You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

4158 lines
143KB

  1. /*
  2. * VC-1 and WMV3 decoder
  3. * Copyright (c) 2006-2007 Konstantin Shishkov
  4. * Partly based on vc9.c (c) 2005 Anonymous, Alex Beregszaszi, Michael Niedermayer
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file vc1.c
  24. * VC-1 and WMV3 decoder
  25. *
  26. */
  27. #include "dsputil.h"
  28. #include "avcodec.h"
  29. #include "mpegvideo.h"
  30. #include "vc1.h"
  31. #include "vc1data.h"
  32. #include "vc1acdata.h"
  33. #include "msmpeg4data.h"
  34. #include "unary.h"
  35. #undef NDEBUG
  36. #include <assert.h>
  37. #define MB_INTRA_VLC_BITS 9
  38. #define DC_VLC_BITS 9
  39. #define AC_VLC_BITS 9
  40. static const uint16_t table_mb_intra[64][2];
  41. static inline int decode210(GetBitContext *gb){
  42. if (get_bits1(gb))
  43. return 0;
  44. else
  45. return 2 - get_bits1(gb);
  46. }
  47. /**
  48. * Init VC-1 specific tables and VC1Context members
  49. * @param v The VC1Context to initialize
  50. * @return Status
  51. */
  52. static int vc1_init_common(VC1Context *v)
  53. {
  54. static int done = 0;
  55. int i = 0;
  56. v->hrd_rate = v->hrd_buffer = NULL;
  57. /* VLC tables */
  58. if(!done)
  59. {
  60. done = 1;
  61. init_vlc(&ff_vc1_bfraction_vlc, VC1_BFRACTION_VLC_BITS, 23,
  62. ff_vc1_bfraction_bits, 1, 1,
  63. ff_vc1_bfraction_codes, 1, 1, 1);
  64. init_vlc(&ff_vc1_norm2_vlc, VC1_NORM2_VLC_BITS, 4,
  65. ff_vc1_norm2_bits, 1, 1,
  66. ff_vc1_norm2_codes, 1, 1, 1);
  67. init_vlc(&ff_vc1_norm6_vlc, VC1_NORM6_VLC_BITS, 64,
  68. ff_vc1_norm6_bits, 1, 1,
  69. ff_vc1_norm6_codes, 2, 2, 1);
  70. init_vlc(&ff_vc1_imode_vlc, VC1_IMODE_VLC_BITS, 7,
  71. ff_vc1_imode_bits, 1, 1,
  72. ff_vc1_imode_codes, 1, 1, 1);
  73. for (i=0; i<3; i++)
  74. {
  75. init_vlc(&ff_vc1_ttmb_vlc[i], VC1_TTMB_VLC_BITS, 16,
  76. ff_vc1_ttmb_bits[i], 1, 1,
  77. ff_vc1_ttmb_codes[i], 2, 2, 1);
  78. init_vlc(&ff_vc1_ttblk_vlc[i], VC1_TTBLK_VLC_BITS, 8,
  79. ff_vc1_ttblk_bits[i], 1, 1,
  80. ff_vc1_ttblk_codes[i], 1, 1, 1);
  81. init_vlc(&ff_vc1_subblkpat_vlc[i], VC1_SUBBLKPAT_VLC_BITS, 15,
  82. ff_vc1_subblkpat_bits[i], 1, 1,
  83. ff_vc1_subblkpat_codes[i], 1, 1, 1);
  84. }
  85. for(i=0; i<4; i++)
  86. {
  87. init_vlc(&ff_vc1_4mv_block_pattern_vlc[i], VC1_4MV_BLOCK_PATTERN_VLC_BITS, 16,
  88. ff_vc1_4mv_block_pattern_bits[i], 1, 1,
  89. ff_vc1_4mv_block_pattern_codes[i], 1, 1, 1);
  90. init_vlc(&ff_vc1_cbpcy_p_vlc[i], VC1_CBPCY_P_VLC_BITS, 64,
  91. ff_vc1_cbpcy_p_bits[i], 1, 1,
  92. ff_vc1_cbpcy_p_codes[i], 2, 2, 1);
  93. init_vlc(&ff_vc1_mv_diff_vlc[i], VC1_MV_DIFF_VLC_BITS, 73,
  94. ff_vc1_mv_diff_bits[i], 1, 1,
  95. ff_vc1_mv_diff_codes[i], 2, 2, 1);
  96. }
  97. for(i=0; i<8; i++)
  98. init_vlc(&ff_vc1_ac_coeff_table[i], AC_VLC_BITS, vc1_ac_sizes[i],
  99. &vc1_ac_tables[i][0][1], 8, 4,
  100. &vc1_ac_tables[i][0][0], 8, 4, 1);
  101. init_vlc(&ff_msmp4_mb_i_vlc, MB_INTRA_VLC_BITS, 64,
  102. &ff_msmp4_mb_i_table[0][1], 4, 2,
  103. &ff_msmp4_mb_i_table[0][0], 4, 2, 1);
  104. }
  105. /* Other defaults */
  106. v->pq = -1;
  107. v->mvrange = 0; /* 7.1.1.18, p80 */
  108. return 0;
  109. }
  110. /***********************************************************************/
  111. /**
  112. * @defgroup bitplane VC9 Bitplane decoding
  113. * @see 8.7, p56
  114. * @{
  115. */
  116. /** @addtogroup bitplane
  117. * Imode types
  118. * @{
  119. */
  120. enum Imode {
  121. IMODE_RAW,
  122. IMODE_NORM2,
  123. IMODE_DIFF2,
  124. IMODE_NORM6,
  125. IMODE_DIFF6,
  126. IMODE_ROWSKIP,
  127. IMODE_COLSKIP
  128. };
  129. /** @} */ //imode defines
  130. /** Decode rows by checking if they are skipped
  131. * @param plane Buffer to store decoded bits
  132. * @param[in] width Width of this buffer
  133. * @param[in] height Height of this buffer
  134. * @param[in] stride of this buffer
  135. */
  136. static void decode_rowskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
  137. int x, y;
  138. for (y=0; y<height; y++){
  139. if (!get_bits1(gb)) //rowskip
  140. memset(plane, 0, width);
  141. else
  142. for (x=0; x<width; x++)
  143. plane[x] = get_bits1(gb);
  144. plane += stride;
  145. }
  146. }
  147. /** Decode columns by checking if they are skipped
  148. * @param plane Buffer to store decoded bits
  149. * @param[in] width Width of this buffer
  150. * @param[in] height Height of this buffer
  151. * @param[in] stride of this buffer
  152. * @todo FIXME: Optimize
  153. */
  154. static void decode_colskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
  155. int x, y;
  156. for (x=0; x<width; x++){
  157. if (!get_bits1(gb)) //colskip
  158. for (y=0; y<height; y++)
  159. plane[y*stride] = 0;
  160. else
  161. for (y=0; y<height; y++)
  162. plane[y*stride] = get_bits1(gb);
  163. plane ++;
  164. }
  165. }
  166. /** Decode a bitplane's bits
  167. * @param bp Bitplane where to store the decode bits
  168. * @param v VC-1 context for bit reading and logging
  169. * @return Status
  170. * @todo FIXME: Optimize
  171. */
  172. static int bitplane_decoding(uint8_t* data, int *raw_flag, VC1Context *v)
  173. {
  174. GetBitContext *gb = &v->s.gb;
  175. int imode, x, y, code, offset;
  176. uint8_t invert, *planep = data;
  177. int width, height, stride;
  178. width = v->s.mb_width;
  179. height = v->s.mb_height;
  180. stride = v->s.mb_stride;
  181. invert = get_bits1(gb);
  182. imode = get_vlc2(gb, ff_vc1_imode_vlc.table, VC1_IMODE_VLC_BITS, 1);
  183. *raw_flag = 0;
  184. switch (imode)
  185. {
  186. case IMODE_RAW:
  187. //Data is actually read in the MB layer (same for all tests == "raw")
  188. *raw_flag = 1; //invert ignored
  189. return invert;
  190. case IMODE_DIFF2:
  191. case IMODE_NORM2:
  192. if ((height * width) & 1)
  193. {
  194. *planep++ = get_bits1(gb);
  195. offset = 1;
  196. }
  197. else offset = 0;
  198. // decode bitplane as one long line
  199. for (y = offset; y < height * width; y += 2) {
  200. code = get_vlc2(gb, ff_vc1_norm2_vlc.table, VC1_NORM2_VLC_BITS, 1);
  201. *planep++ = code & 1;
  202. offset++;
  203. if(offset == width) {
  204. offset = 0;
  205. planep += stride - width;
  206. }
  207. *planep++ = code >> 1;
  208. offset++;
  209. if(offset == width) {
  210. offset = 0;
  211. planep += stride - width;
  212. }
  213. }
  214. break;
  215. case IMODE_DIFF6:
  216. case IMODE_NORM6:
  217. if(!(height % 3) && (width % 3)) { // use 2x3 decoding
  218. for(y = 0; y < height; y+= 3) {
  219. for(x = width & 1; x < width; x += 2) {
  220. code = get_vlc2(gb, ff_vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
  221. if(code < 0){
  222. av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
  223. return -1;
  224. }
  225. planep[x + 0] = (code >> 0) & 1;
  226. planep[x + 1] = (code >> 1) & 1;
  227. planep[x + 0 + stride] = (code >> 2) & 1;
  228. planep[x + 1 + stride] = (code >> 3) & 1;
  229. planep[x + 0 + stride * 2] = (code >> 4) & 1;
  230. planep[x + 1 + stride * 2] = (code >> 5) & 1;
  231. }
  232. planep += stride * 3;
  233. }
  234. if(width & 1) decode_colskip(data, 1, height, stride, &v->s.gb);
  235. } else { // 3x2
  236. planep += (height & 1) * stride;
  237. for(y = height & 1; y < height; y += 2) {
  238. for(x = width % 3; x < width; x += 3) {
  239. code = get_vlc2(gb, ff_vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
  240. if(code < 0){
  241. av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
  242. return -1;
  243. }
  244. planep[x + 0] = (code >> 0) & 1;
  245. planep[x + 1] = (code >> 1) & 1;
  246. planep[x + 2] = (code >> 2) & 1;
  247. planep[x + 0 + stride] = (code >> 3) & 1;
  248. planep[x + 1 + stride] = (code >> 4) & 1;
  249. planep[x + 2 + stride] = (code >> 5) & 1;
  250. }
  251. planep += stride * 2;
  252. }
  253. x = width % 3;
  254. if(x) decode_colskip(data , x, height , stride, &v->s.gb);
  255. if(height & 1) decode_rowskip(data+x, width - x, 1, stride, &v->s.gb);
  256. }
  257. break;
  258. case IMODE_ROWSKIP:
  259. decode_rowskip(data, width, height, stride, &v->s.gb);
  260. break;
  261. case IMODE_COLSKIP:
  262. decode_colskip(data, width, height, stride, &v->s.gb);
  263. break;
  264. default: break;
  265. }
  266. /* Applying diff operator */
  267. if (imode == IMODE_DIFF2 || imode == IMODE_DIFF6)
  268. {
  269. planep = data;
  270. planep[0] ^= invert;
  271. for (x=1; x<width; x++)
  272. planep[x] ^= planep[x-1];
  273. for (y=1; y<height; y++)
  274. {
  275. planep += stride;
  276. planep[0] ^= planep[-stride];
  277. for (x=1; x<width; x++)
  278. {
  279. if (planep[x-1] != planep[x-stride]) planep[x] ^= invert;
  280. else planep[x] ^= planep[x-1];
  281. }
  282. }
  283. }
  284. else if (invert)
  285. {
  286. planep = data;
  287. for (x=0; x<stride*height; x++) planep[x] = !planep[x]; //FIXME stride
  288. }
  289. return (imode<<1) + invert;
  290. }
  291. /** @} */ //Bitplane group
  292. /***********************************************************************/
  293. /** VOP Dquant decoding
  294. * @param v VC-1 Context
  295. */
  296. static int vop_dquant_decoding(VC1Context *v)
  297. {
  298. GetBitContext *gb = &v->s.gb;
  299. int pqdiff;
  300. //variable size
  301. if (v->dquant == 2)
  302. {
  303. pqdiff = get_bits(gb, 3);
  304. if (pqdiff == 7) v->altpq = get_bits(gb, 5);
  305. else v->altpq = v->pq + pqdiff + 1;
  306. }
  307. else
  308. {
  309. v->dquantfrm = get_bits1(gb);
  310. if ( v->dquantfrm )
  311. {
  312. v->dqprofile = get_bits(gb, 2);
  313. switch (v->dqprofile)
  314. {
  315. case DQPROFILE_SINGLE_EDGE:
  316. case DQPROFILE_DOUBLE_EDGES:
  317. v->dqsbedge = get_bits(gb, 2);
  318. break;
  319. case DQPROFILE_ALL_MBS:
  320. v->dqbilevel = get_bits1(gb);
  321. if(!v->dqbilevel)
  322. v->halfpq = 0;
  323. default: break; //Forbidden ?
  324. }
  325. if (v->dqbilevel || v->dqprofile != DQPROFILE_ALL_MBS)
  326. {
  327. pqdiff = get_bits(gb, 3);
  328. if (pqdiff == 7) v->altpq = get_bits(gb, 5);
  329. else v->altpq = v->pq + pqdiff + 1;
  330. }
  331. }
  332. }
  333. return 0;
  334. }
  335. /** Put block onto picture
  336. */
  337. static void vc1_put_block(VC1Context *v, DCTELEM block[6][64])
  338. {
  339. uint8_t *Y;
  340. int ys, us, vs;
  341. DSPContext *dsp = &v->s.dsp;
  342. if(v->rangeredfrm) {
  343. int i, j, k;
  344. for(k = 0; k < 6; k++)
  345. for(j = 0; j < 8; j++)
  346. for(i = 0; i < 8; i++)
  347. block[k][i + j*8] = ((block[k][i + j*8] - 128) << 1) + 128;
  348. }
  349. ys = v->s.current_picture.linesize[0];
  350. us = v->s.current_picture.linesize[1];
  351. vs = v->s.current_picture.linesize[2];
  352. Y = v->s.dest[0];
  353. dsp->put_pixels_clamped(block[0], Y, ys);
  354. dsp->put_pixels_clamped(block[1], Y + 8, ys);
  355. Y += ys * 8;
  356. dsp->put_pixels_clamped(block[2], Y, ys);
  357. dsp->put_pixels_clamped(block[3], Y + 8, ys);
  358. if(!(v->s.flags & CODEC_FLAG_GRAY)) {
  359. dsp->put_pixels_clamped(block[4], v->s.dest[1], us);
  360. dsp->put_pixels_clamped(block[5], v->s.dest[2], vs);
  361. }
  362. }
  363. /** Do motion compensation over 1 macroblock
  364. * Mostly adapted hpel_motion and qpel_motion from mpegvideo.c
  365. */
  366. static void vc1_mc_1mv(VC1Context *v, int dir)
  367. {
  368. MpegEncContext *s = &v->s;
  369. DSPContext *dsp = &v->s.dsp;
  370. uint8_t *srcY, *srcU, *srcV;
  371. int dxy, uvdxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  372. if(!v->s.last_picture.data[0])return;
  373. mx = s->mv[dir][0][0];
  374. my = s->mv[dir][0][1];
  375. // store motion vectors for further use in B frames
  376. if(s->pict_type == P_TYPE) {
  377. s->current_picture.motion_val[1][s->block_index[0]][0] = mx;
  378. s->current_picture.motion_val[1][s->block_index[0]][1] = my;
  379. }
  380. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  381. uvmy = (my + ((my & 3) == 3)) >> 1;
  382. if(v->fastuvmc) {
  383. uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
  384. uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
  385. }
  386. if(!dir) {
  387. srcY = s->last_picture.data[0];
  388. srcU = s->last_picture.data[1];
  389. srcV = s->last_picture.data[2];
  390. } else {
  391. srcY = s->next_picture.data[0];
  392. srcU = s->next_picture.data[1];
  393. srcV = s->next_picture.data[2];
  394. }
  395. src_x = s->mb_x * 16 + (mx >> 2);
  396. src_y = s->mb_y * 16 + (my >> 2);
  397. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  398. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  399. if(v->profile != PROFILE_ADVANCED){
  400. src_x = av_clip( src_x, -16, s->mb_width * 16);
  401. src_y = av_clip( src_y, -16, s->mb_height * 16);
  402. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  403. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  404. }else{
  405. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  406. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  407. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  408. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  409. }
  410. srcY += src_y * s->linesize + src_x;
  411. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  412. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  413. /* for grayscale we should not try to read from unknown area */
  414. if(s->flags & CODEC_FLAG_GRAY) {
  415. srcU = s->edge_emu_buffer + 18 * s->linesize;
  416. srcV = s->edge_emu_buffer + 18 * s->linesize;
  417. }
  418. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  419. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 16 - s->mspel*3
  420. || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 16 - s->mspel*3){
  421. uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
  422. srcY -= s->mspel * (1 + s->linesize);
  423. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
  424. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  425. srcY = s->edge_emu_buffer;
  426. ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
  427. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  428. ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
  429. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  430. srcU = uvbuf;
  431. srcV = uvbuf + 16;
  432. /* if we deal with range reduction we need to scale source blocks */
  433. if(v->rangeredfrm) {
  434. int i, j;
  435. uint8_t *src, *src2;
  436. src = srcY;
  437. for(j = 0; j < 17 + s->mspel*2; j++) {
  438. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  439. src += s->linesize;
  440. }
  441. src = srcU; src2 = srcV;
  442. for(j = 0; j < 9; j++) {
  443. for(i = 0; i < 9; i++) {
  444. src[i] = ((src[i] - 128) >> 1) + 128;
  445. src2[i] = ((src2[i] - 128) >> 1) + 128;
  446. }
  447. src += s->uvlinesize;
  448. src2 += s->uvlinesize;
  449. }
  450. }
  451. /* if we deal with intensity compensation we need to scale source blocks */
  452. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  453. int i, j;
  454. uint8_t *src, *src2;
  455. src = srcY;
  456. for(j = 0; j < 17 + s->mspel*2; j++) {
  457. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = v->luty[src[i]];
  458. src += s->linesize;
  459. }
  460. src = srcU; src2 = srcV;
  461. for(j = 0; j < 9; j++) {
  462. for(i = 0; i < 9; i++) {
  463. src[i] = v->lutuv[src[i]];
  464. src2[i] = v->lutuv[src2[i]];
  465. }
  466. src += s->uvlinesize;
  467. src2 += s->uvlinesize;
  468. }
  469. }
  470. srcY += s->mspel * (1 + s->linesize);
  471. }
  472. if(s->mspel) {
  473. dxy = ((my & 3) << 2) | (mx & 3);
  474. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] , srcY , s->linesize, v->rnd);
  475. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8, srcY + 8, s->linesize, v->rnd);
  476. srcY += s->linesize * 8;
  477. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize , srcY , s->linesize, v->rnd);
