. bottom = (b->height * (cb_y+1LL)) / cb_height;
  492. left = 0;
  493. for (cb_x = 0; cb_x < cb_width; cb_x++) {
  494. right = (b->width * (cb_x+1LL)) / cb_width;
  495. codeblock(s, b, &gb, &c, left, right, top, bottom, blockcnt_one, is_arith);
  496. left = right;
  497. }
  498. top = bottom;
  499. }
  500. if (b->orientation == subband_ll && s->num_refs == 0) {
  501. if (s->pshift) {
  502. intra_dc_prediction_10(b);
  503. } else {
  504. intra_dc_prediction_8(b);
  505. }
  506. }
  507. }
  508. static int decode_subband_arith(AVCodecContext *avctx, void *b)
  509. {
  510. DiracContext *s = avctx->priv_data;
  511. decode_subband_internal(s, b, 1);
  512. return 0;
  513. }
  514. static int decode_subband_golomb(AVCodecContext *avctx, void *arg)
  515. {
  516. DiracContext *s = avctx->priv_data;
  517. SubBand **b = arg;
  518. decode_subband_internal(s, *b, 0);
  519. return 0;
  520. }
  521. /**
  522. * Dirac Specification ->
  523. * [DIRAC_STD] 13.4.1 core_transform_data()
  524. */
  525. static void decode_component(DiracContext *s, int comp)
  526. {
  527. AVCodecContext *avctx = s->avctx;
  528. SubBand *bands[3*MAX_DWT_LEVELS+1];
  529. enum dirac_subband orientation;
  530. int level, num_bands = 0;
  531. /* Unpack all subbands at all levels. */
  532. for (level = 0; level < s->wavelet_depth; level++) {
  533. for (orientation = !!level; orientation < 4; orientation++) {
  534. SubBand *b = &s->plane[comp].band[level][orientation];
  535. bands[num_bands++] = b;
  536. align_get_bits(&s->gb);
  537. /* [DIRAC_STD] 13.4.2 subband() */
  538. b->length = get_interleaved_ue_golomb(&s->gb);
  539. if (b->length) {
  540. b->quant = get_interleaved_ue_golomb(&s->gb);
  541. align_get_bits(&s->gb);
  542. b->coeff_data = s->gb.buffer + get_bits_count(&s->gb)/8;
  543. b->length = FFMIN(b->length, FFMAX(get_bits_left(&s->gb)/8, 0));
  544. skip_bits_long(&s->gb, b->length*8);
  545. }
  546. }
  547. /* arithmetic coding has inter-level dependencies, so we can only execute one level at a time */
  548. if (s->is_arith)
  549. avctx->execute(avctx, decode_subband_arith, &s->plane[comp].band[level][!!level],
  550. NULL, 4-!!level, sizeof(SubBand));
  551. }
  552. /* golomb coding has no inter-level dependencies, so we can execute all subbands in parallel */
  553. if (!s->is_arith)
  554. avctx->execute(avctx, decode_subband_golomb, bands, NULL, num_bands, sizeof(SubBand*));
  555. }
  556. #define PARSE_VALUES(type, x, gb, ebits, buf1, buf2) \
  557. type *buf = (type *)buf1; \
  558. buf[x] = coeff_unpack_golomb(gb, qfactor, qoffset); \
  559. if (get_bits_count(gb) >= ebits) \
  560. return; \
  561. if (buf2) { \
  562. buf = (type *)buf2; \
  563. buf[x] = coeff_unpack_golomb(gb, qfactor, qoffset); \
  564. if (get_bits_count(gb) >= ebits) \
  565. return; \
  566. } \
  567. static void decode_subband(DiracContext *s, GetBitContext *gb, int quant,
  568. int slice_x, int slice_y, int bits_end,
  569. SubBand *b1, SubBand *b2)
  570. {
  571. int left = b1->width * slice_x / s->num_x;
  572. int right = b1->width *(slice_x+1) / s->num_x;
  573. int top = b1->height * slice_y / s->num_y;
  574. int bottom = b1->height *(slice_y+1) / s->num_y;
  575. int qfactor, qoffset;
  576. uint8_t *buf1 = b1->ibuf + top * b1->stride;
  577. uint8_t *buf2 = b2 ? b2->ibuf + top * b2->stride: NULL;
  578. int x, y;
  579. if (quant > 115) {
  580. av_log(s->avctx, AV_LOG_ERROR, "Unsupported quant %d\n", quant);
  581. return;
  582. }
  583. qfactor = ff_dirac_qscale_tab[quant & 0x7f];
  584. qoffset = ff_dirac_qoffset_intra_tab[quant & 0x7f] + 2;
  585. /* we have to constantly check for overread since the spec explicitly
  586. requires this, with the meaning that all remaining coeffs are set to 0 */
  587. if (get_bits_count(gb) >= bits_end)
  588. return;
  589. if (s->pshift) {
  590. for (y = top; y < bottom; y++) {
  591. for (x = left; x < right; x++) {
  592. PARSE_VALUES(int32_t, x, gb, bits_end, buf1, buf2);
  593. }
  594. buf1 += b1->stride;
  595. if (buf2)
  596. buf2 += b2->stride;
  597. }
  598. }
  599. else {
  600. for (y = top; y < bottom; y++) {
  601. for (x = left; x < right; x++) {
  602. PARSE_VALUES(int16_t, x, gb, bits_end, buf1, buf2);
  603. }
  604. buf1 += b1->stride;
  605. if (buf2)
  606. buf2 += b2->stride;
  607. }
  608. }
  609. }
  610. /* Used by Low Delay and High Quality profiles */
  611. typedef struct DiracSlice {
  612. GetBitContext gb;
  613. int slice_x;
  614. int slice_y;
  615. int bytes;
  616. } DiracSlice;
  617. /**
  618. * Dirac Specification ->
  619. * 13.5.2 Slices. slice(sx,sy)
  620. */
  621. static int decode_lowdelay_slice(AVCodecContext *avctx, void *arg)
  622. {
  623. DiracContext *s = avctx->priv_data;
  624. DiracSlice *slice = arg;
  625. GetBitContext *gb = &slice->gb;
  626. enum dirac_subband orientation;
  627. int level, quant, chroma_bits, chroma_end;
  628. int quant_base = get_bits(gb, 7); /*[DIRAC_STD] qindex */
  629. int length_bits = av_log2(8 * slice->bytes)+1;
  630. int luma_bits = get_bits_long(gb, length_bits);
  631. int luma_end = get_bits_count(gb) + FFMIN(luma_bits, get_bits_left(gb));
  632. /* [DIRAC_STD] 13.5.5.2 luma_slice_band */
  633. for (level = 0; level < s->wavelet_depth; level++)
  634. for (orientation = !!level; orientation < 4; orientation++) {
  635. quant = FFMAX(quant_base - s->lowdelay.quant[level][orientation], 0);
  636. decode_subband(s, gb, quant, slice->slice_x, slice->slice_y, luma_end,
  637. &s->plane[0].band[level][orientation], NULL);
  638. }
  639. /* consume any unused bits from luma */
  640. skip_bits_long(gb, get_bits_count(gb) - luma_end);
  641. chroma_bits = 8*slice->bytes - 7 - length_bits - luma_bits;
  642. chroma_end = get_bits_count(gb) + FFMIN(chroma_bits, get_bits_left(gb));
  643. /* [DIRAC_STD] 13.5.5.3 chroma_slice_band */
  644. for (level = 0; level < s->wavelet_depth; level++)
  645. for (orientation = !!level; orientation < 4; orientation++) {
  646. quant = FFMAX(quant_base - s->lowdelay.quant[level][orientation], 0);
  647. decode_subband(s, gb, quant, slice->slice_x, slice->slice_y, chroma_end,
  648. &s->plane[1].band[level][orientation],
  649. &s->plane[2].band[level][orientation]);
  650. }
  651. return 0;
  652. }
  653. /**
  654. * VC-2 Specification ->
  655. * 13.5.3 hq_slice(sx,sy)
  656. */
  657. static int decode_hq_slice(AVCodecContext *avctx, void *arg)
  658. {
  659. int i, quant, level, orientation, quant_idx;
  660. uint8_t quants[MAX_DWT_LEVELS][4];
  661. DiracContext *s = avctx->priv_data;
  662. DiracSlice *slice = arg;
  663. GetBitContext *gb = &slice->gb;
  664. skip_bits_long(gb, 8*s->highquality.prefix_bytes);
  665. quant_idx = get_bits(gb, 8);
  666. /* Slice quantization (slice_quantizers() in the specs) */
  667. for (level = 0; level < s->wavelet_depth; level++) {
  668. for (orientation = !!level; orientation < 4; orientation++) {
  669. quant = FFMAX(quant_idx - s->lowdelay.quant[level][orientation], 0);
