You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

753 lines
22KB

  1. /*
  2. * FLAC (Free Lossless Audio Codec) decoder
  3. * Copyright (c) 2003 Alex Beregszaszi
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file flac.c
  23. * FLAC (Free Lossless Audio Codec) decoder
  24. * @author Alex Beregszaszi
  25. *
  26. * For more information on the FLAC format, visit:
  27. * http://flac.sourceforge.net/
  28. *
  29. * This decoder can be used in 1 of 2 ways: Either raw FLAC data can be fed
  30. * through, starting from the initial 'fLaC' signature; or by passing the
  31. * 34-byte streaminfo structure through avctx->extradata[_size] followed
  32. * by data starting with the 0xFFF8 marker.
  33. */
  34. #include <limits.h>
  35. #define ALT_BITSTREAM_READER
  36. #include "avcodec.h"
  37. #include "bitstream.h"
  38. #include "golomb.h"
  39. #include "crc.h"
  40. #undef NDEBUG
  41. #include <assert.h>
  42. #define MAX_CHANNELS 8
  43. #define MAX_BLOCKSIZE 65535
  44. #define FLAC_STREAMINFO_SIZE 34
  45. enum decorrelation_type {
  46. INDEPENDENT,
  47. LEFT_SIDE,
  48. RIGHT_SIDE,
  49. MID_SIDE,
  50. };
  51. typedef struct FLACContext {
  52. AVCodecContext *avctx;
  53. GetBitContext gb;
  54. int min_blocksize, max_blocksize;
  55. int min_framesize, max_framesize;
  56. int samplerate, channels;
  57. int blocksize/*, last_blocksize*/;
  58. int bps, curr_bps;
  59. enum decorrelation_type decorrelation;
  60. int32_t *decoded[MAX_CHANNELS];
  61. uint8_t *bitstream;
  62. int bitstream_size;
  63. int bitstream_index;
  64. unsigned int allocated_bitstream_size;
  65. } FLACContext;
  66. #define METADATA_TYPE_STREAMINFO 0
  67. static int sample_rate_table[] =
  68. { 0, 0, 0, 0,
  69. 8000, 16000, 22050, 24000, 32000, 44100, 48000, 96000,
  70. 0, 0, 0, 0 };
  71. static int sample_size_table[] =
  72. { 0, 8, 12, 0, 16, 20, 24, 0 };
  73. static int blocksize_table[] = {
  74. 0, 192, 576<<0, 576<<1, 576<<2, 576<<3, 0, 0,
  75. 256<<0, 256<<1, 256<<2, 256<<3, 256<<4, 256<<5, 256<<6, 256<<7
  76. };
  77. static int64_t get_utf8(GetBitContext *gb){
  78. int64_t val;
  79. GET_UTF8(val, get_bits(gb, 8), return -1;)
  80. return val;
  81. }
  82. static void metadata_streaminfo(FLACContext *s);
  83. static void allocate_buffers(FLACContext *s);
  84. static int metadata_parse(FLACContext *s);
  85. static int flac_decode_init(AVCodecContext * avctx)
  86. {
  87. FLACContext *s = avctx->priv_data;
  88. s->avctx = avctx;
  89. if (avctx->extradata_size > 4) {
  90. /* initialize based on the demuxer-supplied streamdata header */
  91. init_get_bits(&s->gb, avctx->extradata, avctx->extradata_size*8);
  92. if (avctx->extradata_size == FLAC_STREAMINFO_SIZE) {
  93. metadata_streaminfo(s);
  94. allocate_buffers(s);
  95. } else {
  96. metadata_parse(s);
  97. }
  98. }
  99. return 0;
  100. }
  101. static void dump_headers(FLACContext *s)
  102. {
  103. av_log(s->avctx, AV_LOG_DEBUG, " Blocksize: %d .. %d (%d)\n", s->min_blocksize, s->max_blocksize, s->blocksize);
