You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1177 lines
33KB

  1. /*
  2. * jrevdct.c
  3. *
  4. * Copyright (C) 1991, 1992, Thomas G. Lane.
  5. * This file is part of the Independent JPEG Group's software.
  6. * For conditions of distribution and use, see the accompanying README file.
  7. *
  8. * This file contains the basic inverse-DCT transformation subroutine.
  9. *
  10. * This implementation is based on an algorithm described in
  11. * C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
  12. * Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
  13. * Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
  14. * The primary algorithm described there uses 11 multiplies and 29 adds.
  15. * We use their alternate method with 12 multiplies and 32 adds.
  16. * The advantage of this method is that no data path contains more than one
  17. * multiplication; this allows a very simple and accurate implementation in
  18. * scaled fixed-point arithmetic, with a minimal number of shifts.
  19. *
  20. * I've made lots of modifications to attempt to take advantage of the
  21. * sparse nature of the DCT matrices we're getting. Although the logic
  22. * is cumbersome, it's straightforward and the resulting code is much
  23. * faster.
  24. *
  25. * A better way to do this would be to pass in the DCT block as a sparse
  26. * matrix, perhaps with the difference cases encoded.
  27. */
  28. /**
  29. * @file jrevdct.c
  30. * Independent JPEG Group's LLM idct.
  31. */
  32. #include "common.h"
  33. #include "dsputil.h"
  34. #define EIGHT_BIT_SAMPLES
  35. #define DCTSIZE 8
  36. #define DCTSIZE2 64
  37. #define GLOBAL
  38. #define RIGHT_SHIFT(x, n) ((x) >> (n))
  39. typedef DCTELEM DCTBLOCK[DCTSIZE2];
  40. #define CONST_BITS 13
  41. /*
  42. * This routine is specialized to the case DCTSIZE = 8.
  43. */
  44. #if DCTSIZE != 8
  45. Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
  46. #endif
  47. /*
  48. * A 2-D IDCT can be done by 1-D IDCT on each row followed by 1-D IDCT
  49. * on each column. Direct algorithms are also available, but they are
  50. * much more complex and seem not to be any faster when reduced to code.
  51. *
  52. * The poop on this scaling stuff is as follows:
  53. *
  54. * Each 1-D IDCT step produces outputs which are a factor of sqrt(N)
  55. * larger than the true IDCT outputs. The final outputs are therefore
  56. * a factor of N larger than desired; since N=8 this can be cured by
  57. * a simple right shift at the end of the algorithm. The advantage of
  58. * this arrangement is that we save two multiplications per 1-D IDCT,
  59. * because the y0 and y4 inputs need not be divided by sqrt(N).
  60. *
  61. * We have to do addition and subtraction of the integer inputs, which
  62. * is no problem, and multiplication by fractional constants, which is
  63. * a problem to do in integer arithmetic. We multiply all the constants
  64. * by CONST_SCALE and convert them to integer constants (thus retaining
  65. * CONST_BITS bits of precision in the constants). After doing a
  66. * multiplication we have to divide the product by CONST_SCALE, with proper
  67. * rounding, to produce the correct output. This division can be done
  68. * cheaply as a right shift of CONST_BITS bits. We postpone shifting
  69. * as long as possible so that partial sums can be added together with
  70. * full fractional precision.
  71. *
  72. * The outputs of the first pass are scaled up by PASS1_BITS bits so that
  73. * they are represented to better-than-integral precision. These outputs
  74. * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
  75. * with the recommended scaling. (To scale up 12-bit sample data further, an
  76. * intermediate int32 array would be needed.)
  77. *
  78. * To avoid overflow of the 32-bit intermediate results in pass 2, we must
  79. * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis
  80. * shows that the values given below are the most effective.
  81. */
  82. #ifdef EIGHT_BIT_SAMPLES
  83. #define PASS1_BITS 2
  84. #else
  85. #define PASS1_BITS 1 /* lose a little precision to avoid overflow */
  86. #endif
  87. #define ONE ((int32_t) 1)
  88. #define CONST_SCALE (ONE << CONST_BITS)
  89. /* Convert a positive real constant to an integer scaled by CONST_SCALE.
  90. * IMPORTANT: if your compiler doesn't do this arithmetic at compile time,
  91. * you will pay a significant penalty in run time. In that case, figure
  92. * the correct integer constant values and insert them by hand.
  93. */
  94. /* Actually FIX is no longer used, we precomputed them all */
  95. #define FIX(x) ((int32_t) ((x) * CONST_SCALE + 0.5))
  96. /* Descale and correctly round an int32_t value that's scaled by N bits.
  97. * We assume RIGHT_SHIFT rounds towards minus infinity, so adding
  98. * the fudge factor is correct for either sign of X.
  99. */
  100. #define DESCALE(x,n) RIGHT_SHIFT((x) + (ONE << ((n)-1)), n)
  101. /* Multiply an int32_t variable by an int32_t constant to yield an int32_t result.
  102. * For 8-bit samples with the recommended scaling, all the variable
  103. * and constant values involved are no more than 16 bits wide, so a
  104. * 16x16->32 bit multiply can be used instead of a full 32x32 multiply;
  105. * this provides a useful speedup on many machines.
  106. * There is no way to specify a 16x16->32 multiply in portable C, but
  107. * some C compilers will do the right thing if you provide the correct
  108. * combination of casts.
  109. * NB: for 12-bit samples, a full 32-bit multiplication will be needed.
  110. */
  111. #ifdef EIGHT_BIT_SAMPLES
  112. #ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */
  113. #define MULTIPLY(var,const) (((int16_t) (var)) * ((int16_t) (const)))
  114. #endif
  115. #ifdef SHORTxLCONST_32 /* known to work with Microsoft C 6.0 */
  116. #define MULTIPLY(var,const) (((int16_t) (var)) * ((int32_t) (const)))
  117. #endif
  118. #endif
  119. #ifndef MULTIPLY /* default definition */
  120. #define MULTIPLY(var,const) ((var) * (const))
  121. #endif
  122. /*
  123. Unlike our decoder where we approximate the FIXes, we need to use exact
  124. ones here or successive P-frames will drift too much with Reference frame coding
  125. */
  126. #define FIX_0_211164243 1730
  127. #define FIX_0_275899380 2260
  128. #define FIX_0_298631336 2446
  129. #define FIX_0_390180644 3196
  130. #define FIX_0_509795579 4176
  131. #define FIX_0_541196100 4433
  132. #define FIX_0_601344887 4926
  133. #define FIX_0_765366865 6270
  134. #define FIX_0_785694958 6436
  135. #define FIX_0_899976223 7373
  136. #define FIX_1_061594337 8697
  137. #define FIX_1_111140466 9102
  138. #define FIX_1_175875602 9633
  139. #define FIX_1_306562965 10703
  140. #define FIX_1_387039845 11363
  141. #define FIX_1_451774981 11893
  142. #define FIX_1_501321110 12299
  143. #define FIX_1_662939225 13623
  144. #define FIX_1_847759065 15137
  145. #define FIX_1_961570560 16069
  146. #define FIX_2_053119869 16819
  147. #define FIX_2_172734803 17799
  148. #define FIX_2_562915447 20995
  149. #define FIX_3_072711026 25172
  150. /*
  151. * Perform the inverse DCT on one block of coefficients.