  478. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize + 8, srcY + 8, s->linesize, v->rnd);
  479. } else { // hpel mc - always used for luma
  480. dxy = (my & 2) | ((mx & 2) >> 1);
  481. if(!v->rnd)
  482. dsp->put_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  483. else
  484. dsp->put_no_rnd_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  485. }
  486. if(s->flags & CODEC_FLAG_GRAY) return;
  487. /* Chroma MC always uses qpel bilinear */
  488. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  489. uvmx = (uvmx&3)<<1;
  490. uvmy = (uvmy&3)<<1;
  491. if(!v->rnd){
  492. dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  493. dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  494. }else{
  495. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  496. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  497. }
  498. }
  499. /** Do motion compensation for 4-MV macroblock - luminance block
  500. */
  501. static void vc1_mc_4mv_luma(VC1Context *v, int n)
  502. {
  503. MpegEncContext *s = &v->s;
  504. DSPContext *dsp = &v->s.dsp;
  505. uint8_t *srcY;
  506. int dxy, mx, my, src_x, src_y;
  507. int off;
  508. if(!v->s.last_picture.data[0])return;
  509. mx = s->mv[0][n][0];
  510. my = s->mv[0][n][1];
  511. srcY = s->last_picture.data[0];
  512. off = s->linesize * 4 * (n&2) + (n&1) * 8;
  513. src_x = s->mb_x * 16 + (n&1) * 8 + (mx >> 2);
  514. src_y = s->mb_y * 16 + (n&2) * 4 + (my >> 2);
  515. if(v->profile != PROFILE_ADVANCED){
  516. src_x = av_clip( src_x, -16, s->mb_width * 16);
  517. src_y = av_clip( src_y, -16, s->mb_height * 16);
  518. }else{
  519. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  520. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  521. }
  522. srcY += src_y * s->linesize + src_x;
  523. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  524. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 8 - s->mspel*2
  525. || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 8 - s->mspel*2){
  526. srcY -= s->mspel * (1 + s->linesize);
  527. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 9+s->mspel*2, 9+s->mspel*2,
  528. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  529. srcY = s->edge_emu_buffer;
  530. /* if we deal with range reduction we need to scale source blocks */
  531. if(v->rangeredfrm) {
  532. int i, j;
  533. uint8_t *src;
  534. src = srcY;
  535. for(j = 0; j < 9 + s->mspel*2; j++) {
  536. for(i = 0; i < 9 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  537. src += s->linesize;
  538. }
  539. }
  540. /* if we deal with intensity compensation we need to scale source blocks */
  541. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  542. int i, j;
  543. uint8_t *src;
  544. src = srcY;
  545. for(j = 0; j < 9 + s->mspel*2; j++) {
  546. for(i = 0; i < 9 + s->mspel*2; i++) src[i] = v->luty[src[i]];
  547. src += s->linesize;
  548. }
  549. }
  550. srcY += s->mspel * (1 + s->linesize);
  551. }
  552. if(s->mspel) {
  553. dxy = ((my & 3) << 2) | (mx & 3);
  554. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + off, srcY, s->linesize, v->rnd);
  555. } else { // hpel mc - always used for luma
  556. dxy = (my & 2) | ((mx & 2) >> 1);
  557. if(!v->rnd)
  558. dsp->put_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  559. else
  560. dsp->put_no_rnd_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  561. }
  562. }
  563. static inline int median4(int a, int b, int c, int d)
  564. {
  565. if(a < b) {
  566. if(c < d) return (FFMIN(b, d) + FFMAX(a, c)) / 2;
  567. else return (FFMIN(b, c) + FFMAX(a, d)) / 2;
  568. } else {
  569. if(c < d) return (FFMIN(a, d) + FFMAX(b, c)) / 2;
  570. else return (FFMIN(a, c) + FFMAX(b, d)) / 2;
  571. }
  572. }
  573. /** Do motion compensation for 4-MV macroblock - both chroma blocks
  574. */
  575. static void vc1_mc_4mv_chroma(VC1Context *v)
  576. {
  577. MpegEncContext *s = &v->s;
  578. DSPContext *dsp = &v->s.dsp;
  579. uint8_t *srcU, *srcV;
  580. int uvdxy, uvmx, uvmy, uvsrc_x, uvsrc_y;
  581. int i, idx, tx = 0, ty = 0;
  582. int mvx[4], mvy[4], intra[4];
  583. static const int count[16] = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
  584. if(!v->s.last_picture.data[0])return;
  585. if(s->flags & CODEC_FLAG_GRAY) return;
  586. for(i = 0; i < 4; i++) {
  587. mvx[i] = s->mv[0][i][0];
  588. mvy[i] = s->mv[0][i][1];
  589. intra[i] = v->mb_type[0][s->block_index[i]];
  590. }
  591. /* calculate chroma MV vector from four luma MVs */
  592. idx = (intra[3] << 3) | (intra[2] << 2) | (intra[1] << 1) | intra[0];
  593. if(!idx) { // all blocks are inter
  594. tx = median4(mvx[0], mvx[1], mvx[2], mvx[3]);
  595. ty = median4(mvy[0], mvy[1], mvy[2], mvy[3]);
  596. } else if(count[idx] == 1) { // 3 inter blocks
  597. switch(idx) {
  598. case 0x1:
  599. tx = mid_pred(mvx[1], mvx[2], mvx[3]);
  600. ty = mid_pred(mvy[1], mvy[2], mvy[3]);
  601. break;
  602. case 0x2:
  603. tx = mid_pred(mvx[0], mvx[2], mvx[3]);
  604. ty = mid_pred(mvy[0], mvy[2], mvy[3]);
  605. break;
  606. case 0x4:
  607. tx = mid_pred(mvx[0], mvx[1], mvx[3]);
  608. ty = mid_pred(mvy[0], mvy[1], mvy[3]);
  609. break;
  610. case 0x8:
  611. tx = mid_pred(mvx[0], mvx[1], mvx[2]);
  612. ty = mid_pred(mvy[0], mvy[1], mvy[2]);
  613. break;
  614. }
  615. } else if(count[idx] == 2) {
  616. int t1 = 0, t2 = 0;
  617. for(i=0; i<3;i++) if(!intra[i]) {t1 = i; break;}
  618. for(i= t1+1; i<4; i++)if(!intra[i]) {t2 = i; break;}
  619. tx = (mvx[t1] + mvx[t2]) / 2;
  620. ty = (mvy[t1] + mvy[t2]) / 2;
  621. } else {
  622. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  623. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  624. return; //no need to do MC for inter blocks
  625. }
  626. s->current_picture.motion_val[1][s->block_index[0]][0] = tx;
  627. s->current_picture.motion_val[1][s->block_index[0]][1] = ty;
  628. uvmx = (tx + ((tx&3) == 3)) >> 1;
  629. uvmy = (ty + ((ty&3) == 3)) >> 1;
  630. if(v->fastuvmc) {
  631. uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
  632. uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
  633. }
  634. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  635. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  636. if(v->profile != PROFILE_ADVANCED){
  637. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  638. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  639. }else{
  640. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  641. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  642. }
  643. srcU = s->last_picture.data[1] + uvsrc_y * s->uvlinesize + uvsrc_x;
  644. srcV = s->last_picture.data[2] + uvsrc_y * s->uvlinesize + uvsrc_x;
  645. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  646. || (unsigned)uvsrc_x > (s->h_edge_pos >> 1) - 9
  647. || (unsigned)uvsrc_y > (s->v_edge_pos >> 1) - 9){
  648. ff_emulated_edge_mc(s->edge_emu_buffer , srcU, s->uvlinesize, 8+1, 8+1,
  649. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  650. ff_emulated_edge_mc(s->edge_emu_buffer + 16, srcV, s->uvlinesize, 8+1, 8+1,
  651. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  652. srcU = s->edge_emu_buffer;
  653. srcV = s->edge_emu_buffer + 16;
  654. /* if we deal with range reduction we need to scale source blocks */
  655. if(v->rangeredfrm) {
  656. int i, j;
  657. uint8_t *src, *src2;
  658. src = srcU; src2 = srcV;
  659. for(j = 0; j < 9; j++) {
  660. for(i = 0; i < 9; i++) {
  661. src[i] = ((src[i] - 128) >> 1) + 128;
  662. src2[i] = ((src2[i] - 128) >> 1) + 128;
  663. }
  664. src += s->uvlinesize;
  665. src2 += s->uvlinesize;
  666. }
  667. }
  668. /* if we deal with intensity compensation we need to scale source blocks */
  669. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  670. int i, j;
  671. uint8_t *src, *src2;
  672. src = srcU; src2 = srcV;
  673. for(j = 0; j < 9; j++) {
  674. for(i = 0; i < 9; i++) {
  675. src[i] = v->lutuv[src[i]];
  676. src2[i] = v->lutuv[src2[i]];
  677. }
  678. src += s->uvlinesize;
  679. src2 += s->uvlinesize;
  680. }
  681. }
  682. }
  683. /* Chroma MC always uses qpel bilinear */
  684. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  685. uvmx = (uvmx&3)<<1;
  686. uvmy = (uvmy&3)<<1;
  687. if(!v->rnd){
  688. dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  689. dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  690. }else{
  691. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  692. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  693. }
  694. }
  695. static int decode_sequence_header_adv(VC1Context *v, GetBitContext *gb);
  696. /**
  697. * Decode Simple/Main Profiles sequence header
  698. * @see Figure 7-8, p16-17
  699. * @param avctx Codec context
  700. * @param gb GetBit context initialized from Codec context extra_data
  701. * @return Status
  702. */
  703. static int decode_sequence_header(AVCodecContext *avctx, GetBitContext *gb)
  704. {
  705. VC1Context *v = avctx->priv_data;
  706. av_log(avctx, AV_LOG_DEBUG, "Header: %0X\n", show_bits(gb, 32));
  707. v->profile = get_bits(gb, 2);
  708. if (v->profile == PROFILE_COMPLEX)
  709. {
  710. av_log(avctx, AV_LOG_ERROR, "WMV3 Complex Profile is not fully supported\n");
  711. }
  712. if (v->profile == PROFILE_ADVANCED)
  713. {
  714. return decode_sequence_header_adv(v, gb);
  715. }
  716. else
  717. {
  718. v->res_sm = get_bits(gb, 2); //reserved
  719. if (v->res_sm)
  720. {
  721. av_log(avctx, AV_LOG_ERROR,
  722. "Reserved RES_SM=%i is forbidden\n", v->res_sm);
  723. return -1;
  724. }
  725. }
  726. // (fps-2)/4 (->30)
  727. v->frmrtq_postproc = get_bits(gb, 3); //common
  728. // (bitrate-32kbps)/64kbps
  729. v->bitrtq_postproc = get_bits(gb, 5); //common
  730. v->s.loop_filter = get_bits1(gb); //common
  731. if(v->s.loop_filter == 1 && v->profile == PROFILE_SIMPLE)
  732. {
  733. av_log(avctx, AV_LOG_ERROR,
  734. "LOOPFILTER shell not be enabled in simple profile\n");
  735. }
  736. v->res_x8 = get_bits1(gb); //reserved
  737. if (v->res_x8)
  738. {
  739. av_log(avctx, AV_LOG_ERROR,
  740. "1 for reserved RES_X8 is forbidden\n");
  741. //return -1;
  742. }
  743. v->multires = get_bits1(gb);
  744. v->res_fasttx = get_bits1(gb);
  745. if (!v->res_fasttx)
  746. {
  747. av_log(avctx, AV_LOG_ERROR,
  748. "0 for reserved RES_FASTTX is forbidden\n");
  749. //return -1;
  750. }
  751. v->fastuvmc = get_bits1(gb); //common
  752. if (!v->profile && !v->fastuvmc)
  753. {
  754. av_log(avctx, AV_LOG_ERROR,
  755. "FASTUVMC unavailable in Simple Profile\n");
  756. return -1;
  757. }
  758. v->extended_mv = get_bits1(gb); //common
  759. if (!v->profile && v->extended_mv)
  760. {
  761. av_log(avctx, AV_LOG_ERROR,
  762. "Extended MVs unavailable in Simple Profile\n");
  763. return -1;
  764. }
  765. v->dquant = get_bits(gb, 2); //common
  766. v->vstransform = get_bits1(gb); //common
  767. v->res_transtab = get_bits1(gb);
  768. if (v->res_transtab)
  769. {
  770. av_log(avctx, AV_LOG_ERROR,
  771. "1 for reserved RES_TRANSTAB is forbidden\n");
  772. return -1;
  773. }
  774. v->overlap = get_bits1(gb); //common
  775. v->s.resync_marker = get_bits1(gb);
  776. v->rangered = get_bits1(gb);
  777. if (v->rangered && v->profile == PROFILE_SIMPLE)
  778. {
  779. av_log(avctx, AV_LOG_INFO,
  780. "RANGERED should be set to 0 in simple profile\n");
  781. }
  782. v->s.max_b_frames = avctx->max_b_frames = get_bits(gb, 3); //common
  783. v->quantizer_mode = get_bits(gb, 2); //common
  784. v->finterpflag = get_bits1(gb); //common
  785. v->res_rtm_flag = get_bits1(gb); //reserved
  786. if (!v->res_rtm_flag)
  787. {
  788. // av_log(avctx, AV_LOG_ERROR,
  789. // "0 for reserved RES_RTM_FLAG is forbidden\n");
  790. av_log(avctx, AV_LOG_ERROR,
  791. "Old WMV3 version detected, only I-frames will be decoded\n");
  792. //return -1;
  793. }
  794. //TODO: figure out what they mean (always 0x402F)
  795. if(!v->res_fasttx) skip_bits(gb, 16);
  796. av_log(avctx, AV_LOG_DEBUG,
  797. "Profile %i:\nfrmrtq_postproc=%i, bitrtq_postproc=%i\n"
  798. "LoopFilter=%i, MultiRes=%i, FastUVMC=%i, Extended MV=%i\n"
  799. "Rangered=%i, VSTransform=%i, Overlap=%i, SyncMarker=%i\n"
  800. "DQuant=%i, Quantizer mode=%i, Max B frames=%i\n",
  801. v->profile, v->frmrtq_postproc, v->bitrtq_postproc,
  802. v->s.loop_filter, v->multires, v->fastuvmc, v->extended_mv,
  803. v->rangered, v->vstransform, v->overlap, v->s.resync_marker,
  804. v->dquant, v->quantizer_mode, avctx->max_b_frames
  805. );
  806. return 0;
  807. }
  808. static int decode_sequence_header_adv(VC1Context *v, GetBitContext *gb)
  809. {
  810. v->res_rtm_flag = 1;
  811. v->level = get_bits(gb, 3);
  812. if(v->level >= 5)
  813. {
  814. av_log(v->s.avctx, AV_LOG_ERROR, "Reserved LEVEL %i\n",v->level);
  815. }
  816. v->chromaformat = get_bits(gb, 2);
  817. if (v->chromaformat != 1)
  818. {
  819. av_log(v->s.avctx, AV_LOG_ERROR,
  820. "Only 4:2:0 chroma format supported\n");
  821. return -1;
  822. }
  823. // (fps-2)/4 (->30)
  824. v->frmrtq_postproc = get_bits(gb, 3); //common
  825. // (bitrate-32kbps)/64kbps
  826. v->bitrtq_postproc = get_bits(gb, 5); //common
  827. v->postprocflag = get_bits1(gb); //common
  828. v->s.avctx->coded_width = (get_bits(gb, 12) + 1) << 1;
  829. v->s.avctx->coded_height = (get_bits(gb, 12) + 1) << 1;
  830. v->s.avctx->width = v->s.avctx->coded_width;
  831. v->s.avctx->height = v->s.avctx->coded_height;
  832. v->broadcast = get_bits1(gb);
  833. v->interlace = get_bits1(gb);
  834. v->tfcntrflag = get_bits1(gb);
  835. v->finterpflag = get_bits1(gb);
  836. skip_bits1(gb); // reserved
  837. v->s.h_edge_pos = v->s.avctx->coded_width;
  838. v->s.v_edge_pos = v->s.avctx->coded_height;
  839. av_log(v->s.avctx, AV_LOG_DEBUG,
  840. "Advanced Profile level %i:\nfrmrtq_postproc=%i, bitrtq_postproc=%i\n"
  841. "LoopFilter=%i, ChromaFormat=%i, Pulldown=%i, Interlace: %i\n"
  842. "TFCTRflag=%i, FINTERPflag=%i\n",
  843. v->level, v->frmrtq_postproc, v->bitrtq_postproc,
  844. v->s.loop_filter, v->chromaformat, v->broadcast, v->interlace,
  845. v->tfcntrflag, v->finterpflag
  846. );
  847. v->psf = get_bits1(gb);
  848. if(v->psf) { //PsF, 6.1.13
  849. av_log(v->s.avctx, AV_LOG_ERROR, "Progressive Segmented Frame mode: not supported (yet)\n");
  850. return -1;
  851. }
  852. v->s.max_b_frames = v->s.avctx->max_b_frames = 7;
  853. if(get_bits1(gb)) { //Display Info - decoding is not affected by it
  854. int w, h, ar = 0;
  855. av_log(v->s.avctx, AV_LOG_DEBUG, "Display extended info:\n");
  856. v->s.avctx->width = v->s.width = w = get_bits(gb, 14) + 1;
  857. v->s.avctx->height = v->s.height = h = get_bits(gb, 14) + 1;
  858. av_log(v->s.avctx, AV_LOG_DEBUG, "Display dimensions: %ix%i\n", w, h);
  859. if(get_bits1(gb))
  860. ar = get_bits(gb, 4);
  861. if(ar && ar < 14){
  862. v->s.avctx->sample_aspect_ratio = ff_vc1_pixel_aspect[ar];
  863. }else if(ar == 15){
  864. w = get_bits(gb, 8);
  865. h = get_bits(gb, 8);
  866. v->s.avctx->sample_aspect_ratio = (AVRational){w, h};
  867. }
  868. if(get_bits1(gb)){ //framerate stuff
  869. if(get_bits1(gb)) {
  870. v->s.avctx->time_base.num = 32;
  871. v->s.avctx->time_base.den = get_bits(gb, 16) + 1;
  872. } else {
  873. int nr, dr;
  874. nr = get_bits(gb, 8);
  875. dr = get_bits(gb, 4);
  876. if(nr && nr < 8 && dr && dr < 3){
  877. v->s.avctx->time_base.num = ff_vc1_fps_dr[dr - 1];
  878. v->s.avctx->time_base.den = ff_vc1_fps_nr[nr - 1] * 1000;
  879. }
  880. }
  881. }
  882. if(get_bits1(gb)){
  883. v->color_prim = get_bits(gb, 8);
  884. v->transfer_char = get_bits(gb, 8);
  885. v->matrix_coef = get_bits(gb, 8);
  886. }
  887. }
  888. v->hrd_param_flag = get_bits1(gb);
  889. if(v->hrd_param_flag) {
  890. int i;