  104. av_log(s->avctx, AV_LOG_DEBUG, " Framesize: %d .. %d\n", s->min_framesize, s->max_framesize);
  105. av_log(s->avctx, AV_LOG_DEBUG, " Samplerate: %d\n", s->samplerate);
  106. av_log(s->avctx, AV_LOG_DEBUG, " Channels: %d\n", s->channels);
  107. av_log(s->avctx, AV_LOG_DEBUG, " Bits: %d\n", s->bps);
  108. }
  109. static void allocate_buffers(FLACContext *s){
  110. int i;
  111. assert(s->max_blocksize);
  112. if(s->max_framesize == 0 && s->max_blocksize){
  113. s->max_framesize= (s->channels * s->bps * s->max_blocksize + 7)/ 8; //FIXME header overhead
  114. }
  115. for (i = 0; i < s->channels; i++)
  116. {
  117. s->decoded[i] = av_realloc(s->decoded[i], sizeof(int32_t)*s->max_blocksize);
  118. }
  119. s->bitstream= av_fast_realloc(s->bitstream, &s->allocated_bitstream_size, s->max_framesize);
  120. }
  121. static void metadata_streaminfo(FLACContext *s)
  122. {
  123. /* mandatory streaminfo */
  124. s->min_blocksize = get_bits(&s->gb, 16);
  125. s->max_blocksize = get_bits(&s->gb, 16);
  126. s->min_framesize = get_bits_long(&s->gb, 24);
  127. s->max_framesize = get_bits_long(&s->gb, 24);
  128. s->samplerate = get_bits_long(&s->gb, 20);
  129. s->channels = get_bits(&s->gb, 3) + 1;
  130. s->bps = get_bits(&s->gb, 5) + 1;
  131. s->avctx->channels = s->channels;
  132. s->avctx->sample_rate = s->samplerate;
  133. skip_bits(&s->gb, 36); /* total num of samples */
  134. skip_bits(&s->gb, 64); /* md5 sum */
  135. skip_bits(&s->gb, 64); /* md5 sum */
  136. dump_headers(s);
  137. }
  138. /**
  139. * Parse a list of metadata blocks. This list of blocks must begin with
  140. * the fLaC marker.
  141. * @param s the flac decoding context containing the gb bit reader used to
  142. * parse metadata
  143. * @return 1 if some metadata was read, 0 if no fLaC marker was found
  144. */
  145. static int metadata_parse(FLACContext *s)
  146. {
  147. int i, metadata_last, metadata_type, metadata_size, streaminfo_updated=0;
  148. if (show_bits_long(&s->gb, 32) == MKBETAG('f','L','a','C')) {
  149. skip_bits(&s->gb, 32);
  150. av_log(s->avctx, AV_LOG_DEBUG, "STREAM HEADER\n");
  151. do {
  152. metadata_last = get_bits(&s->gb, 1);
  153. metadata_type = get_bits(&s->gb, 7);
  154. metadata_size = get_bits_long(&s->gb, 24);
  155. av_log(s->avctx, AV_LOG_DEBUG,
  156. " metadata block: flag = %d, type = %d, size = %d\n",
  157. metadata_last, metadata_type, metadata_size);
  158. if (metadata_size) {
  159. switch (metadata_type) {
  160. case METADATA_TYPE_STREAMINFO:
  161. metadata_streaminfo(s);
  162. streaminfo_updated = 1;
  163. break;
  164. default:
  165. for (i=0; i<metadata_size; i++)
  166. skip_bits(&s->gb, 8);
  167. }
  168. }
  169. } while (!metadata_last);
  170. if (streaminfo_updated)
  171. allocate_buffers(s);
  172. return 1;
  173. }
  174. return 0;
  175. }
  176. static int decode_residuals(FLACContext *s, int channel, int pred_order)
  177. {
  178. int i, tmp, partition, method_type, rice_order;
  179. int sample = 0, samples;
  180. method_type = get_bits(&s->gb, 2);
