You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2022 lines
70KB

  1. /*
  2. * Motion estimation
  3. * Copyright (c) 2000,2001 Fabrice Bellard.
  4. * Copyright (c) 2002-2004 Michael Niedermayer
  5. *
  6. *
  7. * This library is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2 of the License, or (at your option) any later version.
  11. *
  12. * This library is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with this library; if not, write to the Free Software
  19. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  20. *
  21. * new Motion Estimation (X1/EPZS) by Michael Niedermayer <michaelni@gmx.at>
  22. */
  23. /**
  24. * @file motion_est.c
  25. * Motion estimation.
  26. */
  27. #include <stdlib.h>
  28. #include <stdio.h>
  29. #include <limits.h>
  30. #include "avcodec.h"
  31. #include "dsputil.h"
  32. #include "mpegvideo.h"
  33. #undef NDEBUG
  34. #include <assert.h>
  35. #define SQ(a) ((a)*(a))
  36. #define P_LEFT P[1]
  37. #define P_TOP P[2]
  38. #define P_TOPRIGHT P[3]
  39. #define P_MEDIAN P[4]
  40. #define P_MV1 P[9]
  41. static inline int sad_hpel_motion_search(MpegEncContext * s,
  42. int *mx_ptr, int *my_ptr, int dmin,
  43. int src_index, int ref_index,
  44. int size, int h);
  45. static inline int update_map_generation(MotionEstContext *c)
  46. {
  47. c->map_generation+= 1<<(ME_MAP_MV_BITS*2);
  48. if(c->map_generation==0){
  49. c->map_generation= 1<<(ME_MAP_MV_BITS*2);
  50. memset(c->map, 0, sizeof(uint32_t)*ME_MAP_SIZE);
  51. }
  52. return c->map_generation;
  53. }
  54. /* shape adaptive search stuff */
  55. typedef struct Minima{
  56. int height;
  57. int x, y;
  58. int checked;
  59. }Minima;
  60. static int minima_cmp(const void *a, const void *b){
  61. const Minima *da = (const Minima *) a;
  62. const Minima *db = (const Minima *) b;
  63. return da->height - db->height;
  64. }
  65. #define FLAG_QPEL 1 //must be 1
  66. #define FLAG_CHROMA 2
  67. #define FLAG_DIRECT 4
  68. static inline void init_ref(MotionEstContext *c, uint8_t *src[3], uint8_t *ref[3], uint8_t *ref2[3], int x, int y, int ref_index){
  69. const int offset[3]= {
  70. y*c-> stride + x,
  71. ((y*c->uvstride + x)>>1),
  72. ((y*c->uvstride + x)>>1),
  73. };
  74. int i;
  75. for(i=0; i<3; i++){
  76. c->src[0][i]= src [i] + offset[i];
  77. c->ref[0][i]= ref [i] + offset[i];
  78. }
  79. if(ref_index){
  80. for(i=0; i<3; i++){
  81. c->ref[ref_index][i]= ref2[i] + offset[i];
  82. }
  83. }
  84. }
  85. static int get_flags(MotionEstContext *c, int direct, int chroma){
  86. return ((c->avctx->flags&CODEC_FLAG_QPEL) ? FLAG_QPEL : 0)
  87. + (direct ? FLAG_DIRECT : 0)
  88. + (chroma ? FLAG_CHROMA : 0);
  89. }
  90. static always_inline int cmp(MpegEncContext *s, const int x, const int y, const int subx, const int suby,
  91. const int size, const int h, int ref_index, int src_index,
  92. me_cmp_func cmp_func, me_cmp_func chroma_cmp_func, const int flags){
  93. MotionEstContext * const c= &s->me;
  94. const int stride= c->stride;
  95. const int uvstride= c->uvstride;
  96. const int qpel= flags&FLAG_QPEL;
  97. const int chroma= flags&FLAG_CHROMA;
  98. const int dxy= subx + (suby<<(1+qpel)); //FIXME log2_subpel?
  99. const int hx= subx + (x<<(1+qpel));
  100. const int hy= suby + (y<<(1+qpel));
  101. uint8_t * const * const ref= c->ref[ref_index];
  102. uint8_t * const * const src= c->src[src_index];
  103. int d;
  104. //FIXME check chroma 4mv, (no crashes ...)
  105. if(flags&FLAG_DIRECT){
  106. if(x >= c->xmin && hx <= c->xmax<<(qpel+1) && y >= c->ymin && hy <= c->ymax<<(qpel+1)){
  107. const int time_pp= s->pp_time;
  108. const int time_pb= s->pb_time;
  109. const int mask= 2*qpel+1;
  110. if(s->mv_type==MV_TYPE_8X8){
  111. int i;
  112. for(i=0; i<4; i++){
  113. int fx = c->direct_basis_mv[i][0] + hx;
  114. int fy = c->direct_basis_mv[i][1] + hy;
  115. int bx = hx ? fx - c->co_located_mv[i][0] : c->co_located_mv[i][0]*(time_pb - time_pp)/time_pp + ((i &1)<<(qpel+4));
  116. int by = hy ? fy - c->co_located_mv[i][1] : c->co_located_mv[i][1]*(time_pb - time_pp)/time_pp + ((i>>1)<<(qpel+4));
  117. int fxy= (fx&mask) + ((fy&mask)<<(qpel+1));
  118. int bxy= (bx&mask) + ((by&mask)<<(qpel+1));
  119. uint8_t *dst= c->temp + 8*(i&1) + 8*stride*(i>>1);
  120. if(qpel){
  121. c->qpel_put[1][fxy](dst, ref[0] + (fx>>2) + (fy>>2)*stride, stride);
  122. c->qpel_avg[1][bxy](dst, ref[8] + (bx>>2) + (by>>2)*stride, stride);
  123. }else{
  124. c->hpel_put[1][fxy](dst, ref[0] + (fx>>1) + (fy>>1)*stride, stride, 8);
  125. c->hpel_avg[1][bxy](dst, ref[8] + (bx>>1) + (by>>1)*stride, stride, 8);
  126. }
  127. }
  128. }else{
  129. int fx = c->direct_basis_mv[0][0] + hx;
  130. int fy = c->direct_basis_mv[0][1] + hy;
  131. int bx = hx ? fx - c->co_located_mv[0][0] : (c->co_located_mv[0][0]*(time_pb - time_pp)/time_pp);
  132. int by = hy ? fy - c->co_located_mv[0][1] : (c->co_located_mv[0][1]*(time_pb - time_pp)/time_pp);
  133. int fxy= (fx&mask) + ((fy&mask)<<(qpel+1));
  134. int bxy= (bx&mask) + ((by&mask)<<(qpel+1));
  135. if(qpel){
  136. c->qpel_put[1][fxy](c->temp , ref[0] + (fx>>2) + (fy>>2)*stride , stride);
  137. c->qpel_put[1][fxy](c->temp + 8 , ref[0] + (fx>>2) + (fy>>2)*stride + 8 , stride);
  138. c->qpel_put[1][fxy](c->temp + 8*stride, ref[0] + (fx>>2) + (fy>>2)*stride + 8*stride, stride);
  139. c->qpel_put[1][fxy](c->temp + 8 + 8*stride, ref[0] + (fx>>2) + (fy>>2)*stride + 8 + 8*stride, stride);
  140. c->qpel_avg[1][bxy](c->temp , ref[8] + (bx>>2) + (by>>2)*stride , stride);
  141. c->qpel_avg[1][bxy](c->temp + 8 , ref[8] + (bx>>2) + (by>>2)*stride + 8 , stride);
  142. c->qpel_avg[1][bxy](c->temp + 8*stride, ref[8] + (bx>>2) + (by>>2)*stride + 8*stride, stride);
  143. c->qpel_avg[1][bxy](c->temp + 8 + 8*stride, ref[8] + (bx>>2) + (by>>2)*stride + 8 + 8*stride, stride);
  144. }else{
  145. assert((fx>>1) + 16*s->mb_x >= -16);
  146. assert((fy>>1) + 16*s->mb_y >= -16);
  147. assert((fx>>1) + 16*s->mb_x <= s->width);
  148. assert((fy>>1) + 16*s->mb_y <= s->height);
  149. assert((bx>>1) + 16*s->mb_x >= -16);
  150. assert((by>>1) + 16*s->mb_y >= -16);
  151. assert((bx>>1) + 16*s->mb_x <= s->width);
  152. assert((by>>1) + 16*s->mb_y <= s->height);
  153. c->hpel_put[0][fxy](c->temp, ref[0] + (fx>>1) + (fy>>1)*stride, stride, 16);
  154. c->hpel_avg[0][bxy](c->temp, ref[8] + (bx>>1) + (by>>1)*stride, stride, 16);
  155. }
  156. }
  157. d = cmp_func(s, c->temp, src[0], stride, 16);
  158. }else
  159. d= 256*256*256*32;
  160. }else{
  161. int uvdxy;
  162. if(dxy){
  163. if(qpel){
  164. c->qpel_put[size][dxy](c->temp, ref[0] + x + y*stride, stride); //FIXME prototype (add h)
  165. if(chroma){
  166. int cx= hx/2;
  167. int cy= hy/2;
  168. cx= (cx>>1)|(cx&1);
  169. cy= (cy>>1)|(cy&1);
  170. uvdxy= (cx&1) + 2*(cy&1);
  171. //FIXME x/y wrong, but mpeg4 qpel is sick anyway, we should drop as much of it as possible in favor for h264
  172. }
  173. }else{
  174. c->hpel_put[size][dxy](c->temp, ref[0] + x + y*stride, stride, h);
  175. if(chroma)
  176. uvdxy= dxy | (x&1) | (2*(y&1));
  177. }
  178. d = cmp_func(s, c->temp, src[0], stride, h);
  179. }else{
  180. d = cmp_func(s, src[0], ref[0] + x + y*stride, stride, h);
  181. if(chroma)
  182. uvdxy= (x&1) + 2*(y&1);
  183. }
  184. if(chroma){
  185. uint8_t * const uvtemp= c->temp + 16*stride;
  186. c->hpel_put[size+1][uvdxy](uvtemp , ref[1] + (x>>1) + (y>>1)*uvstride, uvstride, h>>1);
  187. c->hpel_put[size+1][uvdxy](uvtemp+8, ref[2] + (x>>1) + (y>>1)*uvstride, uvstride, h>>1);
  188. d += chroma_cmp_func(s, uvtemp , src[1], uvstride, h>>1);
  189. d += chroma_cmp_func(s, uvtemp+8, src[2], uvstride, h>>1);
  190. }
  191. }
  192. #if 0
  193. if(full_pel){
  194. const int index= (((y)<<ME_MAP_SHIFT) + (x))&(ME_MAP_SIZE-1);
  195. score_map[index]= d;
  196. }
  197. d += (c->mv_penalty[hx - c->pred_x] + c->mv_penalty[hy - c->pred_y])*c->penalty_factor;