  670. quants[level][orientation] = quant;
  671. }
  672. }
  673. /* Luma + 2 Chroma planes */
  674. for (i = 0; i < 3; i++) {
  675. int64_t length = s->highquality.size_scaler * get_bits(gb, 8);
  676. int64_t bits_left = 8 * length;
  677. int64_t bits_end = get_bits_count(gb) + bits_left;
  678. if (bits_end >= INT_MAX) {
  679. av_log(s->avctx, AV_LOG_ERROR, "end too far away\n");
  680. return AVERROR_INVALIDDATA;
  681. }
  682. for (level = 0; level < s->wavelet_depth; level++) {
  683. for (orientation = !!level; orientation < 4; orientation++) {
  684. decode_subband(s, gb, quants[level][orientation], slice->slice_x, slice->slice_y, bits_end,
  685. &s->plane[i].band[level][orientation], NULL);
  686. }
  687. }
  688. skip_bits_long(gb, bits_end - get_bits_count(gb));
  689. }
  690. return 0;
  691. }
  692. /**
  693. * Dirac Specification ->
  694. * 13.5.1 low_delay_transform_data()
  695. */
  696. static int decode_lowdelay(DiracContext *s)
  697. {
  698. AVCodecContext *avctx = s->avctx;
  699. int slice_x, slice_y, bufsize;
  700. int64_t bytes = 0;
  701. const uint8_t *buf;
  702. DiracSlice *slices;
  703. int slice_num = 0;
  704. slices = av_mallocz_array(s->num_x, s->num_y * sizeof(DiracSlice));
  705. if (!slices)
  706. return AVERROR(ENOMEM);
  707. align_get_bits(&s->gb);
  708. /*[DIRAC_STD] 13.5.2 Slices. slice(sx,sy) */
  709. buf = s->gb.buffer + get_bits_count(&s->gb)/8;
  710. bufsize = get_bits_left(&s->gb);
  711. if (s->hq_picture) {
  712. int i;
  713. for (slice_y = 0; bufsize > 0 && slice_y < s->num_y; slice_y++) {
  714. for (slice_x = 0; bufsize > 0 && slice_x < s->num_x; slice_x++) {
  715. bytes = s->highquality.prefix_bytes + 1;
  716. for (i = 0; i < 3; i++) {
  717. if (bytes <= bufsize/8)
  718. bytes += buf[bytes] * s->highquality.size_scaler + 1;
  719. }
  720. if (bytes >= INT_MAX) {
  721. av_log(s->avctx, AV_LOG_ERROR, "too many bytes\n");
  722. av_free(slices);
  723. return AVERROR_INVALIDDATA;
  724. }
  725. slices[slice_num].bytes = bytes;
  726. slices[slice_num].slice_x = slice_x;
  727. slices[slice_num].slice_y = slice_y;
  728. init_get_bits(&slices[slice_num].gb, buf, bufsize);
  729. slice_num++;
  730. buf += bytes;
  731. if (bufsize/8 >= bytes)
  732. bufsize -= bytes*8;
  733. else
  734. bufsize = 0;
  735. }
  736. }
  737. avctx->execute(avctx, decode_hq_slice, slices, NULL, slice_num,
  738. sizeof(DiracSlice));
  739. } else {
  740. for (slice_y = 0; bufsize > 0 && slice_y < s->num_y; slice_y++) {
  741. for (slice_x = 0; bufsize > 0 && slice_x < s->num_x; slice_x++) {
  742. bytes = (slice_num+1) * (int64_t)s->lowdelay.bytes.num / s->lowdelay.bytes.den
  743. - slice_num * (int64_t)s->lowdelay.bytes.num / s->lowdelay.bytes.den;
  744. slices[slice_num].bytes = bytes;
  745. slices[slice_num].slice_x = slice_x;
  746. slices[slice_num].slice_y = slice_y;
  747. init_get_bits(&slices[slice_num].gb, buf, bufsize);
  748. slice_num++;
  749. buf += bytes;
  750. if (bufsize/8 >= bytes)
  751. bufsize -= bytes*8;
  752. else
  753. bufsize = 0;
  754. }
  755. }
  756. avctx->execute(avctx, decode_lowdelay_slice, slices, NULL, slice_num,
  757. sizeof(DiracSlice)); /* [DIRAC_STD] 13.5.2 Slices */
  758. }
  759. if (s->dc_prediction) {
  760. if (s->pshift) {
  761. intra_dc_prediction_10(&s->plane[0].band[0][0]); /* [DIRAC_STD] 13.3 intra_dc_prediction() */
  762. intra_dc_prediction_10(&s->plane[1].band[0][0]); /* [DIRAC_STD] 13.3 intra_dc_prediction() */
  763. intra_dc_prediction_10(&s->plane[2].band[0][0]); /* [DIRAC_STD] 13.3 intra_dc_prediction() */
  764. } else {
  765. intra_dc_prediction_8(&s->plane[0].band[0][0]);
  766. intra_dc_prediction_8(&s->plane[1].band[0][0]);
  767. intra_dc_prediction_8(&s->plane[2].band[0][0]);
  768. }
  769. }
  770. av_free(slices);
  771. return 0;
  772. }
  773. static void init_planes(DiracContext *s)
  774. {
  775. int i, w, h, level, orientation;
  776. for (i = 0; i < 3; i++) {
  777. Plane *p = &s->plane[i];
  778. p->width = s->seq.width >> (i ? s->chroma_x_shift : 0);
  779. p->height = s->seq.height >> (i ? s->chroma_y_shift : 0);
  780. p->idwt.width = w = CALC_PADDING(p->width , s->wavelet_depth);
  781. p->idwt.height = h = CALC_PADDING(p->height, s->wavelet_depth);
  782. p->idwt.stride = FFALIGN(p->idwt.width, 8) << (1 + s->pshift);
  783. for (level = s->wavelet_depth-1; level >= 0; level--) {
  784. w = w>>1;
  785. h = h>>1;
  786. for (orientation = !!level; orientation < 4; orientation++) {
  787. SubBand *b = &p->band[level][orientation];
  788. b->pshift = s->pshift;
  789. b->ibuf = p->idwt.buf;
  790. b->level = level;
  791. b->stride = p->idwt.stride << (s->wavelet_depth - level);
  792. b->width = w;
  793. b->height = h;
  794. b->orientation = orientation;
  795. if (orientation & 1)
  796. b->ibuf += w << (1+b->pshift);
  797. if (orientation > 1)
  798. b->ibuf += (b->stride>>1);
  799. if (level)
  800. b->parent = &p->band[level-1][orientation];
  801. }
  802. }
  803. if (i > 0) {
  804. p->xblen = s->plane[0].xblen >> s->chroma_x_shift;
  805. p->yblen = s->plane[0].yblen >> s->chroma_y_shift;
  806. p->xbsep = s->plane[0].xbsep >> s->chroma_x_shift;
  807. p->ybsep = s->plane[0].ybsep >> s->chroma_y_shift;
  808. }
  809. p->xoffset = (p->xblen - p->xbsep)/2;
  810. p->yoffset = (p->yblen - p->ybsep)/2;
  811. }
  812. }
  813. /**
  814. * Unpack the motion compensation parameters
  815. * Dirac Specification ->
  816. * 11.2 Picture prediction data. picture_prediction()
  817. */
  818. static int dirac_unpack_prediction_parameters(DiracContext *s)
  819. {
  820. static const uint8_t default_blen[] = { 4, 12, 16, 24 };
  821. GetBitContext *gb = &s->gb;
  822. unsigned idx, ref;
  823. align_get_bits(gb);
  824. /* [DIRAC_STD] 11.2.2 Block parameters. block_parameters() */
  825. /* Luma and Chroma are equal. 11.2.3 */
  826. idx = get_interleaved_ue_golomb(gb); /* [DIRAC_STD] index */
  827. if (idx > 4) {
  828. av_log(s->avctx, AV_LOG_ERROR, "Block prediction index too high\n");
  829. return AVERROR_INVALIDDATA;
  830. }
  831. if (idx == 0) {
  832. s->plane[0].xblen = get_interleaved_ue_golomb(gb);
  833. s->plane[0].yblen = get_interleaved_ue_golomb(gb);
  834. s->plane[0].xbsep = get_interleaved_ue_golomb(gb);
  835. s->plane[0].ybsep = get_interleaved_ue_golomb(gb);
  836. } else {
  837. /*[DIRAC_STD] preset_block_params(index). Table 11.1 */
  838. s->plane[0].xblen = default_blen[idx-1];
  839. s->plane[0].yblen = default_blen[idx-1];
  840. s->plane[0].xbsep = 4 * idx;
  841. s->plane[0].ybsep = 4 * idx;
  842. }
  843. /*[DIRAC_STD] 11.2.4 motion_data_dimensions()
  844. Calculated in function dirac_unpack_block_motion_data */
  845. if (s->plane[0].xblen % (1 << s->chroma_x_shift) != 0 ||
  846. s->plane[0].yblen % (1 << s->chroma_y_shift) != 0 ||
  847. !s->plane[0].xblen || !s->plane[0].yblen) {
  848. av_log(s->avctx, AV_LOG_ERROR,