  181. if (method_type != 0){
  182. av_log(s->avctx, AV_LOG_DEBUG, "illegal residual coding method %d\n", method_type);
  183. return -1;
  184. }
  185. rice_order = get_bits(&s->gb, 4);
  186. samples= s->blocksize >> rice_order;
  187. sample=
  188. i= pred_order;
  189. for (partition = 0; partition < (1 << rice_order); partition++)
  190. {
  191. tmp = get_bits(&s->gb, 4);
  192. if (tmp == 15)
  193. {
  194. av_log(s->avctx, AV_LOG_DEBUG, "fixed len partition\n");
  195. tmp = get_bits(&s->gb, 5);
  196. for (; i < samples; i++, sample++)
  197. s->decoded[channel][sample] = get_sbits(&s->gb, tmp);
  198. }
  199. else
  200. {
  201. // av_log(s->avctx, AV_LOG_DEBUG, "rice coded partition k=%d\n", tmp);
  202. for (; i < samples; i++, sample++){
  203. s->decoded[channel][sample] = get_sr_golomb_flac(&s->gb, tmp, INT_MAX, 0);
  204. }
  205. }
  206. i= 0;
  207. }
  208. // av_log(s->avctx, AV_LOG_DEBUG, "partitions: %d, samples: %d\n", 1 << rice_order, sample);
  209. return 0;
  210. }
  211. static int decode_subframe_fixed(FLACContext *s, int channel, int pred_order)
  212. {
  213. int i;
  214. // av_log(s->avctx, AV_LOG_DEBUG, " SUBFRAME FIXED\n");
  215. /* warm up samples */
  216. // av_log(s->avctx, AV_LOG_DEBUG, " warm up samples: %d\n", pred_order);
  217. for (i = 0; i < pred_order; i++)
  218. {
  219. s->decoded[channel][i] = get_sbits(&s->gb, s->curr_bps);
  220. // av_log(s->avctx, AV_LOG_DEBUG, " %d: %d\n", i, s->decoded[channel][i]);
  221. }
  222. if (decode_residuals(s, channel, pred_order) < 0)
  223. return -1;
  224. switch(pred_order)
  225. {
  226. case 0:
  227. break;
  228. case 1:
  229. for (i = pred_order; i < s->blocksize; i++)
  230. s->decoded[channel][i] += s->decoded[channel][i-1];
  231. break;
  232. case 2:
  233. for (i = pred_order; i < s->blocksize; i++)
  234. s->decoded[channel][i] += 2*s->decoded[channel][i-1]
  235. - s->decoded[channel][i-2];
  236. break;
  237. case 3:
  238. for (i = pred_order; i < s->blocksize; i++)
  239. s->decoded[channel][i] += 3*s->decoded[channel][i-1]
  240. - 3*s->decoded[channel][i-2]
  241. + s->decoded[channel][i-3];
  242. break;
  243. case 4:
  244. for (i = pred_order; i < s->blocksize; i++)
  245. s->decoded[channel][i] += 4*s->decoded[channel][i-1]
  246. - 6*s->decoded[channel][i-2]
  247. + 4*s->decoded[channel][i-3]
  248. - s->decoded[channel][i-4];
  249. break;
  250. default:
  251. av_log(s->avctx, AV_LOG_ERROR, "illegal pred order %d\n", pred_order);
  252. return -1;
  253. }
  254. return 0;
  255. }
  256. static int decode_subframe_lpc(FLACContext *s, int channel, int pred_order)
  257. {
  258. int i, j;
  259. int coeff_prec, qlevel;
  260. int coeffs[pred_order];
  261. // av_log(s->avctx, AV_LOG_DEBUG, " SUBFRAME LPC\n");
  262. /* warm up samples */
  263. // av_log(s->avctx, AV_LOG_DEBUG, " warm up samples: %d\n", pred_order);
  264. for (i = 0; i < pred_order; i++)
  265. {
  266. s->decoded[channel][i] = get_sbits(&s->gb, s->curr_bps);