  152. */
  153. void j_rev_dct(DCTBLOCK data)
  154. {
  155. int32_t tmp0, tmp1, tmp2, tmp3;
  156. int32_t tmp10, tmp11, tmp12, tmp13;
  157. int32_t z1, z2, z3, z4, z5;
  158. int32_t d0, d1, d2, d3, d4, d5, d6, d7;
  159. register DCTELEM *dataptr;
  160. int rowctr;
  161. /* Pass 1: process rows. */
  162. /* Note results are scaled up by sqrt(8) compared to a true IDCT; */
  163. /* furthermore, we scale the results by 2**PASS1_BITS. */
  164. dataptr = data;
  165. for (rowctr = DCTSIZE-1; rowctr >= 0; rowctr--) {
  166. /* Due to quantization, we will usually find that many of the input
  167. * coefficients are zero, especially the AC terms. We can exploit this
  168. * by short-circuiting the IDCT calculation for any row in which all
  169. * the AC terms are zero. In that case each output is equal to the
  170. * DC coefficient (with scale factor as needed).
  171. * With typical images and quantization tables, half or more of the
  172. * row DCT calculations can be simplified this way.
  173. */
  174. register int *idataptr = (int*)dataptr;
  175. /* WARNING: we do the same permutation as MMX idct to simplify the
  176. video core */
  177. d0 = dataptr[0];
  178. d2 = dataptr[1];
  179. d4 = dataptr[2];
  180. d6 = dataptr[3];
  181. d1 = dataptr[4];
  182. d3 = dataptr[5];
  183. d5 = dataptr[6];
  184. d7 = dataptr[7];
  185. if ((d1 | d2 | d3 | d4 | d5 | d6 | d7) == 0) {
  186. /* AC terms all zero */
  187. if (d0) {
  188. /* Compute a 32 bit value to assign. */
  189. DCTELEM dcval = (DCTELEM) (d0 << PASS1_BITS);
  190. register int v = (dcval & 0xffff) | ((dcval << 16) & 0xffff0000);
  191. idataptr[0] = v;
  192. idataptr[1] = v;
  193. idataptr[2] = v;
  194. idataptr[3] = v;
  195. }
  196. dataptr += DCTSIZE; /* advance pointer to next row */
  197. continue;
  198. }
  199. /* Even part: reverse the even part of the forward DCT. */
  200. /* The rotator is sqrt(2)*c(-6). */
  201. {
  202. if (d6) {
  203. if (d4) {
  204. if (d2) {
  205. if (d0) {
  206. /* d0 != 0, d2 != 0, d4 != 0, d6 != 0 */
  207. z1 = MULTIPLY(d2 + d6, FIX_0_541196100);
  208. tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065);
  209. tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865);
  210. tmp0 = (d0 + d4) << CONST_BITS;
  211. tmp1 = (d0 - d4) << CONST_BITS;
  212. tmp10 = tmp0 + tmp3;
  213. tmp13 = tmp0 - tmp3;
  214. tmp11 = tmp1 + tmp2;
  215. tmp12 = tmp1 - tmp2;
  216. } else {
  217. /* d0 == 0, d2 != 0, d4 != 0, d6 != 0 */
  218. z1 = MULTIPLY(d2 + d6, FIX_0_541196100);
  219. tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065);
  220. tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865);
  221. tmp0 = d4 << CONST_BITS;
  222. tmp10 = tmp0 + tmp3;
  223. tmp13 = tmp0 - tmp3;
  224. tmp11 = tmp2 - tmp0;
  225. tmp12 = -(tmp0 + tmp2);
  226. }
  227. } else {
  228. if (d0) {
  229. /* d0 != 0, d2 == 0, d4 != 0, d6 != 0 */
  230. tmp2 = MULTIPLY(-d6, FIX_1_306562965);
  231. tmp3 = MULTIPLY(d6, FIX_0_541196100);
  232. tmp0 = (d0 + d4) << CONST_BITS;
  233. tmp1 = (d0 - d4) << CONST_BITS;
  234. tmp10 = tmp0 + tmp3;
  235. tmp13 = tmp0 - tmp3;
  236. tmp11 = tmp1 + tmp2;
  237. tmp12 = tmp1 - tmp2;
  238. } else {
  239. /* d0 == 0, d2 == 0, d4 != 0, d6 != 0 */
  240. tmp2 = MULTIPLY(-d6, FIX_1_306562965);
  241. tmp3 = MULTIPLY(d6, FIX_0_541196100);
  242. tmp0 = d4 << CONST_BITS;
  243. tmp10 = tmp0 + tmp3;
  244. tmp13 = tmp0 - tmp3;
  245. tmp11 = tmp2 - tmp0;
  246. tmp12 = -(tmp0 + tmp2);
  247. }
  248. }
  249. } else {
  250. if (d2) {
  251. if (d0) {
  252. /* d0 != 0, d2 != 0, d4 == 0, d6 != 0 */
  253. z1 = MULTIPLY(d2 + d6, FIX_0_541196100);
  254. tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065);
  255. tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865);
  256. tmp0 = d0 << CONST_BITS;
  257. tmp10 = tmp0 + tmp3;
  258. tmp13 = tmp0 - tmp3;