  849. "invalid x/y block length (%d/%d) for x/y chroma shift (%d/%d)\n",
  850. s->plane[0].xblen, s->plane[0].yblen, s->chroma_x_shift, s->chroma_y_shift);
  851. return AVERROR_INVALIDDATA;
  852. }
  853. if (!s->plane[0].xbsep || !s->plane[0].ybsep || s->plane[0].xbsep < s->plane[0].xblen/2 || s->plane[0].ybsep < s->plane[0].yblen/2) {
  854. av_log(s->avctx, AV_LOG_ERROR, "Block separation too small\n");
  855. return AVERROR_INVALIDDATA;
  856. }
  857. if (s->plane[0].xbsep > s->plane[0].xblen || s->plane[0].ybsep > s->plane[0].yblen) {
  858. av_log(s->avctx, AV_LOG_ERROR, "Block separation greater than size\n");
  859. return AVERROR_INVALIDDATA;
  860. }
  861. if (FFMAX(s->plane[0].xblen, s->plane[0].yblen) > MAX_BLOCKSIZE) {
  862. av_log(s->avctx, AV_LOG_ERROR, "Unsupported large block size\n");
  863. return AVERROR_PATCHWELCOME;
  864. }
  865. /*[DIRAC_STD] 11.2.5 Motion vector precision. motion_vector_precision()
  866. Read motion vector precision */
  867. s->mv_precision = get_interleaved_ue_golomb(gb);
  868. if (s->mv_precision > 3) {
  869. av_log(s->avctx, AV_LOG_ERROR, "MV precision finer than eighth-pel\n");
  870. return AVERROR_INVALIDDATA;
  871. }
  872. /*[DIRAC_STD] 11.2.6 Global motion. global_motion()
  873. Read the global motion compensation parameters */
  874. s->globalmc_flag = get_bits1(gb);
  875. if (s->globalmc_flag) {
  876. memset(s->globalmc, 0, sizeof(s->globalmc));
  877. /* [DIRAC_STD] pan_tilt(gparams) */
  878. for (ref = 0; ref < s->num_refs; ref++) {
  879. if (get_bits1(gb)) {
  880. s->globalmc[ref].pan_tilt[0] = dirac_get_se_golomb(gb);
  881. s->globalmc[ref].pan_tilt[1] = dirac_get_se_golomb(gb);
  882. }
  883. /* [DIRAC_STD] zoom_rotate_shear(gparams)
  884. zoom/rotation/shear parameters */
  885. if (get_bits1(gb)) {
  886. s->globalmc[ref].zrs_exp = get_interleaved_ue_golomb(gb);
  887. s->globalmc[ref].zrs[0][0] = dirac_get_se_golomb(gb);
  888. s->globalmc[ref].zrs[0][1] = dirac_get_se_golomb(gb);
  889. s->globalmc[ref].zrs[1][0] = dirac_get_se_golomb(gb);
  890. s->globalmc[ref].zrs[1][1] = dirac_get_se_golomb(gb);
  891. } else {
  892. s->globalmc[ref].zrs[0][0] = 1;
  893. s->globalmc[ref].zrs[1][1] = 1;
  894. }
  895. /* [DIRAC_STD] perspective(gparams) */
  896. if (get_bits1(gb)) {
  897. s->globalmc[ref].perspective_exp = get_interleaved_ue_golomb(gb);
  898. s->globalmc[ref].perspective[0] = dirac_get_se_golomb(gb);
  899. s->globalmc[ref].perspective[1] = dirac_get_se_golomb(gb);
  900. }
  901. }
  902. }
  903. /*[DIRAC_STD] 11.2.7 Picture prediction mode. prediction_mode()
  904. Picture prediction mode, not currently used. */
  905. if (get_interleaved_ue_golomb(gb)) {
  906. av_log(s->avctx, AV_LOG_ERROR, "Unknown picture prediction mode\n");
  907. return AVERROR_INVALIDDATA;
  908. }
  909. /* [DIRAC_STD] 11.2.8 Reference picture weight. reference_picture_weights()
  910. just data read, weight calculation will be done later on. */
  911. s->weight_log2denom = 1;
  912. s->weight[0] = 1;
  913. s->weight[1] = 1;
  914. if (get_bits1(gb)) {
  915. s->weight_log2denom = get_interleaved_ue_golomb(gb);
  916. s->weight[0] = dirac_get_se_golomb(gb);
  917. if (s->num_refs == 2)
  918. s->weight[1] = dirac_get_se_golomb(gb);
  919. }
  920. return 0;
  921. }
  922. /**
  923. * Dirac Specification ->
  924. * 11.3 Wavelet transform data. wavelet_transform()
  925. */
  926. static int dirac_unpack_idwt_params(DiracContext *s)
  927. {
  928. GetBitContext *gb = &s->gb;
  929. int i, level;
  930. unsigned tmp;
  931. #define CHECKEDREAD(dst, cond, errmsg) \
  932. tmp = get_interleaved_ue_golomb(gb); \
  933. if (cond) { \
  934. av_log(s->avctx, AV_LOG_ERROR, errmsg); \
  935. return AVERROR_INVALIDDATA; \
  936. }\
  937. dst = tmp;
  938. align_get_bits(gb);
  939. s->zero_res = s->num_refs ? get_bits1(gb) : 0;
  940. if (s->zero_res)
  941. return 0;
  942. /*[DIRAC_STD] 11.3.1 Transform parameters. transform_parameters() */
  943. CHECKEDREAD(s->wavelet_idx, tmp > 6, "wavelet_idx is too big\n")
  944. CHECKEDREAD(s->wavelet_depth, tmp > MAX_DWT_LEVELS || tmp < 1, "invalid number of DWT decompositions\n")
  945. if (!s->low_delay) {
  946. /* Codeblock parameters (core syntax only) */
  947. if (get_bits1(gb)) {
  948. for (i = 0; i <= s->wavelet_depth; i++) {
  949. CHECKEDREAD(s->codeblock[i].width , tmp < 1 || tmp > (s->avctx->width >>s->wavelet_depth-i), "codeblock width invalid\n")
  950. CHECKEDREAD(s->codeblock[i].height, tmp < 1 || tmp > (s->avctx->height>>s->wavelet_depth-i), "codeblock height invalid\n")
  951. }
  952. CHECKEDREAD(s->codeblock_mode, tmp > 1, "unknown codeblock mode\n")
  953. }
  954. else {
  955. for (i = 0; i <= s->wavelet_depth; i++)
  956. s->codeblock[i].width = s->codeblock[i].height = 1;
  957. }
  958. }
  959. else {
  960. s->num_x = get_interleaved_ue_golomb(gb);
  961. s->num_y = get_interleaved_ue_golomb(gb);
  962. if (s->ld_picture) {
  963. s->lowdelay.bytes.num = get_interleaved_ue_golomb(gb);
  964. s->lowdelay.bytes.den = get_interleaved_ue_golomb(gb);
  965. if (s->lowdelay.bytes.den <= 0) {
  966. av_log(s->avctx,AV_LOG_ERROR,"Invalid lowdelay.bytes.den\n");
  967. return AVERROR_INVALIDDATA;
  968. }
  969. } else if (s->hq_picture) {
  970. s->highquality.prefix_bytes = get_interleaved_ue_golomb(gb);
  971. s->highquality.size_scaler = get_interleaved_ue_golomb(gb);
  972. if (s->highquality.prefix_bytes >= INT_MAX / 8) {
  973. av_log(s->avctx,AV_LOG_ERROR,"too many prefix bytes\n");
  974. return AVERROR_INVALIDDATA;
  975. }
  976. }
  977. /* [DIRAC_STD] 11.3.5 Quantisation matrices (low-delay syntax). quant_matrix() */
  978. if (get_bits1(gb)) {
  979. av_log(s->avctx,AV_LOG_DEBUG,"Low Delay: Has Custom Quantization Matrix!\n");
  980. /* custom quantization matrix */
  981. s->lowdelay.quant[0][0] = get_interleaved_ue_golomb(gb);
  982. for (level = 0; level < s->wavelet_depth; level++) {
  983. s->lowdelay.quant[level][1] = get_interleaved_ue_golomb(gb);
  984. s->lowdelay.quant[level][2] = get_interleaved_ue_golomb(gb);
  985. s->lowdelay.quant[level][3] = get_interleaved_ue_golomb(gb);
  986. }
  987. } else {
  988. if (s->wavelet_depth > 4) {
  989. av_log(s->avctx,AV_LOG_ERROR,"Mandatory custom low delay matrix missing for depth %d\n", s->wavelet_depth);
  990. return AVERROR_INVALIDDATA;
  991. }
  992. /* default quantization matrix */
  993. for (level = 0; level < s->wavelet_depth; level++)
  994. for (i = 0; i < 4; i++) {
  995. s->lowdelay.quant[level][i] = ff_dirac_default_qmat[s->wavelet_idx][level][i];
  996. /* haar with no shift differs for different depths */
  997. if (s->wavelet_idx == 3)
  998. s->lowdelay.quant[level][i] += 4*(s->wavelet_depth-1 - level);
  999. }
  1000. }
  1001. }
  1002. return 0;
  1003. }
  1004. static inline int pred_sbsplit(uint8_t *sbsplit, int stride, int x, int y)
  1005. {
  1006. static const uint8_t avgsplit[7] = { 0, 0, 1, 1, 1, 2, 2 };
  1007. if (!(x|y))
  1008. return 0;
  1009. else if (!y)
