You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1164 lines
38KB

  1. /*
  2. * huffyuv codec for libavcodec
  3. *
  4. * Copyright (c) 2002-2003 Michael Niedermayer <michaelni@gmx.at>
  5. *
  6. * This library is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2 of the License, or (at your option) any later version.
  10. *
  11. * This library is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with this library; if not, write to the Free Software
  18. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  19. *
  20. * see http://www.pcisys.net/~melanson/codecs/huffyuv.txt for a description of
  21. * the algorithm used
  22. */
  23. /**
  24. * @file huffyuv.c
  25. * huffyuv codec for libavcodec.
  26. */
  27. #include "common.h"
  28. #include "avcodec.h"
  29. #include "dsputil.h"
  30. #ifndef INT64_MAX
  31. #define INT64_MAX 9223372036854775807LL
  32. #endif
  33. #define VLC_BITS 11
  34. typedef enum Predictor{
  35. LEFT= 0,
  36. PLANE,
  37. MEDIAN,
  38. } Predictor;
  39. typedef struct HYuvContext{
  40. AVCodecContext *avctx;
  41. Predictor predictor;
  42. GetBitContext gb;
  43. PutBitContext pb;
  44. int interlaced;
  45. int decorrelate;
  46. int bitstream_bpp;
  47. int version;
  48. int yuy2; //use yuy2 instead of 422P
  49. int bgr32; //use bgr32 instead of bgr24
  50. int width, height;
  51. int flags;
  52. int picture_number;
  53. int last_slice_end;
  54. uint8_t __align8 temp[3][2500];
  55. uint64_t stats[3][256];
  56. uint8_t len[3][256];
  57. uint32_t bits[3][256];
  58. VLC vlc[3];
  59. AVFrame picture;
  60. uint8_t __align8 bitstream_buffer[1024*1024*3]; //FIXME dynamic alloc or some other solution
  61. DSPContext dsp;
  62. }HYuvContext;
  63. static const unsigned char classic_shift_luma[] = {
  64. 34,36,35,69,135,232,9,16,10,24,11,23,12,16,13,10,14,8,15,8,
  65. 16,8,17,20,16,10,207,206,205,236,11,8,10,21,9,23,8,8,199,70,
  66. 69,68, 0
  67. };
  68. static const unsigned char classic_shift_chroma[] = {
  69. 66,36,37,38,39,40,41,75,76,77,110,239,144,81,82,83,84,85,118,183,
  70. 56,57,88,89,56,89,154,57,58,57,26,141,57,56,58,57,58,57,184,119,
  71. 214,245,116,83,82,49,80,79,78,77,44,75,41,40,39,38,37,36,34, 0
  72. };
  73. static const unsigned char classic_add_luma[256] = {
  74. 3, 9, 5, 12, 10, 35, 32, 29, 27, 50, 48, 45, 44, 41, 39, 37,
  75. 73, 70, 68, 65, 64, 61, 58, 56, 53, 50, 49, 46, 44, 41, 38, 36,
  76. 68, 65, 63, 61, 58, 55, 53, 51, 48, 46, 45, 43, 41, 39, 38, 36,
  77. 35, 33, 32, 30, 29, 27, 26, 25, 48, 47, 46, 44, 43, 41, 40, 39,
  78. 37, 36, 35, 34, 32, 31, 30, 28, 27, 26, 24, 23, 22, 20, 19, 37,
  79. 35, 34, 33, 31, 30, 29, 27, 26, 24, 23, 21, 20, 18, 17, 15, 29,
  80. 27, 26, 24, 22, 21, 19, 17, 16, 14, 26, 25, 23, 21, 19, 18, 16,
  81. 15, 27, 25, 23, 21, 19, 17, 16, 14, 26, 25, 23, 21, 18, 17, 14,
  82. 12, 17, 19, 13, 4, 9, 2, 11, 1, 7, 8, 0, 16, 3, 14, 6,
  83. 12, 10, 5, 15, 18, 11, 10, 13, 15, 16, 19, 20, 22, 24, 27, 15,
  84. 18, 20, 22, 24, 26, 14, 17, 20, 22, 24, 27, 15, 18, 20, 23, 25,
  85. 28, 16, 19, 22, 25, 28, 32, 36, 21, 25, 29, 33, 38, 42, 45, 49,
  86. 28, 31, 34, 37, 40, 42, 44, 47, 49, 50, 52, 54, 56, 57, 59, 60,
  87. 62, 64, 66, 67, 69, 35, 37, 39, 40, 42, 43, 45, 47, 48, 51, 52,
  88. 54, 55, 57, 59, 60, 62, 63, 66, 67, 69, 71, 72, 38, 40, 42, 43,
  89. 46, 47, 49, 51, 26, 28, 30, 31, 33, 34, 18, 19, 11, 13, 7, 8,
  90. };
  91. static const unsigned char classic_add_chroma[256] = {
  92. 3, 1, 2, 2, 2, 2, 3, 3, 7, 5, 7, 5, 8, 6, 11, 9,
  93. 7, 13, 11, 10, 9, 8, 7, 5, 9, 7, 6, 4, 7, 5, 8, 7,
  94. 11, 8, 13, 11, 19, 15, 22, 23, 20, 33, 32, 28, 27, 29, 51, 77,
  95. 43, 45, 76, 81, 46, 82, 75, 55, 56,144, 58, 80, 60, 74,147, 63,
  96. 143, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