  891. v->hrd_num_leaky_buckets = get_bits(gb, 5);
  892. skip_bits(gb, 4); //bitrate exponent
  893. skip_bits(gb, 4); //buffer size exponent
  894. for(i = 0; i < v->hrd_num_leaky_buckets; i++) {
  895. skip_bits(gb, 16); //hrd_rate[n]
  896. skip_bits(gb, 16); //hrd_buffer[n]
  897. }
  898. }
  899. return 0;
  900. }
  901. static int decode_entry_point(AVCodecContext *avctx, GetBitContext *gb)
  902. {
  903. VC1Context *v = avctx->priv_data;
  904. int i, blink, clentry, refdist;
  905. av_log(avctx, AV_LOG_DEBUG, "Entry point: %08X\n", show_bits_long(gb, 32));
  906. blink = get_bits1(gb); // broken link
  907. clentry = get_bits1(gb); // closed entry
  908. v->panscanflag = get_bits1(gb);
  909. refdist = get_bits1(gb); // refdist flag
  910. v->s.loop_filter = get_bits1(gb);
  911. v->fastuvmc = get_bits1(gb);
  912. v->extended_mv = get_bits1(gb);
  913. v->dquant = get_bits(gb, 2);
  914. v->vstransform = get_bits1(gb);
  915. v->overlap = get_bits1(gb);
  916. v->quantizer_mode = get_bits(gb, 2);
  917. if(v->hrd_param_flag){
  918. for(i = 0; i < v->hrd_num_leaky_buckets; i++) {
  919. skip_bits(gb, 8); //hrd_full[n]
  920. }
  921. }
  922. if(get_bits1(gb)){
  923. avctx->coded_width = (get_bits(gb, 12)+1)<<1;
  924. avctx->coded_height = (get_bits(gb, 12)+1)<<1;
  925. }
  926. if(v->extended_mv)
  927. v->extended_dmv = get_bits1(gb);
  928. if(get_bits1(gb)) {
  929. av_log(avctx, AV_LOG_ERROR, "Luma scaling is not supported, expect wrong picture\n");
  930. skip_bits(gb, 3); // Y range, ignored for now
  931. }
  932. if(get_bits1(gb)) {
  933. av_log(avctx, AV_LOG_ERROR, "Chroma scaling is not supported, expect wrong picture\n");
  934. skip_bits(gb, 3); // UV range, ignored for now
  935. }
  936. av_log(avctx, AV_LOG_DEBUG, "Entry point info:\n"
  937. "BrokenLink=%i, ClosedEntry=%i, PanscanFlag=%i\n"
  938. "RefDist=%i, Postproc=%i, FastUVMC=%i, ExtMV=%i\n"
  939. "DQuant=%i, VSTransform=%i, Overlap=%i, Qmode=%i\n",
  940. blink, clentry, v->panscanflag, refdist, v->s.loop_filter,
  941. v->fastuvmc, v->extended_mv, v->dquant, v->vstransform, v->overlap, v->quantizer_mode);
  942. return 0;
  943. }
  944. static int vc1_parse_frame_header(VC1Context *v, GetBitContext* gb)
  945. {
  946. int pqindex, lowquant, status;
  947. if(v->finterpflag) v->interpfrm = get_bits1(gb);
  948. skip_bits(gb, 2); //framecnt unused
  949. v->rangeredfrm = 0;
  950. if (v->rangered) v->rangeredfrm = get_bits1(gb);
  951. v->s.pict_type = get_bits1(gb);
  952. if (v->s.avctx->max_b_frames) {
  953. if (!v->s.pict_type) {
  954. if (get_bits1(gb)) v->s.pict_type = I_TYPE;
  955. else v->s.pict_type = B_TYPE;
  956. } else v->s.pict_type = P_TYPE;
  957. } else v->s.pict_type = v->s.pict_type ? P_TYPE : I_TYPE;
  958. v->bi_type = 0;
  959. if(v->s.pict_type == B_TYPE) {
  960. v->bfraction = get_vlc2(gb, ff_vc1_bfraction_vlc.table, VC1_BFRACTION_VLC_BITS, 1);
  961. v->bfraction = ff_vc1_bfraction_lut[v->bfraction];
  962. if(v->bfraction == 0) {
  963. v->s.pict_type = BI_TYPE;
  964. }
  965. }
  966. if(v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  967. skip_bits(gb, 7); // skip buffer fullness
  968. /* calculate RND */
  969. if(v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  970. v->rnd = 1;
  971. if(v->s.pict_type == P_TYPE)
  972. v->rnd ^= 1;
  973. /* Quantizer stuff */
  974. pqindex = get_bits(gb, 5);
  975. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  976. v->pq = ff_vc1_pquant_table[0][pqindex];
  977. else
  978. v->pq = ff_vc1_pquant_table[1][pqindex];
  979. v->pquantizer = 1;
  980. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  981. v->pquantizer = pqindex < 9;
  982. if (v->quantizer_mode == QUANT_NON_UNIFORM)
  983. v->pquantizer = 0;
  984. v->pqindex = pqindex;
  985. if (pqindex < 9) v->halfpq = get_bits1(gb);
  986. else v->halfpq = 0;
  987. if (v->quantizer_mode == QUANT_FRAME_EXPLICIT)
  988. v->pquantizer = get_bits1(gb);
  989. v->dquantfrm = 0;
  990. if (v->extended_mv == 1) v->mvrange = get_unary(gb, 0, 3);
  991. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  992. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  993. v->range_x = 1 << (v->k_x - 1);
  994. v->range_y = 1 << (v->k_y - 1);
  995. if (v->profile == PROFILE_ADVANCED)
  996. {
  997. if (v->postprocflag) v->postproc = get_bits1(gb);
  998. }
  999. else
  1000. if (v->multires && v->s.pict_type != B_TYPE) v->respic = get_bits(gb, 2);
  1001. if(v->res_x8 && (v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)){
  1002. if(get_bits1(gb))return -1;
  1003. }
  1004. //av_log(v->s.avctx, AV_LOG_INFO, "%c Frame: QP=[%i]%i (+%i/2) %i\n",
  1005. // (v->s.pict_type == P_TYPE) ? 'P' : ((v->s.pict_type == I_TYPE) ? 'I' : 'B'), pqindex, v->pq, v->halfpq, v->rangeredfrm);
  1006. if(v->s.pict_type == I_TYPE || v->s.pict_type == P_TYPE) v->use_ic = 0;
  1007. switch(v->s.pict_type) {
  1008. case P_TYPE:
  1009. if (v->pq < 5) v->tt_index = 0;
  1010. else if(v->pq < 13) v->tt_index = 1;
  1011. else v->tt_index = 2;
  1012. lowquant = (v->pq > 12) ? 0 : 1;
  1013. v->mv_mode = ff_vc1_mv_pmode_table[lowquant][get_unary(gb, 1, 4)];
  1014. if (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  1015. {
  1016. int scale, shift, i;
  1017. v->mv_mode2 = ff_vc1_mv_pmode_table2[lowquant][get_unary(gb, 1, 3)];
  1018. v->lumscale = get_bits(gb, 6);
  1019. v->lumshift = get_bits(gb, 6);
  1020. v->use_ic = 1;
  1021. /* fill lookup tables for intensity compensation */
  1022. if(!v->lumscale) {
  1023. scale = -64;
  1024. shift = (255 - v->lumshift * 2) << 6;
  1025. if(v->lumshift > 31)
  1026. shift += 128 << 6;
  1027. } else {
  1028. scale = v->lumscale + 32;
  1029. if(v->lumshift > 31)
  1030. shift = (v->lumshift - 64) << 6;
  1031. else
  1032. shift = v->lumshift << 6;
  1033. }
  1034. for(i = 0; i < 256; i++) {
  1035. v->luty[i] = av_clip_uint8((scale * i + shift + 32) >> 6);
  1036. v->lutuv[i] = av_clip_uint8((scale * (i - 128) + 128*64 + 32) >> 6);
  1037. }
  1038. }
  1039. if(v->mv_mode == MV_PMODE_1MV_HPEL || v->mv_mode == MV_PMODE_1MV_HPEL_BILIN)
  1040. v->s.quarter_sample = 0;
  1041. else if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  1042. if(v->mv_mode2 == MV_PMODE_1MV_HPEL || v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN)
  1043. v->s.quarter_sample = 0;
  1044. else
  1045. v->s.quarter_sample = 1;
  1046. } else
  1047. v->s.quarter_sample = 1;
  1048. v->s.mspel = !(v->mv_mode == MV_PMODE_1MV_HPEL_BILIN || (v->mv_mode == MV_PMODE_INTENSITY_COMP && v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN));
  1049. if ((v->mv_mode == MV_PMODE_INTENSITY_COMP &&
  1050. v->mv_mode2 == MV_PMODE_MIXED_MV)
  1051. || v->mv_mode == MV_PMODE_MIXED_MV)
  1052. {
  1053. status = bitplane_decoding(v->mv_type_mb_plane, &v->mv_type_is_raw, v);
  1054. if (status < 0) return -1;
  1055. av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: "
  1056. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1057. } else {
  1058. v->mv_type_is_raw = 0;
  1059. memset(v->mv_type_mb_plane, 0, v->s.mb_stride * v->s.mb_height);
  1060. }
  1061. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1062. if (status < 0) return -1;
  1063. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1064. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1065. /* Hopefully this is correct for P frames */
  1066. v->s.mv_table_index = get_bits(gb, 2); //but using ff_vc1_ tables
  1067. v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1068. if (v->dquant)
  1069. {
  1070. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1071. vop_dquant_decoding(v);
  1072. }
  1073. v->ttfrm = 0; //FIXME Is that so ?
  1074. if (v->vstransform)
  1075. {
  1076. v->ttmbf = get_bits1(gb);
  1077. if (v->ttmbf)
  1078. {
  1079. v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
  1080. }
  1081. } else {
  1082. v->ttmbf = 1;
  1083. v->ttfrm = TT_8X8;
  1084. }
  1085. break;
  1086. case B_TYPE:
  1087. if (v->pq < 5) v->tt_index = 0;
  1088. else if(v->pq < 13) v->tt_index = 1;
  1089. else v->tt_index = 2;
  1090. lowquant = (v->pq > 12) ? 0 : 1;
  1091. v->mv_mode = get_bits1(gb) ? MV_PMODE_1MV : MV_PMODE_1MV_HPEL_BILIN;
  1092. v->s.quarter_sample = (v->mv_mode == MV_PMODE_1MV);
  1093. v->s.mspel = v->s.quarter_sample;
  1094. status = bitplane_decoding(v->direct_mb_plane, &v->dmb_is_raw, v);
  1095. if (status < 0) return -1;
  1096. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Direct Type plane encoding: "
  1097. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1098. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1099. if (status < 0) return -1;
  1100. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1101. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1102. v->s.mv_table_index = get_bits(gb, 2);
  1103. v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1104. if (v->dquant)
  1105. {
  1106. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1107. vop_dquant_decoding(v);
  1108. }
  1109. v->ttfrm = 0;
  1110. if (v->vstransform)
  1111. {
  1112. v->ttmbf = get_bits1(gb);
  1113. if (v->ttmbf)
  1114. {
  1115. v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
  1116. }
  1117. } else {
  1118. v->ttmbf = 1;
  1119. v->ttfrm = TT_8X8;
  1120. }
  1121. break;
  1122. }
  1123. /* AC Syntax */
  1124. v->c_ac_table_index = decode012(gb);
  1125. if (v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  1126. {
  1127. v->y_ac_table_index = decode012(gb);
  1128. }
  1129. /* DC Syntax */
  1130. v->s.dc_table_index = get_bits1(gb);
  1131. if(v->s.pict_type == BI_TYPE) {
  1132. v->s.pict_type = B_TYPE;
  1133. v->bi_type = 1;
  1134. }
  1135. return 0;
  1136. }
  1137. static int vc1_parse_frame_header_adv(VC1Context *v, GetBitContext* gb)
  1138. {
  1139. int pqindex, lowquant;
  1140. int status;
  1141. v->p_frame_skipped = 0;
  1142. if(v->interlace){
  1143. v->fcm = decode012(gb);
  1144. if(v->fcm) return -1; // interlaced frames/fields are not implemented
  1145. }
  1146. switch(get_unary(gb, 0, 4)) {
  1147. case 0:
  1148. v->s.pict_type = P_TYPE;
  1149. break;
  1150. case 1:
  1151. v->s.pict_type = B_TYPE;
  1152. break;
  1153. case 2:
  1154. v->s.pict_type = I_TYPE;
  1155. break;
  1156. case 3:
  1157. v->s.pict_type = BI_TYPE;
  1158. break;
  1159. case 4:
  1160. v->s.pict_type = P_TYPE; // skipped pic
  1161. v->p_frame_skipped = 1;
  1162. return 0;
  1163. }
  1164. if(v->tfcntrflag)
  1165. skip_bits(gb, 8);
  1166. if(v->broadcast) {
  1167. if(!v->interlace || v->psf) {
  1168. v->rptfrm = get_bits(gb, 2);
  1169. } else {
  1170. v->tff = get_bits1(gb);
  1171. v->rptfrm = get_bits1(gb);
  1172. }
  1173. }
  1174. if(v->panscanflag) {
  1175. //...
  1176. }
  1177. v->rnd = get_bits1(gb);
  1178. if(v->interlace)
  1179. v->uvsamp = get_bits1(gb);
  1180. if(v->finterpflag) v->interpfrm = get_bits1(gb);
  1181. if(v->s.pict_type == B_TYPE) {
  1182. v->bfraction = get_vlc2(gb, ff_vc1_bfraction_vlc.table, VC1_BFRACTION_VLC_BITS, 1);
  1183. v->bfraction = ff_vc1_bfraction_lut[v->bfraction];
  1184. if(v->bfraction == 0) {
  1185. v->s.pict_type = BI_TYPE; /* XXX: should not happen here */
  1186. }
  1187. }
  1188. pqindex = get_bits(gb, 5);
  1189. v->pqindex = pqindex;
  1190. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1191. v->pq = ff_vc1_pquant_table[0][pqindex];
  1192. else
  1193. v->pq = ff_vc1_pquant_table[1][pqindex];
  1194. v->pquantizer = 1;
  1195. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1196. v->pquantizer = pqindex < 9;
  1197. if (v->quantizer_mode == QUANT_NON_UNIFORM)
  1198. v->pquantizer = 0;
  1199. v->pqindex = pqindex;
  1200. if (pqindex < 9) v->halfpq = get_bits1(gb);
  1201. else v->halfpq = 0;
  1202. if (v->quantizer_mode == QUANT_FRAME_EXPLICIT)
  1203. v->pquantizer = get_bits1(gb);
  1204. if(v->s.pict_type == I_TYPE || v->s.pict_type == P_TYPE) v->use_ic = 0;
  1205. switch(v->s.pict_type) {
  1206. case I_TYPE:
  1207. case BI_TYPE:
  1208. status = bitplane_decoding(v->acpred_plane, &v->acpred_is_raw, v);
  1209. if (status < 0) return -1;
  1210. av_log(v->s.avctx, AV_LOG_DEBUG, "ACPRED plane encoding: "
  1211. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1212. v->condover = CONDOVER_NONE;
  1213. if(v->overlap && v->pq <= 8) {
  1214. v->condover = decode012(gb);
  1215. if(v->condover == CONDOVER_SELECT) {
  1216. status = bitplane_decoding(v->over_flags_plane, &v->overflg_is_raw, v);
  1217. if (status < 0) return -1;
  1218. av_log(v->s.avctx, AV_LOG_DEBUG, "CONDOVER plane encoding: "
  1219. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1220. }
  1221. }
  1222. break;
  1223. case P_TYPE:
  1224. if(v->postprocflag)
  1225. v->postproc = get_bits1(gb);
  1226. if (v->extended_mv) v->mvrange = get_unary(gb, 0, 3);
  1227. else v->mvrange = 0;
  1228. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  1229. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  1230. v->range_x = 1 << (v->k_x - 1);
  1231. v->range_y = 1 << (v->k_y - 1);
  1232. if (v->pq < 5) v->tt_index = 0;
  1233. else if(v->pq < 13) v->tt_index = 1;
  1234. else v->tt_index = 2;
  1235. lowquant = (v->pq > 12) ? 0 : 1;
  1236. v->mv_mode = ff_vc1_mv_pmode_table[lowquant][get_unary(gb, 1, 4)];
  1237. if (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  1238. {
  1239. int scale, shift, i;
  1240. v->mv_mode2 = ff_vc1_mv_pmode_table2[lowquant][get_unary(gb, 1, 3)];
  1241. v->lumscale = get_bits(gb, 6);
  1242. v->lumshift = get_bits(gb, 6);
  1243. /* fill lookup tables for intensity compensation */
  1244. if(!v->lumscale) {
  1245. scale = -64;
  1246. shift = (255 - v->lumshift * 2) << 6;
  1247. if(v->lumshift > 31)
  1248. shift += 128 << 6;
  1249. } else {
  1250. scale = v->lumscale + 32;
  1251. if(v->lumshift > 31)
  1252. shift = (v->lumshift - 64) << 6;
  1253. else
  1254. shift = v->lumshift << 6;
  1255. }
  1256. for(i = 0; i < 256; i++) {
  1257. v->luty[i] = av_clip_uint8((scale * i + shift + 32) >> 6);
  1258. v->lutuv[i] = av_clip_uint8((scale * (i - 128) + 128*64 + 32) >> 6);
  1259. }
  1260. v->use_ic = 1;
  1261. }
  1262. if(v->mv_mode == MV_PMODE_1MV_HPEL || v->mv_mode == MV_PMODE_1MV_HPEL_BILIN)
  1263. v->s.quarter_sample = 0;
  1264. else if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  1265. if(v->mv_mode2 == MV_PMODE_1MV_HPEL || v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN)
  1266. v->s.quarter_sample = 0;
  1267. else
  1268. v->s.quarter_sample = 1;
  1269. } else
  1270. v->s.quarter_sample = 1;
  1271. v->s.mspel = !(v->mv_mode == MV_PMODE_1MV_HPEL_BILIN || (v->mv_mode == MV_PMODE_INTENSITY_COMP && v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN));
  1272. if ((v->mv_mode == MV_PMODE_INTENSITY_COMP &&
  1273. v->mv_mode2 == MV_PMODE_MIXED_MV)
  1274. || v->mv_mode == MV_PMODE_MIXED_MV)
  1275. {
  1276. status = bitplane_decoding(v->mv_type_mb_plane, &v->mv_type_is_raw, v);
  1277. if (status < 0) return -1;
  1278. av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: "
  1279. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1280. } else {
  1281. v->mv_type_is_raw = 0;
  1282. memset(v->mv_type_mb_plane, 0, v->s.mb_stride * v->s.mb_height);
  1283. }
  1284. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1285. if (status < 0) return -1;
  1286. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1287. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1288. /* Hopefully this is correct for P frames */
  1289. v->s.mv_table_index = get_bits(gb, 2); //but using ff_vc1_ tables
  1290. v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1291. if (v->dquant)
  1292. {
  1293. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1294. vop_dquant_decoding(v);
  1295. }
  1296. v->ttfrm = 0; //FIXME Is that so ?