  198. #endif
  199. return d;
  200. }
  201. #include "motion_est_template.c"
  202. static int zero_cmp(void *s, uint8_t *a, uint8_t *b, int stride, int h){
  203. return 0;
  204. }
  205. static void zero_hpel(uint8_t *a, const uint8_t *b, int stride, int h){
  206. }
  207. void ff_init_me(MpegEncContext *s){
  208. MotionEstContext * const c= &s->me;
  209. c->avctx= s->avctx;
  210. ff_set_cmp(&s->dsp, s->dsp.me_pre_cmp, c->avctx->me_pre_cmp);
  211. ff_set_cmp(&s->dsp, s->dsp.me_cmp, c->avctx->me_cmp);
  212. ff_set_cmp(&s->dsp, s->dsp.me_sub_cmp, c->avctx->me_sub_cmp);
  213. ff_set_cmp(&s->dsp, s->dsp.mb_cmp, c->avctx->mb_cmp);
  214. c->flags = get_flags(c, 0, c->avctx->me_cmp &FF_CMP_CHROMA);
  215. c->sub_flags= get_flags(c, 0, c->avctx->me_sub_cmp&FF_CMP_CHROMA);
  216. c->mb_flags = get_flags(c, 0, c->avctx->mb_cmp &FF_CMP_CHROMA);
  217. /*FIXME s->no_rounding b_type*/
  218. if(s->flags&CODEC_FLAG_QPEL){
  219. c->sub_motion_search= qpel_motion_search;
  220. c->qpel_avg= s->dsp.avg_qpel_pixels_tab;
  221. if(s->no_rounding) c->qpel_put= s->dsp.put_no_rnd_qpel_pixels_tab;
  222. else c->qpel_put= s->dsp.put_qpel_pixels_tab;
  223. }else{
  224. if(c->avctx->me_sub_cmp&FF_CMP_CHROMA)
  225. c->sub_motion_search= hpel_motion_search;
  226. else if( c->avctx->me_sub_cmp == FF_CMP_SAD
  227. && c->avctx-> me_cmp == FF_CMP_SAD
  228. && c->avctx-> mb_cmp == FF_CMP_SAD)
  229. c->sub_motion_search= sad_hpel_motion_search; // 2050 vs. 2450 cycles
  230. else
  231. c->sub_motion_search= hpel_motion_search;
  232. }
  233. c->hpel_avg= s->dsp.avg_pixels_tab;
  234. if(s->no_rounding) c->hpel_put= s->dsp.put_no_rnd_pixels_tab;
  235. else c->hpel_put= s->dsp.put_pixels_tab;
  236. if(s->linesize){
  237. c->stride = s->linesize;
  238. c->uvstride= s->uvlinesize;
  239. }else{
  240. c->stride = 16*s->mb_width + 32;
  241. c->uvstride= 8*s->mb_width + 16;
  242. }
  243. // 8x8 fullpel search would need a 4x4 chroma compare, which we dont have yet, and even if we had the motion estimation code doesnt expect it
  244. if(s->codec_id != CODEC_ID_SNOW){
  245. if((c->avctx->me_cmp&FF_CMP_CHROMA) && !s->dsp.me_cmp[2]){
  246. s->dsp.me_cmp[2]= zero_cmp;
  247. }
  248. if((c->avctx->me_sub_cmp&FF_CMP_CHROMA) && !s->dsp.me_sub_cmp[2]){
  249. s->dsp.me_sub_cmp[2]= zero_cmp;
  250. }
  251. c->hpel_put[2][0]= c->hpel_put[2][1]=
  252. c->hpel_put[2][2]= c->hpel_put[2][3]= zero_hpel;
  253. }
  254. c->temp= c->scratchpad;
  255. }
  256. #if 0
  257. static int pix_dev(uint8_t * pix, int line_size, int mean)
  258. {
  259. int s, i, j;
  260. s = 0;
  261. for (i = 0; i < 16; i++) {
  262. for (j = 0; j < 16; j += 8) {
  263. s += ABS(pix[0]-mean);
  264. s += ABS(pix[1]-mean);
  265. s += ABS(pix[2]-mean);
  266. s += ABS(pix[3]-mean);
  267. s += ABS(pix[4]-mean);
  268. s += ABS(pix[5]-mean);
  269. s += ABS(pix[6]-mean);
  270. s += ABS(pix[7]-mean);
  271. pix += 8;
  272. }
  273. pix += line_size - 16;
  274. }
  275. return s;
  276. }
  277. #endif
  278. static inline void no_motion_search(MpegEncContext * s,
  279. int *mx_ptr, int *my_ptr)
  280. {
  281. *mx_ptr = 16 * s->mb_x;
  282. *my_ptr = 16 * s->mb_y;
  283. }
  284. static int full_motion_search(MpegEncContext * s,
  285. int *mx_ptr, int *my_ptr, int range,
  286. int xmin, int ymin, int xmax, int ymax, uint8_t *ref_picture)
  287. {
  288. int x1, y1, x2, y2, xx, yy, x, y;
  289. int mx, my, dmin, d;
  290. uint8_t *pix;
  291. xx = 16 * s->mb_x;
  292. yy = 16 * s->mb_y;
  293. x1 = xx - range + 1; /* we loose one pixel to avoid boundary pb with half pixel pred */
  294. if (x1 < xmin)
  295. x1 = xmin;
  296. x2 = xx + range - 1;
  297. if (x2 > xmax)
  298. x2 = xmax;
  299. y1 = yy - range + 1;
  300. if (y1 < ymin)
  301. y1 = ymin;
  302. y2 = yy + range - 1;
  303. if (y2 > ymax)
  304. y2 = ymax;
  305. pix = s->new_picture.data[0] + (yy * s->linesize) + xx;
  306. dmin = 0x7fffffff;
  307. mx = 0;
  308. my = 0;
  309. for (y = y1; y <= y2; y++) {
  310. for (x = x1; x <= x2; x++) {
  311. d = s->dsp.pix_abs[0][0](NULL, pix, ref_picture + (y * s->linesize) + x,
  312. s->linesize, 16);
  313. if (d < dmin ||
  314. (d == dmin &&
  315. (abs(x - xx) + abs(y - yy)) <
  316. (abs(mx - xx) + abs(my - yy)))) {
  317. dmin = d;
  318. mx = x;
  319. my = y;
  320. }
  321. }
  322. }
  323. *mx_ptr = mx;
  324. *my_ptr = my;
  325. #if 0
  326. if (*mx_ptr < -(2 * range) || *mx_ptr >= (2 * range) ||
  327. *my_ptr < -(2 * range) || *my_ptr >= (2 * range)) {
  328. fprintf(stderr, "error %d %d\n", *mx_ptr, *my_ptr);
  329. }
  330. #endif
  331. return dmin;
  332. }
  333. static int log_motion_search(MpegEncContext * s,
  334. int *mx_ptr, int *my_ptr, int range,
  335. int xmin, int ymin, int xmax, int ymax, uint8_t *ref_picture)
  336. {
  337. int x1, y1, x2, y2, xx, yy, x, y;
  338. int mx, my, dmin, d;
  339. uint8_t *pix;
  340. xx = s->mb_x << 4;
  341. yy = s->mb_y << 4;
  342. /* Left limit */
  343. x1 = xx - range;
  344. if (x1 < xmin)
  345. x1 = xmin;
  346. /* Right limit */
  347. x2 = xx + range;
  348. if (x2 > xmax)
  349. x2 = xmax;
  350. /* Upper limit */
  351. y1 = yy - range;
  352. if (y1 < ymin)
  353. y1 = ymin;
  354. /* Lower limit */
  355. y2 = yy + range;
  356. if (y2 > ymax)
  357. y2 = ymax;
  358. pix = s->new_picture.data[0] + (yy * s->linesize) + xx;
  359. dmin = 0x7fffffff;
  360. mx = 0;
  361. my = 0;
  362. do {
  363. for (y = y1; y <= y2; y += range) {
  364. for (x = x1; x <= x2; x += range) {
  365. d = s->dsp.pix_abs[0][0](NULL, pix, ref_picture + (y * s->linesize) + x, s->linesize, 16);
  366. if (d < dmin || (d == dmin && (abs(x - xx) + abs(y - yy)) < (abs(mx - xx) + abs(my - yy)))) {
  367. dmin = d;
  368. mx = x;
  369. my = y;
  370. }
  371. }
  372. }
  373. range = range >> 1;
  374. x1 = mx - range;
  375. if (x1 < xmin)
  376. x1 = xmin;
  377. x2 = mx + range;
  378. if (x2 > xmax)
  379. x2 = xmax;
  380. y1 = my - range;
  381. if (y1 < ymin)
  382. y1 = ymin;
  383. y2 = my + range;
  384. if (y2 > ymax)
  385. y2 = ymax;
  386. } while (range >= 1);
  387. #ifdef DEBUG
  388. fprintf(stderr, "log - MX: %d\tMY: %d\n", mx, my);
  389. #endif
  390. *mx_ptr = mx;
  391. *my_ptr = my;
  392. return dmin;
  393. }
  394. static int phods_motion_search(MpegEncContext * s,
  395. int *mx_ptr, int *my_ptr, int range,
  396. int xmin, int ymin, int xmax, int ymax, uint8_t *ref_picture)
  397. {
  398. int x1, y1, x2, y2, xx, yy, x, y, lastx, d;
  399. int mx, my, dminx, dminy;
  400. uint8_t *pix;
  401. xx = s->mb_x << 4;
  402. yy = s->mb_y << 4;
  403. /* Left limit */
  404. x1 = xx - range;
  405. if (x1 < xmin)
  406. x1 = xmin;
  407. /* Right limit */
  408. x2 = xx + range;
  409. if (x2 > xmax)
  410. x2 = xmax;
  411. /* Upper limit */
  412. y1 = yy - range;
  413. if (y1 < ymin)
  414. y1 = ymin;
  415. /* Lower limit */
  416. y2 = yy + range;
  417. if (y2 > ymax)
  418. y2 = ymax;
  419. pix = s->new_picture.data[0] + (yy * s->linesize) + xx;
  420. mx = 0;
  421. my = 0;
  422. x = xx;
  423. y = yy;
  424. do {
  425. dminx = 0x7fffffff;
  426. dminy = 0x7fffffff;
  427. lastx = x;
  428. for (x = x1; x <= x2; x += range) {
  429. d = s->dsp.pix_abs[0][0](NULL, pix, ref_picture + (y * s->linesize) + x, s->linesize, 16);
  430. if (d < dminx || (d == dminx && (abs(x - xx) + abs(y - yy)) < (abs(mx - xx) + abs(my - yy)))) {
  431. dminx = d;
  432. mx = x;
  433. }
  434. }
  435. x = lastx;
  436. for (y = y1; y <= y2; y += range) {
  437. d = s->dsp.pix_abs[0][0](NULL, pix, ref_picture + (y * s->linesize) + x, s->linesize, 16);
  438. if (d < dminy || (d == dminy && (abs(x - xx) + abs(y - yy)) < (abs(mx - xx) + abs(my - yy)))) {
  439. dminy = d;
  440. my = y;
  441. }
  442. }
  443. range = range >> 1;
  444. x = mx;
  445. y = my;
  446. x1 = mx - range;
  447. if (x1 < xmin)
  448. x1 = xmin;
  449. x2 = mx + range;
  450. if (x2 > xmax)