  97. 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 27, 30, 21, 22,
  98. 17, 14, 5, 6,100, 54, 47, 50, 51, 53,106,107,108,109,110,111,
  99. 112,113,114,115, 4,117,118, 92, 94,121,122, 3,124,103, 2, 1,
  100. 0,129,130,131,120,119,126,125,136,137,138,139,140,141,142,134,
  101. 135,132,133,104, 64,101, 62, 57,102, 95, 93, 59, 61, 28, 97, 96,
  102. 52, 49, 48, 29, 32, 25, 24, 46, 23, 98, 45, 44, 43, 20, 42, 41,
  103. 19, 18, 99, 40, 15, 39, 38, 16, 13, 12, 11, 37, 10, 9, 8, 36,
  104. 7,128,127,105,123,116, 35, 34, 33,145, 31, 79, 42,146, 78, 26,
  105. 83, 48, 49, 50, 44, 47, 26, 31, 30, 18, 17, 19, 21, 24, 25, 13,
  106. 14, 16, 17, 18, 20, 21, 12, 14, 15, 9, 10, 6, 9, 6, 5, 8,
  107. 6, 12, 8, 10, 7, 9, 6, 4, 6, 2, 2, 3, 3, 3, 3, 2,
  108. };
  109. static inline void bswap_buf(uint32_t *dst, uint32_t *src, int w){
  110. int i;
  111. for(i=0; i+8<=w; i+=8){
  112. dst[i+0]= bswap_32(src[i+0]);
  113. dst[i+1]= bswap_32(src[i+1]);
  114. dst[i+2]= bswap_32(src[i+2]);
  115. dst[i+3]= bswap_32(src[i+3]);
  116. dst[i+4]= bswap_32(src[i+4]);
  117. dst[i+5]= bswap_32(src[i+5]);
  118. dst[i+6]= bswap_32(src[i+6]);
  119. dst[i+7]= bswap_32(src[i+7]);
  120. }
  121. for(;i<w; i++){
  122. dst[i+0]= bswap_32(src[i+0]);
  123. }
  124. }
  125. static inline int add_left_prediction(uint8_t *dst, uint8_t *src, int w, int acc){
  126. int i;
  127. for(i=0; i<w-1; i++){
  128. acc+= src[i];
  129. dst[i]= acc;
  130. i++;
  131. acc+= src[i];
  132. dst[i]= acc;
  133. }
  134. for(; i<w; i++){
  135. acc+= src[i];
  136. dst[i]= acc;
  137. }
  138. return acc;
  139. }
  140. static inline void add_median_prediction(uint8_t *dst, uint8_t *src1, uint8_t *diff, int w, int *left, int *left_top){
  141. int i;
  142. uint8_t l, lt;
  143. l= *left;
  144. lt= *left_top;
  145. for(i=0; i<w; i++){
  146. l= mid_pred(l, src1[i], (l + src1[i] - lt)&0xFF) + diff[i];
  147. lt= src1[i];
  148. dst[i]= l;
  149. }
  150. *left= l;
  151. *left_top= lt;
  152. }
  153. //FIXME optimize
  154. static inline void sub_median_prediction(uint8_t *dst, uint8_t *src1, uint8_t *src2, int w, int *left, int *left_top){
  155. int i;
  156. uint8_t l, lt;
  157. l= *left;
  158. lt= *left_top;
  159. for(i=0; i<w; i++){
  160. const int pred= mid_pred(l, src1[i], (l + src1[i] - lt)&0xFF);
  161. lt= src1[i];
  162. l= src2[i];
  163. dst[i]= l - pred;
  164. }
  165. *left= l;
  166. *left_top= lt;
  167. }
  168. static inline void add_left_prediction_bgr32(uint8_t *dst, uint8_t *src, int w, int *red, int *green, int *blue){
  169. int i;
  170. int r,g,b;
  171. r= *red;
  172. g= *green;
  173. b= *blue;
  174. for(i=0; i<w; i++){
  175. b+= src[4*i+0];
  176. g+= src[4*i+1];
  177. r+= src[4*i+2];
  178. dst[4*i+0]= b;
  179. dst[4*i+1]= g;
  180. dst[4*i+2]= r;
  181. }
  182. *red= r;
  183. *green= g;
  184. *blue= b;
  185. }
  186. static inline int sub_left_prediction(HYuvContext *s, uint8_t *dst, uint8_t *src, int w, int left){
  187. int i;
  188. if(w<32){
  189. for(i=0; i<w; i++){
  190. const int temp= src[i];
  191. dst[i]= temp - left;
  192. left= temp;
  193. }
  194. return left;
  195. }else{
  196. for(i=0; i<16; i++){
  197. const int temp= src[i];
  198. dst[i]= temp - left;
  199. left= temp;
  200. }
  201. s->dsp.diff_bytes(dst+16, src+16, src+15, w-16);
  202. return src[w-1];
  203. }
  204. }
  205. static void read_len_table(uint8_t *dst, GetBitContext *gb){
  206. int i, val, repeat;
  207. for(i=0; i<256;){
  208. repeat= get_bits(gb, 3);
  209. val = get_bits(gb, 5);
  210. if(repeat==0)
  211. repeat= get_bits(gb, 8);
  212. //printf("%d %d\n", val, repeat);
  213. while (repeat--)
  214. dst[i++] = val;
  215. }
  216. }
  217. static int generate_bits_table(uint32_t *dst, uint8_t *len_table){