  259. tmp11 = tmp0 + tmp2;
  260. tmp12 = tmp0 - tmp2;
  261. } else {
  262. /* d0 == 0, d2 != 0, d4 == 0, d6 != 0 */
  263. z1 = MULTIPLY(d2 + d6, FIX_0_541196100);
  264. tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065);
  265. tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865);
  266. tmp10 = tmp3;
  267. tmp13 = -tmp3;
  268. tmp11 = tmp2;
  269. tmp12 = -tmp2;
  270. }
  271. } else {
  272. if (d0) {
  273. /* d0 != 0, d2 == 0, d4 == 0, d6 != 0 */
  274. tmp2 = MULTIPLY(-d6, FIX_1_306562965);
  275. tmp3 = MULTIPLY(d6, FIX_0_541196100);
  276. tmp0 = d0 << CONST_BITS;
  277. tmp10 = tmp0 + tmp3;
  278. tmp13 = tmp0 - tmp3;
  279. tmp11 = tmp0 + tmp2;
  280. tmp12 = tmp0 - tmp2;
  281. } else {
  282. /* d0 == 0, d2 == 0, d4 == 0, d6 != 0 */
  283. tmp2 = MULTIPLY(-d6, FIX_1_306562965);
  284. tmp3 = MULTIPLY(d6, FIX_0_541196100);
  285. tmp10 = tmp3;
  286. tmp13 = -tmp3;
  287. tmp11 = tmp2;
  288. tmp12 = -tmp2;
  289. }
  290. }
  291. }
  292. } else {
  293. if (d4) {
  294. if (d2) {
  295. if (d0) {
  296. /* d0 != 0, d2 != 0, d4 != 0, d6 == 0 */
  297. tmp2 = MULTIPLY(d2, FIX_0_541196100);
  298. tmp3 = MULTIPLY(d2, FIX_1_306562965);
  299. tmp0 = (d0 + d4) << CONST_BITS;
  300. tmp1 = (d0 - d4) << CONST_BITS;
  301. tmp10 = tmp0 + tmp3;
  302. tmp13 = tmp0 - tmp3;
  303. tmp11 = tmp1 + tmp2;
  304. tmp12 = tmp1 - tmp2;
  305. } else {
  306. /* d0 == 0, d2 != 0, d4 != 0, d6 == 0 */
  307. tmp2 = MULTIPLY(d2, FIX_0_541196100);
  308. tmp3 = MULTIPLY(d2, FIX_1_306562965);
  309. tmp0 = d4 << CONST_BITS;
  310. tmp10 = tmp0 + tmp3;
  311. tmp13 = tmp0 - tmp3;
  312. tmp11 = tmp2 - tmp0;
  313. tmp12 = -(tmp0 + tmp2);
  314. }
  315. } else {
  316. if (d0) {
  317. /* d0 != 0, d2 == 0, d4 != 0, d6 == 0 */
  318. tmp10 = tmp13 = (d0 + d4) << CONST_BITS;
  319. tmp11 = tmp12 = (d0 - d4) << CONST_BITS;
  320. } else {
  321. /* d0 == 0, d2 == 0, d4 != 0, d6 == 0 */
  322. tmp10 = tmp13 = d4 << CONST_BITS;
  323. tmp11 = tmp12 = -tmp10;
  324. }
  325. }
  326. } else {
  327. if (d2) {
  328. if (d0) {
  329. /* d0 != 0, d2 != 0, d4 == 0, d6 == 0 */
  330. tmp2 = MULTIPLY(d2, FIX_0_541196100);
  331. tmp3 = MULTIPLY(d2, FIX_1_306562965);
  332. tmp0 = d0 << CONST_BITS;
  333. tmp10 = tmp0 + tmp3;
  334. tmp13 = tmp0 - tmp3;
  335. tmp11 = tmp0 + tmp2;
  336. tmp12 = tmp0 - tmp2;
  337. } else {
  338. /* d0 == 0, d2 != 0, d4 == 0, d6 == 0 */
  339. tmp2 = MULTIPLY(d2, FIX_0_541196100);
  340. tmp3 = MULTIPLY(d2, FIX_1_306562965);
  341. tmp10 = tmp3;
  342. tmp13 = -tmp3;
  343. tmp11 = tmp2;
  344. tmp12 = -tmp2;
  345. }
  346. } else {
  347. if (d0) {
  348. /* d0 != 0, d2 == 0, d4 == 0, d6 == 0 */
  349. tmp10 = tmp13 = tmp11 = tmp12 = d0 << CONST_BITS;
  350. } else {
  351. /* d0 == 0, d2 == 0, d4 == 0, d6 == 0 */
  352. tmp10 = tmp13 = tmp11 = tmp12 = 0;
  353. }
  354. }
  355. }
  356. }
  357. /* Odd part per figure 8; the matrix is unitary and hence its
  358. * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively.
  359. */
  360. if (d7) {
  361. if (d5) {
  362. if (d3) {
  363. if (d1) {
  364. /* d1 != 0, d3 != 0, d5 != 0, d7 != 0 */
  365. z1 = d7 + d1;
  366. z2 = d5 + d3;
  367. z3 = d7 + d3;
  368. z4 = d5 + d1;
  369. z5 = MULTIPLY(z3 + z4, FIX_1_175875602);
  370. tmp0 = MULTIPLY(d7, FIX_0_298631336);
  371. tmp1 = MULTIPLY(d5, FIX_2_053119869);
  372. tmp2 = MULTIPLY(d3, FIX_3_072711026);
  373. tmp3 = MULTIPLY(d1, FIX_1_501321110);
  374. z1 = MULTIPLY(-z1, FIX_0_899976223);
  375. z2 = MULTIPLY(-z2, FIX_2_562915447);
  376. z3 = MULTIPLY(-z3, FIX_1_961570560);
  377. z4 = MULTIPLY(-z4, FIX_0_390180644);
  378. z3 += z5;
  379. z4 += z5;
  380. tmp0 += z1 + z3;
  381. tmp1 += z2 + z4;
  382. tmp2 += z2 + z3;
  383. tmp3 += z1 + z4;
  384. } else {
  385. /* d1 == 0, d3 != 0, d5 != 0, d7 != 0 */
  386. z2 = d5 + d3;
  387. z3 = d7 + d3;
