You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

643 lines
24KB

  1. /*
  2. * Copyright (c) 2002 Dieter Shirley
  3. *
  4. * This library is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU Lesser General Public
  6. * License as published by the Free Software Foundation; either
  7. * version 2 of the License, or (at your option) any later version.
  8. *
  9. * This library is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  12. * Lesser General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU Lesser General Public
  15. * License along with this library; if not, write to the Free Software
  16. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  17. */
  18. #include <stdlib.h>
  19. #include <stdio.h>
  20. #include "../dsputil.h"
  21. #include "../mpegvideo.h"
  22. #include "dsputil_altivec.h"
  23. // Swaps two variables (used for altivec registers)
  24. #define SWAP(a,b) \
  25. do { \
  26. __typeof__(a) swap_temp=a; \
  27. a=b; \
  28. b=swap_temp; \
  29. } while (0)
  30. // transposes a matrix consisting of four vectors with four elements each
  31. #define TRANSPOSE4(a,b,c,d) \
  32. do { \
  33. __typeof__(a) _trans_ach = vec_mergeh(a, c); \
  34. __typeof__(a) _trans_acl = vec_mergel(a, c); \
  35. __typeof__(a) _trans_bdh = vec_mergeh(b, d); \
  36. __typeof__(a) _trans_bdl = vec_mergel(b, d); \
  37. \
  38. a = vec_mergeh(_trans_ach, _trans_bdh); \
  39. b = vec_mergel(_trans_ach, _trans_bdh); \
  40. c = vec_mergeh(_trans_acl, _trans_bdl); \
  41. d = vec_mergel(_trans_acl, _trans_bdl); \
  42. } while (0)
  43. #define TRANSPOSE8(a,b,c,d,e,f,g,h) \
  44. do { \
  45. __typeof__(a) _A1, _B1, _C1, _D1, _E1, _F1, _G1, _H1; \
  46. __typeof__(a) _A2, _B2, _C2, _D2, _E2, _F2, _G2, _H2; \
  47. \
  48. _A1 = vec_mergeh (a, e); \
  49. _B1 = vec_mergel (a, e); \
  50. _C1 = vec_mergeh (b, f); \
  51. _D1 = vec_mergel (b, f); \
  52. _E1 = vec_mergeh (c, g); \
  53. _F1 = vec_mergel (c, g); \
  54. _G1 = vec_mergeh (d, h); \
  55. _H1 = vec_mergel (d, h); \
  56. \
  57. _A2 = vec_mergeh (_A1, _E1); \
  58. _B2 = vec_mergel (_A1, _E1); \
  59. _C2 = vec_mergeh (_B1, _F1); \
  60. _D2 = vec_mergel (_B1, _F1); \
  61. _E2 = vec_mergeh (_C1, _G1); \
  62. _F2 = vec_mergel (_C1, _G1); \
  63. _G2 = vec_mergeh (_D1, _H1); \
  64. _H2 = vec_mergel (_D1, _H1); \
  65. \
  66. a = vec_mergeh (_A2, _E2); \
  67. b = vec_mergel (_A2, _E2); \
  68. c = vec_mergeh (_B2, _F2); \
  69. d = vec_mergel (_B2, _F2); \
  70. e = vec_mergeh (_C2, _G2); \
  71. f = vec_mergel (_C2, _G2); \
  72. g = vec_mergeh (_D2, _H2); \
  73. h = vec_mergel (_D2, _H2); \
  74. } while (0)
  75. // Loads a four-byte value (int or float) from the target address
  76. // into every element in the target vector. Only works if the
  77. // target address is four-byte aligned (which should be always).