  1297. if (v->vstransform)
  1298. {
  1299. v->ttmbf = get_bits1(gb);
  1300. if (v->ttmbf)
  1301. {
  1302. v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
  1303. }
  1304. } else {
  1305. v->ttmbf = 1;
  1306. v->ttfrm = TT_8X8;
  1307. }
  1308. break;
  1309. case B_TYPE:
  1310. if(v->postprocflag)
  1311. v->postproc = get_bits1(gb);
  1312. if (v->extended_mv) v->mvrange = get_unary(gb, 0, 3);
  1313. else v->mvrange = 0;
  1314. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  1315. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  1316. v->range_x = 1 << (v->k_x - 1);
  1317. v->range_y = 1 << (v->k_y - 1);
  1318. if (v->pq < 5) v->tt_index = 0;
  1319. else if(v->pq < 13) v->tt_index = 1;
  1320. else v->tt_index = 2;
  1321. lowquant = (v->pq > 12) ? 0 : 1;
  1322. v->mv_mode = get_bits1(gb) ? MV_PMODE_1MV : MV_PMODE_1MV_HPEL_BILIN;
  1323. v->s.quarter_sample = (v->mv_mode == MV_PMODE_1MV);
  1324. v->s.mspel = v->s.quarter_sample;
  1325. status = bitplane_decoding(v->direct_mb_plane, &v->dmb_is_raw, v);
  1326. if (status < 0) return -1;
  1327. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Direct Type plane encoding: "
  1328. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1329. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1330. if (status < 0) return -1;
  1331. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1332. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1333. v->s.mv_table_index = get_bits(gb, 2);
  1334. v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1335. if (v->dquant)
  1336. {
  1337. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1338. vop_dquant_decoding(v);
  1339. }
  1340. v->ttfrm = 0;
  1341. if (v->vstransform)
  1342. {
  1343. v->ttmbf = get_bits1(gb);
  1344. if (v->ttmbf)
  1345. {
  1346. v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
  1347. }
  1348. } else {
  1349. v->ttmbf = 1;
  1350. v->ttfrm = TT_8X8;
  1351. }
  1352. break;
  1353. }
  1354. /* AC Syntax */
  1355. v->c_ac_table_index = decode012(gb);
  1356. if (v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  1357. {
  1358. v->y_ac_table_index = decode012(gb);
  1359. }
  1360. /* DC Syntax */
  1361. v->s.dc_table_index = get_bits1(gb);
  1362. if ((v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE) && v->dquant) {
  1363. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1364. vop_dquant_decoding(v);
  1365. }
  1366. v->bi_type = 0;
  1367. if(v->s.pict_type == BI_TYPE) {
  1368. v->s.pict_type = B_TYPE;
  1369. v->bi_type = 1;
  1370. }
  1371. return 0;
  1372. }
  1373. /***********************************************************************/
  1374. /**
  1375. * @defgroup block VC-1 Block-level functions
  1376. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  1377. * @{
  1378. */
  1379. /**
  1380. * @def GET_MQUANT
  1381. * @brief Get macroblock-level quantizer scale
  1382. */
  1383. #define GET_MQUANT() \
  1384. if (v->dquantfrm) \
  1385. { \
  1386. int edges = 0; \
  1387. if (v->dqprofile == DQPROFILE_ALL_MBS) \
  1388. { \
  1389. if (v->dqbilevel) \
  1390. { \
  1391. mquant = (get_bits1(gb)) ? v->altpq : v->pq; \
  1392. } \
  1393. else \
  1394. { \
  1395. mqdiff = get_bits(gb, 3); \
  1396. if (mqdiff != 7) mquant = v->pq + mqdiff; \
  1397. else mquant = get_bits(gb, 5); \
  1398. } \
  1399. } \
  1400. if(v->dqprofile == DQPROFILE_SINGLE_EDGE) \
  1401. edges = 1 << v->dqsbedge; \
  1402. else if(v->dqprofile == DQPROFILE_DOUBLE_EDGES) \
  1403. edges = (3 << v->dqsbedge) % 15; \
  1404. else if(v->dqprofile == DQPROFILE_FOUR_EDGES) \
  1405. edges = 15; \
  1406. if((edges&1) && !s->mb_x) \
  1407. mquant = v->altpq; \
  1408. if((edges&2) && s->first_slice_line) \
  1409. mquant = v->altpq; \
  1410. if((edges&4) && s->mb_x == (s->mb_width - 1)) \
  1411. mquant = v->altpq; \
  1412. if((edges&8) && s->mb_y == (s->mb_height - 1)) \
  1413. mquant = v->altpq; \
  1414. }
  1415. /**
  1416. * @def GET_MVDATA(_dmv_x, _dmv_y)
  1417. * @brief Get MV differentials
  1418. * @see MVDATA decoding from 8.3.5.2, p(1)20
  1419. * @param _dmv_x Horizontal differential for decoded MV
  1420. * @param _dmv_y Vertical differential for decoded MV
  1421. */
  1422. #define GET_MVDATA(_dmv_x, _dmv_y) \
  1423. index = 1 + get_vlc2(gb, ff_vc1_mv_diff_vlc[s->mv_table_index].table,\
  1424. VC1_MV_DIFF_VLC_BITS, 2); \
  1425. if (index > 36) \
  1426. { \
  1427. mb_has_coeffs = 1; \
  1428. index -= 37; \
  1429. } \
  1430. else mb_has_coeffs = 0; \
  1431. s->mb_intra = 0; \
  1432. if (!index) { _dmv_x = _dmv_y = 0; } \
  1433. else if (index == 35) \
  1434. { \
  1435. _dmv_x = get_bits(gb, v->k_x - 1 + s->quarter_sample); \
  1436. _dmv_y = get_bits(gb, v->k_y - 1 + s->quarter_sample); \
  1437. } \
  1438. else if (index == 36) \
  1439. { \
  1440. _dmv_x = 0; \
  1441. _dmv_y = 0; \
  1442. s->mb_intra = 1; \
  1443. } \
  1444. else \
  1445. { \
  1446. index1 = index%6; \
  1447. if (!s->quarter_sample && index1 == 5) val = 1; \
  1448. else val = 0; \
  1449. if(size_table[index1] - val > 0) \
  1450. val = get_bits(gb, size_table[index1] - val); \
  1451. else val = 0; \
  1452. sign = 0 - (val&1); \
  1453. _dmv_x = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  1454. \
  1455. index1 = index/6; \
  1456. if (!s->quarter_sample && index1 == 5) val = 1; \
  1457. else val = 0; \
  1458. if(size_table[index1] - val > 0) \
  1459. val = get_bits(gb, size_table[index1] - val); \
  1460. else val = 0; \
  1461. sign = 0 - (val&1); \
  1462. _dmv_y = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  1463. }
  1464. /** Predict and set motion vector
  1465. */
  1466. static inline void vc1_pred_mv(MpegEncContext *s, int n, int dmv_x, int dmv_y, int mv1, int r_x, int r_y, uint8_t* is_intra)
  1467. {
  1468. int xy, wrap, off = 0;
  1469. int16_t *A, *B, *C;
  1470. int px, py;
  1471. int sum;
  1472. /* scale MV difference to be quad-pel */
  1473. dmv_x <<= 1 - s->quarter_sample;
  1474. dmv_y <<= 1 - s->quarter_sample;
  1475. wrap = s->b8_stride;
  1476. xy = s->block_index[n];
  1477. if(s->mb_intra){
  1478. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = 0;
  1479. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = 0;
  1480. s->current_picture.motion_val[1][xy][0] = 0;
  1481. s->current_picture.motion_val[1][xy][1] = 0;
  1482. if(mv1) { /* duplicate motion data for 1-MV block */
  1483. s->current_picture.motion_val[0][xy + 1][0] = 0;
  1484. s->current_picture.motion_val[0][xy + 1][1] = 0;
  1485. s->current_picture.motion_val[0][xy + wrap][0] = 0;
  1486. s->current_picture.motion_val[0][xy + wrap][1] = 0;
  1487. s->current_picture.motion_val[0][xy + wrap + 1][0] = 0;
  1488. s->current_picture.motion_val[0][xy + wrap + 1][1] = 0;
  1489. s->current_picture.motion_val[1][xy + 1][0] = 0;
  1490. s->current_picture.motion_val[1][xy + 1][1] = 0;
  1491. s->current_picture.motion_val[1][xy + wrap][0] = 0;
  1492. s->current_picture.motion_val[1][xy + wrap][1] = 0;
  1493. s->current_picture.motion_val[1][xy + wrap + 1][0] = 0;
  1494. s->current_picture.motion_val[1][xy + wrap + 1][1] = 0;
  1495. }
  1496. return;
  1497. }
  1498. C = s->current_picture.motion_val[0][xy - 1];
  1499. A = s->current_picture.motion_val[0][xy - wrap];
  1500. if(mv1)
  1501. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 2;
  1502. else {
  1503. //in 4-MV mode different blocks have different B predictor position
  1504. switch(n){
  1505. case 0:
  1506. off = (s->mb_x > 0) ? -1 : 1;
  1507. break;
  1508. case 1:
  1509. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 1;
  1510. break;
  1511. case 2:
  1512. off = 1;
  1513. break;
  1514. case 3:
  1515. off = -1;
  1516. }
  1517. }
  1518. B = s->current_picture.motion_val[0][xy - wrap + off];
  1519. if(!s->first_slice_line || (n==2 || n==3)) { // predictor A is not out of bounds
  1520. if(s->mb_width == 1) {
  1521. px = A[0];
  1522. py = A[1];
  1523. } else {
  1524. px = mid_pred(A[0], B[0], C[0]);
  1525. py = mid_pred(A[1], B[1], C[1]);
  1526. }
  1527. } else if(s->mb_x || (n==1 || n==3)) { // predictor C is not out of bounds
  1528. px = C[0];
  1529. py = C[1];
  1530. } else {
  1531. px = py = 0;
  1532. }
  1533. /* Pullback MV as specified in 8.3.5.3.4 */
  1534. {
  1535. int qx, qy, X, Y;
  1536. qx = (s->mb_x << 6) + ((n==1 || n==3) ? 32 : 0);
  1537. qy = (s->mb_y << 6) + ((n==2 || n==3) ? 32 : 0);
  1538. X = (s->mb_width << 6) - 4;
  1539. Y = (s->mb_height << 6) - 4;
  1540. if(mv1) {
  1541. if(qx + px < -60) px = -60 - qx;
  1542. if(qy + py < -60) py = -60 - qy;
  1543. } else {
  1544. if(qx + px < -28) px = -28 - qx;
  1545. if(qy + py < -28) py = -28 - qy;
  1546. }
  1547. if(qx + px > X) px = X - qx;
  1548. if(qy + py > Y) py = Y - qy;
  1549. }
  1550. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  1551. if((!s->first_slice_line || (n==2 || n==3)) && (s->mb_x || (n==1 || n==3))) {
  1552. if(is_intra[xy - wrap])
  1553. sum = FFABS(px) + FFABS(py);
  1554. else
  1555. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  1556. if(sum > 32) {
  1557. if(get_bits1(&s->gb)) {
  1558. px = A[0];
  1559. py = A[1];
  1560. } else {
  1561. px = C[0];
  1562. py = C[1];
  1563. }
  1564. } else {
  1565. if(is_intra[xy - 1])
  1566. sum = FFABS(px) + FFABS(py);
  1567. else
  1568. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  1569. if(sum > 32) {
  1570. if(get_bits1(&s->gb)) {
  1571. px = A[0];
  1572. py = A[1];
  1573. } else {
  1574. px = C[0];
  1575. py = C[1];
  1576. }
  1577. }
  1578. }
  1579. }
  1580. /* store MV using signed modulus of MV range defined in 4.11 */
  1581. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = ((px + dmv_x + r_x) & ((r_x << 1) - 1)) - r_x;
  1582. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = ((py + dmv_y + r_y) & ((r_y << 1) - 1)) - r_y;
  1583. if(mv1) { /* duplicate motion data for 1-MV block */
  1584. s->current_picture.motion_val[0][xy + 1][0] = s->current_picture.motion_val[0][xy][0];
  1585. s->current_picture.motion_val[0][xy + 1][1] = s->current_picture.motion_val[0][xy][1];
  1586. s->current_picture.motion_val[0][xy + wrap][0] = s->current_picture.motion_val[0][xy][0];
  1587. s->current_picture.motion_val[0][xy + wrap][1] = s->current_picture.motion_val[0][xy][1];
  1588. s->current_picture.motion_val[0][xy + wrap + 1][0] = s->current_picture.motion_val[0][xy][0];
  1589. s->current_picture.motion_val[0][xy + wrap + 1][1] = s->current_picture.motion_val[0][xy][1];
  1590. }
  1591. }
  1592. /** Motion compensation for direct or interpolated blocks in B-frames
  1593. */
  1594. static void vc1_interp_mc(VC1Context *v)
  1595. {
  1596. MpegEncContext *s = &v->s;
  1597. DSPContext *dsp = &v->s.dsp;
  1598. uint8_t *srcY, *srcU, *srcV;
  1599. int dxy, uvdxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  1600. if(!v->s.next_picture.data[0])return;
  1601. mx = s->mv[1][0][0];
  1602. my = s->mv[1][0][1];
  1603. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  1604. uvmy = (my + ((my & 3) == 3)) >> 1;
  1605. if(v->fastuvmc) {
  1606. uvmx = uvmx + ((uvmx<0)?-(uvmx&1):(uvmx&1));
  1607. uvmy = uvmy + ((uvmy<0)?-(uvmy&1):(uvmy&1));
  1608. }
  1609. srcY = s->next_picture.data[0];
  1610. srcU = s->next_picture.data[1];
  1611. srcV = s->next_picture.data[2];
  1612. src_x = s->mb_x * 16 + (mx >> 2);
  1613. src_y = s->mb_y * 16 + (my >> 2);
  1614. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  1615. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  1616. if(v->profile != PROFILE_ADVANCED){
  1617. src_x = av_clip( src_x, -16, s->mb_width * 16);
  1618. src_y = av_clip( src_y, -16, s->mb_height * 16);
  1619. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  1620. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  1621. }else{
  1622. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  1623. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  1624. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  1625. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  1626. }
  1627. srcY += src_y * s->linesize + src_x;
  1628. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  1629. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  1630. /* for grayscale we should not try to read from unknown area */
  1631. if(s->flags & CODEC_FLAG_GRAY) {
  1632. srcU = s->edge_emu_buffer + 18 * s->linesize;
  1633. srcV = s->edge_emu_buffer + 18 * s->linesize;
  1634. }
  1635. if(v->rangeredfrm
  1636. || (unsigned)src_x > s->h_edge_pos - (mx&3) - 16
  1637. || (unsigned)src_y > s->v_edge_pos - (my&3) - 16){
  1638. uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
  1639. srcY -= s->mspel * (1 + s->linesize);
  1640. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
  1641. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  1642. srcY = s->edge_emu_buffer;
  1643. ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
  1644. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  1645. ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
  1646. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  1647. srcU = uvbuf;
  1648. srcV = uvbuf + 16;
  1649. /* if we deal with range reduction we need to scale source blocks */
  1650. if(v->rangeredfrm) {
  1651. int i, j;
  1652. uint8_t *src, *src2;
  1653. src = srcY;
  1654. for(j = 0; j < 17 + s->mspel*2; j++) {
  1655. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  1656. src += s->linesize;
  1657. }
  1658. src = srcU; src2 = srcV;
  1659. for(j = 0; j < 9; j++) {
  1660. for(i = 0; i < 9; i++) {
  1661. src[i] = ((src[i] - 128) >> 1) + 128;
  1662. src2[i] = ((src2[i] - 128) >> 1) + 128;
  1663. }
  1664. src += s->uvlinesize;
  1665. src2 += s->uvlinesize;
  1666. }
  1667. }
  1668. srcY += s->mspel * (1 + s->linesize);
  1669. }
  1670. mx >>= 1;
  1671. my >>= 1;
  1672. dxy = ((my & 1) << 1) | (mx & 1);
  1673. dsp->avg_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  1674. if(s->flags & CODEC_FLAG_GRAY) return;
  1675. /* Chroma MC always uses qpel blilinear */
  1676. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  1677. uvmx = (uvmx&3)<<1;
  1678. uvmy = (uvmy&3)<<1;
  1679. dsp->avg_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  1680. dsp->avg_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  1681. }
  1682. static av_always_inline int scale_mv(int value, int bfrac, int inv, int qs)
  1683. {
  1684. int n = bfrac;
  1685. #if B_FRACTION_DEN==256
  1686. if(inv)
  1687. n -= 256;
  1688. if(!qs)
  1689. return 2 * ((value * n + 255) >> 9);
  1690. return (value * n + 128) >> 8;
  1691. #else
  1692. if(inv)
  1693. n -= B_FRACTION_DEN;
  1694. if(!qs)
  1695. return 2 * ((value * n + B_FRACTION_DEN - 1) / (2 * B_FRACTION_DEN));
  1696. return (value * n + B_FRACTION_DEN/2) / B_FRACTION_DEN;
  1697. #endif
  1698. }
  1699. /** Reconstruct motion vector for B-frame and do motion compensation
  1700. */
  1701. static inline void vc1_b_mc(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mode)
  1702. {
  1703. if(v->use_ic) {
  1704. v->mv_mode2 = v->mv_mode;
  1705. v->mv_mode = MV_PMODE_INTENSITY_COMP;
  1706. }
  1707. if(direct) {
  1708. vc1_mc_1mv(v, 0);
  1709. vc1_interp_mc(v);
  1710. if(v->use_ic) v->mv_mode = v->mv_mode2;
  1711. return;
  1712. }
  1713. if(mode == BMV_TYPE_INTERPOLATED) {
  1714. vc1_mc_1mv(v, 0);
  1715. vc1_interp_mc(v);
  1716. if(v->use_ic) v->mv_mode = v->mv_mode2;
  1717. return;
  1718. }
  1719. if(v->use_ic && (mode == BMV_TYPE_BACKWARD)) v->mv_mode = v->mv_mode2;
  1720. vc1_mc_1mv(v, (mode == BMV_TYPE_BACKWARD));
  1721. if(v->use_ic) v->mv_mode = v->mv_mode2;
  1722. }
  1723. static inline void vc1_pred_b_mv(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mvtype)
  1724. {
  1725. MpegEncContext *s = &v->s;
  1726. int xy, wrap, off = 0;
  1727. int16_t *A, *B, *C;
  1728. int px, py;
  1729. int sum;
  1730. int r_x, r_y;
  1731. const uint8_t *is_intra = v->mb_type[0];
  1732. r_x = v->range_x;
  1733. r_y = v->range_y;
  1734. /* scale MV difference to be quad-pel */
  1735. dmv_x[0] <<= 1 - s->quarter_sample;
  1736. dmv_y[0] <<= 1 - s->quarter_sample;
  1737. dmv_x[1] <<= 1 - s->quarter_sample;
  1738. dmv_y[1] <<= 1 - s->quarter_sample;
  1739. wrap = s->b8_stride;
  1740. xy = s->block_index[0];
  1741. if(s->mb_intra) {
  1742. s->current_picture.motion_val[0][xy][0] =
  1743. s->current_picture.motion_val[0][xy][1] =
  1744. s->current_picture.motion_val[1][xy][0] =
  1745. s->current_picture.motion_val[1][xy][1] = 0;
  1746. return;
  1747. }
  1748. s->mv[0][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 0, s->quarter_sample);
  1749. s->mv[0][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 0, s->quarter_sample);
  1750. s->mv[1][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 1, s->quarter_sample);
  1751. s->mv[1][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 1, s->quarter_sample);
  1752. /* Pullback predicted motion vectors as specified in 8.4.5.4 */
  1753. s->mv[0][0][0] = av_clip(s->mv[0][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
  1754. s->mv[0][0][1] = av_clip(s->mv[0][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
  1755. s->mv[1][0][0] = av_clip(s->mv[1][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
  1756. s->mv[1][0][1] = av_clip(s->mv[1][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
  1757. if(direct) {
  1758. s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
  1759. s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
  1760. s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