  388. z5 = MULTIPLY(z3 + d5, FIX_1_175875602);
  389. tmp0 = MULTIPLY(d7, FIX_0_298631336);
  390. tmp1 = MULTIPLY(d5, FIX_2_053119869);
  391. tmp2 = MULTIPLY(d3, FIX_3_072711026);
  392. z1 = MULTIPLY(-d7, FIX_0_899976223);
  393. z2 = MULTIPLY(-z2, FIX_2_562915447);
  394. z3 = MULTIPLY(-z3, FIX_1_961570560);
  395. z4 = MULTIPLY(-d5, FIX_0_390180644);
  396. z3 += z5;
  397. z4 += z5;
  398. tmp0 += z1 + z3;
  399. tmp1 += z2 + z4;
  400. tmp2 += z2 + z3;
  401. tmp3 = z1 + z4;
  402. }
  403. } else {
  404. if (d1) {
  405. /* d1 != 0, d3 == 0, d5 != 0, d7 != 0 */
  406. z1 = d7 + d1;
  407. z4 = d5 + d1;
  408. z5 = MULTIPLY(d7 + z4, FIX_1_175875602);
  409. tmp0 = MULTIPLY(d7, FIX_0_298631336);
  410. tmp1 = MULTIPLY(d5, FIX_2_053119869);
  411. tmp3 = MULTIPLY(d1, FIX_1_501321110);
  412. z1 = MULTIPLY(-z1, FIX_0_899976223);
  413. z2 = MULTIPLY(-d5, FIX_2_562915447);
  414. z3 = MULTIPLY(-d7, FIX_1_961570560);
  415. z4 = MULTIPLY(-z4, FIX_0_390180644);
  416. z3 += z5;
  417. z4 += z5;
  418. tmp0 += z1 + z3;
  419. tmp1 += z2 + z4;
  420. tmp2 = z2 + z3;
  421. tmp3 += z1 + z4;
  422. } else {
  423. /* d1 == 0, d3 == 0, d5 != 0, d7 != 0 */
  424. tmp0 = MULTIPLY(-d7, FIX_0_601344887);
  425. z1 = MULTIPLY(-d7, FIX_0_899976223);
  426. z3 = MULTIPLY(-d7, FIX_1_961570560);
  427. tmp1 = MULTIPLY(-d5, FIX_0_509795579);
  428. z2 = MULTIPLY(-d5, FIX_2_562915447);
  429. z4 = MULTIPLY(-d5, FIX_0_390180644);
  430. z5 = MULTIPLY(d5 + d7, FIX_1_175875602);
  431. z3 += z5;
  432. z4 += z5;
  433. tmp0 += z3;
  434. tmp1 += z4;
  435. tmp2 = z2 + z3;
  436. tmp3 = z1 + z4;
  437. }
  438. }
  439. } else {
  440. if (d3) {
  441. if (d1) {
  442. /* d1 != 0, d3 != 0, d5 == 0, d7 != 0 */
  443. z1 = d7 + d1;
  444. z3 = d7 + d3;
  445. z5 = MULTIPLY(z3 + d1, FIX_1_175875602);
  446. tmp0 = MULTIPLY(d7, FIX_0_298631336);
  447. tmp2 = MULTIPLY(d3, FIX_3_072711026);
  448. tmp3 = MULTIPLY(d1, FIX_1_501321110);
  449. z1 = MULTIPLY(-z1, FIX_0_899976223);
  450. z2 = MULTIPLY(-d3, FIX_2_562915447);
  451. z3 = MULTIPLY(-z3, FIX_1_961570560);
  452. z4 = MULTIPLY(-d1, FIX_0_390180644);
  453. z3 += z5;
  454. z4 += z5;
  455. tmp0 += z1 + z3;
  456. tmp1 = z2 + z4;
  457. tmp2 += z2 + z3;
  458. tmp3 += z1 + z4;
  459. } else {
  460. /* d1 == 0, d3 != 0, d5 == 0, d7 != 0 */
  461. z3 = d7 + d3;
  462. tmp0 = MULTIPLY(-d7, FIX_0_601344887);
  463. z1 = MULTIPLY(-d7, FIX_0_899976223);
  464. tmp2 = MULTIPLY(d3, FIX_0_509795579);
  465. z2 = MULTIPLY(-d3, FIX_2_562915447);
  466. z5 = MULTIPLY(z3, FIX_1_175875602);
  467. z3 = MULTIPLY(-z3, FIX_0_785694958);
  468. tmp0 += z3;
  469. tmp1 = z2 + z5;
  470. tmp2 += z3;
  471. tmp3 = z1 + z5;
  472. }
  473. } else {
  474. if (d1) {
  475. /* d1 != 0, d3 == 0, d5 == 0, d7 != 0 */
  476. z1 = d7 + d1;
  477. z5 = MULTIPLY(z1, FIX_1_175875602);
  478. z1 = MULTIPLY(z1, FIX_0_275899380);
  479. z3 = MULTIPLY(-d7, FIX_1_961570560);
  480. tmp0 = MULTIPLY(-d7, FIX_1_662939225);
  481. z4 = MULTIPLY(-d1, FIX_0_390180644);
  482. tmp3 = MULTIPLY(d1, FIX_1_111140466);
  483. tmp0 += z1;
  484. tmp1 = z4 + z5;
  485. tmp2 = z3 + z5;
  486. tmp3 += z1;
  487. } else {
  488. /* d1 == 0, d3 == 0, d5 == 0, d7 != 0 */
  489. tmp0 = MULTIPLY(-d7, FIX_1_387039845);
  490. tmp1 = MULTIPLY(d7, FIX_1_175875602);
  491. tmp2 = MULTIPLY(-d7, FIX_0_785694958);
  492. tmp3 = MULTIPLY(d7, FIX_0_275899380);
  493. }
  494. }
  495. }
  496. } else {
  497. if (d5) {
  498. if (d3) {
  499. if (d1) {
  500. /* d1 != 0, d3 != 0, d5 != 0, d7 == 0 */
  501. z2 = d5 + d3;
  502. z4 = d5 + d1;
  503. z5 = MULTIPLY(d3 + z4, FIX_1_175875602);
  504. tmp1 = MULTIPLY(d5, FIX_2_053119869);
  505. tmp2 = MULTIPLY(d3, FIX_3_072711026);
  506. tmp3 = MULTIPLY(d1, FIX_1_501321110);
  507. z1 = MULTIPLY(-d1, FIX_0_899976223);
  508. z2 = MULTIPLY(-z2, FIX_2_562915447);
  509. z3 = MULTIPLY(-d3, FIX_1_961570560);