  451. x2 = xmax;
  452. y1 = my - range;
  453. if (y1 < ymin)
  454. y1 = ymin;
  455. y2 = my + range;
  456. if (y2 > ymax)
  457. y2 = ymax;
  458. } while (range >= 1);
  459. #ifdef DEBUG
  460. fprintf(stderr, "phods - MX: %d\tMY: %d\n", mx, my);
  461. #endif
  462. /* half pixel search */
  463. *mx_ptr = mx;
  464. *my_ptr = my;
  465. return dminy;
  466. }
  467. #define Z_THRESHOLD 256
  468. #define CHECK_SAD_HALF_MV(suffix, x, y) \
  469. {\
  470. d= s->dsp.pix_abs[size][(x?1:0)+(y?2:0)](NULL, pix, ptr+((x)>>1), stride, h);\
  471. d += (mv_penalty[pen_x + x] + mv_penalty[pen_y + y])*penalty_factor;\
  472. COPY3_IF_LT(dminh, d, dx, x, dy, y)\
  473. }
  474. static inline int sad_hpel_motion_search(MpegEncContext * s,
  475. int *mx_ptr, int *my_ptr, int dmin,
  476. int src_index, int ref_index,
  477. int size, int h)
  478. {
  479. MotionEstContext * const c= &s->me;
  480. const int penalty_factor= c->sub_penalty_factor;
  481. int mx, my, dminh;
  482. uint8_t *pix, *ptr;
  483. int stride= c->stride;
  484. const int flags= c->sub_flags;
  485. LOAD_COMMON
  486. assert(flags == 0);
  487. if(c->skip){
  488. // printf("S");
  489. *mx_ptr = 0;
  490. *my_ptr = 0;
  491. return dmin;
  492. }
  493. // printf("N");
  494. pix = c->src[src_index][0];
  495. mx = *mx_ptr;
  496. my = *my_ptr;
  497. ptr = c->ref[ref_index][0] + (my * stride) + mx;
  498. dminh = dmin;
  499. if (mx > xmin && mx < xmax &&
  500. my > ymin && my < ymax) {
  501. int dx=0, dy=0;
  502. int d, pen_x, pen_y;
  503. const int index= (my<<ME_MAP_SHIFT) + mx;
  504. const int t= score_map[(index-(1<<ME_MAP_SHIFT))&(ME_MAP_SIZE-1)];
  505. const int l= score_map[(index- 1 )&(ME_MAP_SIZE-1)];
  506. const int r= score_map[(index+ 1 )&(ME_MAP_SIZE-1)];
  507. const int b= score_map[(index+(1<<ME_MAP_SHIFT))&(ME_MAP_SIZE-1)];
  508. mx<<=1;
  509. my<<=1;
  510. pen_x= pred_x + mx;
  511. pen_y= pred_y + my;
  512. ptr-= stride;
  513. if(t<=b){
  514. CHECK_SAD_HALF_MV(y2 , 0, -1)
  515. if(l<=r){
  516. CHECK_SAD_HALF_MV(xy2, -1, -1)
  517. if(t+r<=b+l){
  518. CHECK_SAD_HALF_MV(xy2, +1, -1)
  519. ptr+= stride;
  520. }else{
  521. ptr+= stride;
  522. CHECK_SAD_HALF_MV(xy2, -1, +1)
  523. }
  524. CHECK_SAD_HALF_MV(x2 , -1, 0)
  525. }else{
  526. CHECK_SAD_HALF_MV(xy2, +1, -1)
  527. if(t+l<=b+r){
  528. CHECK_SAD_HALF_MV(xy2, -1, -1)
  529. ptr+= stride;
  530. }else{
  531. ptr+= stride;
  532. CHECK_SAD_HALF_MV(xy2, +1, +1)
  533. }
  534. CHECK_SAD_HALF_MV(x2 , +1, 0)
  535. }
  536. }else{
  537. if(l<=r){
  538. if(t+l<=b+r){
  539. CHECK_SAD_HALF_MV(xy2, -1, -1)
  540. ptr+= stride;
  541. }else{
  542. ptr+= stride;
  543. CHECK_SAD_HALF_MV(xy2, +1, +1)
  544. }
  545. CHECK_SAD_HALF_MV(x2 , -1, 0)
  546. CHECK_SAD_HALF_MV(xy2, -1, +1)
  547. }else{
  548. if(t+r<=b+l){
  549. CHECK_SAD_HALF_MV(xy2, +1, -1)
  550. ptr+= stride;
  551. }else{
  552. ptr+= stride;
  553. CHECK_SAD_HALF_MV(xy2, -1, +1)
  554. }
  555. CHECK_SAD_HALF_MV(x2 , +1, 0)
  556. CHECK_SAD_HALF_MV(xy2, +1, +1)
  557. }
  558. CHECK_SAD_HALF_MV(y2 , 0, +1)
  559. }
  560. mx+=dx;
  561. my+=dy;
  562. }else{
  563. mx<<=1;
  564. my<<=1;
  565. }
  566. *mx_ptr = mx;
  567. *my_ptr = my;
  568. return dminh;
  569. }
  570. static inline void set_p_mv_tables(MpegEncContext * s, int mx, int my, int mv4)
  571. {
  572. const int xy= s->mb_x + s->mb_y*s->mb_stride;
  573. s->p_mv_table[xy][0] = mx;
  574. s->p_mv_table[xy][1] = my;
  575. /* has allready been set to the 4 MV if 4MV is done */
  576. if(mv4){
  577. int mot_xy= s->block_index[0];
  578. s->current_picture.motion_val[0][mot_xy ][0]= mx;
  579. s->current_picture.motion_val[0][mot_xy ][1]= my;
  580. s->current_picture.motion_val[0][mot_xy+1][0]= mx;
  581. s->current_picture.motion_val[0][mot_xy+1][1]= my;
  582. mot_xy += s->b8_stride;
  583. s->current_picture.motion_val[0][mot_xy ][0]= mx;
  584. s->current_picture.motion_val[0][mot_xy ][1]= my;
  585. s->current_picture.motion_val[0][mot_xy+1][0]= mx;
  586. s->current_picture.motion_val[0][mot_xy+1][1]= my;
  587. }
  588. }
  589. /**
  590. * get fullpel ME search limits.
  591. */
  592. static inline void get_limits(MpegEncContext *s, int x, int y)
  593. {
  594. MotionEstContext * const c= &s->me;
  595. /*
  596. if(c->avctx->me_range) c->range= c->avctx->me_range >> 1;
  597. else c->range= 16;
  598. */
  599. if (s->unrestricted_mv) {
  600. c->xmin = - x - 16;
  601. c->ymin = - y - 16;
  602. c->xmax = - x + s->mb_width *16;
  603. c->ymax = - y + s->mb_height*16;
  604. } else {
  605. c->xmin = - x;
  606. c->ymin = - y;
  607. c->xmax = - x + s->mb_width *16 - 16;
  608. c->ymax = - y + s->mb_height*16 - 16;
  609. }
  610. }
  611. static inline void init_mv4_ref(MotionEstContext *c){
  612. const int stride= c->stride;
  613. c->ref[1][0] = c->ref[0][0] + 8;
  614. c->ref[2][0] = c->ref[0][0] + 8*stride;
  615. c->ref[3][0] = c->ref[2][0] + 8;
  616. c->src[1][0] = c->src[0][0] + 8;
  617. c->src[2][0] = c->src[0][0] + 8*stride;
  618. c->src[3][0] = c->src[2][0] + 8;
  619. }
  620. static inline int h263_mv4_search(MpegEncContext *s, int mx, int my, int shift)
  621. {
  622. MotionEstContext * const c= &s->me;
  623. const int size= 1;
  624. const int h=8;
  625. int block;
  626. int P[10][2];
  627. int dmin_sum=0, mx4_sum=0, my4_sum=0;
  628. int same=1;
  629. const int stride= c->stride;
  630. const int uvstride= c->uvstride;
  631. uint8_t *mv_penalty= c->current_mv_penalty;
  632. init_mv4_ref(c);
  633. for(block=0; block<4; block++){
  634. int mx4, my4;
  635. int pred_x4, pred_y4;
  636. int dmin4;
  637. static const int off[4]= {2, 1, 1, -1};
  638. const int mot_stride = s->b8_stride;
  639. const int mot_xy = s->block_index[block];
  640. P_LEFT[0] = s->current_picture.motion_val[0][mot_xy - 1][0];
  641. P_LEFT[1] = s->current_picture.motion_val[0][mot_xy - 1][1];
  642. if(P_LEFT[0] > (c->xmax<<shift)) P_LEFT[0] = (c->xmax<<shift);
  643. /* special case for first line */
  644. if (s->first_slice_line && block<2) {
  645. c->pred_x= pred_x4= P_LEFT[0];
  646. c->pred_y= pred_y4= P_LEFT[1];
  647. } else {
  648. P_TOP[0] = s->current_picture.motion_val[0][mot_xy - mot_stride ][0];
  649. P_TOP[1] = s->current_picture.motion_val[0][mot_xy - mot_stride ][1];
  650. P_TOPRIGHT[0] = s->current_picture.motion_val[0][mot_xy - mot_stride + off[block]][0];
  651. P_TOPRIGHT[1] = s->current_picture.motion_val[0][mot_xy - mot_stride + off[block]][1];
  652. if(P_TOP[1] > (c->ymax<<shift)) P_TOP[1] = (c->ymax<<shift);
  653. if(P_TOPRIGHT[0] < (c->xmin<<shift)) P_TOPRIGHT[0]= (c->xmin<<shift);
  654. if(P_TOPRIGHT[0] > (c->xmax<<shift)) P_TOPRIGHT[0]= (c->xmax<<shift);
  655. if(P_TOPRIGHT[1] > (c->ymax<<shift)) P_TOPRIGHT[1]= (c->ymax<<shift);
  656. P_MEDIAN[0]= mid_pred(P_LEFT[0], P_TOP[0], P_TOPRIGHT[0]);
  657. P_MEDIAN[1]= mid_pred(P_LEFT[1], P_TOP[1], P_TOPRIGHT[1]);
  658. c->pred_x= pred_x4 = P_MEDIAN[0];
  659. c->pred_y= pred_y4 = P_MEDIAN[1];
  660. }
  661. P_MV1[0]= mx;
  662. P_MV1[1]= my;
  663. dmin4 = epzs_motion_search4(s, &mx4, &my4, P, block, block, s->p_mv_table, (1<<16)>>shift);
  664. dmin4= c->sub_motion_search(s, &mx4, &my4, dmin4, block, block, size, h);
  665. if(s->dsp.me_sub_cmp[0] != s->dsp.mb_cmp[0]){
  666. int dxy;
  667. const int offset= ((block&1) + (block>>1)*stride)*8;
  668. uint8_t *dest_y = c->scratchpad + offset;
  669. if(s->quarter_sample){
  670. uint8_t *ref= c->ref[block][0] + (mx4>>2) + (my4>>2)*stride;
  671. dxy = ((my4 & 3) << 2) | (mx4 & 3);
  672. if(s->no_rounding)
  673. s->dsp.put_no_rnd_qpel_pixels_tab[1][dxy](dest_y , ref , stride);
  674. else
  675. s->dsp.put_qpel_pixels_tab [1][dxy](dest_y , ref , stride);
  676. }else{
  677. uint8_t *ref= c->ref[block][0] + (mx4>>1) + (my4>>1)*stride;
  678. dxy = ((my4 & 1) << 1) | (mx4 & 1);
  679. if(s->no_rounding)
  680. s->dsp.put_no_rnd_pixels_tab[1][dxy](dest_y , ref , stride, h);