  267. // av_log(s->avctx, AV_LOG_DEBUG, " %d: %d\n", i, s->decoded[channel][i]);
  268. }
  269. coeff_prec = get_bits(&s->gb, 4) + 1;
  270. if (coeff_prec == 16)
  271. {
  272. av_log(s->avctx, AV_LOG_DEBUG, "invalid coeff precision\n");
  273. return -1;
  274. }
  275. // av_log(s->avctx, AV_LOG_DEBUG, " qlp coeff prec: %d\n", coeff_prec);
  276. qlevel = get_sbits(&s->gb, 5);
  277. // av_log(s->avctx, AV_LOG_DEBUG, " quant level: %d\n", qlevel);
  278. if(qlevel < 0){
  279. av_log(s->avctx, AV_LOG_DEBUG, "qlevel %d not supported, maybe buggy stream\n", qlevel);
  280. return -1;
  281. }
  282. for (i = 0; i < pred_order; i++)
  283. {
  284. coeffs[i] = get_sbits(&s->gb, coeff_prec);
  285. // av_log(s->avctx, AV_LOG_DEBUG, " %d: %d\n", i, coeffs[i]);
  286. }
  287. if (decode_residuals(s, channel, pred_order) < 0)
  288. return -1;
  289. if (s->bps > 16) {
  290. int64_t sum;
  291. for (i = pred_order; i < s->blocksize; i++)
  292. {
  293. sum = 0;
  294. for (j = 0; j < pred_order; j++)
  295. sum += (int64_t)coeffs[j] * s->decoded[channel][i-j-1];
  296. s->decoded[channel][i] += sum >> qlevel;
  297. }
  298. } else {
  299. int sum;
  300. for (i = pred_order; i < s->blocksize; i++)
  301. {
  302. sum = 0;
  303. for (j = 0; j < pred_order; j++)
  304. sum += coeffs[j] * s->decoded[channel][i-j-1];
  305. s->decoded[channel][i] += sum >> qlevel;
  306. }
  307. }
  308. return 0;
  309. }
  310. static inline int decode_subframe(FLACContext *s, int channel)
  311. {
  312. int type, wasted = 0;
  313. int i, tmp;
  314. s->curr_bps = s->bps;
  315. if(channel == 0){
  316. if(s->decorrelation == RIGHT_SIDE)
  317. s->curr_bps++;
  318. }else{
  319. if(s->decorrelation == LEFT_SIDE || s->decorrelation == MID_SIDE)
  320. s->curr_bps++;
  321. }
  322. if (get_bits1(&s->gb))
  323. {
  324. av_log(s->avctx, AV_LOG_ERROR, "invalid subframe padding\n");
  325. return -1;
  326. }
  327. type = get_bits(&s->gb, 6);
  328. // wasted = get_bits1(&s->gb);
  329. // if (wasted)
  330. // {
  331. // while (!get_bits1(&s->gb))
  332. // wasted++;
  333. // if (wasted)
  334. // wasted++;
  335. // s->curr_bps -= wasted;
  336. // }
  337. #if 0
  338. wasted= 16 - av_log2(show_bits(&s->gb, 17));
  339. skip_bits(&s->gb, wasted+1);
  340. s->curr_bps -= wasted;
  341. #else
  342. if (get_bits1(&s->gb))
  343. {
  344. wasted = 1;
  345. while (!get_bits1(&s->gb))
  346. wasted++;
  347. s->curr_bps -= wasted;
  348. av_log(s->avctx, AV_LOG_DEBUG, "%d wasted bits\n", wasted);
  349. }
  350. #endif
  351. //FIXME use av_log2 for types
  352. if (type == 0)
  353. {
  354. av_log(s->avctx, AV_LOG_DEBUG, "coding type: constant\n");
  355. tmp = get_sbits(&s->gb, s->curr_bps);
  356. for (i = 0; i < s->blocksize; i++)
  357. s->decoded[channel][i] = tmp;
  358. }
  359. else if (type == 1)
  360. {
  361. av_log(s->avctx, AV_LOG_DEBUG, "coding type: verbatim\n");
  362. for (i = 0; i < s->blocksize; i++)
  363. s->decoded[channel][i] = get_sbits(&s->gb, s->curr_bps);
  364. }
  365. else if ((type >= 8) && (type <= 12))
  366. {