  78. #define LOAD4(vec, address) \
  79. { \
  80. __typeof__(vec)* _load_addr = (__typeof__(vec)*)(address); \
  81. vector unsigned char _perm_vec = vec_lvsl(0,(address)); \
  82. vec = vec_ld(0, _load_addr); \
  83. vec = vec_perm(vec, vec, _perm_vec); \
  84. vec = vec_splat(vec, 0); \
  85. }
  86. #ifdef CONFIG_DARWIN
  87. #define FOUROF(a) (a)
  88. #else
  89. // slower, for dumb non-apple GCC
  90. #define FOUROF(a) {a,a,a,a}
  91. #endif
  92. int dct_quantize_altivec(MpegEncContext* s,
  93. DCTELEM* data, int n,
  94. int qscale, int* overflow)
  95. {
  96. int lastNonZero;
  97. vector float row0, row1, row2, row3, row4, row5, row6, row7;
  98. vector float alt0, alt1, alt2, alt3, alt4, alt5, alt6, alt7;
  99. const vector float zero = (const vector float)FOUROF(0.);
  100. // Load the data into the row/alt vectors
  101. {
  102. vector signed short data0, data1, data2, data3, data4, data5, data6, data7;
  103. data0 = vec_ld(0, data);
  104. data1 = vec_ld(16, data);
  105. data2 = vec_ld(32, data);
  106. data3 = vec_ld(48, data);
  107. data4 = vec_ld(64, data);
  108. data5 = vec_ld(80, data);
  109. data6 = vec_ld(96, data);
  110. data7 = vec_ld(112, data);
  111. // Transpose the data before we start
  112. TRANSPOSE8(data0, data1, data2, data3, data4, data5, data6, data7);
  113. // load the data into floating point vectors. We load
  114. // the high half of each row into the main row vectors
  115. // and the low half into the alt vectors.
  116. row0 = vec_ctf(vec_unpackh(data0), 0);
  117. alt0 = vec_ctf(vec_unpackl(data0), 0);
  118. row1 = vec_ctf(vec_unpackh(data1), 0);
  119. alt1 = vec_ctf(vec_unpackl(data1), 0);
  120. row2 = vec_ctf(vec_unpackh(data2), 0);
  121. alt2 = vec_ctf(vec_unpackl(data2), 0);
  122. row3 = vec_ctf(vec_unpackh(data3), 0);
  123. alt3 = vec_ctf(vec_unpackl(data3), 0);
  124. row4 = vec_ctf(vec_unpackh(data4), 0);
  125. alt4 = vec_ctf(vec_unpackl(data4), 0);
  126. row5 = vec_ctf(vec_unpackh(data5), 0);
  127. alt5 = vec_ctf(vec_unpackl(data5), 0);
  128. row6 = vec_ctf(vec_unpackh(data6), 0);
  129. alt6 = vec_ctf(vec_unpackl(data6), 0);
  130. row7 = vec_ctf(vec_unpackh(data7), 0);
  131. alt7 = vec_ctf(vec_unpackl(data7), 0);
  132. }
  133. // The following block could exist as a separate an altivec dct
  134. // function. However, if we put it inline, the DCT data can remain
  135. // in the vector local variables, as floats, which we'll use during the
  136. // quantize step...
  137. {
  138. const vector float vec_0_298631336 = (vector float)FOUROF(0.298631336f);
  139. const vector float vec_0_390180644 = (vector float)FOUROF(-0.390180644f);
  140. const vector float vec_0_541196100 = (vector float)FOUROF(0.541196100f);
  141. const vector float vec_0_765366865 = (vector float)FOUROF(0.765366865f);
  142. const vector float vec_0_899976223 = (vector float)FOUROF(-0.899976223f);
  143. const vector float vec_1_175875602 = (vector float)FOUROF(1.175875602f);
  144. const vector float vec_1_501321110 = (vector float)FOUROF(1.501321110f);
  145. const vector float vec_1_847759065 = (vector float)FOUROF(-1.847759065f);
  146. const vector float vec_1_961570560 = (vector float)FOUROF(-1.961570560f);
  147. const vector float vec_2_053119869 = (vector float)FOUROF(2.053119869f);
  148. const vector float vec_2_562915447 = (vector float)FOUROF(-2.562915447f);
  149. const vector float vec_3_072711026 = (vector float)FOUROF(3.072711026f);
  150. int whichPass, whichHalf;
  151. for(whichPass = 1; whichPass<=2; whichPass++)
  152. {
  153. for(whichHalf = 1; whichHalf<=2; whichHalf++)
  154. {
  155. vector float tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
  156. vector float tmp10, tmp11, tmp12, tmp13;
  157. vector float z1, z2, z3, z4, z5;
  158. tmp0 = vec_add(row0, row7); // tmp0 = dataptr[0] + dataptr[7];
  159. tmp7 = vec_sub(row0, row7); // tmp7 = dataptr[0] - dataptr[7];
  160. tmp3 = vec_add(row3, row4); // tmp3 = dataptr[3] + dataptr[4];