  681. else
  682. s->dsp.put_pixels_tab [1][dxy](dest_y , ref , stride, h);
  683. }
  684. dmin_sum+= (mv_penalty[mx4-pred_x4] + mv_penalty[my4-pred_y4])*c->mb_penalty_factor;
  685. }else
  686. dmin_sum+= dmin4;
  687. if(s->quarter_sample){
  688. mx4_sum+= mx4/2;
  689. my4_sum+= my4/2;
  690. }else{
  691. mx4_sum+= mx4;
  692. my4_sum+= my4;
  693. }
  694. s->current_picture.motion_val[0][ s->block_index[block] ][0]= mx4;
  695. s->current_picture.motion_val[0][ s->block_index[block] ][1]= my4;
  696. if(mx4 != mx || my4 != my) same=0;
  697. }
  698. if(same)
  699. return INT_MAX;
  700. if(s->dsp.me_sub_cmp[0] != s->dsp.mb_cmp[0]){
  701. dmin_sum += s->dsp.mb_cmp[0](s, s->new_picture.data[0] + s->mb_x*16 + s->mb_y*16*stride, c->scratchpad, stride, 16);
  702. }
  703. if(c->avctx->mb_cmp&FF_CMP_CHROMA){
  704. int dxy;
  705. int mx, my;
  706. int offset;
  707. mx= ff_h263_round_chroma(mx4_sum);
  708. my= ff_h263_round_chroma(my4_sum);
  709. dxy = ((my & 1) << 1) | (mx & 1);
  710. offset= (s->mb_x*8 + (mx>>1)) + (s->mb_y*8 + (my>>1))*s->uvlinesize;
  711. if(s->no_rounding){
  712. s->dsp.put_no_rnd_pixels_tab[1][dxy](c->scratchpad , s->last_picture.data[1] + offset, s->uvlinesize, 8);
  713. s->dsp.put_no_rnd_pixels_tab[1][dxy](c->scratchpad+8 , s->last_picture.data[2] + offset, s->uvlinesize, 8);
  714. }else{
  715. s->dsp.put_pixels_tab [1][dxy](c->scratchpad , s->last_picture.data[1] + offset, s->uvlinesize, 8);
  716. s->dsp.put_pixels_tab [1][dxy](c->scratchpad+8 , s->last_picture.data[2] + offset, s->uvlinesize, 8);
  717. }
  718. dmin_sum += s->dsp.mb_cmp[1](s, s->new_picture.data[1] + s->mb_x*8 + s->mb_y*8*s->uvlinesize, c->scratchpad , s->uvlinesize, 8);
  719. dmin_sum += s->dsp.mb_cmp[1](s, s->new_picture.data[2] + s->mb_x*8 + s->mb_y*8*s->uvlinesize, c->scratchpad+8, s->uvlinesize, 8);
  720. }
  721. c->pred_x= mx;
  722. c->pred_y= my;
  723. switch(c->avctx->mb_cmp&0xFF){
  724. /*case FF_CMP_SSE:
  725. return dmin_sum+ 32*s->qscale*s->qscale;*/
  726. case FF_CMP_RD:
  727. return dmin_sum;
  728. default:
  729. return dmin_sum+ 11*c->mb_penalty_factor;
  730. }
  731. }
  732. static inline void init_interlaced_ref(MpegEncContext *s, int ref_index){
  733. MotionEstContext * const c= &s->me;
  734. c->ref[1+ref_index][0] = c->ref[0+ref_index][0] + s->linesize;
  735. c->src[1][0] = c->src[0][0] + s->linesize;
  736. if(c->flags & FLAG_CHROMA){
  737. c->ref[1+ref_index][1] = c->ref[0+ref_index][1] + s->uvlinesize;
  738. c->ref[1+ref_index][2] = c->ref[0+ref_index][2] + s->uvlinesize;
  739. c->src[1][1] = c->src[0][1] + s->uvlinesize;
  740. c->src[1][2] = c->src[0][2] + s->uvlinesize;
  741. }
  742. }
  743. static int interlaced_search(MpegEncContext *s, int ref_index,
  744. int16_t (*mv_tables[2][2])[2], uint8_t *field_select_tables[2], int mx, int my, int user_field_select)
  745. {
  746. MotionEstContext * const c= &s->me;
  747. const int size=0;
  748. const int h=8;
  749. int block;
  750. int P[10][2];
  751. uint8_t * const mv_penalty= c->current_mv_penalty;
  752. int same=1;
  753. const int stride= 2*s->linesize;
  754. const int uvstride= 2*s->uvlinesize;
  755. int dmin_sum= 0;
  756. const int mot_stride= s->mb_stride;
  757. const int xy= s->mb_x + s->mb_y*mot_stride;
  758. c->ymin>>=1;
  759. c->ymax>>=1;
  760. c->stride<<=1;
  761. c->uvstride<<=1;
  762. init_interlaced_ref(s, ref_index);
  763. for(block=0; block<2; block++){
  764. int field_select;
  765. int best_dmin= INT_MAX;
  766. int best_field= -1;
  767. for(field_select=0; field_select<2; field_select++){
  768. int dmin, mx_i, my_i;
  769. int16_t (*mv_table)[2]= mv_tables[block][field_select];
  770. if(user_field_select){
  771. if(field_select_tables[block][xy] != field_select)
  772. continue;
  773. }
  774. P_LEFT[0] = mv_table[xy - 1][0];
  775. P_LEFT[1] = mv_table[xy - 1][1];
  776. if(P_LEFT[0] > (c->xmax<<1)) P_LEFT[0] = (c->xmax<<1);
  777. c->pred_x= P_LEFT[0];
  778. c->pred_y= P_LEFT[1];
  779. if(!s->first_slice_line){
  780. P_TOP[0] = mv_table[xy - mot_stride][0];
  781. P_TOP[1] = mv_table[xy - mot_stride][1];
  782. P_TOPRIGHT[0] = mv_table[xy - mot_stride + 1][0];
  783. P_TOPRIGHT[1] = mv_table[xy - mot_stride + 1][1];
  784. if(P_TOP[1] > (c->ymax<<1)) P_TOP[1] = (c->ymax<<1);
  785. if(P_TOPRIGHT[0] < (c->xmin<<1)) P_TOPRIGHT[0]= (c->xmin<<1);
  786. if(P_TOPRIGHT[0] > (c->xmax<<1)) P_TOPRIGHT[0]= (c->xmax<<1);
  787. if(P_TOPRIGHT[1] > (c->ymax<<1)) P_TOPRIGHT[1]= (c->ymax<<1);
  788. P_MEDIAN[0]= mid_pred(P_LEFT[0], P_TOP[0], P_TOPRIGHT[0]);
  789. P_MEDIAN[1]= mid_pred(P_LEFT[1], P_TOP[1], P_TOPRIGHT[1]);
  790. }
  791. P_MV1[0]= mx; //FIXME not correct if block != field_select
  792. P_MV1[1]= my / 2;
  793. dmin = epzs_motion_search2(s, &mx_i, &my_i, P, block, field_select+ref_index, mv_table, (1<<16)>>1);
  794. dmin= c->sub_motion_search(s, &mx_i, &my_i, dmin, block, field_select+ref_index, size, h);
  795. mv_table[xy][0]= mx_i;
  796. mv_table[xy][1]= my_i;
  797. if(s->dsp.me_sub_cmp[0] != s->dsp.mb_cmp[0]){
  798. int dxy;
  799. //FIXME chroma ME
  800. uint8_t *ref= c->ref[field_select+ref_index][0] + (mx_i>>1) + (my_i>>1)*stride;
  801. dxy = ((my_i & 1) << 1) | (mx_i & 1);
  802. if(s->no_rounding){
  803. s->dsp.put_no_rnd_pixels_tab[size][dxy](c->scratchpad, ref , stride, h);
  804. }else{
  805. s->dsp.put_pixels_tab [size][dxy](c->scratchpad, ref , stride, h);
  806. }
  807. dmin= s->dsp.mb_cmp[size](s, c->src[block][0], c->scratchpad, stride, h);
  808. dmin+= (mv_penalty[mx_i-c->pred_x] + mv_penalty[my_i-c->pred_y] + 1)*c->mb_penalty_factor;
  809. }else
  810. dmin+= c->mb_penalty_factor; //field_select bits
  811. dmin += field_select != block; //slightly prefer same field
  812. if(dmin < best_dmin){
  813. best_dmin= dmin;
  814. best_field= field_select;
  815. }
  816. }
  817. {
  818. int16_t (*mv_table)[2]= mv_tables[block][best_field];
  819. if(mv_table[xy][0] != mx) same=0; //FIXME check if these checks work and are any good at all
  820. if(mv_table[xy][1]&1) same=0;
  821. if(mv_table[xy][1]*2 != my) same=0;
  822. if(best_field != block) same=0;
  823. }
  824. field_select_tables[block][xy]= best_field;
  825. dmin_sum += best_dmin;
  826. }
  827. c->ymin<<=1;
  828. c->ymax<<=1;
  829. c->stride>>=1;
  830. c->uvstride>>=1;
  831. if(same)
  832. return INT_MAX;
  833. switch(c->avctx->mb_cmp&0xFF){
  834. /*case FF_CMP_SSE:
  835. return dmin_sum+ 32*s->qscale*s->qscale;*/
  836. case FF_CMP_RD:
  837. return dmin_sum;
  838. default:
  839. return dmin_sum+ 11*c->mb_penalty_factor;
  840. }
  841. }
  842. static void clip_input_mv(MpegEncContext * s, int16_t *mv, int interlaced){
  843. int ymax= s->me.ymax>>interlaced;
  844. int ymin= s->me.ymin>>interlaced;
  845. if(mv[0] < s->me.xmin) mv[0] = s->me.xmin;
  846. if(mv[0] > s->me.xmax) mv[0] = s->me.xmax;
  847. if(mv[1] < ymin) mv[1] = ymin;
  848. if(mv[1] > ymax) mv[1] = ymax;
  849. }
  850. static inline int check_input_motion(MpegEncContext * s, int mb_x, int mb_y, int p_type){
  851. MotionEstContext * const c= &s->me;
  852. Picture *p= s->current_picture_ptr;
  853. int mb_xy= mb_x + mb_y*s->mb_stride;
  854. int xy= 2*mb_x + 2*mb_y*s->b8_stride;
  855. int mb_type= s->current_picture.mb_type[mb_xy];
  856. int flags= c->flags;
  857. int shift= (flags&FLAG_QPEL) + 1;
  858. int mask= (1<<shift)-1;
  859. int x, y, i;
  860. int d=0;
  861. me_cmp_func cmpf= s->dsp.sse[0];
  862. me_cmp_func chroma_cmpf= s->dsp.sse[1];
  863. if(p_type && USES_LIST(mb_type, 1)){
  864. av_log(c->avctx, AV_LOG_ERROR, "backward motion vector in P frame\n");
  865. return INT_MAX;
  866. }
  867. assert(IS_INTRA(mb_type) || USES_LIST(mb_type,0) || USES_LIST(mb_type,1));
  868. for(i=0; i<4; i++){
  869. int xy= s->block_index[i];
  870. clip_input_mv(s, p->motion_val[0][xy], !!IS_INTERLACED(mb_type));
  871. clip_input_mv(s, p->motion_val[1][xy], !!IS_INTERLACED(mb_type));