  367. // av_log(s->avctx, AV_LOG_DEBUG, "coding type: fixed\n");
  368. if (decode_subframe_fixed(s, channel, type & ~0x8) < 0)
  369. return -1;
  370. }
  371. else if (type >= 32)
  372. {
  373. // av_log(s->avctx, AV_LOG_DEBUG, "coding type: lpc\n");
  374. if (decode_subframe_lpc(s, channel, (type & ~0x20)+1) < 0)
  375. return -1;
  376. }
  377. else
  378. {
  379. av_log(s->avctx, AV_LOG_ERROR, "invalid coding type\n");
  380. return -1;
  381. }
  382. if (wasted)
  383. {
  384. int i;
  385. for (i = 0; i < s->blocksize; i++)
  386. s->decoded[channel][i] <<= wasted;
  387. }
  388. return 0;
  389. }
  390. static int decode_frame(FLACContext *s)
  391. {
  392. int blocksize_code, sample_rate_code, sample_size_code, assignment, i, crc8;
  393. int decorrelation, bps, blocksize, samplerate;
  394. blocksize_code = get_bits(&s->gb, 4);
  395. sample_rate_code = get_bits(&s->gb, 4);
  396. assignment = get_bits(&s->gb, 4); /* channel assignment */
  397. if (assignment < 8 && s->channels == assignment+1)
  398. decorrelation = INDEPENDENT;
  399. else if (assignment >=8 && assignment < 11 && s->channels == 2)
  400. decorrelation = LEFT_SIDE + assignment - 8;
  401. else
  402. {
  403. av_log(s->avctx, AV_LOG_ERROR, "unsupported channel assignment %d (channels=%d)\n", assignment, s->channels);
  404. return -1;
  405. }
  406. sample_size_code = get_bits(&s->gb, 3);
  407. if(sample_size_code == 0)
  408. bps= s->bps;
  409. else if((sample_size_code != 3) && (sample_size_code != 7))
  410. bps = sample_size_table[sample_size_code];
  411. else
  412. {
  413. av_log(s->avctx, AV_LOG_ERROR, "invalid sample size code (%d)\n", sample_size_code);
  414. return -1;
  415. }
  416. if (get_bits1(&s->gb))
  417. {
  418. av_log(s->avctx, AV_LOG_ERROR, "broken stream, invalid padding\n");
  419. return -1;
  420. }
  421. if(get_utf8(&s->gb) < 0){
  422. av_log(s->avctx, AV_LOG_ERROR, "utf8 fscked\n");
  423. return -1;
  424. }
  425. #if 0
  426. if (/*((blocksize_code == 6) || (blocksize_code == 7)) &&*/
  427. (s->min_blocksize != s->max_blocksize)){
  428. }else{
  429. }
  430. #endif
  431. if (blocksize_code == 0)
  432. blocksize = s->min_blocksize;
  433. else if (blocksize_code == 6)
  434. blocksize = get_bits(&s->gb, 8)+1;
  435. else if (blocksize_code == 7)
  436. blocksize = get_bits(&s->gb, 16)+1;
  437. else
  438. blocksize = blocksize_table[blocksize_code];
  439. if(blocksize > s->max_blocksize){
  440. av_log(s->avctx, AV_LOG_ERROR, "blocksize %d > %d\n", blocksize, s->max_blocksize);
  441. return -1;
  442. }
  443. if (sample_rate_code == 0){
  444. samplerate= s->samplerate;
  445. }else if ((sample_rate_code > 3) && (sample_rate_code < 12))
  446. samplerate = sample_rate_table[sample_rate_code];
  447. else if (sample_rate_code == 12)
  448. samplerate = get_bits(&s->gb, 8) * 1000;
  449. else if (sample_rate_code == 13)
  450. samplerate = get_bits(&s->gb, 16);
  451. else if (sample_rate_code == 14)
  452. samplerate = get_bits(&s->gb, 16) * 10;
  453. else{