  1761. s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
  1762. return;
  1763. }
  1764. if((mvtype == BMV_TYPE_FORWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
  1765. C = s->current_picture.motion_val[0][xy - 2];
  1766. A = s->current_picture.motion_val[0][xy - wrap*2];
  1767. off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
  1768. B = s->current_picture.motion_val[0][xy - wrap*2 + off];
  1769. if(!s->mb_x) C[0] = C[1] = 0;
  1770. if(!s->first_slice_line) { // predictor A is not out of bounds
  1771. if(s->mb_width == 1) {
  1772. px = A[0];
  1773. py = A[1];
  1774. } else {
  1775. px = mid_pred(A[0], B[0], C[0]);
  1776. py = mid_pred(A[1], B[1], C[1]);
  1777. }
  1778. } else if(s->mb_x) { // predictor C is not out of bounds
  1779. px = C[0];
  1780. py = C[1];
  1781. } else {
  1782. px = py = 0;
  1783. }
  1784. /* Pullback MV as specified in 8.3.5.3.4 */
  1785. {
  1786. int qx, qy, X, Y;
  1787. if(v->profile < PROFILE_ADVANCED) {
  1788. qx = (s->mb_x << 5);
  1789. qy = (s->mb_y << 5);
  1790. X = (s->mb_width << 5) - 4;
  1791. Y = (s->mb_height << 5) - 4;
  1792. if(qx + px < -28) px = -28 - qx;
  1793. if(qy + py < -28) py = -28 - qy;
  1794. if(qx + px > X) px = X - qx;
  1795. if(qy + py > Y) py = Y - qy;
  1796. } else {
  1797. qx = (s->mb_x << 6);
  1798. qy = (s->mb_y << 6);
  1799. X = (s->mb_width << 6) - 4;
  1800. Y = (s->mb_height << 6) - 4;
  1801. if(qx + px < -60) px = -60 - qx;
  1802. if(qy + py < -60) py = -60 - qy;
  1803. if(qx + px > X) px = X - qx;
  1804. if(qy + py > Y) py = Y - qy;
  1805. }
  1806. }
  1807. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  1808. if(0 && !s->first_slice_line && s->mb_x) {
  1809. if(is_intra[xy - wrap])
  1810. sum = FFABS(px) + FFABS(py);
  1811. else
  1812. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  1813. if(sum > 32) {
  1814. if(get_bits1(&s->gb)) {
  1815. px = A[0];
  1816. py = A[1];
  1817. } else {
  1818. px = C[0];
  1819. py = C[1];
  1820. }
  1821. } else {
  1822. if(is_intra[xy - 2])
  1823. sum = FFABS(px) + FFABS(py);
  1824. else
  1825. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  1826. if(sum > 32) {
  1827. if(get_bits1(&s->gb)) {
  1828. px = A[0];
  1829. py = A[1];
  1830. } else {
  1831. px = C[0];
  1832. py = C[1];
  1833. }
  1834. }
  1835. }
  1836. }
  1837. /* store MV using signed modulus of MV range defined in 4.11 */
  1838. s->mv[0][0][0] = ((px + dmv_x[0] + r_x) & ((r_x << 1) - 1)) - r_x;
  1839. s->mv[0][0][1] = ((py + dmv_y[0] + r_y) & ((r_y << 1) - 1)) - r_y;
  1840. }
  1841. if((mvtype == BMV_TYPE_BACKWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
  1842. C = s->current_picture.motion_val[1][xy - 2];
  1843. A = s->current_picture.motion_val[1][xy - wrap*2];
  1844. off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
  1845. B = s->current_picture.motion_val[1][xy - wrap*2 + off];
  1846. if(!s->mb_x) C[0] = C[1] = 0;
  1847. if(!s->first_slice_line) { // predictor A is not out of bounds
  1848. if(s->mb_width == 1) {
  1849. px = A[0];
  1850. py = A[1];
  1851. } else {
  1852. px = mid_pred(A[0], B[0], C[0]);
  1853. py = mid_pred(A[1], B[1], C[1]);
  1854. }
  1855. } else if(s->mb_x) { // predictor C is not out of bounds
  1856. px = C[0];
  1857. py = C[1];
  1858. } else {
  1859. px = py = 0;
  1860. }
  1861. /* Pullback MV as specified in 8.3.5.3.4 */
  1862. {
  1863. int qx, qy, X, Y;
  1864. if(v->profile < PROFILE_ADVANCED) {
  1865. qx = (s->mb_x << 5);
  1866. qy = (s->mb_y << 5);
  1867. X = (s->mb_width << 5) - 4;
  1868. Y = (s->mb_height << 5) - 4;
  1869. if(qx + px < -28) px = -28 - qx;
  1870. if(qy + py < -28) py = -28 - qy;
  1871. if(qx + px > X) px = X - qx;
  1872. if(qy + py > Y) py = Y - qy;
  1873. } else {
  1874. qx = (s->mb_x << 6);
  1875. qy = (s->mb_y << 6);
  1876. X = (s->mb_width << 6) - 4;
  1877. Y = (s->mb_height << 6) - 4;
  1878. if(qx + px < -60) px = -60 - qx;
  1879. if(qy + py < -60) py = -60 - qy;
  1880. if(qx + px > X) px = X - qx;
  1881. if(qy + py > Y) py = Y - qy;
  1882. }
  1883. }
  1884. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  1885. if(0 && !s->first_slice_line && s->mb_x) {
  1886. if(is_intra[xy - wrap])
  1887. sum = FFABS(px) + FFABS(py);
  1888. else
  1889. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  1890. if(sum > 32) {
  1891. if(get_bits1(&s->gb)) {
  1892. px = A[0];
  1893. py = A[1];
  1894. } else {
  1895. px = C[0];
  1896. py = C[1];
  1897. }
  1898. } else {
  1899. if(is_intra[xy - 2])
  1900. sum = FFABS(px) + FFABS(py);
  1901. else
  1902. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  1903. if(sum > 32) {
  1904. if(get_bits1(&s->gb)) {
  1905. px = A[0];
  1906. py = A[1];
  1907. } else {
  1908. px = C[0];
  1909. py = C[1];
  1910. }
  1911. }
  1912. }
  1913. }
  1914. /* store MV using signed modulus of MV range defined in 4.11 */
  1915. s->mv[1][0][0] = ((px + dmv_x[1] + r_x) & ((r_x << 1) - 1)) - r_x;
  1916. s->mv[1][0][1] = ((py + dmv_y[1] + r_y) & ((r_y << 1) - 1)) - r_y;
  1917. }
  1918. s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
  1919. s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
  1920. s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
  1921. s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
  1922. }
  1923. /** Get predicted DC value for I-frames only
  1924. * prediction dir: left=0, top=1
  1925. * @param s MpegEncContext
  1926. * @param[in] n block index in the current MB
  1927. * @param dc_val_ptr Pointer to DC predictor
  1928. * @param dir_ptr Prediction direction for use in AC prediction
  1929. */
  1930. static inline int vc1_i_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  1931. int16_t **dc_val_ptr, int *dir_ptr)
  1932. {
  1933. int a, b, c, wrap, pred, scale;
  1934. int16_t *dc_val;
  1935. static const uint16_t dcpred[32] = {
  1936. -1, 1024, 512, 341, 256, 205, 171, 146, 128,
  1937. 114, 102, 93, 85, 79, 73, 68, 64,
  1938. 60, 57, 54, 51, 49, 47, 45, 43,
  1939. 41, 39, 38, 37, 35, 34, 33
  1940. };
  1941. /* find prediction - wmv3_dc_scale always used here in fact */
  1942. if (n < 4) scale = s->y_dc_scale;
  1943. else scale = s->c_dc_scale;
  1944. wrap = s->block_wrap[n];
  1945. dc_val= s->dc_val[0] + s->block_index[n];
  1946. /* B A
  1947. * C X
  1948. */
  1949. c = dc_val[ - 1];
  1950. b = dc_val[ - 1 - wrap];
  1951. a = dc_val[ - wrap];
  1952. if (pq < 9 || !overlap)
  1953. {
  1954. /* Set outer values */
  1955. if (s->first_slice_line && (n!=2 && n!=3)) b=a=dcpred[scale];
  1956. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=dcpred[scale];
  1957. }
  1958. else
  1959. {
  1960. /* Set outer values */
  1961. if (s->first_slice_line && (n!=2 && n!=3)) b=a=0;
  1962. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=0;
  1963. }
  1964. if (abs(a - b) <= abs(b - c)) {
  1965. pred = c;
  1966. *dir_ptr = 1;//left
  1967. } else {
  1968. pred = a;
  1969. *dir_ptr = 0;//top
  1970. }
  1971. /* update predictor */
  1972. *dc_val_ptr = &dc_val[0];
  1973. return pred;
  1974. }
  1975. /** Get predicted DC value
  1976. * prediction dir: left=0, top=1
  1977. * @param s MpegEncContext
  1978. * @param[in] n block index in the current MB
  1979. * @param dc_val_ptr Pointer to DC predictor
  1980. * @param dir_ptr Prediction direction for use in AC prediction
  1981. */
  1982. static inline int vc1_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  1983. int a_avail, int c_avail,
  1984. int16_t **dc_val_ptr, int *dir_ptr)
  1985. {
  1986. int a, b, c, wrap, pred, scale;
  1987. int16_t *dc_val;
  1988. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  1989. int q1, q2 = 0;
  1990. /* find prediction - wmv3_dc_scale always used here in fact */
  1991. if (n < 4) scale = s->y_dc_scale;
  1992. else scale = s->c_dc_scale;
  1993. wrap = s->block_wrap[n];
  1994. dc_val= s->dc_val[0] + s->block_index[n];
  1995. /* B A
  1996. * C X
  1997. */
  1998. c = dc_val[ - 1];
  1999. b = dc_val[ - 1 - wrap];
  2000. a = dc_val[ - wrap];
  2001. /* scale predictors if needed */
  2002. q1 = s->current_picture.qscale_table[mb_pos];
  2003. if(c_avail && (n!= 1 && n!=3)) {
  2004. q2 = s->current_picture.qscale_table[mb_pos - 1];
  2005. if(q2 && q2 != q1)
  2006. c = (c * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2007. }
  2008. if(a_avail && (n!= 2 && n!=3)) {
  2009. q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2010. if(q2 && q2 != q1)
  2011. a = (a * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2012. }
  2013. if(a_avail && c_avail && (n!=3)) {
  2014. int off = mb_pos;
  2015. if(n != 1) off--;
  2016. if(n != 2) off -= s->mb_stride;
  2017. q2 = s->current_picture.qscale_table[off];
  2018. if(q2 && q2 != q1)
  2019. b = (b * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2020. }
  2021. if(a_avail && c_avail) {
  2022. if(abs(a - b) <= abs(b - c)) {
  2023. pred = c;
  2024. *dir_ptr = 1;//left
  2025. } else {
  2026. pred = a;
  2027. *dir_ptr = 0;//top
  2028. }
  2029. } else if(a_avail) {
  2030. pred = a;
  2031. *dir_ptr = 0;//top
  2032. } else if(c_avail) {
  2033. pred = c;
  2034. *dir_ptr = 1;//left
  2035. } else {
  2036. pred = 0;
  2037. *dir_ptr = 1;//left
  2038. }
  2039. /* update predictor */
  2040. *dc_val_ptr = &dc_val[0];
  2041. return pred;
  2042. }
  2043. /**
  2044. * @defgroup std_mb VC1 Macroblock-level functions in Simple/Main Profiles
  2045. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  2046. * @{
  2047. */
  2048. static inline int vc1_coded_block_pred(MpegEncContext * s, int n, uint8_t **coded_block_ptr)
  2049. {
  2050. int xy, wrap, pred, a, b, c;
  2051. xy = s->block_index[n];
  2052. wrap = s->b8_stride;
  2053. /* B C
  2054. * A X
  2055. */
  2056. a = s->coded_block[xy - 1 ];
  2057. b = s->coded_block[xy - 1 - wrap];
  2058. c = s->coded_block[xy - wrap];
  2059. if (b == c) {
  2060. pred = a;
  2061. } else {
  2062. pred = c;
  2063. }
  2064. /* store value */
  2065. *coded_block_ptr = &s->coded_block[xy];
  2066. return pred;
  2067. }
  2068. /**
  2069. * Decode one AC coefficient
  2070. * @param v The VC1 context
  2071. * @param last Last coefficient
  2072. * @param skip How much zero coefficients to skip
  2073. * @param value Decoded AC coefficient value
  2074. * @see 8.1.3.4
  2075. */
  2076. static void vc1_decode_ac_coeff(VC1Context *v, int *last, int *skip, int *value, int codingset)
  2077. {
  2078. GetBitContext *gb = &v->s.gb;
  2079. int index, escape, run = 0, level = 0, lst = 0;
  2080. index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  2081. if (index != vc1_ac_sizes[codingset] - 1) {
  2082. run = vc1_index_decode_table[codingset][index][0];
  2083. level = vc1_index_decode_table[codingset][index][1];
  2084. lst = index >= vc1_last_decode_table[codingset];
  2085. if(get_bits1(gb))
  2086. level = -level;
  2087. } else {
  2088. escape = decode210(gb);
  2089. if (escape != 2) {
  2090. index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  2091. run = vc1_index_decode_table[codingset][index][0];
  2092. level = vc1_index_decode_table[codingset][index][1];
  2093. lst = index >= vc1_last_decode_table[codingset];
  2094. if(escape == 0) {
  2095. if(lst)
  2096. level += vc1_last_delta_level_table[codingset][run];
  2097. else
  2098. level += vc1_delta_level_table[codingset][run];
  2099. } else {
  2100. if(lst)
  2101. run += vc1_last_delta_run_table[codingset][level] + 1;
  2102. else
  2103. run += vc1_delta_run_table[codingset][level] + 1;
  2104. }
  2105. if(get_bits1(gb))
  2106. level = -level;
  2107. } else {
  2108. int sign;
  2109. lst = get_bits1(gb);
  2110. if(v->s.esc3_level_length == 0) {
  2111. if(v->pq < 8 || v->dquantfrm) { // table 59
  2112. v->s.esc3_level_length = get_bits(gb, 3);
  2113. if(!v->s.esc3_level_length)
  2114. v->s.esc3_level_length = get_bits(gb, 2) + 8;
  2115. } else { //table 60
  2116. v->s.esc3_level_length = get_unary(gb, 1, 6) + 2;
  2117. }
  2118. v->s.esc3_run_length = 3 + get_bits(gb, 2);
  2119. }
  2120. run = get_bits(gb, v->s.esc3_run_length);
  2121. sign = get_bits1(gb);
  2122. level = get_bits(gb, v->s.esc3_level_length);
  2123. if(sign)
  2124. level = -level;
  2125. }
  2126. }
  2127. *last = lst;
  2128. *skip = run;
  2129. *value = level;
  2130. }
  2131. /** Decode intra block in intra frames - should be faster than decode_intra_block
  2132. * @param v VC1Context
  2133. * @param block block to decode
  2134. * @param coded are AC coeffs present or not
  2135. * @param codingset set of VLC to decode data
  2136. */
  2137. static int vc1_decode_i_block(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset)
  2138. {
  2139. GetBitContext *gb = &v->s.gb;
  2140. MpegEncContext *s = &v->s;
  2141. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2142. int run_diff, i;
  2143. int16_t *dc_val;
  2144. int16_t *ac_val, *ac_val2;
  2145. int dcdiff;
  2146. /* Get DC differential */
  2147. if (n < 4) {
  2148. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2149. } else {
  2150. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2151. }
  2152. if (dcdiff < 0){
  2153. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2154. return -1;
  2155. }
  2156. if (dcdiff)
  2157. {
  2158. if (dcdiff == 119 /* ESC index value */)
  2159. {
  2160. /* TODO: Optimize */
  2161. if (v->pq == 1) dcdiff = get_bits(gb, 10);
  2162. else if (v->pq == 2) dcdiff = get_bits(gb, 9);
  2163. else dcdiff = get_bits(gb, 8);
  2164. }
  2165. else
  2166. {
  2167. if (v->pq == 1)
  2168. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2169. else if (v->pq == 2)
  2170. dcdiff = (dcdiff<<1) + get_bits1(gb) - 1;
  2171. }
  2172. if (get_bits1(gb))
  2173. dcdiff = -dcdiff;
  2174. }
  2175. /* Prediction */
  2176. dcdiff += vc1_i_pred_dc(&v->s, v->overlap, v->pq, n, &dc_val, &dc_pred_dir);
  2177. *dc_val = dcdiff;
  2178. /* Store the quantized DC coeff, used for prediction */
  2179. if (n < 4) {
  2180. block[0] = dcdiff * s->y_dc_scale;
  2181. } else {
  2182. block[0] = dcdiff * s->c_dc_scale;
  2183. }
  2184. /* Skip ? */
  2185. run_diff = 0;
  2186. i = 0;
  2187. if (!coded) {
  2188. goto not_coded;
  2189. }
  2190. //AC Decoding
  2191. i = 1;
  2192. {
  2193. int last = 0, skip, value;
  2194. const int8_t *zz_table;
  2195. int scale;
  2196. int k;
  2197. scale = v->pq * 2 + v->halfpq;
  2198. if(v->s.ac_pred) {
  2199. if(!dc_pred_dir)
  2200. zz_table = ff_vc1_horizontal_zz;
  2201. else
  2202. zz_table = ff_vc1_vertical_zz;
  2203. } else
  2204. zz_table = ff_vc1_normal_zz;
  2205. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2206. ac_val2 = ac_val;
  2207. if(dc_pred_dir) //left
  2208. ac_val -= 16;
  2209. else //top
  2210. ac_val -= 16 * s->block_wrap[n];
  2211. while (!last) {
  2212. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2213. i += skip;
  2214. if(i > 63)
  2215. break;
  2216. block[zz_table[i++]] = value;
  2217. }
  2218. /* apply AC prediction if needed */
  2219. if(s->ac_pred) {
  2220. if(dc_pred_dir) { //left
  2221. for(k = 1; k < 8; k++)
  2222. block[k << 3] += ac_val[k];
  2223. } else { //top
  2224. for(k = 1; k < 8; k++)
  2225. block[k] += ac_val[k + 8];
  2226. }
  2227. }
  2228. /* save AC coeffs for further prediction */
  2229. for(k = 1; k < 8; k++) {
  2230. ac_val2[k] = block[k << 3];
  2231. ac_val2[k + 8] = block[k];
  2232. }
  2233. /* scale AC coeffs */
  2234. for(k = 1; k < 64; k++)
  2235. if(block[k]) {
  2236. block[k] *= scale;
  2237. if(!v->pquantizer)
  2238. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  2239. }
  2240. if(s->ac_pred) i = 63;
  2241. }
  2242. not_coded:
  2243. if(!coded) {
  2244. int k, scale;
  2245. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2246. ac_val2 = ac_val;
  2247. scale = v->pq * 2 + v->halfpq;
  2248. memset(ac_val2, 0, 16 * 2);
  2249. if(dc_pred_dir) {//left
  2250. ac_val -= 16;
  2251. if(s->ac_pred)
  2252. memcpy(ac_val2, ac_val, 8 * 2);
  2253. } else {//top
  2254. ac_val -= 16 * s->block_wrap[n];
  2255. if(s->ac_pred)
  2256. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2257. }
  2258. /* apply AC prediction if needed */
  2259. if(s->ac_pred) {
  2260. if(dc_pred_dir) { //left
  2261. for(k = 1; k < 8; k++) {
  2262. block[k << 3] = ac_val[k] * scale;
  2263. if(!v->pquantizer && block[k << 3])
  2264. block[k << 3] += (block[k << 3] < 0) ? -v->pq : v->pq;
  2265. }
  2266. } else { //top
  2267. for(k = 1; k < 8; k++) {
  2268. block[k] = ac_val[k + 8] * scale;
  2269. if(!v->pquantizer && block[k])
  2270. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  2271. }
  2272. }
  2273. i = 63;
  2274. }
  2275. }
  2276. s->block_last_index[n] = i;
  2277. return 0;
  2278. }
  2279. /** Decode intra block in intra frames - should be faster than decode_intra_block
  2280. * @param v VC1Context
  2281. * @param block block to decode
  2282. * @param coded are AC coeffs present or not
  2283. * @param codingset set of VLC to decode data
  2284. */
  2285. static int vc1_decode_i_block_adv(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset, int mquant)
  2286. {
  2287. GetBitContext *gb = &v->s.gb;
  2288. MpegEncContext *s = &v->s;
  2289. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2290. int run_diff, i;
  2291. int16_t *dc_val;
  2292. int16_t *ac_val, *ac_val2;
  2293. int dcdiff;
  2294. int a_avail = v->a_avail, c_avail = v->c_avail;
  2295. int use_pred = s->ac_pred;
  2296. int scale;
  2297. int q1, q2 = 0;
  2298. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2299. /* Get DC differential */