  218. int len, index;
  219. uint32_t bits=0;
  220. for(len=32; len>0; len--){
  221. int bit= 1<<(32-len);
  222. for(index=0; index<256; index++){
  223. if(len_table[index]==len){
  224. if(bits & (bit-1)){
  225. fprintf(stderr, "Error generating huffman table\n");
  226. return -1;
  227. }
  228. dst[index]= bits>>(32-len);
  229. bits+= bit;
  230. }
  231. }
  232. }
  233. return 0;
  234. }
  235. static void generate_len_table(uint8_t *dst, uint64_t *stats, int size){
  236. uint64_t counts[2*size];
  237. int up[2*size];
  238. int offset, i, next;
  239. for(offset=1; ; offset<<=1){
  240. for(i=0; i<size; i++){
  241. counts[i]= stats[i] + offset - 1;
  242. }
  243. for(next=size; next<size*2; next++){
  244. uint64_t min1, min2;
  245. int min1_i, min2_i;
  246. min1=min2= INT64_MAX;
  247. min1_i= min2_i=-1;
  248. for(i=0; i<next; i++){
  249. if(min2 > counts[i]){
  250. if(min1 > counts[i]){
  251. min2= min1;
  252. min2_i= min1_i;
  253. min1= counts[i];
  254. min1_i= i;
  255. }else{
  256. min2= counts[i];
  257. min2_i= i;
  258. }
  259. }
  260. }
  261. if(min2==INT64_MAX) break;
  262. counts[next]= min1 + min2;
  263. counts[min1_i]=
  264. counts[min2_i]= INT64_MAX;
  265. up[min1_i]=
  266. up[min2_i]= next;
  267. up[next]= -1;
  268. }
  269. for(i=0; i<size; i++){
  270. int len;
  271. int index=i;
  272. for(len=0; up[index] != -1; len++)
  273. index= up[index];
  274. if(len > 32) break;
  275. dst[i]= len;
  276. }
  277. if(i==size) break;
  278. }
  279. }
  280. static int read_huffman_tables(HYuvContext *s, uint8_t *src, int length){
  281. GetBitContext gb;
  282. int i;
  283. init_get_bits(&gb, src, length*8);
  284. for(i=0; i<3; i++){
  285. read_len_table(s->len[i], &gb);
  286. if(generate_bits_table(s->bits[i], s->len[i])<0){
  287. return -1;
  288. }
  289. #if 0
  290. for(j=0; j<256; j++){
  291. printf("%6X, %2d, %3d\n", s->bits[i][j], s->len[i][j], j);
  292. }
  293. #endif
  294. init_vlc(&s->vlc[i], VLC_BITS, 256, s->len[i], 1, 1, s->bits[i], 4, 4);
  295. }
  296. return 0;
  297. }
  298. static int read_old_huffman_tables(HYuvContext *s){
  299. #if 1
  300. GetBitContext gb;
  301. int i;
  302. init_get_bits(&gb, classic_shift_luma, sizeof(classic_shift_luma)*8);
  303. read_len_table(s->len[0], &gb);
  304. init_get_bits(&gb, classic_shift_chroma, sizeof(classic_shift_chroma)*8);
  305. read_len_table(s->len[1], &gb);
  306. for(i=0; i<256; i++) s->bits[0][i] = classic_add_luma [i];
  307. for(i=0; i<256; i++) s->bits[1][i] = classic_add_chroma[i];
  308. if(s->bitstream_bpp >= 24){
  309. memcpy(s->bits[1], s->bits[0], 256*sizeof(uint32_t));
  310. memcpy(s->len[1] , s->len [0], 256*sizeof(uint8_t));
  311. }
  312. memcpy(s->bits[2], s->bits[1], 256*sizeof(uint32_t));
  313. memcpy(s->len[2] , s->len [1], 256*sizeof(uint8_t));
  314. for(i=0; i<3; i++)
  315. init_vlc(&s->vlc[i], VLC_BITS, 256, s->len[i], 1, 1, s->bits[i], 4, 4);
  316. return 0;
  317. #else
  318. fprintf(stderr, "v1 huffyuv is not supported \n");
  319. return -1;
  320. #endif
  321. }
  322. static int decode_init(AVCodecContext *avctx)
  323. {
  324. HYuvContext *s = avctx->priv_data;
  325. int width, height;
  326. s->avctx= avctx;
  327. s->flags= avctx->flags;
  328. dsputil_init(&s->dsp, avctx);
  329. width= s->width= avctx->width;
  330. height= s->height= avctx->height;
  331. avctx->coded_frame= &s->picture;
  332. s->bgr32=1;
  333. assert(width && height);
  334. //if(avctx->extradata)
  335. // printf("extradata:%X, extradata_size:%d\n", *(uint32_t*)avctx->extradata, avctx->extradata_size);
  336. if(avctx->extradata_size){
  337. if((avctx->bits_per_sample&7) && avctx->bits_per_sample != 12)
  338. s->version=1; // do such files exist at all?