  872. }
  873. if(IS_INTERLACED(mb_type)){
  874. int xy2= xy + s->b8_stride;
  875. s->mb_type[mb_xy]=CANDIDATE_MB_TYPE_INTRA;
  876. c->stride<<=1;
  877. c->uvstride<<=1;
  878. if(!(s->flags & CODEC_FLAG_INTERLACED_ME)){
  879. av_log(c->avctx, AV_LOG_ERROR, "Interlaced macroblock selected but interlaced motion estimation disabled\n");
  880. return INT_MAX;
  881. }
  882. if(USES_LIST(mb_type, 0)){
  883. int field_select0= p->ref_index[0][xy ];
  884. int field_select1= p->ref_index[0][xy2];
  885. assert(field_select0==0 ||field_select0==1);
  886. assert(field_select1==0 ||field_select1==1);
  887. init_interlaced_ref(s, 0);
  888. if(p_type){
  889. s->p_field_select_table[0][mb_xy]= field_select0;
  890. s->p_field_select_table[1][mb_xy]= field_select1;
  891. *(uint32_t*)s->p_field_mv_table[0][field_select0][mb_xy]= *(uint32_t*)p->motion_val[0][xy ];
  892. *(uint32_t*)s->p_field_mv_table[1][field_select1][mb_xy]= *(uint32_t*)p->motion_val[0][xy2];
  893. s->mb_type[mb_xy]=CANDIDATE_MB_TYPE_INTER_I;
  894. }else{
  895. s->b_field_select_table[0][0][mb_xy]= field_select0;
  896. s->b_field_select_table[0][1][mb_xy]= field_select1;
  897. *(uint32_t*)s->b_field_mv_table[0][0][field_select0][mb_xy]= *(uint32_t*)p->motion_val[0][xy ];
  898. *(uint32_t*)s->b_field_mv_table[0][1][field_select1][mb_xy]= *(uint32_t*)p->motion_val[0][xy2];
  899. s->mb_type[mb_xy]= CANDIDATE_MB_TYPE_FORWARD_I;
  900. }
  901. x= p->motion_val[0][xy ][0];
  902. y= p->motion_val[0][xy ][1];
  903. d = cmp(s, x>>shift, y>>shift, x&mask, y&mask, 0, 8, field_select0, 0, cmpf, chroma_cmpf, flags);
  904. x= p->motion_val[0][xy2][0];
  905. y= p->motion_val[0][xy2][1];
  906. d+= cmp(s, x>>shift, y>>shift, x&mask, y&mask, 0, 8, field_select1, 1, cmpf, chroma_cmpf, flags);
  907. }
  908. if(USES_LIST(mb_type, 1)){
  909. int field_select0= p->ref_index[1][xy ];
  910. int field_select1= p->ref_index[1][xy2];
  911. assert(field_select0==0 ||field_select0==1);
  912. assert(field_select1==0 ||field_select1==1);
  913. init_interlaced_ref(s, 2);
  914. s->b_field_select_table[1][0][mb_xy]= field_select0;
  915. s->b_field_select_table[1][1][mb_xy]= field_select1;
  916. *(uint32_t*)s->b_field_mv_table[1][0][field_select0][mb_xy]= *(uint32_t*)p->motion_val[1][xy ];
  917. *(uint32_t*)s->b_field_mv_table[1][1][field_select1][mb_xy]= *(uint32_t*)p->motion_val[1][xy2];
  918. if(USES_LIST(mb_type, 0)){
  919. s->mb_type[mb_xy]= CANDIDATE_MB_TYPE_BIDIR_I;
  920. }else{
  921. s->mb_type[mb_xy]= CANDIDATE_MB_TYPE_BACKWARD_I;
  922. }
  923. x= p->motion_val[1][xy ][0];
  924. y= p->motion_val[1][xy ][1];
  925. d = cmp(s, x>>shift, y>>shift, x&mask, y&mask, 0, 8, field_select0+2, 0, cmpf, chroma_cmpf, flags);
  926. x= p->motion_val[1][xy2][0];
  927. y= p->motion_val[1][xy2][1];
  928. d+= cmp(s, x>>shift, y>>shift, x&mask, y&mask, 0, 8, field_select1+2, 1, cmpf, chroma_cmpf, flags);
  929. //FIXME bidir scores
  930. }
  931. c->stride>>=1;
  932. c->uvstride>>=1;
  933. }else if(IS_8X8(mb_type)){
  934. if(!(s->flags & CODEC_FLAG_4MV)){
  935. av_log(c->avctx, AV_LOG_ERROR, "4MV macroblock selected but 4MV encoding disabled\n");
  936. return INT_MAX;
  937. }
  938. cmpf= s->dsp.sse[1];
  939. chroma_cmpf= s->dsp.sse[1];
  940. init_mv4_ref(c);
  941. for(i=0; i<4; i++){
  942. xy= s->block_index[i];
  943. x= p->motion_val[0][xy][0];
  944. y= p->motion_val[0][xy][1];
  945. d+= cmp(s, x>>shift, y>>shift, x&mask, y&mask, 1, 8, i, i, cmpf, chroma_cmpf, flags);
  946. }
  947. s->mb_type[mb_xy]=CANDIDATE_MB_TYPE_INTER4V;
  948. }else{
  949. if(USES_LIST(mb_type, 0)){
  950. if(p_type){
  951. *(uint32_t*)s->p_mv_table[mb_xy]= *(uint32_t*)p->motion_val[0][xy];
  952. s->mb_type[mb_xy]=CANDIDATE_MB_TYPE_INTER;
  953. }else if(USES_LIST(mb_type, 1)){
  954. *(uint32_t*)s->b_bidir_forw_mv_table[mb_xy]= *(uint32_t*)p->motion_val[0][xy];
  955. *(uint32_t*)s->b_bidir_back_mv_table[mb_xy]= *(uint32_t*)p->motion_val[1][xy];
  956. s->mb_type[mb_xy]=CANDIDATE_MB_TYPE_BIDIR;
  957. }else{
  958. *(uint32_t*)s->b_forw_mv_table[mb_xy]= *(uint32_t*)p->motion_val[0][xy];
  959. s->mb_type[mb_xy]=CANDIDATE_MB_TYPE_FORWARD;
  960. }
  961. x= p->motion_val[0][xy][0];
  962. y= p->motion_val[0][xy][1];
  963. d = cmp(s, x>>shift, y>>shift, x&mask, y&mask, 0, 16, 0, 0, cmpf, chroma_cmpf, flags);
  964. }else if(USES_LIST(mb_type, 1)){
  965. *(uint32_t*)s->b_back_mv_table[mb_xy]= *(uint32_t*)p->motion_val[1][xy];
  966. s->mb_type[mb_xy]=CANDIDATE_MB_TYPE_BACKWARD;
  967. x= p->motion_val[1][xy][0];
  968. y= p->motion_val[1][xy][1];
  969. d = cmp(s, x>>shift, y>>shift, x&mask, y&mask, 0, 16, 2, 0, cmpf, chroma_cmpf, flags);
  970. }else
  971. s->mb_type[mb_xy]=CANDIDATE_MB_TYPE_INTRA;
  972. }
  973. return d;
  974. }
  975. void ff_estimate_p_frame_motion(MpegEncContext * s,
  976. int mb_x, int mb_y)
  977. {
  978. MotionEstContext * const c= &s->me;
  979. uint8_t *pix, *ppix;
  980. int sum, varc, vard, mx, my, dmin;
  981. int P[10][2];
  982. const int shift= 1+s->quarter_sample;
  983. int mb_type=0;
  984. Picture * const pic= &s->current_picture;
  985. init_ref(c, s->new_picture.data, s->last_picture.data, NULL, 16*mb_x, 16*mb_y, 0);
  986. assert(s->quarter_sample==0 || s->quarter_sample==1);
  987. assert(s->linesize == c->stride);
  988. assert(s->uvlinesize == c->uvstride);
  989. c->penalty_factor = get_penalty_factor(s->lambda, s->lambda2, c->avctx->me_cmp);
  990. c->sub_penalty_factor= get_penalty_factor(s->lambda, s->lambda2, c->avctx->me_sub_cmp);
  991. c->mb_penalty_factor = get_penalty_factor(s->lambda, s->lambda2, c->avctx->mb_cmp);
  992. c->current_mv_penalty= c->mv_penalty[s->f_code] + MAX_MV;
  993. get_limits(s, 16*mb_x, 16*mb_y);
  994. c->skip=0;
  995. /* intra / predictive decision */
  996. pix = c->src[0][0];
  997. sum = s->dsp.pix_sum(pix, s->linesize);
  998. varc = (s->dsp.pix_norm1(pix, s->linesize) - (((unsigned)(sum*sum))>>8) + 500 + 128)>>8;
  999. pic->mb_mean[s->mb_stride * mb_y + mb_x] = (sum+128)>>8;
  1000. pic->mb_var [s->mb_stride * mb_y + mb_x] = varc;
  1001. c->mb_var_sum_temp += varc;
  1002. if(c->avctx->me_threshold){
  1003. vard= (check_input_motion(s, mb_x, mb_y, 1)+128)>>8;
  1004. if(vard<c->avctx->me_threshold){
  1005. pic->mc_mb_var[s->mb_stride * mb_y + mb_x] = vard;
  1006. c->mc_mb_var_sum_temp += vard;
  1007. if (vard <= 64 || vard < varc) { //FIXME
  1008. c->scene_change_score+= ff_sqrt(vard) - ff_sqrt(varc);
  1009. }else{
  1010. c->scene_change_score+= s->qscale;
  1011. }
  1012. return;
  1013. }
  1014. if(vard<c->avctx->mb_threshold)
  1015. mb_type= s->mb_type[mb_x + mb_y*s->mb_stride];
  1016. }
  1017. switch(s->me_method) {
  1018. case ME_ZERO:
  1019. default:
  1020. no_motion_search(s, &mx, &my);
  1021. mx-= mb_x*16;
  1022. my-= mb_y*16;
  1023. dmin = 0;
  1024. break;
  1025. #if 0
  1026. case ME_FULL:
  1027. dmin = full_motion_search(s, &mx, &my, range, ref_picture);
  1028. mx-= mb_x*16;
  1029. my-= mb_y*16;
  1030. break;
  1031. case ME_LOG:
  1032. dmin = log_motion_search(s, &mx, &my, range / 2, ref_picture);
  1033. mx-= mb_x*16;
  1034. my-= mb_y*16;
  1035. break;
  1036. case ME_PHODS:
  1037. dmin = phods_motion_search(s, &mx, &my, range / 2, ref_picture);
  1038. mx-= mb_x*16;
  1039. my-= mb_y*16;
  1040. break;
  1041. #endif
  1042. case ME_X1:
  1043. case ME_EPZS:
  1044. {
  1045. const int mot_stride = s->b8_stride;
  1046. const int mot_xy = s->block_index[0];
  1047. P_LEFT[0] = s->current_picture.motion_val[0][mot_xy - 1][0];
  1048. P_LEFT[1] = s->current_picture.motion_val[0][mot_xy - 1][1];
  1049. if(P_LEFT[0] > (c->xmax<<shift)) P_LEFT[0] = (c->xmax<<shift);
  1050. if(!s->first_slice_line) {
  1051. P_TOP[0] = s->current_picture.motion_val[0][mot_xy - mot_stride ][0];
  1052. P_TOP[1] = s->current_picture.motion_val[0][mot_xy - mot_stride ][1];