  510. z4 = MULTIPLY(-z4, FIX_0_390180644);
  511. z3 += z5;
  512. z4 += z5;
  513. tmp0 = z1 + z3;
  514. tmp1 += z2 + z4;
  515. tmp2 += z2 + z3;
  516. tmp3 += z1 + z4;
  517. } else {
  518. /* d1 == 0, d3 != 0, d5 != 0, d7 == 0 */
  519. z2 = d5 + d3;
  520. z5 = MULTIPLY(z2, FIX_1_175875602);
  521. tmp1 = MULTIPLY(d5, FIX_1_662939225);
  522. z4 = MULTIPLY(-d5, FIX_0_390180644);
  523. z2 = MULTIPLY(-z2, FIX_1_387039845);
  524. tmp2 = MULTIPLY(d3, FIX_1_111140466);
  525. z3 = MULTIPLY(-d3, FIX_1_961570560);
  526. tmp0 = z3 + z5;
  527. tmp1 += z2;
  528. tmp2 += z2;
  529. tmp3 = z4 + z5;
  530. }
  531. } else {
  532. if (d1) {
  533. /* d1 != 0, d3 == 0, d5 != 0, d7 == 0 */
  534. z4 = d5 + d1;
  535. z5 = MULTIPLY(z4, FIX_1_175875602);
  536. z1 = MULTIPLY(-d1, FIX_0_899976223);
  537. tmp3 = MULTIPLY(d1, FIX_0_601344887);
  538. tmp1 = MULTIPLY(-d5, FIX_0_509795579);
  539. z2 = MULTIPLY(-d5, FIX_2_562915447);
  540. z4 = MULTIPLY(z4, FIX_0_785694958);
  541. tmp0 = z1 + z5;
  542. tmp1 += z4;
  543. tmp2 = z2 + z5;
  544. tmp3 += z4;
  545. } else {
  546. /* d1 == 0, d3 == 0, d5 != 0, d7 == 0 */
  547. tmp0 = MULTIPLY(d5, FIX_1_175875602);
  548. tmp1 = MULTIPLY(d5, FIX_0_275899380);
  549. tmp2 = MULTIPLY(-d5, FIX_1_387039845);
  550. tmp3 = MULTIPLY(d5, FIX_0_785694958);
  551. }
  552. }
  553. } else {
  554. if (d3) {
  555. if (d1) {
  556. /* d1 != 0, d3 != 0, d5 == 0, d7 == 0 */
  557. z5 = d1 + d3;
  558. tmp3 = MULTIPLY(d1, FIX_0_211164243);
  559. tmp2 = MULTIPLY(-d3, FIX_1_451774981);
  560. z1 = MULTIPLY(d1, FIX_1_061594337);
  561. z2 = MULTIPLY(-d3, FIX_2_172734803);
  562. z4 = MULTIPLY(z5, FIX_0_785694958);
  563. z5 = MULTIPLY(z5, FIX_1_175875602);
  564. tmp0 = z1 - z4;
  565. tmp1 = z2 + z4;
  566. tmp2 += z5;
  567. tmp3 += z5;
  568. } else {
  569. /* d1 == 0, d3 != 0, d5 == 0, d7 == 0 */
  570. tmp0 = MULTIPLY(-d3, FIX_0_785694958);
  571. tmp1 = MULTIPLY(-d3, FIX_1_387039845);
  572. tmp2 = MULTIPLY(-d3, FIX_0_275899380);
  573. tmp3 = MULTIPLY(d3, FIX_1_175875602);
  574. }
  575. } else {
  576. if (d1) {
  577. /* d1 != 0, d3 == 0, d5 == 0, d7 == 0 */
  578. tmp0 = MULTIPLY(d1, FIX_0_275899380);
  579. tmp1 = MULTIPLY(d1, FIX_0_785694958);
  580. tmp2 = MULTIPLY(d1, FIX_1_175875602);
  581. tmp3 = MULTIPLY(d1, FIX_1_387039845);
  582. } else {
  583. /* d1 == 0, d3 == 0, d5 == 0, d7 == 0 */
  584. tmp0 = tmp1 = tmp2 = tmp3 = 0;
  585. }
  586. }
  587. }
  588. }
  589. }
  590. /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
  591. dataptr[0] = (DCTELEM) DESCALE(tmp10 + tmp3, CONST_BITS-PASS1_BITS);
  592. dataptr[7] = (DCTELEM) DESCALE(tmp10 - tmp3, CONST_BITS-PASS1_BITS);
  593. dataptr[1] = (DCTELEM) DESCALE(tmp11 + tmp2, CONST_BITS-PASS1_BITS);
  594. dataptr[6] = (DCTELEM) DESCALE(tmp11 - tmp2, CONST_BITS-PASS1_BITS);
  595. dataptr[2] = (DCTELEM) DESCALE(tmp12 + tmp1, CONST_BITS-PASS1_BITS);
  596. dataptr[5] = (DCTELEM) DESCALE(tmp12 - tmp1, CONST_BITS-PASS1_BITS);
  597. dataptr[3] = (DCTELEM) DESCALE(tmp13 + tmp0, CONST_BITS-PASS1_BITS);
  598. dataptr[4] = (DCTELEM) DESCALE(tmp13 - tmp0, CONST_BITS-PASS1_BITS);
  599. dataptr += DCTSIZE; /* advance pointer to next row */
  600. }
  601. /* Pass 2: process columns. */
  602. /* Note that we must descale the results by a factor of 8 == 2**3, */
  603. /* and also undo the PASS1_BITS scaling. */
  604. dataptr = data;
  605. for (rowctr = DCTSIZE-1; rowctr >= 0; rowctr--) {
  606. /* Columns of zeroes can be exploited in the same way as we did with rows.
  607. * However, the row calculation has created many nonzero AC terms, so the
  608. * simplification applies less often (typically 5% to 10% of the time).
  609. * On machines with very fast multiplication, it's possible that the
  610. * test takes more time than it's worth. In that case this section
  611. * may be commented out.