  339. else
  340. s->version=2;
  341. }else
  342. s->version=0;
  343. if(s->version==2){
  344. int method;
  345. method= ((uint8_t*)avctx->extradata)[0];
  346. s->decorrelate= method&64 ? 1 : 0;
  347. s->predictor= method&63;
  348. s->bitstream_bpp= ((uint8_t*)avctx->extradata)[1];
  349. if(s->bitstream_bpp==0)
  350. s->bitstream_bpp= avctx->bits_per_sample&~7;
  351. if(read_huffman_tables(s, ((uint8_t*)avctx->extradata)+4, avctx->extradata_size) < 0)
  352. return -1;
  353. }else{
  354. switch(avctx->bits_per_sample&7){
  355. case 1:
  356. s->predictor= LEFT;
  357. s->decorrelate= 0;
  358. break;
  359. case 2:
  360. s->predictor= LEFT;
  361. s->decorrelate= 1;
  362. break;
  363. case 3:
  364. s->predictor= PLANE;
  365. s->decorrelate= avctx->bits_per_sample >= 24;
  366. break;
  367. case 4:
  368. s->predictor= MEDIAN;
  369. s->decorrelate= 0;
  370. break;
  371. default:
  372. s->predictor= LEFT; //OLD
  373. s->decorrelate= 0;
  374. break;
  375. }
  376. s->bitstream_bpp= avctx->bits_per_sample & ~7;
  377. if(read_old_huffman_tables(s) < 0)
  378. return -1;
  379. }
  380. s->interlaced= height > 288;
  381. switch(s->bitstream_bpp){
  382. case 12:
  383. avctx->pix_fmt = PIX_FMT_YUV420P;
  384. break;
  385. case 16:
  386. if(s->yuy2){
  387. avctx->pix_fmt = PIX_FMT_YUV422;
  388. }else{
  389. avctx->pix_fmt = PIX_FMT_YUV422P;
  390. }
  391. break;
  392. case 24:
  393. case 32:
  394. if(s->bgr32){
  395. avctx->pix_fmt = PIX_FMT_RGBA32;
  396. }else{
  397. avctx->pix_fmt = PIX_FMT_BGR24;
  398. }
  399. break;
  400. default:
  401. assert(0);
  402. }
  403. // printf("pred:%d bpp:%d hbpp:%d il:%d\n", s->predictor, s->bitstream_bpp, avctx->bits_per_sample, s->interlaced);
  404. return 0;
  405. }
  406. static void store_table(HYuvContext *s, uint8_t *len){
  407. int i;
  408. int index= s->avctx->extradata_size;
  409. for(i=0; i<256;){
  410. int cur=i;
  411. int val= len[i];
  412. int repeat;
  413. for(; i<256 && len[i]==val; i++);
  414. repeat= i - cur;
  415. if(repeat>7){
  416. ((uint8_t*)s->avctx->extradata)[index++]= val;
  417. ((uint8_t*)s->avctx->extradata)[index++]= repeat;
  418. }else{
  419. ((uint8_t*)s->avctx->extradata)[index++]= val | (repeat<<5);
  420. }
  421. }
  422. s->avctx->extradata_size= index;
  423. }
  424. static int encode_init(AVCodecContext *avctx)
  425. {
  426. HYuvContext *s = avctx->priv_data;
  427. int i, j, width, height;
  428. s->avctx= avctx;
  429. s->flags= avctx->flags;
  430. dsputil_init(&s->dsp, avctx);
  431. width= s->width= avctx->width;
  432. height= s->height= avctx->height;
  433. assert(width && height);
  434. avctx->extradata= av_mallocz(1024*10);
  435. avctx->stats_out= av_mallocz(1024*10);
  436. s->version=2;
  437. avctx->coded_frame= &s->picture;
  438. switch(avctx->pix_fmt){
  439. case PIX_FMT_YUV420P:
  440. if(avctx->strict_std_compliance>=0){
  441. fprintf(stderr, "YV12-huffyuv is experimental, there WILL be no compatbility! (use (v)strict=-1)\n");
  442. return -1;
  443. }
  444. s->bitstream_bpp= 12;
  445. break;
  446. case PIX_FMT_YUV422P:
  447. s->bitstream_bpp= 16;
  448. break;
  449. default:
  450. fprintf(stderr, "format not supported\n");
  451. return -1;
  452. }
  453. avctx->bits_per_sample= s->bitstream_bpp;
  454. s->decorrelate= s->bitstream_bpp >= 24;
  455. s->predictor= avctx->prediction_method;
  456. ((uint8_t*)avctx->extradata)[0]= s->predictor;
  457. ((uint8_t*)avctx->extradata)[1]= s->bitstream_bpp;
  458. ((uint8_t*)avctx->extradata)[2]=
  459. ((uint8_t*)avctx->extradata)[3]= 0;
  460. s->avctx->extradata_size= 4;
  461. if(avctx->stats_in){
  462. char *p= avctx->stats_in;
  463. for(i=0; i<3; i++)
  464. for(j=0; j<256; j++)
  465. s->stats[i][j]= 1;
  466. for(;;){
  467. for(i=0; i<3; i++){
  468. char *next;
  469. for(j=0; j<256; j++){
  470. s->stats[i][j]+= strtol(p, &next, 0);
  471. if(next==p) return -1;
  472. p=next;
  473. }
  474. }
  475. if(p[0]==0 || p[1]==0 || p[2]==0) break;
  476. }
  477. }else{
  478. for(i=0; i<3; i++)
  479. for(j=0; j<256; j++){
  480. int d= FFMIN(j, 256-j);
  481. s->stats[i][j]= 100000000/(d+1);
  482. }
  483. }
  484. for(i=0; i<3; i++){
  485. generate_len_table(s->len[i], s->stats[i], 256);
  486. if(generate_bits_table(s->bits[i], s->len[i])<0){
  487. return -1;
  488. }
  489. store_table(s, s->len[i]);
  490. }
  491. for(i=0; i<3; i++)
  492. for(j=0; j<256; j++)
  493. s->stats[i][j]= 0;
  494. s->interlaced= height > 288;
  495. // printf("pred:%d bpp:%d hbpp:%d il:%d\n", s->predictor, s->bitstream_bpp, avctx->bits_per_sample, s->interlaced);
  496. s->picture_number=0;
  497. return 0;
  498. }
  499. static void decode_422_bitstream(HYuvContext *s, int count){