  1010. return sbsplit[-1];
  1011. else if (!x)
  1012. return sbsplit[-stride];
  1013. return avgsplit[sbsplit[-1] + sbsplit[-stride] + sbsplit[-stride-1]];
  1014. }
  1015. static inline int pred_block_mode(DiracBlock *block, int stride, int x, int y, int refmask)
  1016. {
  1017. int pred;
  1018. if (!(x|y))
  1019. return 0;
  1020. else if (!y)
  1021. return block[-1].ref & refmask;
  1022. else if (!x)
  1023. return block[-stride].ref & refmask;
  1024. /* return the majority */
  1025. pred = (block[-1].ref & refmask) + (block[-stride].ref & refmask) + (block[-stride-1].ref & refmask);
  1026. return (pred >> 1) & refmask;
  1027. }
  1028. static inline void pred_block_dc(DiracBlock *block, int stride, int x, int y)
  1029. {
  1030. int i, n = 0;
  1031. memset(block->u.dc, 0, sizeof(block->u.dc));
  1032. if (x && !(block[-1].ref & 3)) {
  1033. for (i = 0; i < 3; i++)
  1034. block->u.dc[i] += block[-1].u.dc[i];
  1035. n++;
  1036. }
  1037. if (y && !(block[-stride].ref & 3)) {
  1038. for (i = 0; i < 3; i++)
  1039. block->u.dc[i] += block[-stride].u.dc[i];
  1040. n++;
  1041. }
  1042. if (x && y && !(block[-1-stride].ref & 3)) {
  1043. for (i = 0; i < 3; i++)
  1044. block->u.dc[i] += block[-1-stride].u.dc[i];
  1045. n++;
  1046. }
  1047. if (n == 2) {
  1048. for (i = 0; i < 3; i++)
  1049. block->u.dc[i] = (block->u.dc[i]+1)>>1;
  1050. } else if (n == 3) {
  1051. for (i = 0; i < 3; i++)
  1052. block->u.dc[i] = divide3(block->u.dc[i]);
  1053. }
  1054. }
  1055. static inline void pred_mv(DiracBlock *block, int stride, int x, int y, int ref)
  1056. {
  1057. int16_t *pred[3];
  1058. int refmask = ref+1;
  1059. int mask = refmask | DIRAC_REF_MASK_GLOBAL; /* exclude gmc blocks */
  1060. int n = 0;
  1061. if (x && (block[-1].ref & mask) == refmask)
  1062. pred[n++] = block[-1].u.mv[ref];
  1063. if (y && (block[-stride].ref & mask) == refmask)
  1064. pred[n++] = block[-stride].u.mv[ref];
  1065. if (x && y && (block[-stride-1].ref & mask) == refmask)
  1066. pred[n++] = block[-stride-1].u.mv[ref];
  1067. switch (n) {
  1068. case 0:
  1069. block->u.mv[ref][0] = 0;
  1070. block->u.mv[ref][1] = 0;
  1071. break;
  1072. case 1:
  1073. block->u.mv[ref][0] = pred[0][0];
  1074. block->u.mv[ref][1] = pred[0][1];
  1075. break;
  1076. case 2:
  1077. block->u.mv[ref][0] = (pred[0][0] + pred[1][0] + 1) >> 1;
  1078. block->u.mv[ref][1] = (pred[0][1] + pred[1][1] + 1) >> 1;
  1079. break;
  1080. case 3:
  1081. block->u.mv[ref][0] = mid_pred(pred[0][0], pred[1][0], pred[2][0]);
  1082. block->u.mv[ref][1] = mid_pred(pred[0][1], pred[1][1], pred[2][1]);
  1083. break;
  1084. }
  1085. }
  1086. static void global_mv(DiracContext *s, DiracBlock *block, int x, int y, int ref)
  1087. {
  1088. int ez = s->globalmc[ref].zrs_exp;
  1089. int ep = s->globalmc[ref].perspective_exp;
  1090. int (*A)[2] = s->globalmc[ref].zrs;
  1091. int *b = s->globalmc[ref].pan_tilt;
  1092. int *c = s->globalmc[ref].perspective;
  1093. int m = (1<<ep) - (c[0]*x + c[1]*y);
  1094. int mx = m * ((A[0][0] * x + A[0][1]*y) + (1<<ez) * b[0]);
  1095. int my = m * ((A[1][0] * x + A[1][1]*y) + (1<<ez) * b[1]);
  1096. block->u.mv[ref][0] = (mx + (1<<(ez+ep))) >> (ez+ep);
  1097. block->u.mv[ref][1] = (my + (1<<(ez+ep))) >> (ez+ep);
  1098. }
  1099. static void decode_block_params(DiracContext *s, DiracArith arith[8], DiracBlock *block,
  1100. int stride, int x, int y)
  1101. {
  1102. int i;
  1103. block->ref = pred_block_mode(block, stride, x, y, DIRAC_REF_MASK_REF1);
  1104. block->ref ^= dirac_get_arith_bit(arith, CTX_PMODE_REF1);
  1105. if (s->num_refs == 2) {
  1106. block->ref |= pred_block_mode(block, stride, x, y, DIRAC_REF_MASK_REF2);
  1107. block->ref ^= dirac_get_arith_bit(arith, CTX_PMODE_REF2) << 1;
  1108. }
  1109. if (!block->ref) {
  1110. pred_block_dc(block, stride, x, y);
  1111. for (i = 0; i < 3; i++)
  1112. block->u.dc[i] += dirac_get_arith_int(arith+1+i, CTX_DC_F1, CTX_DC_DATA);
  1113. return;
  1114. }
  1115. if (s->globalmc_flag) {
  1116. block->ref |= pred_block_mode(block, stride, x, y, DIRAC_REF_MASK_GLOBAL);
  1117. block->ref ^= dirac_get_arith_bit(arith, CTX_GLOBAL_BLOCK) << 2;
  1118. }
  1119. for (i = 0; i < s->num_refs; i++)
  1120. if (block->ref & (i+1)) {
  1121. if (block->ref & DIRAC_REF_MASK_GLOBAL) {
  1122. global_mv(s, block, x, y, i);
  1123. } else {
  1124. pred_mv(block, stride, x, y, i);
  1125. block->u.mv[i][0] += dirac_get_arith_int(arith + 4 + 2 * i, CTX_MV_F1, CTX_MV_DATA);
  1126. block->u.mv[i][1] += dirac_get_arith_int(arith + 5 + 2 * i, CTX_MV_F1, CTX_MV_DATA);
  1127. }
  1128. }
  1129. }
  1130. /**
  1131. * Copies the current block to the other blocks covered by the current superblock split mode
  1132. */
  1133. static void propagate_block_data(DiracBlock *block, int stride, int size)
  1134. {
  1135. int x, y;
  1136. DiracBlock *dst = block;
  1137. for (x = 1; x < size; x++)
  1138. dst[x] = *block;
  1139. for (y = 1; y < size; y++) {
  1140. dst += stride;
  1141. for (x = 0; x < size; x++)
  1142. dst[x] = *block;
  1143. }
  1144. }
  1145. /**
  1146. * Dirac Specification ->
  1147. * 12. Block motion data syntax
  1148. */
  1149. static int dirac_unpack_block_motion_data(DiracContext *s)
  1150. {
  1151. GetBitContext *gb = &s->gb;
  1152. uint8_t *sbsplit = s->sbsplit;
  1153. int i, x, y, q, p;
  1154. DiracArith arith[8];
  1155. align_get_bits(gb);
  1156. /* [DIRAC_STD] 11.2.4 and 12.2.1 Number of blocks and superblocks */
  1157. s->sbwidth = DIVRNDUP(s->seq.width, 4*s->plane[0].xbsep);
  1158. s->sbheight = DIVRNDUP(s->seq.height, 4*s->plane[0].ybsep);
  1159. s->blwidth = 4 * s->sbwidth;
  1160. s->blheight = 4 * s->sbheight;
  1161. /* [DIRAC_STD] 12.3.1 Superblock splitting modes. superblock_split_modes()
  1162. decode superblock split modes */
  1163. ff_dirac_init_arith_decoder(arith, gb, get_interleaved_ue_golomb(gb)); /* get_interleaved_ue_golomb(gb) is the length */
  1164. for (y = 0; y < s->sbheight; y++) {
  1165. for (x = 0; x < s->sbwidth; x++) {
  1166. unsigned int split = dirac_get_arith_uint(arith, CTX_SB_F1, CTX_SB_DATA);
  1167. if (split > 2)
  1168. return AVERROR_INVALIDDATA;
  1169. sbsplit[x] = (split + pred_sbsplit(sbsplit+x, s->sbwidth, x, y)) % 3;
  1170. }
  1171. sbsplit += s->sbwidth;
  1172. }
  1173. /* setup arith decoding */
  1174. ff_dirac_init_arith_decoder(arith, gb, get_interleaved_ue_golomb(gb));
  1175. for (i = 0; i < s->num_refs; i++) {
  1176. ff_dirac_init_arith_decoder(arith + 4 + 2 * i, gb, get_interleaved_ue_golomb(gb));
  1177. ff_dirac_init_arith_decoder(arith + 5 + 2 * i, gb, get_interleaved_ue_golomb(gb));
  1178. }
  1179. for (i = 0; i < 3; i++)
  1180. ff_dirac_init_arith_decoder(arith+1+i, gb, get_interleaved_ue_golomb(gb));
  1181. for (y = 0; y < s->sbheight; y++)
  1182. for (x = 0; x < s->sbwidth; x++) {
  1183. int blkcnt = 1 << s->sbsplit[y * s->sbwidth + x];
  1184. int step = 4 >> s->sbsplit[y * s->sbwidth + x];