  612. */
  613. d0 = dataptr[DCTSIZE*0];
  614. d1 = dataptr[DCTSIZE*1];
  615. d2 = dataptr[DCTSIZE*2];
  616. d3 = dataptr[DCTSIZE*3];
  617. d4 = dataptr[DCTSIZE*4];
  618. d5 = dataptr[DCTSIZE*5];
  619. d6 = dataptr[DCTSIZE*6];
  620. d7 = dataptr[DCTSIZE*7];
  621. /* Even part: reverse the even part of the forward DCT. */
  622. /* The rotator is sqrt(2)*c(-6). */
  623. if (d6) {
  624. if (d4) {
  625. if (d2) {
  626. if (d0) {
  627. /* d0 != 0, d2 != 0, d4 != 0, d6 != 0 */
  628. z1 = MULTIPLY(d2 + d6, FIX_0_541196100);
  629. tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065);
  630. tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865);
  631. tmp0 = (d0 + d4) << CONST_BITS;
  632. tmp1 = (d0 - d4) << CONST_BITS;
  633. tmp10 = tmp0 + tmp3;
  634. tmp13 = tmp0 - tmp3;
  635. tmp11 = tmp1 + tmp2;
  636. tmp12 = tmp1 - tmp2;
  637. } else {
  638. /* d0 == 0, d2 != 0, d4 != 0, d6 != 0 */
  639. z1 = MULTIPLY(d2 + d6, FIX_0_541196100);
  640. tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065);
  641. tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865);
  642. tmp0 = d4 << CONST_BITS;
  643. tmp10 = tmp0 + tmp3;
  644. tmp13 = tmp0 - tmp3;
  645. tmp11 = tmp2 - tmp0;
  646. tmp12 = -(tmp0 + tmp2);
  647. }
  648. } else {
  649. if (d0) {
  650. /* d0 != 0, d2 == 0, d4 != 0, d6 != 0 */
  651. tmp2 = MULTIPLY(-d6, FIX_1_306562965);
  652. tmp3 = MULTIPLY(d6, FIX_0_541196100);
  653. tmp0 = (d0 + d4) << CONST_BITS;
  654. tmp1 = (d0 - d4) << CONST_BITS;
  655. tmp10 = tmp0 + tmp3;
  656. tmp13 = tmp0 - tmp3;
  657. tmp11 = tmp1 + tmp2;
  658. tmp12 = tmp1 - tmp2;
  659. } else {
  660. /* d0 == 0, d2 == 0, d4 != 0, d6 != 0 */
  661. tmp2 = MULTIPLY(-d6, FIX_1_306562965);
  662. tmp3 = MULTIPLY(d6, FIX_0_541196100);
  663. tmp0 = d4 << CONST_BITS;
  664. tmp10 = tmp0 + tmp3;
  665. tmp13 = tmp0 - tmp3;
  666. tmp11 = tmp2 - tmp0;
  667. tmp12 = -(tmp0 + tmp2);
  668. }
  669. }
  670. } else {
  671. if (d2) {
  672. if (d0) {
  673. /* d0 != 0, d2 != 0, d4 == 0, d6 != 0 */
  674. z1 = MULTIPLY(d2 + d6, FIX_0_541196100);
  675. tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065);
  676. tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865);
  677. tmp0 = d0 << CONST_BITS;
  678. tmp10 = tmp0 + tmp3;
  679. tmp13 = tmp0 - tmp3;
  680. tmp11 = tmp0 + tmp2;
  681. tmp12 = tmp0 - tmp2;
  682. } else {
  683. /* d0 == 0, d2 != 0, d4 == 0, d6 != 0 */
  684. z1 = MULTIPLY(d2 + d6, FIX_0_541196100);
  685. tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065);
  686. tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865);
  687. tmp10 = tmp3;
  688. tmp13 = -tmp3;
  689. tmp11 = tmp2;
  690. tmp12 = -tmp2;
  691. }
  692. } else {
  693. if (d0) {
  694. /* d0 != 0, d2 == 0, d4 == 0, d6 != 0 */
  695. tmp2 = MULTIPLY(-d6, FIX_1_306562965);
  696. tmp3 = MULTIPLY(d6, FIX_0_541196100);
  697. tmp0 = d0 << CONST_BITS;
  698. tmp10 = tmp0 + tmp3;
  699. tmp13 = tmp0 - tmp3;
  700. tmp11 = tmp0 + tmp2;
  701. tmp12 = tmp0 - tmp2;
  702. } else {
  703. /* d0 == 0, d2 == 0, d4 == 0, d6 != 0 */
  704. tmp2 = MULTIPLY(-d6, FIX_1_306562965);
  705. tmp3 = MULTIPLY(d6, FIX_0_541196100);
  706. tmp10 = tmp3;
  707. tmp13 = -tmp3;
  708. tmp11 = tmp2;
  709. tmp12 = -tmp2;
  710. }
  711. }
  712. }
  713. } else {
  714. if (d4) {
  715. if (d2) {
  716. if (d0) {
  717. /* d0 != 0, d2 != 0, d4 != 0, d6 == 0 */
  718. tmp2 = MULTIPLY(d2, FIX_0_541196100);
  719. tmp3 = MULTIPLY(d2, FIX_1_306562965);
  720. tmp0 = (d0 + d4) << CONST_BITS;
  721. tmp1 = (d0 - d4) << CONST_BITS;
  722. tmp10 = tmp0 + tmp3;
  723. tmp13 = tmp0 - tmp3;
  724. tmp11 = tmp1 + tmp2;
  725. tmp12 = tmp1 - tmp2;
  726. } else {
  727. /* d0 == 0, d2 != 0, d4 != 0, d6 == 0 */
  728. tmp2 = MULTIPLY(d2, FIX_0_541196100);
  729. tmp3 = MULTIPLY(d2, FIX_1_306562965);
  730. tmp0 = d4 << CONST_BITS;
  731. tmp10 = tmp0 + tmp3;
  732. tmp13 = tmp0 - tmp3;
  733. tmp11 = tmp2 - tmp0;
  734. tmp12 = -(tmp0 + tmp2);
  735. }
  736. } else {
  737. if (d0) {
  738. /* d0 != 0, d2 == 0, d4 != 0, d6 == 0 */
  739. tmp10 = tmp13 = (d0 + d4) << CONST_BITS;
  740. tmp11 = tmp12 = (d0 - d4) << CONST_BITS;
  741. } else {
  742. /* d0 == 0, d2 == 0, d4 != 0, d6 == 0 */
  743. tmp10 = tmp13 = d4 << CONST_BITS;
  744. tmp11 = tmp12 = -tmp10;
  745. }
  746. }
  747. } else {
  748. if (d2) {
  749. if (d0) {
  750. /* d0 != 0, d2 != 0, d4 == 0, d6 == 0 */
  751. tmp2 = MULTIPLY(d2, FIX_0_541196100);
  752. tmp3 = MULTIPLY(d2, FIX_1_306562965);
  753. tmp0 = d0 << CONST_BITS;
  754. tmp10 = tmp0 + tmp3;
  755. tmp13 = tmp0 - tmp3;
  756. tmp11 = tmp0 + tmp2;
  757. tmp12 = tmp0 - tmp2;
  758. } else {
  759. /* d0 == 0, d2 != 0, d4 == 0, d6 == 0 */
  760. tmp2 = MULTIPLY(d2, FIX_0_541196100);
  761. tmp3 = MULTIPLY(d2, FIX_1_306562965);
  762. tmp10 = tmp3;
  763. tmp13 = -tmp3;
  764. tmp11 = tmp2;
  765. tmp12 = -tmp2;
  766. }
  767. } else {
  768. if (d0) {
  769. /* d0 != 0, d2 == 0, d4 == 0, d6 == 0 */
  770. tmp10 = tmp13 = tmp11 = tmp12 = d0 << CONST_BITS;
  771. } else {
  772. /* d0 == 0, d2 == 0, d4 == 0, d6 == 0 */
  773. tmp10 = tmp13 = tmp11 = tmp12 = 0;
  774. }
  775. }
  776. }
  777. }
  778. /* Odd part per figure 8; the matrix is unitary and hence its
  779. * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively.