  500. int i;
  501. count/=2;
  502. for(i=0; i<count; i++){
  503. s->temp[0][2*i ]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  504. s->temp[1][ i ]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  505. s->temp[0][2*i+1]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  506. s->temp[2][ i ]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3);
  507. }
  508. }
  509. static void decode_gray_bitstream(HYuvContext *s, int count){
  510. int i;
  511. count/=2;
  512. for(i=0; i<count; i++){
  513. s->temp[0][2*i ]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  514. s->temp[0][2*i+1]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  515. }
  516. }
  517. static void encode_422_bitstream(HYuvContext *s, int count){
  518. int i;
  519. count/=2;
  520. if(s->flags&CODEC_FLAG_PASS1){
  521. for(i=0; i<count; i++){
  522. s->stats[0][ s->temp[0][2*i ] ]++;
  523. s->stats[1][ s->temp[1][ i ] ]++;
  524. s->stats[0][ s->temp[0][2*i+1] ]++;
  525. s->stats[2][ s->temp[2][ i ] ]++;
  526. }
  527. }else{
  528. for(i=0; i<count; i++){
  529. put_bits(&s->pb, s->len[0][ s->temp[0][2*i ] ], s->bits[0][ s->temp[0][2*i ] ]);
  530. put_bits(&s->pb, s->len[1][ s->temp[1][ i ] ], s->bits[1][ s->temp[1][ i ] ]);
  531. put_bits(&s->pb, s->len[0][ s->temp[0][2*i+1] ], s->bits[0][ s->temp[0][2*i+1] ]);
  532. put_bits(&s->pb, s->len[2][ s->temp[2][ i ] ], s->bits[2][ s->temp[2][ i ] ]);
  533. }
  534. }
  535. }
  536. static void encode_gray_bitstream(HYuvContext *s, int count){
  537. int i;
  538. count/=2;
  539. if(s->flags&CODEC_FLAG_PASS1){
  540. for(i=0; i<count; i++){
  541. s->stats[0][ s->temp[0][2*i ] ]++;
  542. s->stats[0][ s->temp[0][2*i+1] ]++;
  543. }
  544. }else{
  545. for(i=0; i<count; i++){
  546. put_bits(&s->pb, s->len[0][ s->temp[0][2*i ] ], s->bits[0][ s->temp[0][2*i ] ]);
  547. put_bits(&s->pb, s->len[0][ s->temp[0][2*i+1] ], s->bits[0][ s->temp[0][2*i+1] ]);
  548. }
  549. }
  550. }
  551. static void decode_bgr_bitstream(HYuvContext *s, int count){
  552. int i;
  553. if(s->decorrelate){
  554. if(s->bitstream_bpp==24){
  555. for(i=0; i<count; i++){
  556. s->temp[0][4*i+1]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  557. s->temp[0][4*i ]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3) + s->temp[0][4*i+1];
  558. s->temp[0][4*i+2]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3) + s->temp[0][4*i+1];
  559. }
  560. }else{
  561. for(i=0; i<count; i++){
  562. s->temp[0][4*i+1]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  563. s->temp[0][4*i ]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3) + s->temp[0][4*i+1];
  564. s->temp[0][4*i+2]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3) + s->temp[0][4*i+1];
  565. get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3); //?!
  566. }
  567. }
  568. }else{
  569. if(s->bitstream_bpp==24){
  570. for(i=0; i<count; i++){
  571. s->temp[0][4*i ]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  572. s->temp[0][4*i+1]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  573. s->temp[0][4*i+2]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3);
  574. }
  575. }else{
  576. for(i=0; i<count; i++){
  577. s->temp[0][4*i ]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  578. s->temp[0][4*i+1]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  579. s->temp[0][4*i+2]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3);
  580. get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3); //?!
  581. }
  582. }
  583. }
  584. }
  585. static void draw_slice(HYuvContext *s, int y){
  586. int h, cy;
  587. uint8_t *src_ptr[3];
  588. if(s->avctx->draw_horiz_band==NULL)
  589. return;
  590. h= y - s->last_slice_end;
  591. y -= h;
  592. if(s->bitstream_bpp==12){
  593. cy= y>>1;
  594. }else{
  595. cy= y;
  596. }
  597. src_ptr[0] = s->picture.data[0] + s->picture.linesize[0]*y;
  598. src_ptr[1] = s->picture.data[1] + s->picture.linesize[1]*cy;
  599. src_ptr[2] = s->picture.data[2] + s->picture.linesize[2]*cy;
  600. emms_c();
  601. s->avctx->draw_horiz_band(s->avctx, src_ptr, s->picture.linesize[0], y, s->width, h);
  602. s->last_slice_end= y + h;
  603. }
  604. static int decode_frame(AVCodecContext *avctx, void *data, int *data_size, uint8_t *buf, int buf_size){
  605. HYuvContext *s = avctx->priv_data;
  606. const int width= s->width;
  607. const int width2= s->width>>1;
  608. const int height= s->height;
  609. int fake_ystride, fake_ustride, fake_vstride;
  610. AVFrame * const p= &s->picture;
  611. AVFrame *picture = data;
  612. *data_size = 0;
  613. /* no supplementary picture */
  614. if (buf_size == 0)
  615. return 0;
  616. bswap_buf((uint32_t*)s->bitstream_buffer, (uint32_t*)buf, buf_size/4);