  1185. for (q = 0; q < blkcnt; q++)
  1186. for (p = 0; p < blkcnt; p++) {
  1187. int bx = 4 * x + p*step;
  1188. int by = 4 * y + q*step;
  1189. DiracBlock *block = &s->blmotion[by*s->blwidth + bx];
  1190. decode_block_params(s, arith, block, s->blwidth, bx, by);
  1191. propagate_block_data(block, s->blwidth, step);
  1192. }
  1193. }
  1194. return 0;
  1195. }
  1196. static int weight(int i, int blen, int offset)
  1197. {
  1198. #define ROLLOFF(i) offset == 1 ? ((i) ? 5 : 3) : \
  1199. (1 + (6*(i) + offset - 1) / (2*offset - 1))
  1200. if (i < 2*offset)
  1201. return ROLLOFF(i);
  1202. else if (i > blen-1 - 2*offset)
  1203. return ROLLOFF(blen-1 - i);
  1204. return 8;
  1205. }
  1206. static void init_obmc_weight_row(Plane *p, uint8_t *obmc_weight, int stride,
  1207. int left, int right, int wy)
  1208. {
  1209. int x;
  1210. for (x = 0; left && x < p->xblen >> 1; x++)
  1211. obmc_weight[x] = wy*8;
  1212. for (; x < p->xblen >> right; x++)
  1213. obmc_weight[x] = wy*weight(x, p->xblen, p->xoffset);
  1214. for (; x < p->xblen; x++)
  1215. obmc_weight[x] = wy*8;
  1216. for (; x < stride; x++)
  1217. obmc_weight[x] = 0;
  1218. }
  1219. static void init_obmc_weight(Plane *p, uint8_t *obmc_weight, int stride,
  1220. int left, int right, int top, int bottom)
  1221. {
  1222. int y;
  1223. for (y = 0; top && y < p->yblen >> 1; y++) {
  1224. init_obmc_weight_row(p, obmc_weight, stride, left, right, 8);
  1225. obmc_weight += stride;
  1226. }
  1227. for (; y < p->yblen >> bottom; y++) {
  1228. int wy = weight(y, p->yblen, p->yoffset);
  1229. init_obmc_weight_row(p, obmc_weight, stride, left, right, wy);
  1230. obmc_weight += stride;
  1231. }
  1232. for (; y < p->yblen; y++) {
  1233. init_obmc_weight_row(p, obmc_weight, stride, left, right, 8);
  1234. obmc_weight += stride;
  1235. }
  1236. }
  1237. static void init_obmc_weights(DiracContext *s, Plane *p, int by)
  1238. {
  1239. int top = !by;
  1240. int bottom = by == s->blheight-1;
  1241. /* don't bother re-initing for rows 2 to blheight-2, the weights don't change */
  1242. if (top || bottom || by == 1) {
  1243. init_obmc_weight(p, s->obmc_weight[0], MAX_BLOCKSIZE, 1, 0, top, bottom);
  1244. init_obmc_weight(p, s->obmc_weight[1], MAX_BLOCKSIZE, 0, 0, top, bottom);
  1245. init_obmc_weight(p, s->obmc_weight[2], MAX_BLOCKSIZE, 0, 1, top, bottom);
  1246. }
  1247. }
  1248. static const uint8_t epel_weights[4][4][4] = {
  1249. {{ 16, 0, 0, 0 },
  1250. { 12, 4, 0, 0 },
  1251. { 8, 8, 0, 0 },
  1252. { 4, 12, 0, 0 }},
  1253. {{ 12, 0, 4, 0 },
  1254. { 9, 3, 3, 1 },
  1255. { 6, 6, 2, 2 },
  1256. { 3, 9, 1, 3 }},
  1257. {{ 8, 0, 8, 0 },
  1258. { 6, 2, 6, 2 },
  1259. { 4, 4, 4, 4 },
  1260. { 2, 6, 2, 6 }},
  1261. {{ 4, 0, 12, 0 },
  1262. { 3, 1, 9, 3 },
  1263. { 2, 2, 6, 6 },
  1264. { 1, 3, 3, 9 }}
  1265. };
  1266. /**
  1267. * For block x,y, determine which of the hpel planes to do bilinear
  1268. * interpolation from and set src[] to the location in each hpel plane
  1269. * to MC from.
  1270. *
  1271. * @return the index of the put_dirac_pixels_tab function to use
  1272. * 0 for 1 plane (fpel,hpel), 1 for 2 planes (qpel), 2 for 4 planes (qpel), and 3 for epel
  1273. */
  1274. static int mc_subpel(DiracContext *s, DiracBlock *block, const uint8_t *src[5],
  1275. int x, int y, int ref, int plane)
  1276. {
  1277. Plane *p = &s->plane[plane];
  1278. uint8_t **ref_hpel = s->ref_pics[ref]->hpel[plane];
  1279. int motion_x = block->u.mv[ref][0];
  1280. int motion_y = block->u.mv[ref][1];
  1281. int mx, my, i, epel, nplanes = 0;
  1282. if (plane) {
  1283. motion_x >>= s->chroma_x_shift;
  1284. motion_y >>= s->chroma_y_shift;
  1285. }
  1286. mx = motion_x & ~(-1U << s->mv_precision);
  1287. my = motion_y & ~(-1U << s->mv_precision);
  1288. motion_x >>= s->mv_precision;
  1289. motion_y >>= s->mv_precision;
  1290. /* normalize subpel coordinates to epel */
  1291. /* TODO: template this function? */
  1292. mx <<= 3 - s->mv_precision;
  1293. my <<= 3 - s->mv_precision;
  1294. x += motion_x;
  1295. y += motion_y;
  1296. epel = (mx|my)&1;
  1297. /* hpel position */
  1298. if (!((mx|my)&3)) {
  1299. nplanes = 1;
  1300. src[0] = ref_hpel[(my>>1)+(mx>>2)] + y*p->stride + x;
  1301. } else {
  1302. /* qpel or epel */
  1303. nplanes = 4;
  1304. for (i = 0; i < 4; i++)
  1305. src[i] = ref_hpel[i] + y*p->stride + x;
  1306. /* if we're interpolating in the right/bottom halves, adjust the planes as needed
  1307. we increment x/y because the edge changes for half of the pixels */
  1308. if (mx > 4) {
  1309. src[0] += 1;
  1310. src[2] += 1;
  1311. x++;
  1312. }
  1313. if (my > 4) {
  1314. src[0] += p->stride;
  1315. src[1] += p->stride;
  1316. y++;
  1317. }
  1318. /* hpel planes are:
  1319. [0]: F [1]: H
  1320. [2]: V [3]: C */
  1321. if (!epel) {
  1322. /* check if we really only need 2 planes since either mx or my is
  1323. a hpel position. (epel weights of 0 handle this there) */
  1324. if (!(mx&3)) {
  1325. /* mx == 0: average [0] and [2]
  1326. mx == 4: average [1] and [3] */
  1327. src[!mx] = src[2 + !!mx];
  1328. nplanes = 2;
  1329. } else if (!(my&3)) {
  1330. src[0] = src[(my>>1) ];
  1331. src[1] = src[(my>>1)+1];
  1332. nplanes = 2;
  1333. }
  1334. } else {
  1335. /* adjust the ordering if needed so the weights work */
  1336. if (mx > 4) {
  1337. FFSWAP(const uint8_t *, src[0], src[1]);
  1338. FFSWAP(const uint8_t *, src[2], src[3]);
  1339. }
  1340. if (my > 4) {
  1341. FFSWAP(const uint8_t *, src[0], src[2]);
  1342. FFSWAP(const uint8_t *, src[1], src[3]);
  1343. }
  1344. src[4] = epel_weights[my&3][mx&3];
  1345. }
  1346. }
  1347. /* fixme: v/h _edge_pos */
  1348. if (x + p->xblen > p->width +EDGE_WIDTH/2 ||
  1349. y + p->yblen > p->height+EDGE_WIDTH/2 ||
  1350. x < 0 || y < 0) {
  1351. for (i = 0; i < nplanes; i++) {
  1352. s->vdsp.emulated_edge_mc(s->edge_emu_buffer[i], src[i],
  1353. p->stride, p->stride,
  1354. p->xblen, p->yblen, x, y,
  1355. p->width+EDGE_WIDTH/2, p->height+EDGE_WIDTH/2);
  1356. src[i] = s->edge_emu_buffer[i];
  1357. }
  1358. }
  1359. return (nplanes>>1) + epel;
  1360. }
  1361. static void add_dc(uint16_t *dst, int dc, int stride,
  1362. uint8_t *obmc_weight, int xblen, int yblen)
  1363. {
  1364. int x, y;
  1365. dc += 128;
  1366. for (y = 0; y < yblen; y++) {
  1367. for (x = 0; x < xblen; x += 2) {
  1368. dst[x ] += dc * obmc_weight[x ];
  1369. dst[x+1] += dc * obmc_weight[x+1];
  1370. }
  1371. dst += stride;
  1372. obmc_weight += MAX_BLOCKSIZE;
  1373. }
  1374. }
  1375. static void block_mc(DiracContext *s, DiracBlock *block,
  1376. uint16_t *mctmp, uint8_t *obmc_weight,
  1377. int plane, int dstx, int dsty)
  1378. {
  1379. Plane *p = &s->plane[plane];
  1380. const uint8_t *src[5];
  1381. int idx;
  1382. switch (block->ref&3) {
  1383. case 0: /* DC */
  1384. add_dc(mctmp, block->u.dc[plane], p->stride, obmc_weight, p->xblen, p->yblen);