  161. tmp4 = vec_sub(row3, row4); // tmp4 = dataptr[3] - dataptr[4];
  162. tmp1 = vec_add(row1, row6); // tmp1 = dataptr[1] + dataptr[6];
  163. tmp6 = vec_sub(row1, row6); // tmp6 = dataptr[1] - dataptr[6];
  164. tmp2 = vec_add(row2, row5); // tmp2 = dataptr[2] + dataptr[5];
  165. tmp5 = vec_sub(row2, row5); // tmp5 = dataptr[2] - dataptr[5];
  166. tmp10 = vec_add(tmp0, tmp3); // tmp10 = tmp0 + tmp3;
  167. tmp13 = vec_sub(tmp0, tmp3); // tmp13 = tmp0 - tmp3;
  168. tmp11 = vec_add(tmp1, tmp2); // tmp11 = tmp1 + tmp2;
  169. tmp12 = vec_sub(tmp1, tmp2); // tmp12 = tmp1 - tmp2;
  170. // dataptr[0] = (DCTELEM) ((tmp10 + tmp11) << PASS1_BITS);
  171. row0 = vec_add(tmp10, tmp11);
  172. // dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS);
  173. row4 = vec_sub(tmp10, tmp11);
  174. // z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
  175. z1 = vec_madd(vec_add(tmp12, tmp13), vec_0_541196100, (vector float)zero);
  176. // dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
  177. // CONST_BITS-PASS1_BITS);
  178. row2 = vec_madd(tmp13, vec_0_765366865, z1);
  179. // dataptr[6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
  180. // CONST_BITS-PASS1_BITS);
  181. row6 = vec_madd(tmp12, vec_1_847759065, z1);
  182. z1 = vec_add(tmp4, tmp7); // z1 = tmp4 + tmp7;
  183. z2 = vec_add(tmp5, tmp6); // z2 = tmp5 + tmp6;
  184. z3 = vec_add(tmp4, tmp6); // z3 = tmp4 + tmp6;
  185. z4 = vec_add(tmp5, tmp7); // z4 = tmp5 + tmp7;
  186. // z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
  187. z5 = vec_madd(vec_add(z3, z4), vec_1_175875602, (vector float)zero);
  188. // z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
  189. z3 = vec_madd(z3, vec_1_961570560, z5);
  190. // z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
  191. z4 = vec_madd(z4, vec_0_390180644, z5);
  192. // The following adds are rolled into the multiplies above
  193. // z3 = vec_add(z3, z5); // z3 += z5;
  194. // z4 = vec_add(z4, z5); // z4 += z5;
  195. // z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
  196. // Wow! It's actually more effecient to roll this multiply
  197. // into the adds below, even thought the multiply gets done twice!
  198. // z2 = vec_madd(z2, vec_2_562915447, (vector float)zero);
  199. // z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
  200. // Same with this one...
  201. // z1 = vec_madd(z1, vec_0_899976223, (vector float)zero);
  202. // tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
  203. // dataptr[7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, CONST_BITS-PASS1_BITS);
  204. row7 = vec_madd(tmp4, vec_0_298631336, vec_madd(z1, vec_0_899976223, z3));
  205. // tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
  206. // dataptr[5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS);
  207. row5 = vec_madd(tmp5, vec_2_053119869, vec_madd(z2, vec_2_562915447, z4));
  208. // tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
  209. // dataptr[3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS);
  210. row3 = vec_madd(tmp6, vec_3_072711026, vec_madd(z2, vec_2_562915447, z3));
  211. // tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
  212. // dataptr[1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, CONST_BITS-PASS1_BITS);
  213. row1 = vec_madd(z1, vec_0_899976223, vec_madd(tmp7, vec_1_501321110, z4));
  214. // Swap the row values with the alts. If this is the first half,
  215. // this sets up the low values to be acted on in the second half.
  216. // If this is the second half, it puts the high values back in
  217. // the row values where they are expected to be when we're done.
  218. SWAP(row0, alt0);
  219. SWAP(row1, alt1);
  220. SWAP(row2, alt2);
  221. SWAP(row3, alt3);
  222. SWAP(row4, alt4);
  223. SWAP(row5, alt5);
  224. SWAP(row6, alt6);
  225. SWAP(row7, alt7);
  226. }
  227. if (whichPass == 1)
  228. {
  229. // transpose the data for the second pass
  230. // First, block transpose the upper right with lower left.