  454. av_log(s->avctx, AV_LOG_ERROR, "illegal sample rate code %d\n", sample_rate_code);
  455. return -1;
  456. }
  457. skip_bits(&s->gb, 8);
  458. crc8= av_crc(av_crc07, 0, s->gb.buffer, get_bits_count(&s->gb)/8);
  459. if(crc8){
  460. av_log(s->avctx, AV_LOG_ERROR, "header crc mismatch crc=%2X\n", crc8);
  461. return -1;
  462. }
  463. s->blocksize = blocksize;
  464. s->samplerate = samplerate;
  465. s->bps = bps;
  466. s->decorrelation= decorrelation;
  467. // dump_headers(s);
  468. /* subframes */
  469. for (i = 0; i < s->channels; i++)
  470. {
  471. // av_log(s->avctx, AV_LOG_DEBUG, "decoded: %x residual: %x\n", s->decoded[i], s->residual[i]);
  472. if (decode_subframe(s, i) < 0)
  473. return -1;
  474. }
  475. align_get_bits(&s->gb);
  476. /* frame footer */
  477. skip_bits(&s->gb, 16); /* data crc */
  478. return 0;
  479. }
  480. static inline int16_t shift_to_16_bits(int32_t data, int bps)
  481. {
  482. if (bps == 24) {
  483. return (data >> 8);
  484. } else if (bps == 20) {
  485. return (data >> 4);
  486. } else {
  487. return data;
  488. }
  489. }
  490. static int flac_decode_frame(AVCodecContext *avctx,
  491. void *data, int *data_size,
  492. uint8_t *buf, int buf_size)
  493. {
  494. FLACContext *s = avctx->priv_data;
  495. int tmp = 0, i, j = 0, input_buf_size = 0;
  496. int16_t *samples = data;
  497. if(s->max_framesize == 0){
  498. s->max_framesize= 65536; // should hopefully be enough for the first header
  499. s->bitstream= av_fast_realloc(s->bitstream, &s->allocated_bitstream_size, s->max_framesize);
  500. }
  501. if(1 && s->max_framesize){//FIXME truncated
  502. buf_size= FFMAX(FFMIN(buf_size, s->max_framesize - s->bitstream_size), 0);
  503. input_buf_size= buf_size;
  504. if(s->bitstream_index + s->bitstream_size + buf_size > s->allocated_bitstream_size){
  505. // printf("memmove\n");
  506. memmove(s->bitstream, &s->bitstream[s->bitstream_index], s->bitstream_size);
  507. s->bitstream_index=0;
  508. }
  509. memcpy(&s->bitstream[s->bitstream_index + s->bitstream_size], buf, buf_size);
  510. buf= &s->bitstream[s->bitstream_index];
  511. buf_size += s->bitstream_size;
  512. s->bitstream_size= buf_size;
  513. if(buf_size < s->max_framesize){
  514. // printf("wanna more data ...\n");
  515. return input_buf_size;
  516. }
  517. }
  518. init_get_bits(&s->gb, buf, buf_size*8);
  519. if (!metadata_parse(s))
  520. {
  521. tmp = show_bits(&s->gb, 16);
  522. if(tmp != 0xFFF8){
  523. av_log(s->avctx, AV_LOG_ERROR, "FRAME HEADER not here\n");
  524. while(get_bits_count(&s->gb)/8+2 < buf_size && show_bits(&s->gb, 16) != 0xFFF8)
  525. skip_bits(&s->gb, 8);
  526. goto end; // we may not have enough bits left to decode a frame, so try next time
  527. }
  528. skip_bits(&s->gb, 16);
  529. if (decode_frame(s) < 0){
  530. av_log(s->avctx, AV_LOG_ERROR, "decode_frame() failed\n");
  531. s->bitstream_size=0;
  532. s->bitstream_index=0;
  533. return -1;
  534. }
  535. }
  536. #if 0
  537. /* fix the channel order here */
  538. if (s->order == MID_SIDE)