  1385. return;
  1386. case 1:
  1387. case 2:
  1388. idx = mc_subpel(s, block, src, dstx, dsty, (block->ref&3)-1, plane);
  1389. s->put_pixels_tab[idx](s->mcscratch, src, p->stride, p->yblen);
  1390. if (s->weight_func)
  1391. s->weight_func(s->mcscratch, p->stride, s->weight_log2denom,
  1392. s->weight[0] + s->weight[1], p->yblen);
  1393. break;
  1394. case 3:
  1395. idx = mc_subpel(s, block, src, dstx, dsty, 0, plane);
  1396. s->put_pixels_tab[idx](s->mcscratch, src, p->stride, p->yblen);
  1397. idx = mc_subpel(s, block, src, dstx, dsty, 1, plane);
  1398. if (s->biweight_func) {
  1399. /* fixme: +32 is a quick hack */
  1400. s->put_pixels_tab[idx](s->mcscratch + 32, src, p->stride, p->yblen);
  1401. s->biweight_func(s->mcscratch, s->mcscratch+32, p->stride, s->weight_log2denom,
  1402. s->weight[0], s->weight[1], p->yblen);
  1403. } else
  1404. s->avg_pixels_tab[idx](s->mcscratch, src, p->stride, p->yblen);
  1405. break;
  1406. }
  1407. s->add_obmc(mctmp, s->mcscratch, p->stride, obmc_weight, p->yblen);
  1408. }
  1409. static void mc_row(DiracContext *s, DiracBlock *block, uint16_t *mctmp, int plane, int dsty)
  1410. {
  1411. Plane *p = &s->plane[plane];
  1412. int x, dstx = p->xbsep - p->xoffset;
  1413. block_mc(s, block, mctmp, s->obmc_weight[0], plane, -p->xoffset, dsty);
  1414. mctmp += p->xbsep;
  1415. for (x = 1; x < s->blwidth-1; x++) {
  1416. block_mc(s, block+x, mctmp, s->obmc_weight[1], plane, dstx, dsty);
  1417. dstx += p->xbsep;
  1418. mctmp += p->xbsep;
  1419. }
  1420. block_mc(s, block+x, mctmp, s->obmc_weight[2], plane, dstx, dsty);
  1421. }
  1422. static void select_dsp_funcs(DiracContext *s, int width, int height, int xblen, int yblen)
  1423. {
  1424. int idx = 0;
  1425. if (xblen > 8)
  1426. idx = 1;
  1427. if (xblen > 16)
  1428. idx = 2;
  1429. memcpy(s->put_pixels_tab, s->diracdsp.put_dirac_pixels_tab[idx], sizeof(s->put_pixels_tab));
  1430. memcpy(s->avg_pixels_tab, s->diracdsp.avg_dirac_pixels_tab[idx], sizeof(s->avg_pixels_tab));
  1431. s->add_obmc = s->diracdsp.add_dirac_obmc[idx];
  1432. if (s->weight_log2denom > 1 || s->weight[0] != 1 || s->weight[1] != 1) {
  1433. s->weight_func = s->diracdsp.weight_dirac_pixels_tab[idx];
  1434. s->biweight_func = s->diracdsp.biweight_dirac_pixels_tab[idx];
  1435. } else {
  1436. s->weight_func = NULL;
  1437. s->biweight_func = NULL;
  1438. }
  1439. }
  1440. static int interpolate_refplane(DiracContext *s, DiracFrame *ref, int plane, int width, int height)
  1441. {
  1442. /* chroma allocates an edge of 8 when subsampled
  1443. which for 4:2:2 means an h edge of 16 and v edge of 8
  1444. just use 8 for everything for the moment */
  1445. int i, edge = EDGE_WIDTH/2;
  1446. ref->hpel[plane][0] = ref->avframe->data[plane];
  1447. s->mpvencdsp.draw_edges(ref->hpel[plane][0], ref->avframe->linesize[plane], width, height, edge, edge, EDGE_TOP | EDGE_BOTTOM); /* EDGE_TOP | EDGE_BOTTOM values just copied to make it build, this needs to be ensured */
  1448. /* no need for hpel if we only have fpel vectors */
  1449. if (!s->mv_precision)
  1450. return 0;
  1451. for (i = 1; i < 4; i++) {
  1452. if (!ref->hpel_base[plane][i])
  1453. ref->hpel_base[plane][i] = av_malloc((height+2*edge) * ref->avframe->linesize[plane] + 32);
  1454. if (!ref->hpel_base[plane][i]) {
  1455. return AVERROR(ENOMEM);
  1456. }
  1457. /* we need to be 16-byte aligned even for chroma */
  1458. ref->hpel[plane][i] = ref->hpel_base[plane][i] + edge*ref->avframe->linesize[plane] + 16;
  1459. }
  1460. if (!ref->interpolated[plane]) {
  1461. s->diracdsp.dirac_hpel_filter(ref->hpel[plane][1], ref->hpel[plane][2],
  1462. ref->hpel[plane][3], ref->hpel[plane][0],
  1463. ref->avframe->linesize[plane], width, height);
  1464. s->mpvencdsp.draw_edges(ref->hpel[plane][1], ref->avframe->linesize[plane], width, height, edge, edge, EDGE_TOP | EDGE_BOTTOM);
  1465. s->mpvencdsp.draw_edges(ref->hpel[plane][2], ref->avframe->linesize[plane], width, height, edge, edge, EDGE_TOP | EDGE_BOTTOM);
  1466. s->mpvencdsp.draw_edges(ref->hpel[plane][3], ref->avframe->linesize[plane], width, height, edge, edge, EDGE_TOP | EDGE_BOTTOM);
  1467. }
  1468. ref->interpolated[plane] = 1;
  1469. return 0;
  1470. }
  1471. /**
  1472. * Dirac Specification ->
  1473. * 13.0 Transform data syntax. transform_data()
  1474. */
  1475. static int dirac_decode_frame_internal(DiracContext *s)
  1476. {
  1477. DWTContext d;
  1478. int y, i, comp, dsty;
  1479. int ret;
  1480. if (s->low_delay) {
  1481. /* [DIRAC_STD] 13.5.1 low_delay_transform_data() */
  1482. for (comp = 0; comp < 3; comp++) {
  1483. Plane *p = &s->plane[comp];
  1484. memset(p->idwt.buf, 0, p->idwt.stride * p->idwt.height);
  1485. }
  1486. if (!s->zero_res) {
  1487. if ((ret = decode_lowdelay(s)) < 0)
  1488. return ret;
  1489. }
  1490. }
  1491. for (comp = 0; comp < 3; comp++) {
  1492. Plane *p = &s->plane[comp];
  1493. uint8_t *frame = s->current_picture->avframe->data[comp];
  1494. /* FIXME: small resolutions */
  1495. for (i = 0; i < 4; i++)
  1496. s->edge_emu_buffer[i] = s->edge_emu_buffer_base + i*FFALIGN(p->width, 16);
  1497. if (!s->zero_res && !s->low_delay)
  1498. {
  1499. memset(p->idwt.buf, 0, p->idwt.stride * p->idwt.height);
  1500. decode_component(s, comp); /* [DIRAC_STD] 13.4.1 core_transform_data() */
  1501. }
  1502. ret = ff_spatial_idwt_init(&d, &p->idwt, s->wavelet_idx+2,
  1503. s->wavelet_depth, s->bit_depth);
  1504. if (ret < 0)
  1505. return ret;
  1506. if (!s->num_refs) { /* intra */
  1507. for (y = 0; y < p->height; y += 16) {
  1508. int idx = (s->bit_depth - 8) >> 1;
  1509. ff_spatial_idwt_slice2(&d, y+16); /* decode */
  1510. s->diracdsp.put_signed_rect_clamped[idx](frame + y*p->stride,
  1511. p->stride,
  1512. p->idwt.buf + y*p->idwt.stride,
  1513. p->idwt.stride, p->width, 16);
  1514. }
  1515. } else { /* inter */
  1516. int rowheight = p->ybsep*p->stride;
  1517. select_dsp_funcs(s, p->width, p->height, p->xblen, p->yblen);
  1518. for (i = 0; i < s->num_refs; i++) {
  1519. int ret = interpolate_refplane(s, s->ref_pics[i], comp, p->width, p->height);
  1520. if (ret < 0)
  1521. return ret;
  1522. }
  1523. memset(s->mctmp, 0, 4*p->yoffset*p->stride);
  1524. dsty = -p->yoffset;
  1525. for (y = 0; y < s->blheight; y++) {
  1526. int h = 0,
  1527. start = FFMAX(dsty, 0);
  1528. uint16_t *mctmp = s->mctmp + y*rowheight;
  1529. DiracBlock *blocks = s->blmotion + y*s->blwidth;
  1530. init_obmc_weights(s, p, y);
  1531. if (y == s->blheight-1 || start+p->ybsep > p->height)
  1532. h = p->height - start;
  1533. else
  1534. h = p->ybsep - (start - dsty);
  1535. if (h < 0)
  1536. break;
  1537. memset(mctmp+2*p->yoffset*p->stride, 0, 2*rowheight);
  1538. mc_row(s, blocks, mctmp, comp, dsty);
  1539. mctmp += (start - dsty)*p->stride + p->xoffset;
  1540. ff_spatial_idwt_slice2(&d, start + h); /* decode */
  1541. /* NOTE: add_rect_clamped hasn't been templated hence the shifts.