  231. SWAP(row4, alt0);
  232. SWAP(row5, alt1);
  233. SWAP(row6, alt2);
  234. SWAP(row7, alt3);
  235. // Now, transpose each block of four
  236. TRANSPOSE4(row0, row1, row2, row3);
  237. TRANSPOSE4(row4, row5, row6, row7);
  238. TRANSPOSE4(alt0, alt1, alt2, alt3);
  239. TRANSPOSE4(alt4, alt5, alt6, alt7);
  240. }
  241. }
  242. }
  243. // used after quantise step
  244. int oldBaseValue = 0;
  245. // perform the quantise step, using the floating point data
  246. // still in the row/alt registers
  247. {
  248. const int* biasAddr;
  249. const vector signed int* qmat;
  250. vector float bias, negBias;
  251. if (s->mb_intra)
  252. {
  253. vector signed int baseVector;
  254. // We must cache element 0 in the intra case
  255. // (it needs special handling).
  256. baseVector = vec_cts(vec_splat(row0, 0), 0);
  257. vec_ste(baseVector, 0, &oldBaseValue);
  258. qmat = (vector signed int*)s->q_intra_matrix[qscale];
  259. biasAddr = &(s->intra_quant_bias);
  260. }
  261. else
  262. {
  263. qmat = (vector signed int*)s->q_inter_matrix[qscale];
  264. biasAddr = &(s->inter_quant_bias);
  265. }
  266. // Load the bias vector (We add 0.5 to the bias so that we're
  267. // rounding when we convert to int, instead of flooring.)
  268. {
  269. vector signed int biasInt;
  270. const vector float negOneFloat = (vector float)FOUROF(-1.0f);
  271. LOAD4(biasInt, biasAddr);
  272. bias = vec_ctf(biasInt, QUANT_BIAS_SHIFT);
  273. negBias = vec_madd(bias, negOneFloat, zero);
  274. }
  275. {
  276. vector float q0, q1, q2, q3, q4, q5, q6, q7;
  277. q0 = vec_ctf(qmat[0], QMAT_SHIFT);
  278. q1 = vec_ctf(qmat[2], QMAT_SHIFT);
  279. q2 = vec_ctf(qmat[4], QMAT_SHIFT);
  280. q3 = vec_ctf(qmat[6], QMAT_SHIFT);
  281. q4 = vec_ctf(qmat[8], QMAT_SHIFT);
  282. q5 = vec_ctf(qmat[10], QMAT_SHIFT);
  283. q6 = vec_ctf(qmat[12], QMAT_SHIFT);
  284. q7 = vec_ctf(qmat[14], QMAT_SHIFT);
  285. row0 = vec_sel(vec_madd(row0, q0, negBias), vec_madd(row0, q0, bias),
  286. vec_cmpgt(row0, zero));
  287. row1 = vec_sel(vec_madd(row1, q1, negBias), vec_madd(row1, q1, bias),
  288. vec_cmpgt(row1, zero));
  289. row2 = vec_sel(vec_madd(row2, q2, negBias), vec_madd(row2, q2, bias),
  290. vec_cmpgt(row2, zero));
  291. row3 = vec_sel(vec_madd(row3, q3, negBias), vec_madd(row3, q3, bias),
  292. vec_cmpgt(row3, zero));
  293. row4 = vec_sel(vec_madd(row4, q4, negBias), vec_madd(row4, q4, bias),
  294. vec_cmpgt(row4, zero));
  295. row5 = vec_sel(vec_madd(row5, q5, negBias), vec_madd(row5, q5, bias),
  296. vec_cmpgt(row5, zero));
  297. row6 = vec_sel(vec_madd(row6, q6, negBias), vec_madd(row6, q6, bias),
  298. vec_cmpgt(row6, zero));
  299. row7 = vec_sel(vec_madd(row7, q7, negBias), vec_madd(row7, q7, bias),
  300. vec_cmpgt(row7, zero));
  301. q0 = vec_ctf(qmat[1], QMAT_SHIFT);