  780. */
  781. if (d7) {
  782. if (d5) {
  783. if (d3) {
  784. if (d1) {
  785. /* d1 != 0, d3 != 0, d5 != 0, d7 != 0 */
  786. z1 = d7 + d1;
  787. z2 = d5 + d3;
  788. z3 = d7 + d3;
  789. z4 = d5 + d1;
  790. z5 = MULTIPLY(z3 + z4, FIX_1_175875602);
  791. tmp0 = MULTIPLY(d7, FIX_0_298631336);
  792. tmp1 = MULTIPLY(d5, FIX_2_053119869);
  793. tmp2 = MULTIPLY(d3, FIX_3_072711026);
  794. tmp3 = MULTIPLY(d1, FIX_1_501321110);
  795. z1 = MULTIPLY(-z1, FIX_0_899976223);
  796. z2 = MULTIPLY(-z2, FIX_2_562915447);
  797. z3 = MULTIPLY(-z3, FIX_1_961570560);
  798. z4 = MULTIPLY(-z4, FIX_0_390180644);
  799. z3 += z5;
  800. z4 += z5;
  801. tmp0 += z1 + z3;
  802. tmp1 += z2 + z4;
  803. tmp2 += z2 + z3;
  804. tmp3 += z1 + z4;
  805. } else {
  806. /* d1 == 0, d3 != 0, d5 != 0, d7 != 0 */
  807. z1 = d7;
  808. z2 = d5 + d3;
  809. z3 = d7 + d3;
  810. z5 = MULTIPLY(z3 + d5, FIX_1_175875602);
  811. tmp0 = MULTIPLY(d7, FIX_0_298631336);
  812. tmp1 = MULTIPLY(d5, FIX_2_053119869);
  813. tmp2 = MULTIPLY(d3, FIX_3_072711026);
  814. z1 = MULTIPLY(-d7, FIX_0_899976223);
  815. z2 = MULTIPLY(-z2, FIX_2_562915447);
  816. z3 = MULTIPLY(-z3, FIX_1_961570560);
  817. z4 = MULTIPLY(-d5, FIX_0_390180644);
  818. z3 += z5;
  819. z4 += z5;
  820. tmp0 += z1 + z3;
  821. tmp1 += z2 + z4;
  822. tmp2 += z2 + z3;
  823. tmp3 = z1 + z4;
  824. }
  825. } else {
  826. if (d1) {
  827. /* d1 != 0, d3 == 0, d5 != 0, d7 != 0 */
  828. z1 = d7 + d1;
  829. z2 = d5;
  830. z3 = d7;
  831. z4 = d5 + d1;
  832. z5 = MULTIPLY(z3 + z4, FIX_1_175875602);
  833. tmp0 = MULTIPLY(d7, FIX_0_298631336);
  834. tmp1 = MULTIPLY(d5, FIX_2_053119869);
  835. tmp3 = MULTIPLY(d1, FIX_1_501321110);
  836. z1 = MULTIPLY(-z1, FIX_0_899976223);
  837. z2 = MULTIPLY(-d5, FIX_2_562915447);
  838. z3 = MULTIPLY(-d7, FIX_1_961570560);
  839. z4 = MULTIPLY(-z4, FIX_0_390180644);
  840. z3 += z5;
  841. z4 += z5;
  842. tmp0 += z1 + z3;
  843. tmp1 += z2 + z4;
  844. tmp2 = z2 + z3;
  845. tmp3 += z1 + z4;
  846. } else {
  847. /* d1 == 0, d3 == 0, d5 != 0, d7 != 0 */
  848. tmp0 = MULTIPLY(-d7, FIX_0_601344887);
  849. z1 = MULTIPLY(-d7, FIX_0_899976223);
  850. z3 = MULTIPLY(-d7, FIX_1_961570560);
  851. tmp1 = MULTIPLY(-d5, FIX_0_509795579);
  852. z2 = MULTIPLY(-d5, FIX_2_562915447);
  853. z4 = MULTIPLY(-d5, FIX_0_390180644);
  854. z5 = MULTIPLY(d5 + d7, FIX_1_175875602);
  855. z3 += z5;
  856. z4 += z5;
  857. tmp0 += z3;
  858. tmp1 += z4;
  859. tmp2 = z2 + z3;
  860. tmp3 = z1 + z4;
  861. }
  862. }
  863. } else {
  864. if (d3) {
  865. if (d1) {
  866. /* d1 != 0, d3 != 0, d5 == 0, d7 != 0 */
  867. z1 = d7 + d1;
  868. z3 = d7 + d3;
  869. z5 = MULTIPLY(z3 + d1, FIX_1_175875602);
  870. tmp0 = MULTIPLY(d7, FIX_0_298631336);
  871. tmp2 = MULTIPLY(d3, FIX_3_072711026);
  872. tmp3 = MULTIPLY(d1, FIX_1_501321110);
  873. z1 = MULTIPLY(-z1, FIX_0_899976223);
  874. z2 = MULTIPLY(-d3, FIX_2_562915447);
  875. z3 = MULTIPLY(-z3, FIX_1_961570560);
  876. z4 = MULTIPLY(-d1, FIX_0_390180644);
  877. z3 += z5;
  878. z4 += z5;
  879. tmp0 += z1 + z3;
  880. tmp1 = z2 + z4;
  881. tmp2 += z2 + z3;
  882. tmp3 += z1 + z4;
  883. } else {
  884. /* d1 == 0, d3 != 0, d5 == 0, d7 != 0 */
  885. z3 = d7 + d3;
  886. tmp0 = MULTIPLY(-d7, FIX_0_601344887);
  887. z1 = MULTIPLY(-d7, FIX_0_899976223);
  888. tmp2 = MULTIPLY(d3, FIX_0_509795579);
  889. z2 = MULTIPLY(-d3, FIX_2_562915447);
  890. z5 = MULTIPLY(z3, FIX_1_175875602);
  891. z3 = MULTIPLY(-z3, FIX_0_785694958);
  892. tmp0 += z3;
  893. tmp1 = z2 + z5;
  894. tmp2 += z3;
  895. tmp3 = z1 + z5;
  896. }
  897. } else {
  898. if (d1) {
  899. /* d1 != 0, d3 == 0, d5 == 0, d7 != 0 */
  900. z1 = d7 + d1;
  901. z5 = MULTIPLY(z1, FIX_1_175875602);
  902. z1 = MULTIPLY(z1, FIX_0_275899380);
  903. z3 = MULTIPLY(-d7, FIX_1_961570560);
  904. tmp0 = MULTIPLY(-d7, FIX_1_662939225);
  905. z4 = MULTIPLY(-d1, FIX_0_390180644);
  906. tmp3 = MULTIPLY(d1, FIX_1_111140466);
  907. tmp0 += z1;
  908. tmp1 = z4 + z5;
  909. tmp2 = z3 + z5;
  910. tmp3 += z1;
  911. } else {
  912. /* d1 == 0, d3 == 0, d5 == 0, d7 != 0 */
  913. tmp0 = MULTIPLY(-d7, FIX_1_387039845);