  2300. if (n < 4) {
  2301. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2302. } else {
  2303. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2304. }
  2305. if (dcdiff < 0){
  2306. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2307. return -1;
  2308. }
  2309. if (dcdiff)
  2310. {
  2311. if (dcdiff == 119 /* ESC index value */)
  2312. {
  2313. /* TODO: Optimize */
  2314. if (mquant == 1) dcdiff = get_bits(gb, 10);
  2315. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  2316. else dcdiff = get_bits(gb, 8);
  2317. }
  2318. else
  2319. {
  2320. if (mquant == 1)
  2321. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2322. else if (mquant == 2)
  2323. dcdiff = (dcdiff<<1) + get_bits1(gb) - 1;
  2324. }
  2325. if (get_bits1(gb))
  2326. dcdiff = -dcdiff;
  2327. }
  2328. /* Prediction */
  2329. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, v->a_avail, v->c_avail, &dc_val, &dc_pred_dir);
  2330. *dc_val = dcdiff;
  2331. /* Store the quantized DC coeff, used for prediction */
  2332. if (n < 4) {
  2333. block[0] = dcdiff * s->y_dc_scale;
  2334. } else {
  2335. block[0] = dcdiff * s->c_dc_scale;
  2336. }
  2337. /* Skip ? */
  2338. run_diff = 0;
  2339. i = 0;
  2340. //AC Decoding
  2341. i = 1;
  2342. /* check if AC is needed at all */
  2343. if(!a_avail && !c_avail) use_pred = 0;
  2344. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2345. ac_val2 = ac_val;
  2346. scale = mquant * 2 + ((mquant == v->pq) ? v->halfpq : 0);
  2347. if(dc_pred_dir) //left
  2348. ac_val -= 16;
  2349. else //top
  2350. ac_val -= 16 * s->block_wrap[n];
  2351. q1 = s->current_picture.qscale_table[mb_pos];
  2352. if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1];
  2353. if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2354. if(dc_pred_dir && n==1) q2 = q1;
  2355. if(!dc_pred_dir && n==2) q2 = q1;
  2356. if(n==3) q2 = q1;
  2357. if(coded) {
  2358. int last = 0, skip, value;
  2359. const int8_t *zz_table;
  2360. int k;
  2361. if(v->s.ac_pred) {
  2362. if(!dc_pred_dir)
  2363. zz_table = ff_vc1_horizontal_zz;
  2364. else
  2365. zz_table = ff_vc1_vertical_zz;
  2366. } else
  2367. zz_table = ff_vc1_normal_zz;
  2368. while (!last) {
  2369. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2370. i += skip;
  2371. if(i > 63)
  2372. break;
  2373. block[zz_table[i++]] = value;
  2374. }
  2375. /* apply AC prediction if needed */
  2376. if(use_pred) {
  2377. /* scale predictors if needed*/
  2378. if(q2 && q1!=q2) {
  2379. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2380. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2381. if(dc_pred_dir) { //left
  2382. for(k = 1; k < 8; k++)
  2383. block[k << 3] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2384. } else { //top
  2385. for(k = 1; k < 8; k++)
  2386. block[k] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2387. }
  2388. } else {
  2389. if(dc_pred_dir) { //left
  2390. for(k = 1; k < 8; k++)
  2391. block[k << 3] += ac_val[k];
  2392. } else { //top
  2393. for(k = 1; k < 8; k++)
  2394. block[k] += ac_val[k + 8];
  2395. }
  2396. }
  2397. }
  2398. /* save AC coeffs for further prediction */
  2399. for(k = 1; k < 8; k++) {
  2400. ac_val2[k] = block[k << 3];
  2401. ac_val2[k + 8] = block[k];
  2402. }
  2403. /* scale AC coeffs */
  2404. for(k = 1; k < 64; k++)
  2405. if(block[k]) {
  2406. block[k] *= scale;
  2407. if(!v->pquantizer)
  2408. block[k] += (block[k] < 0) ? -mquant : mquant;
  2409. }
  2410. if(use_pred) i = 63;
  2411. } else { // no AC coeffs
  2412. int k;
  2413. memset(ac_val2, 0, 16 * 2);
  2414. if(dc_pred_dir) {//left
  2415. if(use_pred) {
  2416. memcpy(ac_val2, ac_val, 8 * 2);
  2417. if(q2 && q1!=q2) {
  2418. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2419. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2420. for(k = 1; k < 8; k++)
  2421. ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2422. }
  2423. }
  2424. } else {//top
  2425. if(use_pred) {
  2426. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2427. if(q2 && q1!=q2) {
  2428. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2429. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2430. for(k = 1; k < 8; k++)
  2431. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2432. }
  2433. }
  2434. }
  2435. /* apply AC prediction if needed */
  2436. if(use_pred) {
  2437. if(dc_pred_dir) { //left
  2438. for(k = 1; k < 8; k++) {
  2439. block[k << 3] = ac_val2[k] * scale;
  2440. if(!v->pquantizer && block[k << 3])
  2441. block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
  2442. }
  2443. } else { //top
  2444. for(k = 1; k < 8; k++) {
  2445. block[k] = ac_val2[k + 8] * scale;
  2446. if(!v->pquantizer && block[k])
  2447. block[k] += (block[k] < 0) ? -mquant : mquant;
  2448. }
  2449. }
  2450. i = 63;
  2451. }
  2452. }
  2453. s->block_last_index[n] = i;
  2454. return 0;
  2455. }
  2456. /** Decode intra block in inter frames - more generic version than vc1_decode_i_block
  2457. * @param v VC1Context
  2458. * @param block block to decode
  2459. * @param coded are AC coeffs present or not
  2460. * @param mquant block quantizer
  2461. * @param codingset set of VLC to decode data
  2462. */
  2463. static int vc1_decode_intra_block(VC1Context *v, DCTELEM block[64], int n, int coded, int mquant, int codingset)
  2464. {
  2465. GetBitContext *gb = &v->s.gb;
  2466. MpegEncContext *s = &v->s;
  2467. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2468. int run_diff, i;
  2469. int16_t *dc_val;
  2470. int16_t *ac_val, *ac_val2;
  2471. int dcdiff;
  2472. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2473. int a_avail = v->a_avail, c_avail = v->c_avail;
  2474. int use_pred = s->ac_pred;
  2475. int scale;
  2476. int q1, q2 = 0;
  2477. /* XXX: Guard against dumb values of mquant */
  2478. mquant = (mquant < 1) ? 0 : ( (mquant>31) ? 31 : mquant );
  2479. /* Set DC scale - y and c use the same */
  2480. s->y_dc_scale = s->y_dc_scale_table[mquant];
  2481. s->c_dc_scale = s->c_dc_scale_table[mquant];
  2482. /* Get DC differential */
  2483. if (n < 4) {
  2484. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2485. } else {
  2486. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2487. }
  2488. if (dcdiff < 0){
  2489. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2490. return -1;
  2491. }
  2492. if (dcdiff)
  2493. {
  2494. if (dcdiff == 119 /* ESC index value */)
  2495. {
  2496. /* TODO: Optimize */
  2497. if (mquant == 1) dcdiff = get_bits(gb, 10);
  2498. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  2499. else dcdiff = get_bits(gb, 8);
  2500. }
  2501. else
  2502. {
  2503. if (mquant == 1)
  2504. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2505. else if (mquant == 2)
  2506. dcdiff = (dcdiff<<1) + get_bits1(gb) - 1;
  2507. }
  2508. if (get_bits1(gb))
  2509. dcdiff = -dcdiff;
  2510. }
  2511. /* Prediction */
  2512. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, a_avail, c_avail, &dc_val, &dc_pred_dir);
  2513. *dc_val = dcdiff;
  2514. /* Store the quantized DC coeff, used for prediction */
  2515. if (n < 4) {
  2516. block[0] = dcdiff * s->y_dc_scale;
  2517. } else {
  2518. block[0] = dcdiff * s->c_dc_scale;
  2519. }
  2520. /* Skip ? */
  2521. run_diff = 0;
  2522. i = 0;
  2523. //AC Decoding
  2524. i = 1;
  2525. /* check if AC is needed at all and adjust direction if needed */
  2526. if(!a_avail) dc_pred_dir = 1;
  2527. if(!c_avail) dc_pred_dir = 0;
  2528. if(!a_avail && !c_avail) use_pred = 0;
  2529. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2530. ac_val2 = ac_val;
  2531. scale = mquant * 2 + v->halfpq;
  2532. if(dc_pred_dir) //left
  2533. ac_val -= 16;
  2534. else //top
  2535. ac_val -= 16 * s->block_wrap[n];
  2536. q1 = s->current_picture.qscale_table[mb_pos];
  2537. if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1];
  2538. if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2539. if(dc_pred_dir && n==1) q2 = q1;
  2540. if(!dc_pred_dir && n==2) q2 = q1;
  2541. if(n==3) q2 = q1;
  2542. if(coded) {
  2543. int last = 0, skip, value;
  2544. const int8_t *zz_table;
  2545. int k;
  2546. zz_table = ff_vc1_simple_progressive_8x8_zz;
  2547. while (!last) {
  2548. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2549. i += skip;
  2550. if(i > 63)
  2551. break;
  2552. block[zz_table[i++]] = value;
  2553. }
  2554. /* apply AC prediction if needed */
  2555. if(use_pred) {
  2556. /* scale predictors if needed*/
  2557. if(q2 && q1!=q2) {
  2558. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2559. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2560. if(dc_pred_dir) { //left
  2561. for(k = 1; k < 8; k++)
  2562. block[k << 3] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2563. } else { //top
  2564. for(k = 1; k < 8; k++)
  2565. block[k] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2566. }
  2567. } else {
  2568. if(dc_pred_dir) { //left
  2569. for(k = 1; k < 8; k++)
  2570. block[k << 3] += ac_val[k];
  2571. } else { //top
  2572. for(k = 1; k < 8; k++)
  2573. block[k] += ac_val[k + 8];
  2574. }
  2575. }
  2576. }
  2577. /* save AC coeffs for further prediction */
  2578. for(k = 1; k < 8; k++) {
  2579. ac_val2[k] = block[k << 3];
  2580. ac_val2[k + 8] = block[k];
  2581. }
  2582. /* scale AC coeffs */
  2583. for(k = 1; k < 64; k++)
  2584. if(block[k]) {
  2585. block[k] *= scale;
  2586. if(!v->pquantizer)
  2587. block[k] += (block[k] < 0) ? -mquant : mquant;
  2588. }
  2589. if(use_pred) i = 63;
  2590. } else { // no AC coeffs
  2591. int k;
  2592. memset(ac_val2, 0, 16 * 2);
  2593. if(dc_pred_dir) {//left
  2594. if(use_pred) {
  2595. memcpy(ac_val2, ac_val, 8 * 2);
  2596. if(q2 && q1!=q2) {
  2597. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2598. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2599. for(k = 1; k < 8; k++)
  2600. ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2601. }
  2602. }
  2603. } else {//top
  2604. if(use_pred) {
  2605. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2606. if(q2 && q1!=q2) {
  2607. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2608. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2609. for(k = 1; k < 8; k++)
  2610. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2611. }
  2612. }
  2613. }
  2614. /* apply AC prediction if needed */
  2615. if(use_pred) {
  2616. if(dc_pred_dir) { //left
  2617. for(k = 1; k < 8; k++) {
  2618. block[k << 3] = ac_val2[k] * scale;
  2619. if(!v->pquantizer && block[k << 3])
  2620. block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
  2621. }
  2622. } else { //top
  2623. for(k = 1; k < 8; k++) {
  2624. block[k] = ac_val2[k + 8] * scale;
  2625. if(!v->pquantizer && block[k])
  2626. block[k] += (block[k] < 0) ? -mquant : mquant;
  2627. }
  2628. }
  2629. i = 63;
  2630. }
  2631. }
  2632. s->block_last_index[n] = i;
  2633. return 0;
  2634. }
  2635. /** Decode P block
  2636. */
  2637. static int vc1_decode_p_block(VC1Context *v, DCTELEM block[64], int n, int mquant, int ttmb, int first_block)
  2638. {
  2639. MpegEncContext *s = &v->s;
  2640. GetBitContext *gb = &s->gb;
  2641. int i, j;
  2642. int subblkpat = 0;
  2643. int scale, off, idx, last, skip, value;
  2644. int ttblk = ttmb & 7;
  2645. if(ttmb == -1) {
  2646. ttblk = ff_vc1_ttblk_to_tt[v->tt_index][get_vlc2(gb, ff_vc1_ttblk_vlc[v->tt_index].table, VC1_TTBLK_VLC_BITS, 1)];
  2647. }
  2648. if(ttblk == TT_4X4) {
  2649. subblkpat = ~(get_vlc2(gb, ff_vc1_subblkpat_vlc[v->tt_index].table, VC1_SUBBLKPAT_VLC_BITS, 1) + 1);
  2650. }
  2651. if((ttblk != TT_8X8 && ttblk != TT_4X4) && (v->ttmbf || (ttmb != -1 && (ttmb & 8) && !first_block))) {
  2652. subblkpat = decode012(gb);
  2653. if(subblkpat) subblkpat ^= 3; //swap decoded pattern bits
  2654. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) ttblk = TT_8X4;
  2655. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) ttblk = TT_4X8;
  2656. }
  2657. scale = 2 * mquant + ((v->pq == mquant) ? v->halfpq : 0);
  2658. // convert transforms like 8X4_TOP to generic TT and SUBBLKPAT
  2659. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) {
  2660. subblkpat = 2 - (ttblk == TT_8X4_TOP);
  2661. ttblk = TT_8X4;
  2662. }
  2663. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) {
  2664. subblkpat = 2 - (ttblk == TT_4X8_LEFT);
  2665. ttblk = TT_4X8;
  2666. }
  2667. switch(ttblk) {
  2668. case TT_8X8:
  2669. i = 0;
  2670. last = 0;
  2671. while (!last) {
  2672. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2673. i += skip;
  2674. if(i > 63)
  2675. break;
  2676. idx = ff_vc1_simple_progressive_8x8_zz[i++];
  2677. block[idx] = value * scale;
  2678. if(!v->pquantizer)
  2679. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  2680. }
  2681. s->dsp.vc1_inv_trans_8x8(block);
  2682. break;
  2683. case TT_4X4:
  2684. for(j = 0; j < 4; j++) {
  2685. last = subblkpat & (1 << (3 - j));
  2686. i = 0;
  2687. off = (j & 1) * 4 + (j & 2) * 16;
  2688. while (!last) {
  2689. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2690. i += skip;
  2691. if(i > 15)
  2692. break;
  2693. idx = ff_vc1_simple_progressive_4x4_zz[i++];
  2694. block[idx + off] = value * scale;
  2695. if(!v->pquantizer)
  2696. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  2697. }
  2698. if(!(subblkpat & (1 << (3 - j))))
  2699. s->dsp.vc1_inv_trans_4x4(block, j);
  2700. }
  2701. break;
  2702. case TT_8X4:
  2703. for(j = 0; j < 2; j++) {
  2704. last = subblkpat & (1 << (1 - j));
  2705. i = 0;
  2706. off = j * 32;
  2707. while (!last) {
  2708. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2709. i += skip;
  2710. if(i > 31)
  2711. break;
  2712. if(v->profile < PROFILE_ADVANCED)
  2713. idx = ff_vc1_simple_progressive_8x4_zz[i++];
  2714. else
  2715. idx = ff_vc1_adv_progressive_8x4_zz[i++];
  2716. block[idx + off] = value * scale;
  2717. if(!v->pquantizer)
  2718. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  2719. }
  2720. if(!(subblkpat & (1 << (1 - j))))
  2721. s->dsp.vc1_inv_trans_8x4(block, j);
  2722. }
  2723. break;
  2724. case TT_4X8:
  2725. for(j = 0; j < 2; j++) {
  2726. last = subblkpat & (1 << (1 - j));
  2727. i = 0;
  2728. off = j * 4;
  2729. while (!last) {
  2730. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2731. i += skip;
  2732. if(i > 31)
  2733. break;
  2734. if(v->profile < PROFILE_ADVANCED)
  2735. idx = ff_vc1_simple_progressive_4x8_zz[i++];
  2736. else
  2737. idx = ff_vc1_adv_progressive_4x8_zz[i++];
  2738. block[idx + off] = value * scale;
  2739. if(!v->pquantizer)
  2740. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  2741. }
  2742. if(!(subblkpat & (1 << (1 - j))))
  2743. s->dsp.vc1_inv_trans_4x8(block, j);
  2744. }
  2745. break;
  2746. }
  2747. return 0;
  2748. }
  2749. /** Decode one P-frame MB (in Simple/Main profile)
  2750. */
  2751. static int vc1_decode_p_mb(VC1Context *v)
  2752. {
  2753. MpegEncContext *s = &v->s;
  2754. GetBitContext *gb = &s->gb;
  2755. int i, j;
  2756. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2757. int cbp; /* cbp decoding stuff */
  2758. int mqdiff, mquant; /* MB quantization */
  2759. int ttmb = v->ttfrm; /* MB Transform type */
  2760. int status;
  2761. static const int size_table[6] = { 0, 2, 3, 4, 5, 8 },
  2762. offset_table[6] = { 0, 1, 3, 7, 15, 31 };
  2763. int mb_has_coeffs = 1; /* last_flag */
  2764. int dmv_x, dmv_y; /* Differential MV components */
  2765. int index, index1; /* LUT indices */
  2766. int val, sign; /* temp values */
  2767. int first_block = 1;
  2768. int dst_idx, off;
  2769. int skipped, fourmv;
  2770. mquant = v->pq; /* Loosy initialization */
  2771. if (v->mv_type_is_raw)
  2772. fourmv = get_bits1(gb);
  2773. else
  2774. fourmv = v->mv_type_mb_plane[mb_pos];
  2775. if (v->skip_is_raw)
  2776. skipped = get_bits1(gb);
  2777. else
  2778. skipped = v->s.mbskip_table[mb_pos];
  2779. s->dsp.clear_blocks(s->block[0]);
  2780. if (!fourmv) /* 1MV mode */
  2781. {
  2782. if (!skipped)
  2783. {
  2784. GET_MVDATA(dmv_x, dmv_y);
  2785. if (s->mb_intra) {
  2786. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  2787. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  2788. }
  2789. s->current_picture.mb_type[mb_pos] = s->mb_intra ? MB_TYPE_INTRA : MB_TYPE_16x16;
  2790. vc1_pred_mv(s, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0]);
  2791. /* FIXME Set DC val for inter block ? */
  2792. if (s->mb_intra && !mb_has_coeffs)
  2793. {
  2794. GET_MQUANT();
  2795. s->ac_pred = get_bits1(gb);
  2796. cbp = 0;
  2797. }
  2798. else if (mb_has_coeffs)
  2799. {
  2800. if (s->mb_intra) s->ac_pred = get_bits1(gb);
  2801. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2802. GET_MQUANT();
  2803. }
  2804. else
  2805. {
  2806. mquant = v->pq;
  2807. cbp = 0;
  2808. }
  2809. s->current_picture.qscale_table[mb_pos] = mquant;
  2810. if (!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  2811. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table,
  2812. VC1_TTMB_VLC_BITS, 2);
  2813. if(!s->mb_intra) vc1_mc_1mv(v, 0);
  2814. dst_idx = 0;
  2815. for (i=0; i<6; i++)
  2816. {
  2817. s->dc_val[0][s->block_index[i]] = 0;
  2818. dst_idx += i >> 2;
  2819. val = ((cbp >> (5 - i)) & 1);
  2820. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  2821. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  2822. if(s->mb_intra) {
  2823. /* check if prediction blocks A and C are available */
  2824. v->a_avail = v->c_avail = 0;