  539. {
  540. short *left = samples;
  541. short *right = samples + s->blocksize;
  542. for (i = 0; i < s->blocksize; i += 2)
  543. {
  544. uint32_t x = s->decoded[0][i];
  545. uint32_t y = s->decoded[0][i+1];
  546. right[i] = x - (y / 2);
  547. left[i] = right[i] + y;
  548. }
  549. *data_size = 2 * s->blocksize;
  550. }
  551. else
  552. {
  553. for (i = 0; i < s->channels; i++)
  554. {
  555. switch(s->order)
  556. {
  557. case INDEPENDENT:
  558. for (j = 0; j < s->blocksize; j++)
  559. samples[(s->blocksize*i)+j] = s->decoded[i][j];
  560. break;
  561. case LEFT_SIDE:
  562. case RIGHT_SIDE:
  563. if (i == 0)
  564. for (j = 0; j < s->blocksize; j++)
  565. samples[(s->blocksize*i)+j] = s->decoded[0][j];
  566. else
  567. for (j = 0; j < s->blocksize; j++)
  568. samples[(s->blocksize*i)+j] = s->decoded[0][j] - s->decoded[i][j];
  569. break;
  570. // case MID_SIDE:
  571. // av_log(s->avctx, AV_LOG_DEBUG, "mid-side unsupported\n");
  572. }
  573. *data_size += s->blocksize;
  574. }
  575. }
  576. #else
  577. #define DECORRELATE(left, right)\
  578. assert(s->channels == 2);\
  579. for (i = 0; i < s->blocksize; i++)\
  580. {\
  581. int a= s->decoded[0][i];\
  582. int b= s->decoded[1][i];\
  583. *(samples++) = (left ) >> (16 - s->bps);\
  584. *(samples++) = (right) >> (16 - s->bps);\
  585. }\
  586. break;
  587. switch(s->decorrelation)
  588. {
  589. case INDEPENDENT:
  590. for (j = 0; j < s->blocksize; j++)
  591. {
  592. for (i = 0; i < s->channels; i++)
  593. *(samples++) = shift_to_16_bits(s->decoded[i][j], s->bps);
  594. }
  595. break;
  596. case LEFT_SIDE:
  597. DECORRELATE(a,a-b)
  598. case RIGHT_SIDE:
  599. DECORRELATE(a+b,b)
  600. case MID_SIDE:
  601. DECORRELATE( (a-=b>>1) + b, a)
  602. }
  603. #endif
  604. *data_size = (int8_t *)samples - (int8_t *)data;
  605. // av_log(s->avctx, AV_LOG_DEBUG, "data size: %d\n", *data_size);
  606. // s->last_blocksize = s->blocksize;
  607. end:
  608. i= (get_bits_count(&s->gb)+7)/8;;
  609. if(i > buf_size){
  610. av_log(s->avctx, AV_LOG_ERROR, "overread: %d\n", i - buf_size);
  611. s->bitstream_size=0;
  612. s->bitstream_index=0;
  613. return -1;
  614. }
  615. if(s->bitstream_size){
  616. s->bitstream_index += i;
  617. s->bitstream_size -= i;
  618. return input_buf_size;
  619. }else
  620. return i;
  621. }
  622. static int flac_decode_close(AVCodecContext *avctx)
  623. {
  624. FLACContext *s = avctx->priv_data;
  625. int i;
  626. for (i = 0; i < s->channels; i++)
  627. {
  628. av_freep(&s->decoded[i]);
  629. }
  630. av_freep(&s->bitstream);
  631. return 0;
  632. }
  633. static void flac_flush(AVCodecContext *avctx){
  634. FLACContext *s = avctx->priv_data;
  635. s->bitstream_size=
  636. s->bitstream_index= 0;
  637. }
  638. AVCodec flac_decoder = {
  639. "flac",
  640. CODEC_TYPE_AUDIO,
  641. CODEC_ID_FLAC,
  642. sizeof(FLACContext),
  643. flac_decode_init,
  644. NULL,
  645. flac_decode_close,
  646. flac_decode_frame,
  647. .flush= flac_flush,
  648. };