  1053. P_TOPRIGHT[0] = s->current_picture.motion_val[0][mot_xy - mot_stride + 2][0];
  1054. P_TOPRIGHT[1] = s->current_picture.motion_val[0][mot_xy - mot_stride + 2][1];
  1055. if(P_TOP[1] > (c->ymax<<shift)) P_TOP[1] = (c->ymax<<shift);
  1056. if(P_TOPRIGHT[0] < (c->xmin<<shift)) P_TOPRIGHT[0]= (c->xmin<<shift);
  1057. if(P_TOPRIGHT[1] > (c->ymax<<shift)) P_TOPRIGHT[1]= (c->ymax<<shift);
  1058. P_MEDIAN[0]= mid_pred(P_LEFT[0], P_TOP[0], P_TOPRIGHT[0]);
  1059. P_MEDIAN[1]= mid_pred(P_LEFT[1], P_TOP[1], P_TOPRIGHT[1]);
  1060. if(s->out_format == FMT_H263){
  1061. c->pred_x = P_MEDIAN[0];
  1062. c->pred_y = P_MEDIAN[1];
  1063. }else { /* mpeg1 at least */
  1064. c->pred_x= P_LEFT[0];
  1065. c->pred_y= P_LEFT[1];
  1066. }
  1067. }else{
  1068. c->pred_x= P_LEFT[0];
  1069. c->pred_y= P_LEFT[1];
  1070. }
  1071. }
  1072. dmin = ff_epzs_motion_search(s, &mx, &my, P, 0, 0, s->p_mv_table, (1<<16)>>shift, 0, 16);
  1073. break;
  1074. }
  1075. /* At this point (mx,my) are full-pell and the relative displacement */
  1076. ppix = c->ref[0][0] + (my * s->linesize) + mx;
  1077. vard = (s->dsp.sse[0](NULL, pix, ppix, s->linesize, 16)+128)>>8;
  1078. pic->mc_mb_var[s->mb_stride * mb_y + mb_x] = vard;
  1079. // pic->mb_cmp_score[s->mb_stride * mb_y + mb_x] = dmin;
  1080. c->mc_mb_var_sum_temp += vard;
  1081. #if 0
  1082. printf("varc=%4d avg_var=%4d (sum=%4d) vard=%4d mx=%2d my=%2d\n",
  1083. varc, s->avg_mb_var, sum, vard, mx - xx, my - yy);
  1084. #endif
  1085. if(mb_type){
  1086. if (vard <= 64 || vard < varc)
  1087. c->scene_change_score+= ff_sqrt(vard) - ff_sqrt(varc);
  1088. else
  1089. c->scene_change_score+= s->qscale;
  1090. if(mb_type == CANDIDATE_MB_TYPE_INTER){
  1091. c->sub_motion_search(s, &mx, &my, dmin, 0, 0, 0, 16);
  1092. set_p_mv_tables(s, mx, my, 1);
  1093. }else{
  1094. mx <<=shift;
  1095. my <<=shift;
  1096. }
  1097. if(mb_type == CANDIDATE_MB_TYPE_INTER4V){
  1098. h263_mv4_search(s, mx, my, shift);
  1099. set_p_mv_tables(s, mx, my, 0);
  1100. }
  1101. if(mb_type == CANDIDATE_MB_TYPE_INTER_I){
  1102. interlaced_search(s, 0, s->p_field_mv_table, s->p_field_select_table, mx, my, 1);
  1103. }
  1104. }else if(c->avctx->mb_decision > FF_MB_DECISION_SIMPLE){
  1105. if (vard <= 64 || vard < varc)
  1106. c->scene_change_score+= ff_sqrt(vard) - ff_sqrt(varc);
  1107. else
  1108. c->scene_change_score+= s->qscale;
  1109. if (vard*2 + 200 > varc)
  1110. mb_type|= CANDIDATE_MB_TYPE_INTRA;
  1111. if (varc*2 + 200 > vard){
  1112. mb_type|= CANDIDATE_MB_TYPE_INTER;
  1113. c->sub_motion_search(s, &mx, &my, dmin, 0, 0, 0, 16);
  1114. if(s->flags&CODEC_FLAG_MV0)
  1115. if(mx || my)
  1116. mb_type |= CANDIDATE_MB_TYPE_SKIPED; //FIXME check difference
  1117. }else{
  1118. mx <<=shift;
  1119. my <<=shift;
  1120. }
  1121. if((s->flags&CODEC_FLAG_4MV)
  1122. && !c->skip && varc>50 && vard>10){
  1123. if(h263_mv4_search(s, mx, my, shift) < INT_MAX)
  1124. mb_type|=CANDIDATE_MB_TYPE_INTER4V;
  1125. set_p_mv_tables(s, mx, my, 0);
  1126. }else
  1127. set_p_mv_tables(s, mx, my, 1);
  1128. if((s->flags&CODEC_FLAG_INTERLACED_ME)
  1129. && !c->skip){ //FIXME varc/d checks
  1130. if(interlaced_search(s, 0, s->p_field_mv_table, s->p_field_select_table, mx, my, 0) < INT_MAX)
  1131. mb_type |= CANDIDATE_MB_TYPE_INTER_I;
  1132. }
  1133. }else{
  1134. int intra_score, i;
  1135. mb_type= CANDIDATE_MB_TYPE_INTER;
  1136. dmin= c->sub_motion_search(s, &mx, &my, dmin, 0, 0, 0, 16);
  1137. if(c->avctx->me_sub_cmp != c->avctx->mb_cmp && !c->skip)
  1138. dmin= ff_get_mb_score(s, mx, my, 0, 0, 0, 16, 1);
  1139. if((s->flags&CODEC_FLAG_4MV)
  1140. && !c->skip && varc>50 && vard>10){
  1141. int dmin4= h263_mv4_search(s, mx, my, shift);
  1142. if(dmin4 < dmin){
  1143. mb_type= CANDIDATE_MB_TYPE_INTER4V;
  1144. dmin=dmin4;
  1145. }
  1146. }
  1147. if((s->flags&CODEC_FLAG_INTERLACED_ME)
  1148. && !c->skip){ //FIXME varc/d checks
  1149. int dmin_i= interlaced_search(s, 0, s->p_field_mv_table, s->p_field_select_table, mx, my, 0);
  1150. if(dmin_i < dmin){
  1151. mb_type = CANDIDATE_MB_TYPE_INTER_I;
  1152. dmin= dmin_i;
  1153. }
  1154. }
  1155. // pic->mb_cmp_score[s->mb_stride * mb_y + mb_x] = dmin;
  1156. set_p_mv_tables(s, mx, my, mb_type!=CANDIDATE_MB_TYPE_INTER4V);
  1157. /* get intra luma score */
  1158. if((c->avctx->mb_cmp&0xFF)==FF_CMP_SSE){
  1159. intra_score= (varc<<8) - 500; //FIXME dont scale it down so we dont have to fix it
  1160. }else{
  1161. int mean= (sum+128)>>8;
  1162. mean*= 0x01010101;
  1163. for(i=0; i<16; i++){
  1164. *(uint32_t*)(&c->scratchpad[i*s->linesize+ 0]) = mean;
  1165. *(uint32_t*)(&c->scratchpad[i*s->linesize+ 4]) = mean;
  1166. *(uint32_t*)(&c->scratchpad[i*s->linesize+ 8]) = mean;
  1167. *(uint32_t*)(&c->scratchpad[i*s->linesize+12]) = mean;
  1168. }
  1169. intra_score= s->dsp.mb_cmp[0](s, c->scratchpad, pix, s->linesize, 16);
  1170. }
  1171. #if 0 //FIXME
  1172. /* get chroma score */
  1173. if(c->avctx->mb_cmp&FF_CMP_CHROMA){
  1174. for(i=1; i<3; i++){
  1175. uint8_t *dest_c;
  1176. int mean;
  1177. if(s->out_format == FMT_H263){
  1178. mean= (s->dc_val[i][mb_x + mb_y*s->b8_stride] + 4)>>3; //FIXME not exact but simple ;)
  1179. }else{
  1180. mean= (s->last_dc[i] + 4)>>3;
  1181. }
  1182. dest_c = s->new_picture.data[i] + (mb_y * 8 * (s->uvlinesize)) + mb_x * 8;
  1183. mean*= 0x01010101;
  1184. for(i=0; i<8; i++){
  1185. *(uint32_t*)(&c->scratchpad[i*s->uvlinesize+ 0]) = mean;
  1186. *(uint32_t*)(&c->scratchpad[i*s->uvlinesize+ 4]) = mean;
  1187. }
  1188. intra_score+= s->dsp.mb_cmp[1](s, c->scratchpad, dest_c, s->uvlinesize);
  1189. }
  1190. }
  1191. #endif
  1192. intra_score += c->mb_penalty_factor*16;
  1193. if(intra_score < dmin){
  1194. mb_type= CANDIDATE_MB_TYPE_INTRA;
  1195. s->current_picture.mb_type[mb_y*s->mb_stride + mb_x]= CANDIDATE_MB_TYPE_INTRA; //FIXME cleanup
  1196. }else
  1197. s->current_picture.mb_type[mb_y*s->mb_stride + mb_x]= 0;
  1198. if (vard <= 64 || vard < varc) { //FIXME
  1199. c->scene_change_score+= ff_sqrt(vard) - ff_sqrt(varc);
  1200. }else{
  1201. c->scene_change_score+= s->qscale;
  1202. }
  1203. }
  1204. s->mb_type[mb_y*s->mb_stride + mb_x]= mb_type;
  1205. }
  1206. int ff_pre_estimate_p_frame_motion(MpegEncContext * s,
  1207. int mb_x, int mb_y)
  1208. {
  1209. MotionEstContext * const c= &s->me;
  1210. int mx, my, dmin;
  1211. int P[10][2];
  1212. const int shift= 1+s->quarter_sample;
  1213. const int xy= mb_x + mb_y*s->mb_stride;
  1214. init_ref(c, s->new_picture.data, s->last_picture.data, NULL, 16*mb_x, 16*mb_y, 0);
  1215. assert(s->quarter_sample==0 || s->quarter_sample==1);
  1216. c->pre_penalty_factor = get_penalty_factor(s->lambda, s->lambda2, c->avctx->me_pre_cmp);
  1217. c->current_mv_penalty= c->mv_penalty[s->f_code] + MAX_MV;
  1218. get_limits(s, 16*mb_x, 16*mb_y);
  1219. c->skip=0;
  1220. P_LEFT[0] = s->p_mv_table[xy + 1][0];
  1221. P_LEFT[1] = s->p_mv_table[xy + 1][1];
  1222. if(P_LEFT[0] < (c->xmin<<shift)) P_LEFT[0] = (c->xmin<<shift);
  1223. /* special case for first line */
  1224. if (s->first_slice_line) {
  1225. c->pred_x= P_LEFT[0];
  1226. c->pred_y= P_LEFT[1];
  1227. P_TOP[0]= P_TOPRIGHT[0]= P_MEDIAN[0]=
  1228. P_TOP[1]= P_TOPRIGHT[1]= P_MEDIAN[1]= 0; //FIXME
  1229. } else {
  1230. P_TOP[0] = s->p_mv_table[xy + s->mb_stride ][0];
  1231. P_TOP[1] = s->p_mv_table[xy + s->mb_stride ][1];
  1232. P_TOPRIGHT[0] = s->p_mv_table[xy + s->mb_stride - 1][0];
  1233. P_TOPRIGHT[1] = s->p_mv_table[xy + s->mb_stride - 1][1];
  1234. if(P_TOP[1] < (c->ymin<<shift)) P_TOP[1] = (c->ymin<<shift);
  1235. if(P_TOPRIGHT[0] > (c->xmax<<shift)) P_TOPRIGHT[0]= (c->xmax<<shift);
  1236. if(P_TOPRIGHT[1] < (c->ymin<<shift)) P_TOPRIGHT[1]= (c->ymin<<shift);
  1237. P_MEDIAN[0]= mid_pred(P_LEFT[0], P_TOP[0], P_TOPRIGHT[0]);
  1238. P_MEDIAN[1]= mid_pred(P_LEFT[1], P_TOP[1], P_TOPRIGHT[1]);
  1239. c->pred_x = P_MEDIAN[0];
  1240. c->pred_y = P_MEDIAN[1];