  617. init_get_bits(&s->gb, s->bitstream_buffer, buf_size*8);
  618. p->reference= 0;
  619. if(avctx->get_buffer(avctx, p) < 0){
  620. fprintf(stderr, "get_buffer() failed\n");
  621. return -1;
  622. }
  623. fake_ystride= s->interlaced ? p->linesize[0]*2 : p->linesize[0];
  624. fake_ustride= s->interlaced ? p->linesize[1]*2 : p->linesize[1];
  625. fake_vstride= s->interlaced ? p->linesize[2]*2 : p->linesize[2];
  626. s->last_slice_end= 0;
  627. if(s->bitstream_bpp<24){
  628. int y, cy;
  629. int lefty, leftu, leftv;
  630. int lefttopy, lefttopu, lefttopv;
  631. if(s->yuy2){
  632. p->data[0][3]= get_bits(&s->gb, 8);
  633. p->data[0][2]= get_bits(&s->gb, 8);
  634. p->data[0][1]= get_bits(&s->gb, 8);
  635. p->data[0][0]= get_bits(&s->gb, 8);
  636. fprintf(stderr, "YUY2 output isnt implemenetd yet\n");
  637. return -1;
  638. }else{
  639. leftv= p->data[2][0]= get_bits(&s->gb, 8);
  640. lefty= p->data[0][1]= get_bits(&s->gb, 8);
  641. leftu= p->data[1][0]= get_bits(&s->gb, 8);
  642. p->data[0][0]= get_bits(&s->gb, 8);
  643. switch(s->predictor){
  644. case LEFT:
  645. case PLANE:
  646. decode_422_bitstream(s, width-2);
  647. lefty= add_left_prediction(p->data[0] + 2, s->temp[0], width-2, lefty);
  648. if(!(s->flags&CODEC_FLAG_GRAY)){
  649. leftu= add_left_prediction(p->data[1] + 1, s->temp[1], width2-1, leftu);
  650. leftv= add_left_prediction(p->data[2] + 1, s->temp[2], width2-1, leftv);
  651. }
  652. for(cy=y=1; y<s->height; y++,cy++){
  653. uint8_t *ydst, *udst, *vdst;
  654. if(s->bitstream_bpp==12){
  655. decode_gray_bitstream(s, width);
  656. ydst= p->data[0] + p->linesize[0]*y;
  657. lefty= add_left_prediction(ydst, s->temp[0], width, lefty);
  658. if(s->predictor == PLANE){
  659. if(y>s->interlaced)
  660. s->dsp.add_bytes(ydst, ydst - fake_ystride, width);
  661. }
  662. y++;
  663. if(y>=s->height) break;
  664. }
  665. draw_slice(s, y);
  666. ydst= p->data[0] + p->linesize[0]*y;
  667. udst= p->data[1] + p->linesize[1]*cy;
  668. vdst= p->data[2] + p->linesize[2]*cy;
  669. decode_422_bitstream(s, width);
  670. lefty= add_left_prediction(ydst, s->temp[0], width, lefty);
  671. if(!(s->flags&CODEC_FLAG_GRAY)){
  672. leftu= add_left_prediction(udst, s->temp[1], width2, leftu);
  673. leftv= add_left_prediction(vdst, s->temp[2], width2, leftv);
  674. }
  675. if(s->predictor == PLANE){
  676. if(cy>s->interlaced){
  677. s->dsp.add_bytes(ydst, ydst - fake_ystride, width);
  678. if(!(s->flags&CODEC_FLAG_GRAY)){
  679. s->dsp.add_bytes(udst, udst - fake_ustride, width2);
  680. s->dsp.add_bytes(vdst, vdst - fake_vstride, width2);
  681. }
  682. }
  683. }
  684. }
  685. draw_slice(s, height);
  686. break;
  687. case MEDIAN:
  688. /* first line except first 2 pixels is left predicted */
  689. decode_422_bitstream(s, width-2);
  690. lefty= add_left_prediction(p->data[0] + 2, s->temp[0], width-2, lefty);
  691. if(!(s->flags&CODEC_FLAG_GRAY)){
  692. leftu= add_left_prediction(p->data[1] + 1, s->temp[1], width2-1, leftu);
  693. leftv= add_left_prediction(p->data[2] + 1, s->temp[2], width2-1, leftv);
  694. }
  695. cy=y=1;
  696. /* second line is left predicted for interlaced case */
  697. if(s->interlaced){
  698. decode_422_bitstream(s, width);
  699. lefty= add_left_prediction(p->data[0] + p->linesize[0], s->temp[0], width, lefty);
  700. if(!(s->flags&CODEC_FLAG_GRAY)){
  701. leftu= add_left_prediction(p->data[1] + p->linesize[2], s->temp[1], width2, leftu);
  702. leftv= add_left_prediction(p->data[2] + p->linesize[1], s->temp[2], width2, leftv);
  703. }
  704. y++; cy++;
  705. }
  706. /* next 4 pixels are left predicted too */
  707. decode_422_bitstream(s, 4);
  708. lefty= add_left_prediction(p->data[0] + fake_ystride, s->temp[0], 4, lefty);
  709. if(!(s->flags&CODEC_FLAG_GRAY)){
  710. leftu= add_left_prediction(p->data[1] + fake_ustride, s->temp[1], 2, leftu);
  711. leftv= add_left_prediction(p->data[2] + fake_vstride, s->temp[2], 2, leftv);
  712. }
  713. /* next line except the first 4 pixels is median predicted */
  714. lefttopy= p->data[0][3];
  715. decode_422_bitstream(s, width-4);
  716. add_median_prediction(p->data[0] + fake_ystride+4, p->data[0]+4, s->temp[0], width-4, &lefty, &lefttopy);
  717. if(!(s->flags&CODEC_FLAG_GRAY)){
  718. lefttopu= p->data[1][1];
  719. lefttopv= p->data[2][1];
  720. add_median_prediction(p->data[1] + fake_ustride+2, p->data[1]+2, s->temp[1], width2-2, &leftu, &lefttopu);
  721. add_median_prediction(p->data[2] + fake_vstride+2, p->data[2]+2, s->temp[2], width2-2, &leftv, &lefttopv);
  722. }
  723. y++; cy++;
  724. for(; y<height; y++,cy++){
  725. uint8_t *ydst, *udst, *vdst;
  726. if(s->bitstream_bpp==12){