  1542. * idwt.stride is passed as pixels, not in bytes as in the rest of the decoder */
  1543. s->diracdsp.add_rect_clamped(frame + start*p->stride, mctmp, p->stride,
  1544. (int16_t*)(p->idwt.buf) + start*(p->idwt.stride >> 1), (p->idwt.stride >> 1), p->width, h);
  1545. dsty += p->ybsep;
  1546. }
  1547. }
  1548. }
  1549. return 0;
  1550. }
  1551. static int get_buffer_with_edge(AVCodecContext *avctx, AVFrame *f, int flags)
  1552. {
  1553. int ret, i;
  1554. int chroma_x_shift, chroma_y_shift;
  1555. avcodec_get_chroma_sub_sample(avctx->pix_fmt, &chroma_x_shift, &chroma_y_shift);
  1556. f->width = avctx->width + 2 * EDGE_WIDTH;
  1557. f->height = avctx->height + 2 * EDGE_WIDTH + 2;
  1558. ret = ff_get_buffer(avctx, f, flags);
  1559. if (ret < 0)
  1560. return ret;
  1561. for (i = 0; f->data[i]; i++) {
  1562. int offset = (EDGE_WIDTH >> (i && i<3 ? chroma_y_shift : 0)) *
  1563. f->linesize[i] + 32;
  1564. f->data[i] += offset;
  1565. }
  1566. f->width = avctx->width;
  1567. f->height = avctx->height;
  1568. return 0;
  1569. }
  1570. /**
  1571. * Dirac Specification ->
  1572. * 11.1.1 Picture Header. picture_header()
  1573. */
  1574. static int dirac_decode_picture_header(DiracContext *s)
  1575. {
  1576. unsigned retire, picnum;
  1577. int i, j, ret;
  1578. int64_t refdist, refnum;
  1579. GetBitContext *gb = &s->gb;
  1580. /* [DIRAC_STD] 11.1.1 Picture Header. picture_header() PICTURE_NUM */
  1581. picnum = s->current_picture->avframe->display_picture_number = get_bits_long(gb, 32);
  1582. av_log(s->avctx,AV_LOG_DEBUG,"PICTURE_NUM: %d\n",picnum);
  1583. /* if this is the first keyframe after a sequence header, start our
  1584. reordering from here */
  1585. if (s->frame_number < 0)
  1586. s->frame_number = picnum;
  1587. s->ref_pics[0] = s->ref_pics[1] = NULL;
  1588. for (i = 0; i < s->num_refs; i++) {
  1589. refnum = (picnum + dirac_get_se_golomb(gb)) & 0xFFFFFFFF;
  1590. refdist = INT64_MAX;
  1591. /* find the closest reference to the one we want */
  1592. /* Jordi: this is needed if the referenced picture hasn't yet arrived */
  1593. for (j = 0; j < MAX_REFERENCE_FRAMES && refdist; j++)
  1594. if (s->ref_frames[j]
  1595. && FFABS(s->ref_frames[j]->avframe->display_picture_number - refnum) < refdist) {
  1596. s->ref_pics[i] = s->ref_frames[j];
  1597. refdist = FFABS(s->ref_frames[j]->avframe->display_picture_number - refnum);
  1598. }
  1599. if (!s->ref_pics[i] || refdist)
  1600. av_log(s->avctx, AV_LOG_DEBUG, "Reference not found\n");
  1601. /* if there were no references at all, allocate one */
  1602. if (!s->ref_pics[i])
  1603. for (j = 0; j < MAX_FRAMES; j++)
  1604. if (!s->all_frames[j].avframe->data[0]) {
  1605. s->ref_pics[i] = &s->all_frames[j];
  1606. get_buffer_with_edge(s->avctx, s->ref_pics[i]->avframe, AV_GET_BUFFER_FLAG_REF);
  1607. break;
  1608. }
  1609. if (!s->ref_pics[i]) {
  1610. av_log(s->avctx, AV_LOG_ERROR, "Reference could not be allocated\n");
  1611. return AVERROR_INVALIDDATA;
  1612. }
  1613. }
  1614. /* retire the reference frames that are not used anymore */
  1615. if (s->current_picture->reference) {
  1616. retire = (picnum + dirac_get_se_golomb(gb)) & 0xFFFFFFFF;
  1617. if (retire != picnum) {
  1618. DiracFrame *retire_pic = remove_frame(s->ref_frames, retire);
  1619. if (retire_pic)
  1620. retire_pic->reference &= DELAYED_PIC_REF;
  1621. else
  1622. av_log(s->avctx, AV_LOG_DEBUG, "Frame to retire not found\n");
  1623. }
  1624. /* if reference array is full, remove the oldest as per the spec */
  1625. while (add_frame(s->ref_frames, MAX_REFERENCE_FRAMES, s->current_picture)) {
  1626. av_log(s->avctx, AV_LOG_ERROR, "Reference frame overflow\n");
  1627. remove_frame(s->ref_frames, s->ref_frames[0]->avframe->display_picture_number)->reference &= DELAYED_PIC_REF;
  1628. }
  1629. }
  1630. if (s->num_refs) {
  1631. ret = dirac_unpack_prediction_parameters(s); /* [DIRAC_STD] 11.2 Picture Prediction Data. picture_prediction() */
  1632. if (ret < 0)
  1633. return ret;
  1634. ret = dirac_unpack_block_motion_data(s); /* [DIRAC_STD] 12. Block motion data syntax */
  1635. if (ret < 0)
  1636. return ret;
  1637. }
  1638. ret = dirac_unpack_idwt_params(s); /* [DIRAC_STD] 11.3 Wavelet transform data */
  1639. if (ret < 0)
  1640. return ret;
  1641. init_planes(s);
  1642. return 0;
  1643. }
  1644. static int get_delayed_pic(DiracContext *s, AVFrame *picture, int *got_frame)
  1645. {
  1646. DiracFrame *out = s->delay_frames[0];
  1647. int i, out_idx = 0;
  1648. int ret;
  1649. /* find frame with lowest picture number */
  1650. for (i = 1; s->delay_frames[i]; i++)
  1651. if (s->delay_frames[i]->avframe->display_picture_number < out->avframe->display_picture_number) {
  1652. out = s->delay_frames[i];
  1653. out_idx = i;
  1654. }
  1655. for (i = out_idx; s->delay_frames[i]; i++)
  1656. s->delay_frames[i] = s->delay_frames[i+1];
  1657. if (out) {
  1658. out->reference ^= DELAYED_PIC_REF;
  1659. *got_frame = 1;
  1660. if((ret = av_frame_ref(picture, out->avframe)) < 0)
  1661. return ret;
  1662. }
  1663. return 0;
  1664. }
  1665. /**
  1666. * Dirac Specification ->
  1667. * 9.6 Parse Info Header Syntax. parse_info()
  1668. * 4 byte start code + byte parse code + 4 byte size + 4 byte previous size
  1669. */
  1670. #define DATA_UNIT_HEADER_SIZE 13
  1671. /* [DIRAC_STD] dirac_decode_data_unit makes reference to the while defined in 9.3
  1672. inside the function parse_sequence() */
  1673. static int dirac_decode_data_unit(AVCodecContext *avctx, const uint8_t *buf, int size)
  1674. {
  1675. DiracContext *s = avctx->priv_data;
  1676. DiracFrame *pic = NULL;
  1677. AVDiracSeqHeader *dsh;
  1678. int ret, i;
  1679. uint8_t parse_code;
  1680. unsigned tmp;
  1681. if (size < DATA_UNIT_HEADER_SIZE)
  1682. return AVERROR_INVALIDDATA;
  1683. parse_code = buf[4];
  1684. init_get_bits(&s->gb, &buf[13], 8*(size - DATA_UNIT_HEADER_SIZE));
  1685. if (parse_code == DIRAC_PCODE_SEQ_HEADER) {
  1686. if (s->seen_sequence_header)
  1687. return 0;
  1688. /* [DIRAC_STD] 10. Sequence header */
  1689. ret = av_dirac_parse_sequence_header(&dsh, buf + DATA_UNIT_HEADER_SIZE, size - DATA_UNIT_HEADER_SIZE, avctx);
  1690. if (ret < 0) {
  1691. av_log(avctx, AV_LOG_ERROR, "error parsing sequence header");
  1692. return ret;
  1693. }
  1694. ret = ff_set_dimensions(avctx, dsh->width, dsh->height);
  1695. if (ret < 0) {
  1696. av_freep(&dsh);
  1697. return ret;
  1698. }
  1699. ff_set_sar(avctx, dsh->sample_aspect_ratio);
  1700. avctx->pix_fmt = dsh->pix_fmt;
  1701. avctx->color_range = dsh->color_range;
  1702. avctx->color_trc = dsh->color_trc;
  1703. avctx->color_primaries = dsh->color_primaries;
  1704. avctx->colorspace = dsh->colorspace;
  1705. avctx->profile = dsh->profile;
  1706. avctx->level = dsh->level;
  1707. avctx->framerate = dsh->framerate;
  1708. s->bit_depth = dsh->bit_depth;
  1709. s->version.major = dsh->version.major;
  1710. s->version.minor = dsh->version.minor;
  1711. s->seq = *dsh;
  1712. av_freep(&dsh);
  1713. s->pshift = s->bit_depth > 8;
  1714. avcodec_get_chroma_sub_sample(avctx->pix_fmt, &s->chroma_x_shift, &s->chroma_y_shift);
  1715. ret = alloc_sequence_buffers(s);
  1716. if (ret < 0)
  1717. return ret;
  1718. s->seen_sequence_header = 1;
  1719. } else if (parse_code == DIRAC_PCODE_END_SEQ) { /* [DIRAC_STD] End of Sequence */