  1241. }
  1242. dmin = ff_epzs_motion_search(s, &mx, &my, P, 0, 0, s->p_mv_table, (1<<16)>>shift, 0, 16);
  1243. s->p_mv_table[xy][0] = mx<<shift;
  1244. s->p_mv_table[xy][1] = my<<shift;
  1245. return dmin;
  1246. }
  1247. static int ff_estimate_motion_b(MpegEncContext * s,
  1248. int mb_x, int mb_y, int16_t (*mv_table)[2], int ref_index, int f_code)
  1249. {
  1250. MotionEstContext * const c= &s->me;
  1251. int mx, my, dmin;
  1252. int P[10][2];
  1253. const int shift= 1+s->quarter_sample;
  1254. const int mot_stride = s->mb_stride;
  1255. const int mot_xy = mb_y*mot_stride + mb_x;
  1256. uint8_t * const mv_penalty= c->mv_penalty[f_code] + MAX_MV;
  1257. int mv_scale;
  1258. c->penalty_factor = get_penalty_factor(s->lambda, s->lambda2, c->avctx->me_cmp);
  1259. c->sub_penalty_factor= get_penalty_factor(s->lambda, s->lambda2, c->avctx->me_sub_cmp);
  1260. c->mb_penalty_factor = get_penalty_factor(s->lambda, s->lambda2, c->avctx->mb_cmp);
  1261. c->current_mv_penalty= mv_penalty;
  1262. get_limits(s, 16*mb_x, 16*mb_y);
  1263. switch(s->me_method) {
  1264. case ME_ZERO:
  1265. default:
  1266. no_motion_search(s, &mx, &my);
  1267. dmin = 0;
  1268. mx-= mb_x*16;
  1269. my-= mb_y*16;
  1270. break;
  1271. #if 0
  1272. case ME_FULL:
  1273. dmin = full_motion_search(s, &mx, &my, range, ref_picture);
  1274. mx-= mb_x*16;
  1275. my-= mb_y*16;
  1276. break;
  1277. case ME_LOG:
  1278. dmin = log_motion_search(s, &mx, &my, range / 2, ref_picture);
  1279. mx-= mb_x*16;
  1280. my-= mb_y*16;
  1281. break;
  1282. case ME_PHODS:
  1283. dmin = phods_motion_search(s, &mx, &my, range / 2, ref_picture);
  1284. mx-= mb_x*16;
  1285. my-= mb_y*16;
  1286. break;
  1287. #endif
  1288. case ME_X1:
  1289. case ME_EPZS:
  1290. {
  1291. P_LEFT[0] = mv_table[mot_xy - 1][0];
  1292. P_LEFT[1] = mv_table[mot_xy - 1][1];
  1293. if(P_LEFT[0] > (c->xmax<<shift)) P_LEFT[0] = (c->xmax<<shift);
  1294. /* special case for first line */
  1295. if (!s->first_slice_line) {
  1296. P_TOP[0] = mv_table[mot_xy - mot_stride ][0];
  1297. P_TOP[1] = mv_table[mot_xy - mot_stride ][1];
  1298. P_TOPRIGHT[0] = mv_table[mot_xy - mot_stride + 1 ][0];
  1299. P_TOPRIGHT[1] = mv_table[mot_xy - mot_stride + 1 ][1];
  1300. if(P_TOP[1] > (c->ymax<<shift)) P_TOP[1]= (c->ymax<<shift);
  1301. if(P_TOPRIGHT[0] < (c->xmin<<shift)) P_TOPRIGHT[0]= (c->xmin<<shift);
  1302. if(P_TOPRIGHT[1] > (c->ymax<<shift)) P_TOPRIGHT[1]= (c->ymax<<shift);
  1303. P_MEDIAN[0]= mid_pred(P_LEFT[0], P_TOP[0], P_TOPRIGHT[0]);
  1304. P_MEDIAN[1]= mid_pred(P_LEFT[1], P_TOP[1], P_TOPRIGHT[1]);
  1305. }
  1306. c->pred_x= P_LEFT[0];
  1307. c->pred_y= P_LEFT[1];
  1308. }
  1309. if(mv_table == s->b_forw_mv_table){
  1310. mv_scale= (s->pb_time<<16) / (s->pp_time<<shift);
  1311. }else{
  1312. mv_scale= ((s->pb_time - s->pp_time)<<16) / (s->pp_time<<shift);
  1313. }
  1314. dmin = ff_epzs_motion_search(s, &mx, &my, P, 0, ref_index, s->p_mv_table, mv_scale, 0, 16);
  1315. break;
  1316. }
  1317. dmin= c->sub_motion_search(s, &mx, &my, dmin, 0, ref_index, 0, 16);
  1318. if(c->avctx->me_sub_cmp != c->avctx->mb_cmp && !c->skip)
  1319. dmin= ff_get_mb_score(s, mx, my, 0, ref_index, 0, 16, 1);
  1320. //printf("%d %d %d %d//", s->mb_x, s->mb_y, mx, my);
  1321. // s->mb_type[mb_y*s->mb_width + mb_x]= mb_type;
  1322. mv_table[mot_xy][0]= mx;
  1323. mv_table[mot_xy][1]= my;
  1324. return dmin;
  1325. }
  1326. static inline int check_bidir_mv(MpegEncContext * s,
  1327. int motion_fx, int motion_fy,
  1328. int motion_bx, int motion_by,
  1329. int pred_fx, int pred_fy,
  1330. int pred_bx, int pred_by,
  1331. int size, int h)
  1332. {
  1333. //FIXME optimize?
  1334. //FIXME better f_code prediction (max mv & distance)
  1335. //FIXME pointers
  1336. MotionEstContext * const c= &s->me;
  1337. uint8_t * const mv_penalty= c->mv_penalty[s->f_code] + MAX_MV; // f_code of the prev frame
  1338. int stride= c->stride;
  1339. int uvstride= c->uvstride;
  1340. uint8_t *dest_y = c->scratchpad;
  1341. uint8_t *ptr;
  1342. int dxy;
  1343. int src_x, src_y;
  1344. int fbmin;
  1345. uint8_t **src_data= c->src[0];
  1346. uint8_t **ref_data= c->ref[0];
  1347. uint8_t **ref2_data= c->ref[2];
  1348. if(s->quarter_sample){
  1349. dxy = ((motion_fy & 3) << 2) | (motion_fx & 3);
  1350. src_x = motion_fx >> 2;
  1351. src_y = motion_fy >> 2;
  1352. ptr = ref_data[0] + (src_y * stride) + src_x;
  1353. s->dsp.put_qpel_pixels_tab[0][dxy](dest_y , ptr , stride);
  1354. dxy = ((motion_by & 3) << 2) | (motion_bx & 3);
  1355. src_x = motion_bx >> 2;
  1356. src_y = motion_by >> 2;
  1357. ptr = ref2_data[0] + (src_y * stride) + src_x;
  1358. s->dsp.avg_qpel_pixels_tab[size][dxy](dest_y , ptr , stride);
  1359. }else{
  1360. dxy = ((motion_fy & 1) << 1) | (motion_fx & 1);
  1361. src_x = motion_fx >> 1;
  1362. src_y = motion_fy >> 1;
  1363. ptr = ref_data[0] + (src_y * stride) + src_x;
  1364. s->dsp.put_pixels_tab[size][dxy](dest_y , ptr , stride, h);
  1365. dxy = ((motion_by & 1) << 1) | (motion_bx & 1);
  1366. src_x = motion_bx >> 1;
  1367. src_y = motion_by >> 1;
  1368. ptr = ref2_data[0] + (src_y * stride) + src_x;
  1369. s->dsp.avg_pixels_tab[size][dxy](dest_y , ptr , stride, h);
  1370. }
  1371. fbmin = (mv_penalty[motion_fx-pred_fx] + mv_penalty[motion_fy-pred_fy])*c->mb_penalty_factor
  1372. +(mv_penalty[motion_bx-pred_bx] + mv_penalty[motion_by-pred_by])*c->mb_penalty_factor
  1373. + s->dsp.mb_cmp[size](s, src_data[0], dest_y, stride, h); //FIXME new_pic
  1374. if(c->avctx->mb_cmp&FF_CMP_CHROMA){
  1375. }
  1376. //FIXME CHROMA !!!
  1377. return fbmin;
  1378. }
  1379. /* refine the bidir vectors in hq mode and return the score in both lq & hq mode*/
  1380. static inline int bidir_refine(MpegEncContext * s, int mb_x, int mb_y)
  1381. {
  1382. const int mot_stride = s->mb_stride;
  1383. const int xy = mb_y *mot_stride + mb_x;
  1384. int fbmin;
  1385. int pred_fx= s->b_bidir_forw_mv_table[xy-1][0];
  1386. int pred_fy= s->b_bidir_forw_mv_table[xy-1][1];
  1387. int pred_bx= s->b_bidir_back_mv_table[xy-1][0];
  1388. int pred_by= s->b_bidir_back_mv_table[xy-1][1];
  1389. int motion_fx= s->b_bidir_forw_mv_table[xy][0]= s->b_forw_mv_table[xy][0];
  1390. int motion_fy= s->b_bidir_forw_mv_table[xy][1]= s->b_forw_mv_table[xy][1];
  1391. int motion_bx= s->b_bidir_back_mv_table[xy][0]= s->b_back_mv_table[xy][0];
  1392. int motion_by= s->b_bidir_back_mv_table[xy][1]= s->b_back_mv_table[xy][1];
  1393. //FIXME do refinement and add flag
  1394. fbmin= check_bidir_mv(s, motion_fx, motion_fy,
  1395. motion_bx, motion_by,
  1396. pred_fx, pred_fy,
  1397. pred_bx, pred_by,
  1398. 0, 16);
  1399. return fbmin;
  1400. }
  1401. static inline int direct_search(MpegEncContext * s, int mb_x, int mb_y)
  1402. {
  1403. MotionEstContext * const c= &s->me;
  1404. int P[10][2];
  1405. const int mot_stride = s->mb_stride;
  1406. const int mot_xy = mb_y*mot_stride + mb_x;
  1407. const int shift= 1+s->quarter_sample;
  1408. int dmin, i;
  1409. const int time_pp= s->pp_time;
  1410. const int time_pb= s->pb_time;
  1411. int mx, my, xmin, xmax, ymin, ymax;
  1412. int16_t (*mv_table)[2]= s->b_direct_mv_table;
  1413. c->current_mv_penalty= c->mv_penalty[1] + MAX_MV;
  1414. ymin= xmin=(-32)>>shift;
  1415. ymax= xmax= 31>>shift;
  1416. if(IS_8X8(s->next_picture.mb_type[mot_xy])){
  1417. s->mv_type= MV_TYPE_8X8;
  1418. }else{
  1419. s->mv_type= MV_TYPE_16X16;
  1420. }
  1421. for(i=0; i<4; i++){
  1422. int index= s->block_index[i];
  1423. int min, max;
  1424. c->co_located_mv[i][0]= s->next_picture.motion_val[0][index][0];
  1425. c->co_located_mv[i][1]= s->next_picture.motion_val[0][index][1];
  1426. c->direct_basis_mv[i][0]= c->co_located_mv[i][0]*time_pb/time_pp + ((i& 1)<<(shift+3));
  1427. c->direct_basis_mv[i][1]= c->co_located_mv[i][1]*time_pb/time_pp + ((i>>1)<<(shift+3));