  727. while(2*cy > y){
  728. decode_gray_bitstream(s, width);
  729. ydst= p->data[0] + p->linesize[0]*y;
  730. add_median_prediction(ydst, ydst - fake_ystride, s->temp[0], width, &lefty, &lefttopy);
  731. y++;
  732. }
  733. if(y>=height) break;
  734. }
  735. draw_slice(s, y);
  736. decode_422_bitstream(s, width);
  737. ydst= p->data[0] + p->linesize[0]*y;
  738. udst= p->data[1] + p->linesize[1]*cy;
  739. vdst= p->data[2] + p->linesize[2]*cy;
  740. add_median_prediction(ydst, ydst - fake_ystride, s->temp[0], width, &lefty, &lefttopy);
  741. if(!(s->flags&CODEC_FLAG_GRAY)){
  742. add_median_prediction(udst, udst - fake_ustride, s->temp[1], width2, &leftu, &lefttopu);
  743. add_median_prediction(vdst, vdst - fake_vstride, s->temp[2], width2, &leftv, &lefttopv);
  744. }
  745. }
  746. draw_slice(s, height);
  747. break;
  748. }
  749. }
  750. }else{
  751. int y;
  752. int leftr, leftg, leftb;
  753. const int last_line= (height-1)*p->linesize[0];
  754. if(s->bitstream_bpp==32){
  755. p->data[0][last_line+3]= get_bits(&s->gb, 8);
  756. leftr= p->data[0][last_line+2]= get_bits(&s->gb, 8);
  757. leftg= p->data[0][last_line+1]= get_bits(&s->gb, 8);
  758. leftb= p->data[0][last_line+0]= get_bits(&s->gb, 8);
  759. }else{
  760. leftr= p->data[0][last_line+2]= get_bits(&s->gb, 8);
  761. leftg= p->data[0][last_line+1]= get_bits(&s->gb, 8);
  762. leftb= p->data[0][last_line+0]= get_bits(&s->gb, 8);
  763. skip_bits(&s->gb, 8);
  764. }
  765. if(s->bgr32){
  766. switch(s->predictor){
  767. case LEFT:
  768. case PLANE:
  769. decode_bgr_bitstream(s, width-1);
  770. add_left_prediction_bgr32(p->data[0] + last_line+4, s->temp[0], width-1, &leftr, &leftg, &leftb);
  771. for(y=s->height-2; y>=0; y--){ //yes its stored upside down
  772. decode_bgr_bitstream(s, width);
  773. add_left_prediction_bgr32(p->data[0] + p->linesize[0]*y, s->temp[0], width, &leftr, &leftg, &leftb);
  774. if(s->predictor == PLANE){
  775. if((y&s->interlaced)==0){
  776. s->dsp.add_bytes(p->data[0] + p->linesize[0]*y,
  777. p->data[0] + p->linesize[0]*y + fake_ystride, fake_ystride);
  778. }
  779. }
  780. }
  781. draw_slice(s, height); // just 1 large slice as this isnt possible in reverse order
  782. break;
  783. default:
  784. fprintf(stderr, "prediction type not supported!\n");
  785. }
  786. }else{
  787. fprintf(stderr, "BGR24 output isnt implemenetd yet\n");
  788. return -1;
  789. }
  790. }
  791. emms_c();
  792. *picture= *p;
  793. avctx->release_buffer(avctx, p);
  794. *data_size = sizeof(AVFrame);
  795. return (get_bits_count(&s->gb)+31)/32*4;
  796. }
  797. static int decode_end(AVCodecContext *avctx)
  798. {
  799. HYuvContext *s = avctx->priv_data;
  800. int i;
  801. for(i=0; i<3; i++){
  802. free_vlc(&s->vlc[i]);
  803. }
  804. if(avctx->get_buffer == avcodec_default_get_buffer){
  805. for(i=0; i<4; i++){
  806. av_freep(&s->picture.base[i]);
  807. s->picture.data[i]= NULL;
  808. }
  809. av_freep(&s->picture.opaque);
  810. }
  811. return 0;
  812. }
  813. static int encode_frame(AVCodecContext *avctx, unsigned char *buf, int buf_size, void *data){
  814. HYuvContext *s = avctx->priv_data;
  815. AVFrame *pict = data;
  816. const int width= s->width;
  817. const int width2= s->width>>1;
  818. const int height= s->height;
  819. const int fake_ystride= s->interlaced ? pict->linesize[0]*2 : pict->linesize[0];
  820. const int fake_ustride= s->interlaced ? pict->linesize[1]*2 : pict->linesize[1];
  821. const int fake_vstride= s->interlaced ? pict->linesize[2]*2 : pict->linesize[2];
  822. AVFrame * const p= &s->picture;
  823. int i, size;
  824. init_put_bits(&s->pb, buf, buf_size, NULL, NULL);
  825. *p = *pict;
  826. p->pict_type= FF_I_TYPE;
  827. p->key_frame= 1;
  828. if(avctx->pix_fmt == PIX_FMT_YUV422P || avctx->pix_fmt == PIX_FMT_YUV420P){
  829. int lefty, leftu, leftv, y, cy;
  830. put_bits(&s->pb, 8, leftv= p->data[2][0]);
  831. put_bits(&s->pb, 8, lefty= p->data[0][1]);
  832. put_bits(&s->pb, 8, leftu= p->data[1][0]);
  833. put_bits(&s->pb, 8, p->data[0][0]);
  834. lefty= sub_left_prediction(s, s->temp[0], p->data[0]+2, width-2 , lefty);
  835. leftu= sub_left_prediction(s, s->temp[1], p->data[1]+1, width2-1, leftu);
  836. leftv= sub_left_prediction(s, s->temp[2], p->data[2]+1, width2-1, leftv);
  837. encode_422_bitstream(s, width-2);
  838. if(s->predictor==MEDIAN){
  839. int lefttopy, lefttopu, lefttopv;
  840. cy=y=1;
  841. if(s->interlaced){
  842. lefty= sub_left_prediction(s, s->temp[0], p->data[0]+p->linesize[0], width , lefty);
  843. leftu= sub_left_prediction(s, s->temp[1], p->data[1]+p->linesize[1], width2, leftu);
  844. leftv= sub_left_prediction(s, s->temp[2], p->data[2]+p->linesize[2], width2, leftv);