  2825. if(i == 2 || i == 3 || !s->first_slice_line)
  2826. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  2827. if(i == 1 || i == 3 || s->mb_x)
  2828. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  2829. vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
  2830. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  2831. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  2832. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  2833. for(j = 0; j < 64; j++) s->block[i][j] += 128;
  2834. if(!v->res_fasttx && v->res_x8) for(j = 0; j < 64; j++) s->block[i][j] += 16;
  2835. s->dsp.put_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2836. if(v->pq >= 9 && v->overlap) {
  2837. if(v->c_avail)
  2838. s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2839. if(v->a_avail)
  2840. s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2841. }
  2842. } else if(val) {
  2843. vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block);
  2844. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  2845. first_block = 0;
  2846. if((i<4) || !(s->flags & CODEC_FLAG_GRAY))
  2847. s->dsp.add_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  2848. }
  2849. }
  2850. }
  2851. else //Skipped
  2852. {
  2853. s->mb_intra = 0;
  2854. for(i = 0; i < 6; i++) {
  2855. v->mb_type[0][s->block_index[i]] = 0;
  2856. s->dc_val[0][s->block_index[i]] = 0;
  2857. }
  2858. s->current_picture.mb_type[mb_pos] = MB_TYPE_SKIP;
  2859. s->current_picture.qscale_table[mb_pos] = 0;
  2860. vc1_pred_mv(s, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0]);
  2861. vc1_mc_1mv(v, 0);
  2862. return 0;
  2863. }
  2864. } //1MV mode
  2865. else //4MV mode
  2866. {
  2867. if (!skipped /* unskipped MB */)
  2868. {
  2869. int intra_count = 0, coded_inter = 0;
  2870. int is_intra[6], is_coded[6];
  2871. /* Get CBPCY */
  2872. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2873. for (i=0; i<6; i++)
  2874. {
  2875. val = ((cbp >> (5 - i)) & 1);
  2876. s->dc_val[0][s->block_index[i]] = 0;
  2877. s->mb_intra = 0;
  2878. if(i < 4) {
  2879. dmv_x = dmv_y = 0;
  2880. s->mb_intra = 0;
  2881. mb_has_coeffs = 0;
  2882. if(val) {
  2883. GET_MVDATA(dmv_x, dmv_y);
  2884. }
  2885. vc1_pred_mv(s, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0]);
  2886. if(!s->mb_intra) vc1_mc_4mv_luma(v, i);
  2887. intra_count += s->mb_intra;
  2888. is_intra[i] = s->mb_intra;
  2889. is_coded[i] = mb_has_coeffs;
  2890. }
  2891. if(i&4){
  2892. is_intra[i] = (intra_count >= 3);
  2893. is_coded[i] = val;
  2894. }
  2895. if(i == 4) vc1_mc_4mv_chroma(v);
  2896. v->mb_type[0][s->block_index[i]] = is_intra[i];
  2897. if(!coded_inter) coded_inter = !is_intra[i] & is_coded[i];
  2898. }
  2899. // if there are no coded blocks then don't do anything more
  2900. if(!intra_count && !coded_inter) return 0;
  2901. dst_idx = 0;
  2902. GET_MQUANT();
  2903. s->current_picture.qscale_table[mb_pos] = mquant;
  2904. /* test if block is intra and has pred */
  2905. {
  2906. int intrapred = 0;
  2907. for(i=0; i<6; i++)
  2908. if(is_intra[i]) {
  2909. if(((!s->first_slice_line || (i==2 || i==3)) && v->mb_type[0][s->block_index[i] - s->block_wrap[i]])
  2910. || ((s->mb_x || (i==1 || i==3)) && v->mb_type[0][s->block_index[i] - 1])) {
  2911. intrapred = 1;
  2912. break;
  2913. }
  2914. }
  2915. if(intrapred)s->ac_pred = get_bits1(gb);
  2916. else s->ac_pred = 0;
  2917. }
  2918. if (!v->ttmbf && coded_inter)
  2919. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  2920. for (i=0; i<6; i++)
  2921. {
  2922. dst_idx += i >> 2;
  2923. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  2924. s->mb_intra = is_intra[i];
  2925. if (is_intra[i]) {
  2926. /* check if prediction blocks A and C are available */
  2927. v->a_avail = v->c_avail = 0;
  2928. if(i == 2 || i == 3 || !s->first_slice_line)
  2929. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  2930. if(i == 1 || i == 3 || s->mb_x)
  2931. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  2932. vc1_decode_intra_block(v, s->block[i], i, is_coded[i], mquant, (i&4)?v->codingset2:v->codingset);
  2933. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  2934. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  2935. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  2936. for(j = 0; j < 64; j++) s->block[i][j] += 128;
  2937. if(!v->res_fasttx && v->res_x8) for(j = 0; j < 64; j++) s->block[i][j] += 16;
  2938. s->dsp.put_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  2939. if(v->pq >= 9 && v->overlap) {
  2940. if(v->c_avail)
  2941. s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2942. if(v->a_avail)
  2943. s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2944. }
  2945. } else if(is_coded[i]) {
  2946. status = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block);
  2947. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  2948. first_block = 0;
  2949. if((i<4) || !(s->flags & CODEC_FLAG_GRAY))
  2950. s->dsp.add_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  2951. }
  2952. }
  2953. return status;
  2954. }
  2955. else //Skipped MB
  2956. {
  2957. s->mb_intra = 0;
  2958. s->current_picture.qscale_table[mb_pos] = 0;
  2959. for (i=0; i<6; i++) {
  2960. v->mb_type[0][s->block_index[i]] = 0;
  2961. s->dc_val[0][s->block_index[i]] = 0;
  2962. }
  2963. for (i=0; i<4; i++)
  2964. {
  2965. vc1_pred_mv(s, i, 0, 0, 0, v->range_x, v->range_y, v->mb_type[0]);
  2966. vc1_mc_4mv_luma(v, i);
  2967. }
  2968. vc1_mc_4mv_chroma(v);
  2969. s->current_picture.qscale_table[mb_pos] = 0;
  2970. return 0;
  2971. }
  2972. }
  2973. /* Should never happen */
  2974. return -1;
  2975. }
  2976. /** Decode one B-frame MB (in Main profile)
  2977. */
  2978. static void vc1_decode_b_mb(VC1Context *v)
  2979. {
  2980. MpegEncContext *s = &v->s;
  2981. GetBitContext *gb = &s->gb;
  2982. int i, j;
  2983. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2984. int cbp = 0; /* cbp decoding stuff */
  2985. int mqdiff, mquant; /* MB quantization */
  2986. int ttmb = v->ttfrm; /* MB Transform type */
  2987. static const int size_table[6] = { 0, 2, 3, 4, 5, 8 },
  2988. offset_table[6] = { 0, 1, 3, 7, 15, 31 };
  2989. int mb_has_coeffs = 0; /* last_flag */
  2990. int index, index1; /* LUT indices */
  2991. int val, sign; /* temp values */
  2992. int first_block = 1;
  2993. int dst_idx, off;
  2994. int skipped, direct;
  2995. int dmv_x[2], dmv_y[2];
  2996. int bmvtype = BMV_TYPE_BACKWARD;
  2997. mquant = v->pq; /* Loosy initialization */
  2998. s->mb_intra = 0;
  2999. if (v->dmb_is_raw)
  3000. direct = get_bits1(gb);
  3001. else
  3002. direct = v->direct_mb_plane[mb_pos];
  3003. if (v->skip_is_raw)
  3004. skipped = get_bits1(gb);
  3005. else
  3006. skipped = v->s.mbskip_table[mb_pos];
  3007. s->dsp.clear_blocks(s->block[0]);
  3008. dmv_x[0] = dmv_x[1] = dmv_y[0] = dmv_y[1] = 0;
  3009. for(i = 0; i < 6; i++) {
  3010. v->mb_type[0][s->block_index[i]] = 0;
  3011. s->dc_val[0][s->block_index[i]] = 0;
  3012. }
  3013. s->current_picture.qscale_table[mb_pos] = 0;
  3014. if (!direct) {
  3015. if (!skipped) {
  3016. GET_MVDATA(dmv_x[0], dmv_y[0]);
  3017. dmv_x[1] = dmv_x[0];
  3018. dmv_y[1] = dmv_y[0];
  3019. }
  3020. if(skipped || !s->mb_intra) {
  3021. bmvtype = decode012(gb);
  3022. switch(bmvtype) {
  3023. case 0:
  3024. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_BACKWARD : BMV_TYPE_FORWARD;
  3025. break;
  3026. case 1:
  3027. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_FORWARD : BMV_TYPE_BACKWARD;
  3028. break;
  3029. case 2:
  3030. bmvtype = BMV_TYPE_INTERPOLATED;
  3031. dmv_x[0] = dmv_y[0] = 0;
  3032. }
  3033. }
  3034. }
  3035. for(i = 0; i < 6; i++)
  3036. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3037. if (skipped) {
  3038. if(direct) bmvtype = BMV_TYPE_INTERPOLATED;
  3039. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3040. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3041. return;
  3042. }
  3043. if (direct) {
  3044. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3045. GET_MQUANT();
  3046. s->mb_intra = 0;
  3047. mb_has_coeffs = 0;
  3048. s->current_picture.qscale_table[mb_pos] = mquant;
  3049. if(!v->ttmbf)
  3050. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3051. dmv_x[0] = dmv_y[0] = dmv_x[1] = dmv_y[1] = 0;
  3052. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3053. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3054. } else {
  3055. if(!mb_has_coeffs && !s->mb_intra) {
  3056. /* no coded blocks - effectively skipped */
  3057. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3058. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3059. return;
  3060. }
  3061. if(s->mb_intra && !mb_has_coeffs) {
  3062. GET_MQUANT();
  3063. s->current_picture.qscale_table[mb_pos] = mquant;
  3064. s->ac_pred = get_bits1(gb);
  3065. cbp = 0;
  3066. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3067. } else {
  3068. if(bmvtype == BMV_TYPE_INTERPOLATED) {
  3069. GET_MVDATA(dmv_x[0], dmv_y[0]);
  3070. if(!mb_has_coeffs) {
  3071. /* interpolated skipped block */
  3072. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3073. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3074. return;
  3075. }
  3076. }
  3077. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3078. if(!s->mb_intra) {
  3079. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3080. }
  3081. if(s->mb_intra)
  3082. s->ac_pred = get_bits1(gb);
  3083. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3084. GET_MQUANT();
  3085. s->current_picture.qscale_table[mb_pos] = mquant;
  3086. if(!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  3087. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3088. }
  3089. }
  3090. dst_idx = 0;
  3091. for (i=0; i<6; i++)
  3092. {
  3093. s->dc_val[0][s->block_index[i]] = 0;
  3094. dst_idx += i >> 2;
  3095. val = ((cbp >> (5 - i)) & 1);
  3096. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  3097. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3098. if(s->mb_intra) {
  3099. /* check if prediction blocks A and C are available */
  3100. v->a_avail = v->c_avail = 0;
  3101. if(i == 2 || i == 3 || !s->first_slice_line)
  3102. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  3103. if(i == 1 || i == 3 || s->mb_x)
  3104. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  3105. vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
  3106. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  3107. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  3108. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  3109. for(j = 0; j < 64; j++) s->block[i][j] += 128;
  3110. s->dsp.put_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3111. } else if(val) {
  3112. vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block);
  3113. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  3114. first_block = 0;
  3115. if((i<4) || !(s->flags & CODEC_FLAG_GRAY))
  3116. s->dsp.add_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  3117. }
  3118. }
  3119. }
  3120. /** Decode blocks of I-frame
  3121. */
  3122. static void vc1_decode_i_blocks(VC1Context *v)
  3123. {
  3124. int k, j;
  3125. MpegEncContext *s = &v->s;
  3126. int cbp, val;
  3127. uint8_t *coded_val;
  3128. int mb_pos;
  3129. /* select codingmode used for VLC tables selection */
  3130. switch(v->y_ac_table_index){
  3131. case 0:
  3132. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3133. break;
  3134. case 1:
  3135. v->codingset = CS_HIGH_MOT_INTRA;
  3136. break;
  3137. case 2:
  3138. v->codingset = CS_MID_RATE_INTRA;
  3139. break;
  3140. }
  3141. switch(v->c_ac_table_index){
  3142. case 0:
  3143. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3144. break;
  3145. case 1:
  3146. v->codingset2 = CS_HIGH_MOT_INTER;
  3147. break;
  3148. case 2:
  3149. v->codingset2 = CS_MID_RATE_INTER;
  3150. break;
  3151. }
  3152. /* Set DC scale - y and c use the same */
  3153. s->y_dc_scale = s->y_dc_scale_table[v->pq];
  3154. s->c_dc_scale = s->c_dc_scale_table[v->pq];
  3155. //do frame decode
  3156. s->mb_x = s->mb_y = 0;
  3157. s->mb_intra = 1;
  3158. s->first_slice_line = 1;
  3159. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3160. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3161. ff_init_block_index(s);
  3162. ff_update_block_index(s);
  3163. s->dsp.clear_blocks(s->block[0]);
  3164. mb_pos = s->mb_x + s->mb_y * s->mb_width;
  3165. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  3166. s->current_picture.qscale_table[mb_pos] = v->pq;
  3167. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  3168. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  3169. // do actual MB decoding and displaying
  3170. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  3171. v->s.ac_pred = get_bits1(&v->s.gb);
  3172. for(k = 0; k < 6; k++) {
  3173. val = ((cbp >> (5 - k)) & 1);
  3174. if (k < 4) {
  3175. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  3176. val = val ^ pred;
  3177. *coded_val = val;
  3178. }
  3179. cbp |= val << (5 - k);
  3180. vc1_decode_i_block(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2);
  3181. s->dsp.vc1_inv_trans_8x8(s->block[k]);
  3182. if(!v->res_fasttx && !v->res_x8) for(j = 0; j < 64; j++) s->block[k][j] -= 16;
  3183. if(v->pq >= 9 && v->overlap) {
  3184. for(j = 0; j < 64; j++) s->block[k][j] += 128;
  3185. }
  3186. }
  3187. vc1_put_block(v, s->block);
  3188. if(v->pq >= 9 && v->overlap) {
  3189. if(s->mb_x) {
  3190. s->dsp.vc1_h_overlap(s->dest[0], s->linesize);
  3191. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3192. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3193. s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
  3194. s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
  3195. }
  3196. }
  3197. s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
  3198. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3199. if(!s->first_slice_line) {
  3200. s->dsp.vc1_v_overlap(s->dest[0], s->linesize);
  3201. s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
  3202. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3203. s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
  3204. s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
  3205. }
  3206. }
  3207. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3208. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3209. }
  3210. if(get_bits_count(&s->gb) > v->bits) {
  3211. ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
  3212. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
  3213. return;
  3214. }
  3215. }
  3216. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3217. s->first_slice_line = 0;
  3218. }
  3219. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3220. }
  3221. /** Decode blocks of I-frame for advanced profile
  3222. */
  3223. static void vc1_decode_i_blocks_adv(VC1Context *v)
  3224. {
  3225. int k, j;
  3226. MpegEncContext *s = &v->s;
  3227. int cbp, val;
  3228. uint8_t *coded_val;
  3229. int mb_pos;
  3230. int mquant = v->pq;
  3231. int mqdiff;
  3232. int overlap;
  3233. GetBitContext *gb = &s->gb;
  3234. /* select codingmode used for VLC tables selection */
  3235. switch(v->y_ac_table_index){
  3236. case 0:
  3237. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3238. break;
  3239. case 1:
  3240. v->codingset = CS_HIGH_MOT_INTRA;
  3241. break;
  3242. case 2:
  3243. v->codingset = CS_MID_RATE_INTRA;
  3244. break;
  3245. }
  3246. switch(v->c_ac_table_index){
  3247. case 0:
  3248. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3249. break;
  3250. case 1:
  3251. v->codingset2 = CS_HIGH_MOT_INTER;
  3252. break;
  3253. case 2:
  3254. v->codingset2 = CS_MID_RATE_INTER;
  3255. break;
  3256. }
  3257. //do frame decode
  3258. s->mb_x = s->mb_y = 0;
  3259. s->mb_intra = 1;
  3260. s->first_slice_line = 1;
  3261. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3262. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3263. ff_init_block_index(s);
  3264. ff_update_block_index(s);
  3265. s->dsp.clear_blocks(s->block[0]);
  3266. mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  3267. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  3268. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  3269. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  3270. // do actual MB decoding and displaying
  3271. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  3272. if(v->acpred_is_raw)
  3273. v->s.ac_pred = get_bits1(&v->s.gb);
  3274. else
  3275. v->s.ac_pred = v->acpred_plane[mb_pos];
  3276. if(v->condover == CONDOVER_SELECT) {
  3277. if(v->overflg_is_raw)
  3278. overlap = get_bits1(&v->s.gb);
  3279. else
  3280. overlap = v->over_flags_plane[mb_pos];
  3281. } else
  3282. overlap = (v->condover == CONDOVER_ALL);
  3283. GET_MQUANT();
  3284. s->current_picture.qscale_table[mb_pos] = mquant;
  3285. /* Set DC scale - y and c use the same */
  3286. s->y_dc_scale = s->y_dc_scale_table[mquant];
  3287. s->c_dc_scale = s->c_dc_scale_table[mquant];
  3288. for(k = 0; k < 6; k++) {
  3289. val = ((cbp >> (5 - k)) & 1);
  3290. if (k < 4) {
  3291. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  3292. val = val ^ pred;
  3293. *coded_val = val;
  3294. }
  3295. cbp |= val << (5 - k);
  3296. v->a_avail = !s->first_slice_line || (k==2 || k==3);
  3297. v->c_avail = !!s->mb_x || (k==1 || k==3);
  3298. vc1_decode_i_block_adv(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2, mquant);
  3299. s->dsp.vc1_inv_trans_8x8(s->block[k]);