  1720. free_sequence_buffers(s);
  1721. s->seen_sequence_header = 0;
  1722. } else if (parse_code == DIRAC_PCODE_AUX) {
  1723. if (buf[13] == 1) { /* encoder implementation/version */
  1724. int ver[3];
  1725. /* versions older than 1.0.8 don't store quant delta for
  1726. subbands with only one codeblock */
  1727. if (sscanf(buf+14, "Schroedinger %d.%d.%d", ver, ver+1, ver+2) == 3)
  1728. if (ver[0] == 1 && ver[1] == 0 && ver[2] <= 7)
  1729. s->old_delta_quant = 1;
  1730. }
  1731. } else if (parse_code & 0x8) { /* picture data unit */
  1732. if (!s->seen_sequence_header) {
  1733. av_log(avctx, AV_LOG_DEBUG, "Dropping frame without sequence header\n");
  1734. return AVERROR_INVALIDDATA;
  1735. }
  1736. /* find an unused frame */
  1737. for (i = 0; i < MAX_FRAMES; i++)
  1738. if (s->all_frames[i].avframe->data[0] == NULL)
  1739. pic = &s->all_frames[i];
  1740. if (!pic) {
  1741. av_log(avctx, AV_LOG_ERROR, "framelist full\n");
  1742. return AVERROR_INVALIDDATA;
  1743. }
  1744. av_frame_unref(pic->avframe);
  1745. /* [DIRAC_STD] Defined in 9.6.1 ... */
  1746. tmp = parse_code & 0x03; /* [DIRAC_STD] num_refs() */
  1747. if (tmp > 2) {
  1748. av_log(avctx, AV_LOG_ERROR, "num_refs of 3\n");
  1749. return AVERROR_INVALIDDATA;
  1750. }
  1751. s->num_refs = tmp;
  1752. s->is_arith = (parse_code & 0x48) == 0x08; /* [DIRAC_STD] using_ac() */
  1753. s->low_delay = (parse_code & 0x88) == 0x88; /* [DIRAC_STD] is_low_delay() */
  1754. s->core_syntax = (parse_code & 0x88) == 0x08; /* [DIRAC_STD] is_core_syntax() */
  1755. s->ld_picture = (parse_code & 0xF8) == 0xC8; /* [DIRAC_STD] is_ld_picture() */
  1756. s->hq_picture = (parse_code & 0xF8) == 0xE8; /* [DIRAC_STD] is_hq_picture() */
  1757. s->dc_prediction = (parse_code & 0x28) == 0x08; /* [DIRAC_STD] using_dc_prediction() */
  1758. pic->reference = (parse_code & 0x0C) == 0x0C; /* [DIRAC_STD] is_reference() */
  1759. pic->avframe->key_frame = s->num_refs == 0; /* [DIRAC_STD] is_intra() */
  1760. pic->avframe->pict_type = s->num_refs + 1; /* Definition of AVPictureType in avutil.h */
  1761. /* VC-2 Low Delay has a different parse code than the Dirac Low Delay */
  1762. if (s->version.minor == 2 && parse_code == 0x88)
  1763. s->ld_picture = 1;
  1764. if (s->low_delay && !(s->ld_picture || s->hq_picture) ) {
  1765. av_log(avctx, AV_LOG_ERROR, "Invalid low delay flag\n");
  1766. return AVERROR_INVALIDDATA;
  1767. }
  1768. if ((ret = get_buffer_with_edge(avctx, pic->avframe, (parse_code & 0x0C) == 0x0C ? AV_GET_BUFFER_FLAG_REF : 0)) < 0)
  1769. return ret;
  1770. s->current_picture = pic;
  1771. s->plane[0].stride = pic->avframe->linesize[0];
  1772. s->plane[1].stride = pic->avframe->linesize[1];
  1773. s->plane[2].stride = pic->avframe->linesize[2];
  1774. if (alloc_buffers(s, FFMAX3(FFABS(s->plane[0].stride), FFABS(s->plane[1].stride), FFABS(s->plane[2].stride))) < 0)
  1775. return AVERROR(ENOMEM);
  1776. /* [DIRAC_STD] 11.1 Picture parse. picture_parse() */
  1777. ret = dirac_decode_picture_header(s);
  1778. if (ret < 0)
  1779. return ret;
  1780. /* [DIRAC_STD] 13.0 Transform data syntax. transform_data() */
  1781. ret = dirac_decode_frame_internal(s);
  1782. if (ret < 0)
  1783. return ret;
  1784. }
  1785. return 0;
  1786. }
  1787. static int dirac_decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *pkt)
  1788. {
  1789. DiracContext *s = avctx->priv_data;
  1790. AVFrame *picture = data;
  1791. uint8_t *buf = pkt->data;
  1792. int buf_size = pkt->size;
  1793. int i, buf_idx = 0;
  1794. int ret;
  1795. unsigned data_unit_size;
  1796. /* release unused frames */
  1797. for (i = 0; i < MAX_FRAMES; i++)
  1798. if (s->all_frames[i].avframe->data[0] && !s->all_frames[i].reference) {
  1799. av_frame_unref(s->all_frames[i].avframe);
  1800. memset(s->all_frames[i].interpolated, 0, sizeof(s->all_frames[i].interpolated));
  1801. }
  1802. s->current_picture = NULL;
  1803. *got_frame = 0;
  1804. /* end of stream, so flush delayed pics */
  1805. if (buf_size == 0)
  1806. return get_delayed_pic(s, (AVFrame *)data, got_frame);
  1807. for (;;) {
  1808. /*[DIRAC_STD] Here starts the code from parse_info() defined in 9.6
  1809. [DIRAC_STD] PARSE_INFO_PREFIX = "BBCD" as defined in ISO/IEC 646
  1810. BBCD start code search */
  1811. for (; buf_idx + DATA_UNIT_HEADER_SIZE < buf_size; buf_idx++) {
  1812. if (buf[buf_idx ] == 'B' && buf[buf_idx+1] == 'B' &&
  1813. buf[buf_idx+2] == 'C' && buf[buf_idx+3] == 'D')
  1814. break;
  1815. }
  1816. /* BBCD found or end of data */
  1817. if (buf_idx + DATA_UNIT_HEADER_SIZE >= buf_size)
  1818. break;
  1819. data_unit_size = AV_RB32(buf+buf_idx+5);
  1820. if (data_unit_size > buf_size - buf_idx || !data_unit_size) {
  1821. if(data_unit_size > buf_size - buf_idx)
  1822. av_log(s->avctx, AV_LOG_ERROR,
  1823. "Data unit with size %d is larger than input buffer, discarding\n",
  1824. data_unit_size);
  1825. buf_idx += 4;
  1826. continue;
  1827. }
  1828. /* [DIRAC_STD] dirac_decode_data_unit makes reference to the while defined in 9.3 inside the function parse_sequence() */
  1829. ret = dirac_decode_data_unit(avctx, buf+buf_idx, data_unit_size);
  1830. if (ret < 0)
  1831. {
  1832. av_log(s->avctx, AV_LOG_ERROR,"Error in dirac_decode_data_unit\n");
  1833. return ret;
  1834. }
  1835. buf_idx += data_unit_size;
  1836. }
  1837. if (!s->current_picture)
  1838. return buf_size;
  1839. if (s->current_picture->avframe->display_picture_number > s->frame_number) {
  1840. DiracFrame *delayed_frame = remove_frame(s->delay_frames, s->frame_number);
  1841. s->current_picture->reference |= DELAYED_PIC_REF;
  1842. if (add_frame(s->delay_frames, MAX_DELAY, s->current_picture)) {
  1843. int min_num = s->delay_frames[0]->avframe->display_picture_number;
  1844. /* Too many delayed frames, so we display the frame with the lowest pts */
  1845. av_log(avctx, AV_LOG_ERROR, "Delay frame overflow\n");
  1846. for (i = 1; s->delay_frames[i]; i++)
  1847. if (s->delay_frames[i]->avframe->display_picture_number < min_num)
  1848. min_num = s->delay_frames[i]->avframe->display_picture_number;
  1849. delayed_frame = remove_frame(s->delay_frames, min_num);
  1850. add_frame(s->delay_frames, MAX_DELAY, s->current_picture);
  1851. }
  1852. if (delayed_frame) {
  1853. delayed_frame->reference ^= DELAYED_PIC_REF;
  1854. if((ret=av_frame_ref(data, delayed_frame->avframe)) < 0)
  1855. return ret;
  1856. *got_frame = 1;
  1857. }
  1858. } else if (s->current_picture->avframe->display_picture_number == s->frame_number) {
  1859. /* The right frame at the right time :-) */
  1860. if((ret=av_frame_ref(data, s->current_picture->avframe)) < 0)
  1861. return ret;
  1862. *got_frame = 1;
  1863. }
  1864. if (*got_frame)
  1865. s->frame_number = picture->display_picture_number + 1;
  1866. return buf_idx;
  1867. }
  1868. AVCodec ff_dirac_decoder = {
  1869. .name = "dirac",
  1870. .long_name = NULL_IF_CONFIG_SMALL("BBC Dirac VC-2"),
  1871. .type = AVMEDIA_TYPE_VIDEO,
  1872. .id = AV_CODEC_ID_DIRAC,
  1873. .priv_data_size = sizeof(DiracContext),
  1874. .init = dirac_decode_init,
  1875. .close = dirac_decode_end,
  1876. .decode = dirac_decode_frame,
  1877. .capabilities = AV_CODEC_CAP_DELAY | AV_CODEC_CAP_SLICE_THREADS | AV_CODEC_CAP_DR1,
  1878. .flush = dirac_decode_flush,
  1879. };