  845. encode_422_bitstream(s, width);
  846. y++; cy++;
  847. }
  848. lefty= sub_left_prediction(s, s->temp[0], p->data[0]+fake_ystride, 4, lefty);
  849. leftu= sub_left_prediction(s, s->temp[1], p->data[1]+fake_ystride, 2, leftu);
  850. leftv= sub_left_prediction(s, s->temp[2], p->data[2]+fake_ystride, 2, leftv);
  851. encode_422_bitstream(s, 4);
  852. lefttopy= p->data[0][3];
  853. lefttopu= p->data[1][1];
  854. lefttopv= p->data[2][1];
  855. sub_median_prediction(s->temp[0], p->data[0]+4, p->data[0] + fake_ystride+4, width-4 , &lefty, &lefttopy);
  856. sub_median_prediction(s->temp[1], p->data[1]+2, p->data[1] + fake_ustride+2, width2-2, &leftu, &lefttopu);
  857. sub_median_prediction(s->temp[2], p->data[2]+2, p->data[2] + fake_vstride+2, width2-2, &leftv, &lefttopv);
  858. encode_422_bitstream(s, width-4);
  859. y++; cy++;
  860. for(; y<height; y++,cy++){
  861. uint8_t *ydst, *udst, *vdst;
  862. if(s->bitstream_bpp==12){
  863. while(2*cy > y){
  864. ydst= p->data[0] + p->linesize[0]*y;
  865. sub_median_prediction(s->temp[0], ydst - fake_ystride, ydst, width , &lefty, &lefttopy);
  866. encode_gray_bitstream(s, width);
  867. y++;
  868. }
  869. if(y>=height) break;
  870. }
  871. ydst= p->data[0] + p->linesize[0]*y;
  872. udst= p->data[1] + p->linesize[1]*cy;
  873. vdst= p->data[2] + p->linesize[2]*cy;
  874. sub_median_prediction(s->temp[0], ydst - fake_ystride, ydst, width , &lefty, &lefttopy);
  875. sub_median_prediction(s->temp[1], udst - fake_ustride, udst, width2, &leftu, &lefttopu);
  876. sub_median_prediction(s->temp[2], vdst - fake_vstride, vdst, width2, &leftv, &lefttopv);
  877. encode_422_bitstream(s, width);
  878. }
  879. }else{
  880. for(cy=y=1; y<height; y++,cy++){
  881. uint8_t *ydst, *udst, *vdst;
  882. /* encode a luma only line & y++ */
  883. if(s->bitstream_bpp==12){
  884. ydst= p->data[0] + p->linesize[0]*y;
  885. if(s->predictor == PLANE && s->interlaced < y){
  886. s->dsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
  887. lefty= sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
  888. }else{
  889. lefty= sub_left_prediction(s, s->temp[0], ydst, width , lefty);
  890. }
  891. encode_gray_bitstream(s, width);
  892. y++;
  893. if(y>=height) break;
  894. }
  895. ydst= p->data[0] + p->linesize[0]*y;
  896. udst= p->data[1] + p->linesize[1]*cy;
  897. vdst= p->data[2] + p->linesize[2]*cy;
  898. if(s->predictor == PLANE && s->interlaced < cy){
  899. s->dsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
  900. s->dsp.diff_bytes(s->temp[2], udst, udst - fake_ustride, width2);
  901. s->dsp.diff_bytes(s->temp[3], vdst, vdst - fake_vstride, width2);
  902. lefty= sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
  903. leftu= sub_left_prediction(s, s->temp[1], s->temp[2], width2, leftu);
  904. leftv= sub_left_prediction(s, s->temp[2], s->temp[3], width2, leftv);
  905. }else{
  906. lefty= sub_left_prediction(s, s->temp[0], ydst, width , lefty);
  907. leftu= sub_left_prediction(s, s->temp[1], udst, width2, leftu);
  908. leftv= sub_left_prediction(s, s->temp[2], vdst, width2, leftv);
  909. }
  910. encode_422_bitstream(s, width);
  911. }
  912. }
  913. }else{
  914. fprintf(stderr, "Format not supported!\n");
  915. }
  916. emms_c();
  917. size= (get_bit_count(&s->pb)+31)/32;
  918. if((s->flags&CODEC_FLAG_PASS1) && (s->picture_number&31)==0){
  919. int j;
  920. char *p= avctx->stats_out;
  921. for(i=0; i<3; i++){
  922. for(j=0; j<256; j++){
  923. sprintf(p, "%Ld ", s->stats[i][j]);
  924. p+= strlen(p);
  925. s->stats[i][j]= 0;
  926. }
  927. sprintf(p, "\n");
  928. p++;
  929. }
  930. }else{
  931. flush_put_bits(&s->pb);
  932. bswap_buf((uint32_t*)buf, (uint32_t*)buf, size);
  933. }
  934. s->picture_number++;
  935. return size*4;
  936. }
  937. static int encode_end(AVCodecContext *avctx)
  938. {
  939. // HYuvContext *s = avctx->priv_data;
  940. av_freep(&avctx->extradata);
  941. av_freep(&avctx->stats_out);
  942. return 0;
  943. }
  944. static const AVOption huffyuv_options[] =
  945. {
  946. AVOPTION_CODEC_INT("prediction_method", "prediction_method", prediction_method, 0, 2, 0),
  947. AVOPTION_END()
  948. };
  949. AVCodec huffyuv_decoder = {
  950. "huffyuv",
  951. CODEC_TYPE_VIDEO,
  952. CODEC_ID_HUFFYUV,
  953. sizeof(HYuvContext),
  954. decode_init,
  955. NULL,
  956. decode_end,
  957. decode_frame,
  958. CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND,
  959. NULL
  960. };
  961. AVCodec huffyuv_encoder = {
  962. "huffyuv",
  963. CODEC_TYPE_VIDEO,
  964. CODEC_ID_HUFFYUV,
  965. sizeof(HYuvContext),
  966. encode_init,
  967. encode_frame,
  968. encode_end,
  969. .options = huffyuv_options,
  970. };