  3300. for(j = 0; j < 64; j++) s->block[k][j] += 128;
  3301. }
  3302. vc1_put_block(v, s->block);
  3303. if(overlap) {
  3304. if(s->mb_x) {
  3305. s->dsp.vc1_h_overlap(s->dest[0], s->linesize);
  3306. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3307. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3308. s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
  3309. s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
  3310. }
  3311. }
  3312. s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
  3313. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3314. if(!s->first_slice_line) {
  3315. s->dsp.vc1_v_overlap(s->dest[0], s->linesize);
  3316. s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
  3317. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3318. s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
  3319. s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
  3320. }
  3321. }
  3322. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3323. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3324. }
  3325. if(get_bits_count(&s->gb) > v->bits) {
  3326. ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
  3327. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
  3328. return;
  3329. }
  3330. }
  3331. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3332. s->first_slice_line = 0;
  3333. }
  3334. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3335. }
  3336. static void vc1_decode_p_blocks(VC1Context *v)
  3337. {
  3338. MpegEncContext *s = &v->s;
  3339. /* select codingmode used for VLC tables selection */
  3340. switch(v->c_ac_table_index){
  3341. case 0:
  3342. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3343. break;
  3344. case 1:
  3345. v->codingset = CS_HIGH_MOT_INTRA;
  3346. break;
  3347. case 2:
  3348. v->codingset = CS_MID_RATE_INTRA;
  3349. break;
  3350. }
  3351. switch(v->c_ac_table_index){
  3352. case 0:
  3353. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3354. break;
  3355. case 1:
  3356. v->codingset2 = CS_HIGH_MOT_INTER;
  3357. break;
  3358. case 2:
  3359. v->codingset2 = CS_MID_RATE_INTER;
  3360. break;
  3361. }
  3362. s->first_slice_line = 1;
  3363. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3364. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3365. ff_init_block_index(s);
  3366. ff_update_block_index(s);
  3367. s->dsp.clear_blocks(s->block[0]);
  3368. vc1_decode_p_mb(v);
  3369. if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  3370. ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
  3371. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
  3372. return;
  3373. }
  3374. }
  3375. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3376. s->first_slice_line = 0;
  3377. }
  3378. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3379. }
  3380. static void vc1_decode_b_blocks(VC1Context *v)
  3381. {
  3382. MpegEncContext *s = &v->s;
  3383. /* select codingmode used for VLC tables selection */
  3384. switch(v->c_ac_table_index){
  3385. case 0:
  3386. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3387. break;
  3388. case 1:
  3389. v->codingset = CS_HIGH_MOT_INTRA;
  3390. break;
  3391. case 2:
  3392. v->codingset = CS_MID_RATE_INTRA;
  3393. break;
  3394. }
  3395. switch(v->c_ac_table_index){
  3396. case 0:
  3397. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3398. break;
  3399. case 1:
  3400. v->codingset2 = CS_HIGH_MOT_INTER;
  3401. break;
  3402. case 2:
  3403. v->codingset2 = CS_MID_RATE_INTER;
  3404. break;
  3405. }
  3406. s->first_slice_line = 1;
  3407. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3408. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3409. ff_init_block_index(s);
  3410. ff_update_block_index(s);
  3411. s->dsp.clear_blocks(s->block[0]);
  3412. vc1_decode_b_mb(v);
  3413. if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  3414. ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
  3415. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
  3416. return;
  3417. }
  3418. }
  3419. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3420. s->first_slice_line = 0;
  3421. }
  3422. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3423. }
  3424. static void vc1_decode_skip_blocks(VC1Context *v)
  3425. {
  3426. MpegEncContext *s = &v->s;
  3427. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3428. s->first_slice_line = 1;
  3429. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3430. s->mb_x = 0;
  3431. ff_init_block_index(s);
  3432. ff_update_block_index(s);
  3433. memcpy(s->dest[0], s->last_picture.data[0] + s->mb_y * 16 * s->linesize, s->linesize * 16);
  3434. memcpy(s->dest[1], s->last_picture.data[1] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  3435. memcpy(s->dest[2], s->last_picture.data[2] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  3436. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3437. s->first_slice_line = 0;
  3438. }
  3439. s->pict_type = P_TYPE;
  3440. }
  3441. static void vc1_decode_blocks(VC1Context *v)
  3442. {
  3443. v->s.esc3_level_length = 0;
  3444. switch(v->s.pict_type) {
  3445. case I_TYPE:
  3446. if(v->profile == PROFILE_ADVANCED)
  3447. vc1_decode_i_blocks_adv(v);
  3448. else
  3449. vc1_decode_i_blocks(v);
  3450. break;
  3451. case P_TYPE:
  3452. if(v->p_frame_skipped)
  3453. vc1_decode_skip_blocks(v);
  3454. else
  3455. vc1_decode_p_blocks(v);
  3456. break;
  3457. case B_TYPE:
  3458. if(v->bi_type){
  3459. if(v->profile == PROFILE_ADVANCED)
  3460. vc1_decode_i_blocks_adv(v);
  3461. else
  3462. vc1_decode_i_blocks(v);
  3463. }else
  3464. vc1_decode_b_blocks(v);
  3465. break;
  3466. }
  3467. }
  3468. /** Find VC-1 marker in buffer
  3469. * @return position where next marker starts or end of buffer if no marker found
  3470. */
  3471. static av_always_inline uint8_t* find_next_marker(uint8_t *src, uint8_t *end)
  3472. {
  3473. uint32_t mrk = 0xFFFFFFFF;
  3474. if(end-src < 4) return end;
  3475. while(src < end){
  3476. mrk = (mrk << 8) | *src++;
  3477. if(IS_MARKER(mrk))
  3478. return src-4;
  3479. }
  3480. return end;
  3481. }
  3482. static av_always_inline int vc1_unescape_buffer(uint8_t *src, int size, uint8_t *dst)
  3483. {
  3484. int dsize = 0, i;
  3485. if(size < 4){
  3486. for(dsize = 0; dsize < size; dsize++) *dst++ = *src++;
  3487. return size;
  3488. }
  3489. for(i = 0; i < size; i++, src++) {
  3490. if(src[0] == 3 && i >= 2 && !src[-1] && !src[-2] && i < size-1 && src[1] < 4) {
  3491. dst[dsize++] = src[1];
  3492. src++;
  3493. i++;
  3494. } else
  3495. dst[dsize++] = *src;
  3496. }
  3497. return dsize;
  3498. }
  3499. /** Initialize a VC1/WMV3 decoder
  3500. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  3501. * @todo TODO: Decypher remaining bits in extra_data
  3502. */
  3503. static int vc1_decode_init(AVCodecContext *avctx)
  3504. {
  3505. VC1Context *v = avctx->priv_data;
  3506. MpegEncContext *s = &v->s;
  3507. GetBitContext gb;
  3508. if (!avctx->extradata_size || !avctx->extradata) return -1;
  3509. if (!(avctx->flags & CODEC_FLAG_GRAY))
  3510. avctx->pix_fmt = PIX_FMT_YUV420P;
  3511. else
  3512. avctx->pix_fmt = PIX_FMT_GRAY8;
  3513. v->s.avctx = avctx;
  3514. avctx->flags |= CODEC_FLAG_EMU_EDGE;
  3515. v->s.flags |= CODEC_FLAG_EMU_EDGE;
  3516. if(ff_h263_decode_init(avctx) < 0)
  3517. return -1;
  3518. if (vc1_init_common(v) < 0) return -1;
  3519. avctx->coded_width = avctx->width;
  3520. avctx->coded_height = avctx->height;
  3521. if (avctx->codec_id == CODEC_ID_WMV3)
  3522. {
  3523. int count = 0;
  3524. // looks like WMV3 has a sequence header stored in the extradata
  3525. // advanced sequence header may be before the first frame
  3526. // the last byte of the extradata is a version number, 1 for the
  3527. // samples we can decode
  3528. init_get_bits(&gb, avctx->extradata, avctx->extradata_size*8);
  3529. if (decode_sequence_header(avctx, &gb) < 0)
  3530. return -1;
  3531. count = avctx->extradata_size*8 - get_bits_count(&gb);
  3532. if (count>0)
  3533. {
  3534. av_log(avctx, AV_LOG_INFO, "Extra data: %i bits left, value: %X\n",
  3535. count, get_bits(&gb, count));
  3536. }
  3537. else if (count < 0)
  3538. {
  3539. av_log(avctx, AV_LOG_INFO, "Read %i bits in overflow\n", -count);
  3540. }
  3541. } else { // VC1/WVC1
  3542. uint8_t *start = avctx->extradata, *end = avctx->extradata + avctx->extradata_size;
  3543. uint8_t *next; int size, buf2_size;
  3544. uint8_t *buf2 = NULL;
  3545. int seq_inited = 0, ep_inited = 0;
  3546. if(avctx->extradata_size < 16) {
  3547. av_log(avctx, AV_LOG_ERROR, "Extradata size too small: %i\n", avctx->extradata_size);
  3548. return -1;
  3549. }
  3550. buf2 = av_mallocz(avctx->extradata_size + FF_INPUT_BUFFER_PADDING_SIZE);
  3551. if(start[0]) start++; // in WVC1 extradata first byte is its size
  3552. next = start;
  3553. for(; next < end; start = next){
  3554. next = find_next_marker(start + 4, end);
  3555. size = next - start - 4;
  3556. if(size <= 0) continue;
  3557. buf2_size = vc1_unescape_buffer(start + 4, size, buf2);
  3558. init_get_bits(&gb, buf2, buf2_size * 8);
  3559. switch(AV_RB32(start)){
  3560. case VC1_CODE_SEQHDR:
  3561. if(decode_sequence_header(avctx, &gb) < 0){
  3562. av_free(buf2);
  3563. return -1;
  3564. }
  3565. seq_inited = 1;
  3566. break;
  3567. case VC1_CODE_ENTRYPOINT:
  3568. if(decode_entry_point(avctx, &gb) < 0){
  3569. av_free(buf2);
  3570. return -1;
  3571. }
  3572. ep_inited = 1;
  3573. break;
  3574. }
  3575. }
  3576. av_free(buf2);
  3577. if(!seq_inited || !ep_inited){
  3578. av_log(avctx, AV_LOG_ERROR, "Incomplete extradata\n");
  3579. return -1;
  3580. }
  3581. }
  3582. avctx->has_b_frames= !!(avctx->max_b_frames);
  3583. s->low_delay = !avctx->has_b_frames;
  3584. s->mb_width = (avctx->coded_width+15)>>4;
  3585. s->mb_height = (avctx->coded_height+15)>>4;
  3586. /* Allocate mb bitplanes */
  3587. v->mv_type_mb_plane = av_malloc(s->mb_stride * s->mb_height);
  3588. v->direct_mb_plane = av_malloc(s->mb_stride * s->mb_height);
  3589. v->acpred_plane = av_malloc(s->mb_stride * s->mb_height);
  3590. v->over_flags_plane = av_malloc(s->mb_stride * s->mb_height);
  3591. /* allocate block type info in that way so it could be used with s->block_index[] */
  3592. v->mb_type_base = av_malloc(s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride * (s->mb_height + 1) * 2);
  3593. v->mb_type[0] = v->mb_type_base + s->b8_stride + 1;
  3594. v->mb_type[1] = v->mb_type_base + s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride + 1;
  3595. v->mb_type[2] = v->mb_type[1] + s->mb_stride * (s->mb_height + 1);
  3596. /* Init coded blocks info */
  3597. if (v->profile == PROFILE_ADVANCED)
  3598. {
  3599. // if (alloc_bitplane(&v->over_flags_plane, s->mb_width, s->mb_height) < 0)
  3600. // return -1;
  3601. // if (alloc_bitplane(&v->ac_pred_plane, s->mb_width, s->mb_height) < 0)
  3602. // return -1;
  3603. }
  3604. return 0;
  3605. }
  3606. /** Decode a VC1/WMV3 frame
  3607. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  3608. */
  3609. static int vc1_decode_frame(AVCodecContext *avctx,
  3610. void *data, int *data_size,
  3611. uint8_t *buf, int buf_size)
  3612. {
  3613. VC1Context *v = avctx->priv_data;
  3614. MpegEncContext *s = &v->s;
  3615. AVFrame *pict = data;
  3616. uint8_t *buf2 = NULL;
  3617. /* no supplementary picture */
  3618. if (buf_size == 0) {
  3619. /* special case for last picture */
  3620. if (s->low_delay==0 && s->next_picture_ptr) {
  3621. *pict= *(AVFrame*)s->next_picture_ptr;
  3622. s->next_picture_ptr= NULL;
  3623. *data_size = sizeof(AVFrame);
  3624. }
  3625. return 0;
  3626. }
  3627. /* We need to set current_picture_ptr before reading the header,
  3628. * otherwise we cannot store anything in there. */
  3629. if(s->current_picture_ptr==NULL || s->current_picture_ptr->data[0]){
  3630. int i= ff_find_unused_picture(s, 0);
  3631. s->current_picture_ptr= &s->picture[i];
  3632. }
  3633. //for advanced profile we may need to parse and unescape data
  3634. if (avctx->codec_id == CODEC_ID_VC1) {
  3635. int buf_size2 = 0;
  3636. buf2 = av_mallocz(buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
  3637. if(IS_MARKER(AV_RB32(buf))){ /* frame starts with marker and needs to be parsed */
  3638. uint8_t *start, *end, *next;
  3639. int size;
  3640. next = buf;
  3641. for(start = buf, end = buf + buf_size; next < end; start = next){
  3642. next = find_next_marker(start + 4, end);
  3643. size = next - start - 4;
  3644. if(size <= 0) continue;
  3645. switch(AV_RB32(start)){
  3646. case VC1_CODE_FRAME:
  3647. buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
  3648. break;
  3649. case VC1_CODE_ENTRYPOINT: /* it should be before frame data */
  3650. buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
  3651. init_get_bits(&s->gb, buf2, buf_size2*8);
  3652. decode_entry_point(avctx, &s->gb);
  3653. break;
  3654. case VC1_CODE_SLICE:
  3655. av_log(avctx, AV_LOG_ERROR, "Sliced decoding is not implemented (yet)\n");
  3656. av_free(buf2);
  3657. return -1;
  3658. }
  3659. }
  3660. }else if(v->interlace && ((buf[0] & 0xC0) == 0xC0)){ /* WVC1 interlaced stores both fields divided by marker */
  3661. uint8_t *divider;
  3662. divider = find_next_marker(buf, buf + buf_size);
  3663. if((divider == (buf + buf_size)) || AV_RB32(divider) != VC1_CODE_FIELD){
  3664. av_log(avctx, AV_LOG_ERROR, "Error in WVC1 interlaced frame\n");
  3665. return -1;
  3666. }
  3667. buf_size2 = vc1_unescape_buffer(buf, divider - buf, buf2);
  3668. // TODO
  3669. av_free(buf2);return -1;
  3670. }else{
  3671. buf_size2 = vc1_unescape_buffer(buf, buf_size, buf2);
  3672. }
  3673. init_get_bits(&s->gb, buf2, buf_size2*8);
  3674. } else
  3675. init_get_bits(&s->gb, buf, buf_size*8);
  3676. // do parse frame header
  3677. if(v->profile < PROFILE_ADVANCED) {
  3678. if(vc1_parse_frame_header(v, &s->gb) == -1) {
  3679. av_free(buf2);
  3680. return -1;
  3681. }
  3682. } else {
  3683. if(vc1_parse_frame_header_adv(v, &s->gb) == -1) {
  3684. av_free(buf2);
  3685. return -1;
  3686. }
  3687. }
  3688. if(s->pict_type != I_TYPE && !v->res_rtm_flag){
  3689. av_free(buf2);
  3690. return -1;
  3691. }
  3692. // for hurry_up==5
  3693. s->current_picture.pict_type= s->pict_type;
  3694. s->current_picture.key_frame= s->pict_type == I_TYPE;
  3695. /* skip B-frames if we don't have reference frames */
  3696. if(s->last_picture_ptr==NULL && (s->pict_type==B_TYPE || s->dropable)){
  3697. av_free(buf2);
  3698. return -1;//buf_size;
  3699. }
  3700. /* skip b frames if we are in a hurry */
  3701. if(avctx->hurry_up && s->pict_type==B_TYPE) return -1;//buf_size;
  3702. if( (avctx->skip_frame >= AVDISCARD_NONREF && s->pict_type==B_TYPE)
  3703. || (avctx->skip_frame >= AVDISCARD_NONKEY && s->pict_type!=I_TYPE)
  3704. || avctx->skip_frame >= AVDISCARD_ALL) {
  3705. av_free(buf2);
  3706. return buf_size;
  3707. }
  3708. /* skip everything if we are in a hurry>=5 */
  3709. if(avctx->hurry_up>=5) {
  3710. av_free(buf2);
  3711. return -1;//buf_size;
  3712. }
  3713. if(s->next_p_frame_damaged){
  3714. if(s->pict_type==B_TYPE)
  3715. return buf_size;
  3716. else
  3717. s->next_p_frame_damaged=0;
  3718. }
  3719. if(MPV_frame_start(s, avctx) < 0) {
  3720. av_free(buf2);
  3721. return -1;
  3722. }
  3723. s->me.qpel_put= s->dsp.put_qpel_pixels_tab;
  3724. s->me.qpel_avg= s->dsp.avg_qpel_pixels_tab;
  3725. ff_er_frame_start(s);
  3726. v->bits = buf_size * 8;
  3727. vc1_decode_blocks(v);
  3728. //av_log(s->avctx, AV_LOG_INFO, "Consumed %i/%i bits\n", get_bits_count(&s->gb), buf_size*8);
  3729. // if(get_bits_count(&s->gb) > buf_size * 8)
  3730. // return -1;
  3731. ff_er_frame_end(s);
  3732. MPV_frame_end(s);
  3733. assert(s->current_picture.pict_type == s->current_picture_ptr->pict_type);
  3734. assert(s->current_picture.pict_type == s->pict_type);
  3735. if (s->pict_type == B_TYPE || s->low_delay) {
  3736. *pict= *(AVFrame*)s->current_picture_ptr;
  3737. } else if (s->last_picture_ptr != NULL) {
  3738. *pict= *(AVFrame*)s->last_picture_ptr;
  3739. }
  3740. if(s->last_picture_ptr || s->low_delay){
  3741. *data_size = sizeof(AVFrame);
  3742. ff_print_debug_info(s, pict);
  3743. }
  3744. /* Return the Picture timestamp as the frame number */
  3745. /* we substract 1 because it is added on utils.c */
  3746. avctx->frame_number = s->picture_number - 1;
  3747. av_free(buf2);
  3748. return buf_size;
  3749. }
  3750. /** Close a VC1/WMV3 decoder
  3751. * @warning Initial try at using MpegEncContext stuff
  3752. */
  3753. static int vc1_decode_end(AVCodecContext *avctx)
  3754. {
  3755. VC1Context *v = avctx->priv_data;
  3756. av_freep(&v->hrd_rate);
  3757. av_freep(&v->hrd_buffer);
  3758. MPV_common_end(&v->s);
  3759. av_freep(&v->mv_type_mb_plane);
  3760. av_freep(&v->direct_mb_plane);
  3761. av_freep(&v->acpred_plane);
  3762. av_freep(&v->over_flags_plane);
  3763. av_freep(&v->mb_type_base);
  3764. return 0;
  3765. }
  3766. AVCodec vc1_decoder = {
  3767. "vc1",
  3768. CODEC_TYPE_VIDEO,
  3769. CODEC_ID_VC1,
  3770. sizeof(VC1Context),
  3771. vc1_decode_init,
  3772. NULL,
  3773. vc1_decode_end,
  3774. vc1_decode_frame,
  3775. CODEC_CAP_DELAY,
  3776. NULL
  3777. };
  3778. AVCodec wmv3_decoder = {
  3779. "wmv3",
  3780. CODEC_TYPE_VIDEO,
  3781. CODEC_ID_WMV3,
  3782. sizeof(VC1Context),
  3783. vc1_decode_init,
  3784. NULL,
  3785. vc1_decode_end,
  3786. vc1_decode_frame,
  3787. CODEC_CAP_DELAY,
  3788. NULL
  3789. };