  302. q1 = vec_ctf(qmat[3], QMAT_SHIFT);
  303. q2 = vec_ctf(qmat[5], QMAT_SHIFT);
  304. q3 = vec_ctf(qmat[7], QMAT_SHIFT);
  305. q4 = vec_ctf(qmat[9], QMAT_SHIFT);
  306. q5 = vec_ctf(qmat[11], QMAT_SHIFT);
  307. q6 = vec_ctf(qmat[13], QMAT_SHIFT);
  308. q7 = vec_ctf(qmat[15], QMAT_SHIFT);
  309. alt0 = vec_sel(vec_madd(alt0, q0, negBias), vec_madd(alt0, q0, bias),
  310. vec_cmpgt(alt0, zero));
  311. alt1 = vec_sel(vec_madd(alt1, q1, negBias), vec_madd(alt1, q1, bias),
  312. vec_cmpgt(alt1, zero));
  313. alt2 = vec_sel(vec_madd(alt2, q2, negBias), vec_madd(alt2, q2, bias),
  314. vec_cmpgt(alt2, zero));
  315. alt3 = vec_sel(vec_madd(alt3, q3, negBias), vec_madd(alt3, q3, bias),
  316. vec_cmpgt(alt3, zero));
  317. alt4 = vec_sel(vec_madd(alt4, q4, negBias), vec_madd(alt4, q4, bias),
  318. vec_cmpgt(alt4, zero));
  319. alt5 = vec_sel(vec_madd(alt5, q5, negBias), vec_madd(alt5, q5, bias),
  320. vec_cmpgt(alt5, zero));
  321. alt6 = vec_sel(vec_madd(alt6, q6, negBias), vec_madd(alt6, q6, bias),
  322. vec_cmpgt(alt6, zero));
  323. alt7 = vec_sel(vec_madd(alt7, q7, negBias), vec_madd(alt7, q7, bias),
  324. vec_cmpgt(alt7, zero));
  325. }
  326. }
  327. // Store the data back into the original block
  328. {
  329. vector signed short data0, data1, data2, data3, data4, data5, data6, data7;
  330. data0 = vec_pack(vec_cts(row0, 0), vec_cts(alt0, 0));
  331. data1 = vec_pack(vec_cts(row1, 0), vec_cts(alt1, 0));
  332. data2 = vec_pack(vec_cts(row2, 0), vec_cts(alt2, 0));
  333. data3 = vec_pack(vec_cts(row3, 0), vec_cts(alt3, 0));
  334. data4 = vec_pack(vec_cts(row4, 0), vec_cts(alt4, 0));
  335. data5 = vec_pack(vec_cts(row5, 0), vec_cts(alt5, 0));
  336. data6 = vec_pack(vec_cts(row6, 0), vec_cts(alt6, 0));
  337. data7 = vec_pack(vec_cts(row7, 0), vec_cts(alt7, 0));
  338. {
  339. // Clamp for overflow
  340. vector signed int max_q_int, min_q_int;
  341. vector signed short max_q, min_q;
  342. LOAD4(max_q_int, &(s->max_qcoeff));
  343. LOAD4(min_q_int, &(s->min_qcoeff));
  344. max_q = vec_pack(max_q_int, max_q_int);
  345. min_q = vec_pack(min_q_int, min_q_int);
  346. data0 = vec_max(vec_min(data0, max_q), min_q);
  347. data1 = vec_max(vec_min(data1, max_q), min_q);
  348. data2 = vec_max(vec_min(data2, max_q), min_q);
  349. data4 = vec_max(vec_min(data4, max_q), min_q);
  350. data5 = vec_max(vec_min(data5, max_q), min_q);
  351. data6 = vec_max(vec_min(data6, max_q), min_q);
  352. data7 = vec_max(vec_min(data7, max_q), min_q);
  353. }
  354. vector bool char zero_01, zero_23, zero_45, zero_67;
  355. vector signed char scanIndices_01, scanIndices_23, scanIndices_45, scanIndices_67;
  356. vector signed char negOne = vec_splat_s8(-1);
  357. vector signed char* scanPtr =
  358. (vector signed char*)(s->intra_scantable.inverse);
  359. // Determine the largest non-zero index.