  914. tmp1 = MULTIPLY(d7, FIX_1_175875602);
  915. tmp2 = MULTIPLY(-d7, FIX_0_785694958);
  916. tmp3 = MULTIPLY(d7, FIX_0_275899380);
  917. }
  918. }
  919. }
  920. } else {
  921. if (d5) {
  922. if (d3) {
  923. if (d1) {
  924. /* d1 != 0, d3 != 0, d5 != 0, d7 == 0 */
  925. z2 = d5 + d3;
  926. z4 = d5 + d1;
  927. z5 = MULTIPLY(d3 + z4, FIX_1_175875602);
  928. tmp1 = MULTIPLY(d5, FIX_2_053119869);
  929. tmp2 = MULTIPLY(d3, FIX_3_072711026);
  930. tmp3 = MULTIPLY(d1, FIX_1_501321110);
  931. z1 = MULTIPLY(-d1, FIX_0_899976223);
  932. z2 = MULTIPLY(-z2, FIX_2_562915447);
  933. z3 = MULTIPLY(-d3, FIX_1_961570560);
  934. z4 = MULTIPLY(-z4, FIX_0_390180644);
  935. z3 += z5;
  936. z4 += z5;
  937. tmp0 = z1 + z3;
  938. tmp1 += z2 + z4;
  939. tmp2 += z2 + z3;
  940. tmp3 += z1 + z4;
  941. } else {
  942. /* d1 == 0, d3 != 0, d5 != 0, d7 == 0 */
  943. z2 = d5 + d3;
  944. z5 = MULTIPLY(z2, FIX_1_175875602);
  945. tmp1 = MULTIPLY(d5, FIX_1_662939225);
  946. z4 = MULTIPLY(-d5, FIX_0_390180644);
  947. z2 = MULTIPLY(-z2, FIX_1_387039845);
  948. tmp2 = MULTIPLY(d3, FIX_1_111140466);
  949. z3 = MULTIPLY(-d3, FIX_1_961570560);
  950. tmp0 = z3 + z5;
  951. tmp1 += z2;
  952. tmp2 += z2;
  953. tmp3 = z4 + z5;
  954. }
  955. } else {
  956. if (d1) {
  957. /* d1 != 0, d3 == 0, d5 != 0, d7 == 0 */
  958. z4 = d5 + d1;
  959. z5 = MULTIPLY(z4, FIX_1_175875602);
  960. z1 = MULTIPLY(-d1, FIX_0_899976223);
  961. tmp3 = MULTIPLY(d1, FIX_0_601344887);
  962. tmp1 = MULTIPLY(-d5, FIX_0_509795579);
  963. z2 = MULTIPLY(-d5, FIX_2_562915447);
  964. z4 = MULTIPLY(z4, FIX_0_785694958);
  965. tmp0 = z1 + z5;
  966. tmp1 += z4;
  967. tmp2 = z2 + z5;
  968. tmp3 += z4;
  969. } else {
  970. /* d1 == 0, d3 == 0, d5 != 0, d7 == 0 */
  971. tmp0 = MULTIPLY(d5, FIX_1_175875602);
  972. tmp1 = MULTIPLY(d5, FIX_0_275899380);
  973. tmp2 = MULTIPLY(-d5, FIX_1_387039845);
  974. tmp3 = MULTIPLY(d5, FIX_0_785694958);
  975. }
  976. }
  977. } else {
  978. if (d3) {
  979. if (d1) {
  980. /* d1 != 0, d3 != 0, d5 == 0, d7 == 0 */
  981. z5 = d1 + d3;
  982. tmp3 = MULTIPLY(d1, FIX_0_211164243);
  983. tmp2 = MULTIPLY(-d3, FIX_1_451774981);
  984. z1 = MULTIPLY(d1, FIX_1_061594337);
  985. z2 = MULTIPLY(-d3, FIX_2_172734803);
  986. z4 = MULTIPLY(z5, FIX_0_785694958);
  987. z5 = MULTIPLY(z5, FIX_1_175875602);
  988. tmp0 = z1 - z4;
  989. tmp1 = z2 + z4;
  990. tmp2 += z5;
  991. tmp3 += z5;
  992. } else {
  993. /* d1 == 0, d3 != 0, d5 == 0, d7 == 0 */
  994. tmp0 = MULTIPLY(-d3, FIX_0_785694958);
  995. tmp1 = MULTIPLY(-d3, FIX_1_387039845);
  996. tmp2 = MULTIPLY(-d3, FIX_0_275899380);
  997. tmp3 = MULTIPLY(d3, FIX_1_175875602);
  998. }
  999. } else {
  1000. if (d1) {
  1001. /* d1 != 0, d3 == 0, d5 == 0, d7 == 0 */
  1002. tmp0 = MULTIPLY(d1, FIX_0_275899380);
  1003. tmp1 = MULTIPLY(d1, FIX_0_785694958);
  1004. tmp2 = MULTIPLY(d1, FIX_1_175875602);
  1005. tmp3 = MULTIPLY(d1, FIX_1_387039845);
  1006. } else {
  1007. /* d1 == 0, d3 == 0, d5 == 0, d7 == 0 */
  1008. tmp0 = tmp1 = tmp2 = tmp3 = 0;
  1009. }
  1010. }
  1011. }
  1012. }
  1013. /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
  1014. dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp3,
  1015. CONST_BITS+PASS1_BITS+3);
  1016. dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp10 - tmp3,
  1017. CONST_BITS+PASS1_BITS+3);
  1018. dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp11 + tmp2,
  1019. CONST_BITS+PASS1_BITS+3);
  1020. dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(tmp11 - tmp2,
  1021. CONST_BITS+PASS1_BITS+3);
  1022. dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(tmp12 + tmp1,
  1023. CONST_BITS+PASS1_BITS+3);
  1024. dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp12 - tmp1,
  1025. CONST_BITS+PASS1_BITS+3);
  1026. dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp13 + tmp0,
  1027. CONST_BITS+PASS1_BITS+3);
  1028. dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp13 - tmp0,
  1029. CONST_BITS+PASS1_BITS+3);
  1030. dataptr++; /* advance pointer to next column */
  1031. }
  1032. }
  1033. #undef FIX
  1034. #undef CONST_BITS