  360. zero_01 = vec_pack(vec_cmpeq(data0, (vector short)zero),
  361. vec_cmpeq(data1, (vector short)zero));
  362. zero_23 = vec_pack(vec_cmpeq(data2, (vector short)zero),
  363. vec_cmpeq(data3, (vector short)zero));
  364. zero_45 = vec_pack(vec_cmpeq(data4, (vector short)zero),
  365. vec_cmpeq(data5, (vector short)zero));
  366. zero_67 = vec_pack(vec_cmpeq(data6, (vector short)zero),
  367. vec_cmpeq(data7, (vector short)zero));
  368. // 64 biggest values
  369. scanIndices_01 = vec_sel(scanPtr[0], negOne, zero_01);
  370. scanIndices_23 = vec_sel(scanPtr[1], negOne, zero_23);
  371. scanIndices_45 = vec_sel(scanPtr[2], negOne, zero_45);
  372. scanIndices_67 = vec_sel(scanPtr[3], negOne, zero_67);
  373. // 32 largest values
  374. scanIndices_01 = vec_max(scanIndices_01, scanIndices_23);
  375. scanIndices_45 = vec_max(scanIndices_45, scanIndices_67);
  376. // 16 largest values
  377. scanIndices_01 = vec_max(scanIndices_01, scanIndices_45);
  378. // 8 largest values
  379. scanIndices_01 = vec_max(vec_mergeh(scanIndices_01, negOne),
  380. vec_mergel(scanIndices_01, negOne));
  381. // 4 largest values
  382. scanIndices_01 = vec_max(vec_mergeh(scanIndices_01, negOne),
  383. vec_mergel(scanIndices_01, negOne));
  384. // 2 largest values
  385. scanIndices_01 = vec_max(vec_mergeh(scanIndices_01, negOne),
  386. vec_mergel(scanIndices_01, negOne));
  387. // largest value
  388. scanIndices_01 = vec_max(vec_mergeh(scanIndices_01, negOne),
  389. vec_mergel(scanIndices_01, negOne));
  390. scanIndices_01 = vec_splat(scanIndices_01, 0);
  391. signed char lastNonZeroChar;
  392. vec_ste(scanIndices_01, 0, &lastNonZeroChar);
  393. lastNonZero = lastNonZeroChar;
  394. // While the data is still in vectors we check for the transpose IDCT permute
  395. // and handle it using the vector unit if we can. This is the permute used
  396. // by the altivec idct, so it is common when using the altivec dct.
  397. if ((lastNonZero > 0) && (s->dsp.idct_permutation_type == FF_TRANSPOSE_IDCT_PERM))
  398. {
  399. TRANSPOSE8(data0, data1, data2, data3, data4, data5, data6, data7);
  400. }
  401. vec_st(data0, 0, data);
  402. vec_st(data1, 16, data);
  403. vec_st(data2, 32, data);
  404. vec_st(data3, 48, data);
  405. vec_st(data4, 64, data);
  406. vec_st(data5, 80, data);
  407. vec_st(data6, 96, data);
  408. vec_st(data7, 112, data);
  409. }
  410. // special handling of block[0]
  411. if (s->mb_intra)
  412. {
  413. if (!s->h263_aic)
  414. {
  415. if (n < 4)
  416. oldBaseValue /= s->y_dc_scale;
  417. else
  418. oldBaseValue /= s->c_dc_scale;
  419. }
  420. // Divide by 8, rounding the result
  421. data[0] = (oldBaseValue + 4) >> 3;
  422. }
  423. // We handled the tranpose permutation above and we don't
  424. // need to permute the "no" permutation case.
  425. if ((lastNonZero > 0) &&
  426. (s->dsp.idct_permutation_type != FF_TRANSPOSE_IDCT_PERM) &&
  427. (s->dsp.idct_permutation_type != FF_NO_IDCT_PERM))
  428. {
  429. ff_block_permute(data, s->dsp.idct_permutation,
  430. s->intra_scantable.scantable, lastNonZero);
  431. }
  432. return lastNonZero;
  433. }
  434. #undef FOUROF
  435. /*
  436. AltiVec version of dct_unquantize_h263
  437. this code assumes `block' is 16 bytes-aligned
  438. */
  439. void dct_unquantize_h263_altivec(MpegEncContext *s,
  440. DCTELEM *block, int n, int qscale)
  441. {
  442. POWERPC_TBL_DECLARE(altivec_dct_unquantize_h263_num, 1);
  443. int i, level, qmul, qadd;
  444. int nCoeffs;
  445. assert(s->block_last_index[n]>=0);
  446. POWERPC_TBL_START_COUNT(altivec_dct_unquantize_h263_num, 1);
  447. qadd = (qscale - 1) | 1;
  448. qmul = qscale << 1;
  449. if (s->mb_intra) {
  450. if (!s->h263_aic) {
  451. if (n < 4)
  452. block[0] = block[0] * s->y_dc_scale;
  453. else
  454. block[0] = block[0] * s->c_dc_scale;
  455. }else
  456. qadd = 0;
  457. i = 1;
  458. nCoeffs= 63; //does not allways use zigzag table
  459. } else {
  460. i = 0;
  461. nCoeffs= s->intra_scantable.raster_end[ s->block_last_index[n] ];
  462. }
  463. #ifdef ALTIVEC_USE_REFERENCE_C_CODE
  464. for(;i<=nCoeffs;i++) {
  465. level = block[i];
  466. if (level) {
  467. if (level < 0) {
  468. level = level * qmul - qadd;
  469. } else {
  470. level = level * qmul + qadd;
  471. }
  472. block[i] = level;
  473. }
  474. }
  475. #else /* ALTIVEC_USE_REFERENCE_C_CODE */
  476. {
  477. register const vector short vczero = (const vector short)vec_splat_s16(0);
  478. short __attribute__ ((aligned(16))) qmul8[] =
  479. {
  480. qmul, qmul, qmul, qmul,
  481. qmul, qmul, qmul, qmul
  482. };
  483. short __attribute__ ((aligned(16))) qadd8[] =
  484. {
  485. qadd, qadd, qadd, qadd,
  486. qadd, qadd, qadd, qadd
  487. };
  488. short __attribute__ ((aligned(16))) nqadd8[] =
  489. {
  490. -qadd, -qadd, -qadd, -qadd,
  491. -qadd, -qadd, -qadd, -qadd
  492. };
  493. register vector short blockv, qmulv, qaddv, nqaddv, temp1;
  494. register vector bool short blockv_null, blockv_neg;
  495. register short backup_0 = block[0];
  496. register int j = 0;
  497. qmulv = vec_ld(0, qmul8);
  498. qaddv = vec_ld(0, qadd8);
  499. nqaddv = vec_ld(0, nqadd8);
  500. #if 0 // block *is* 16 bytes-aligned, it seems.
  501. // first make sure block[j] is 16 bytes-aligned
  502. for(j = 0; (j <= nCoeffs) && ((((unsigned long)block) + (j << 1)) & 0x0000000F) ; j++) {
  503. level = block[j];
  504. if (level) {
  505. if (level < 0) {
  506. level = level * qmul - qadd;
  507. } else {
  508. level = level * qmul + qadd;
  509. }
  510. block[j] = level;
  511. }
  512. }
  513. #endif
  514. // vectorize all the 16 bytes-aligned blocks
  515. // of 8 elements
  516. for(; (j + 7) <= nCoeffs ; j+=8)
  517. {
  518. blockv = vec_ld(j << 1, block);
  519. blockv_neg = vec_cmplt(blockv, vczero);
  520. blockv_null = vec_cmpeq(blockv, vczero);
  521. // choose between +qadd or -qadd as the third operand
  522. temp1 = vec_sel(qaddv, nqaddv, blockv_neg);
  523. // multiply & add (block{i,i+7} * qmul [+-] qadd)
  524. temp1 = vec_mladd(blockv, qmulv, temp1);
  525. // put 0 where block[{i,i+7} used to have 0
  526. blockv = vec_sel(temp1, blockv, blockv_null);
  527. vec_st(blockv, j << 1, block);
  528. }
  529. // if nCoeffs isn't a multiple of 8, finish the job
  530. // using good old scalar units.
  531. // (we could do it using a truncated vector,
  532. // but I'm not sure it's worth the hassle)
  533. for(; j <= nCoeffs ; j++) {
  534. level = block[j];
  535. if (level) {
  536. if (level < 0) {
  537. level = level * qmul - qadd;
  538. } else {
  539. level = level * qmul + qadd;
  540. }
  541. block[j] = level;
  542. }
  543. }
  544. if (i == 1)
  545. { // cheat. this avoid special-casing the first iteration
  546. block[0] = backup_0;
  547. }
  548. }
  549. #endif /* ALTIVEC_USE_REFERENCE_C_CODE */
  550. POWERPC_TBL_STOP_COUNT(altivec_dct_unquantize_h263_num, nCoeffs == 63);
  551. }