  1428. // c->direct_basis_mv[1][i][0]= c->co_located_mv[i][0]*(time_pb - time_pp)/time_pp + ((i &1)<<(shift+3);
  1429. // c->direct_basis_mv[1][i][1]= c->co_located_mv[i][1]*(time_pb - time_pp)/time_pp + ((i>>1)<<(shift+3);
  1430. max= FFMAX(c->direct_basis_mv[i][0], c->direct_basis_mv[i][0] - c->co_located_mv[i][0])>>shift;
  1431. min= FFMIN(c->direct_basis_mv[i][0], c->direct_basis_mv[i][0] - c->co_located_mv[i][0])>>shift;
  1432. max+= 16*mb_x + 1; // +-1 is for the simpler rounding
  1433. min+= 16*mb_x - 1;
  1434. xmax= FFMIN(xmax, s->width - max);
  1435. xmin= FFMAX(xmin, - 16 - min);
  1436. max= FFMAX(c->direct_basis_mv[i][1], c->direct_basis_mv[i][1] - c->co_located_mv[i][1])>>shift;
  1437. min= FFMIN(c->direct_basis_mv[i][1], c->direct_basis_mv[i][1] - c->co_located_mv[i][1])>>shift;
  1438. max+= 16*mb_y + 1; // +-1 is for the simpler rounding
  1439. min+= 16*mb_y - 1;
  1440. ymax= FFMIN(ymax, s->height - max);
  1441. ymin= FFMAX(ymin, - 16 - min);
  1442. if(s->mv_type == MV_TYPE_16X16) break;
  1443. }
  1444. assert(xmax <= 15 && ymax <= 15 && xmin >= -16 && ymin >= -16);
  1445. if(xmax < 0 || xmin >0 || ymax < 0 || ymin > 0){
  1446. s->b_direct_mv_table[mot_xy][0]= 0;
  1447. s->b_direct_mv_table[mot_xy][1]= 0;
  1448. return 256*256*256*64;
  1449. }
  1450. c->xmin= xmin;
  1451. c->ymin= ymin;
  1452. c->xmax= xmax;
  1453. c->ymax= ymax;
  1454. c->flags |= FLAG_DIRECT;
  1455. c->sub_flags |= FLAG_DIRECT;
  1456. c->pred_x=0;
  1457. c->pred_y=0;
  1458. P_LEFT[0] = clip(mv_table[mot_xy - 1][0], xmin<<shift, xmax<<shift);
  1459. P_LEFT[1] = clip(mv_table[mot_xy - 1][1], ymin<<shift, ymax<<shift);
  1460. /* special case for first line */
  1461. if (!s->first_slice_line) { //FIXME maybe allow this over thread boundary as its cliped
  1462. P_TOP[0] = clip(mv_table[mot_xy - mot_stride ][0], xmin<<shift, xmax<<shift);
  1463. P_TOP[1] = clip(mv_table[mot_xy - mot_stride ][1], ymin<<shift, ymax<<shift);
  1464. P_TOPRIGHT[0] = clip(mv_table[mot_xy - mot_stride + 1 ][0], xmin<<shift, xmax<<shift);
  1465. P_TOPRIGHT[1] = clip(mv_table[mot_xy - mot_stride + 1 ][1], ymin<<shift, ymax<<shift);
  1466. P_MEDIAN[0]= mid_pred(P_LEFT[0], P_TOP[0], P_TOPRIGHT[0]);
  1467. P_MEDIAN[1]= mid_pred(P_LEFT[1], P_TOP[1], P_TOPRIGHT[1]);
  1468. }
  1469. dmin = ff_epzs_motion_search(s, &mx, &my, P, 0, 0, mv_table, 1<<(16-shift), 0, 16);
  1470. if(c->sub_flags&FLAG_QPEL)
  1471. dmin = qpel_motion_search(s, &mx, &my, dmin, 0, 0, 0, 16);
  1472. else
  1473. dmin = hpel_motion_search(s, &mx, &my, dmin, 0, 0, 0, 16);
  1474. if(c->avctx->me_sub_cmp != c->avctx->mb_cmp && !c->skip)
  1475. dmin= ff_get_mb_score(s, mx, my, 0, 0, 0, 16, 1);
  1476. get_limits(s, 16*mb_x, 16*mb_y); //restore c->?min/max, maybe not needed
  1477. s->b_direct_mv_table[mot_xy][0]= mx;
  1478. s->b_direct_mv_table[mot_xy][1]= my;
  1479. c->flags &= ~FLAG_DIRECT;
  1480. c->sub_flags &= ~FLAG_DIRECT;
  1481. return dmin;
  1482. }
  1483. void ff_estimate_b_frame_motion(MpegEncContext * s,
  1484. int mb_x, int mb_y)
  1485. {
  1486. MotionEstContext * const c= &s->me;
  1487. const int penalty_factor= c->mb_penalty_factor;
  1488. int fmin, bmin, dmin, fbmin, bimin, fimin;
  1489. int type=0;
  1490. const int xy = mb_y*s->mb_stride + mb_x;
  1491. init_ref(c, s->new_picture.data, s->last_picture.data, s->next_picture.data, 16*mb_x, 16*mb_y, 2);
  1492. get_limits(s, 16*mb_x, 16*mb_y);
  1493. c->skip=0;
  1494. if(c->avctx->me_threshold){
  1495. int vard= (check_input_motion(s, mb_x, mb_y, 0)+128)>>8;
  1496. if(vard<c->avctx->me_threshold){
  1497. // pix = c->src[0][0];
  1498. // sum = s->dsp.pix_sum(pix, s->linesize);
  1499. // varc = (s->dsp.pix_norm1(pix, s->linesize) - (((unsigned)(sum*sum))>>8) + 500 + 128)>>8;
  1500. // pic->mb_var [s->mb_stride * mb_y + mb_x] = varc;
  1501. s->current_picture.mc_mb_var[s->mb_stride * mb_y + mb_x] = vard;
  1502. /* pic->mb_mean [s->mb_stride * mb_y + mb_x] = (sum+128)>>8;
  1503. c->mb_var_sum_temp += varc;*/
  1504. c->mc_mb_var_sum_temp += vard;
  1505. /* if (vard <= 64 || vard < varc) {
  1506. c->scene_change_score+= ff_sqrt(vard) - ff_sqrt(varc);
  1507. }else{
  1508. c->scene_change_score+= s->qscale;
  1509. }*/
  1510. return;
  1511. }
  1512. if(vard<c->avctx->mb_threshold){
  1513. type= s->mb_type[mb_y*s->mb_stride + mb_x];
  1514. if(type == CANDIDATE_MB_TYPE_DIRECT){
  1515. direct_search(s, mb_x, mb_y);
  1516. }
  1517. if(type == CANDIDATE_MB_TYPE_FORWARD || type == CANDIDATE_MB_TYPE_BIDIR){
  1518. c->skip=0;
  1519. ff_estimate_motion_b(s, mb_x, mb_y, s->b_forw_mv_table, 0, s->f_code);
  1520. }
  1521. if(type == CANDIDATE_MB_TYPE_BACKWARD || type == CANDIDATE_MB_TYPE_BIDIR){
  1522. c->skip=0;
  1523. ff_estimate_motion_b(s, mb_x, mb_y, s->b_back_mv_table, 2, s->b_code);
  1524. }
  1525. if(type == CANDIDATE_MB_TYPE_FORWARD_I || type == CANDIDATE_MB_TYPE_BIDIR_I){
  1526. c->skip=0;
  1527. c->current_mv_penalty= c->mv_penalty[s->f_code] + MAX_MV;
  1528. interlaced_search(s, 0,
  1529. s->b_field_mv_table[0], s->b_field_select_table[0],
  1530. s->b_forw_mv_table[xy][0], s->b_forw_mv_table[xy][1], 1);
  1531. }
  1532. if(type == CANDIDATE_MB_TYPE_BACKWARD_I || type == CANDIDATE_MB_TYPE_BIDIR_I){
  1533. c->skip=0;
  1534. c->current_mv_penalty= c->mv_penalty[s->b_code] + MAX_MV;
  1535. interlaced_search(s, 2,
  1536. s->b_field_mv_table[1], s->b_field_select_table[1],
  1537. s->b_back_mv_table[xy][0], s->b_back_mv_table[xy][1], 1);
  1538. }
  1539. return;
  1540. }
  1541. }
  1542. if (s->codec_id == CODEC_ID_MPEG4)
  1543. dmin= direct_search(s, mb_x, mb_y);
  1544. else
  1545. dmin= INT_MAX;
  1546. //FIXME penalty stuff for non mpeg4
  1547. c->skip=0;
  1548. fmin= ff_estimate_motion_b(s, mb_x, mb_y, s->b_forw_mv_table, 0, s->f_code) + 3*penalty_factor;
  1549. c->skip=0;
  1550. bmin= ff_estimate_motion_b(s, mb_x, mb_y, s->b_back_mv_table, 2, s->b_code) + 2*penalty_factor;
  1551. //printf(" %d %d ", s->b_forw_mv_table[xy][0], s->b_forw_mv_table[xy][1]);
  1552. c->skip=0;
  1553. fbmin= bidir_refine(s, mb_x, mb_y) + penalty_factor;
  1554. //printf("%d %d %d %d\n", dmin, fmin, bmin, fbmin);
  1555. if(s->flags & CODEC_FLAG_INTERLACED_ME){
  1556. //FIXME mb type penalty
  1557. c->skip=0;
  1558. c->current_mv_penalty= c->mv_penalty[s->f_code] + MAX_MV;
  1559. fimin= interlaced_search(s, 0,
  1560. s->b_field_mv_table[0], s->b_field_select_table[0],
  1561. s->b_forw_mv_table[xy][0], s->b_forw_mv_table[xy][1], 0);
  1562. c->current_mv_penalty= c->mv_penalty[s->b_code] + MAX_MV;
  1563. bimin= interlaced_search(s, 2,
  1564. s->b_field_mv_table[1], s->b_field_select_table[1],
  1565. s->b_back_mv_table[xy][0], s->b_back_mv_table[xy][1], 0);
  1566. }else
  1567. fimin= bimin= INT_MAX;
  1568. {
  1569. int score= fmin;
  1570. type = CANDIDATE_MB_TYPE_FORWARD;
  1571. if (dmin <= score){
  1572. score = dmin;
  1573. type = CANDIDATE_MB_TYPE_DIRECT;
  1574. }
  1575. if(bmin<score){
  1576. score=bmin;
  1577. type= CANDIDATE_MB_TYPE_BACKWARD;
  1578. }
  1579. if(fbmin<score){
  1580. score=fbmin;
  1581. type= CANDIDATE_MB_TYPE_BIDIR;
  1582. }
  1583. if(fimin<score){
  1584. score=fimin;
  1585. type= CANDIDATE_MB_TYPE_FORWARD_I;
  1586. }
  1587. if(bimin<score){
  1588. score=bimin;
  1589. type= CANDIDATE_MB_TYPE_BACKWARD_I;
  1590. }
  1591. score= ((unsigned)(score*score + 128*256))>>16;
  1592. c->mc_mb_var_sum_temp += score;
  1593. s->current_picture.mc_mb_var[mb_y*s->mb_stride + mb_x] = score; //FIXME use SSE
  1594. }
  1595. if(c->avctx->mb_decision > FF_MB_DECISION_SIMPLE){
  1596. type= CANDIDATE_MB_TYPE_FORWARD | CANDIDATE_MB_TYPE_BACKWARD | CANDIDATE_MB_TYPE_BIDIR | CANDIDATE_MB_TYPE_DIRECT;
  1597. if(fimin < INT_MAX)
  1598. type |= CANDIDATE_MB_TYPE_FORWARD_I;
  1599. if(bimin < INT_MAX)
  1600. type |= CANDIDATE_MB_TYPE_BACKWARD_I;
  1601. if(fimin < INT_MAX && bimin < INT_MAX){
  1602. type |= CANDIDATE_MB_TYPE_BIDIR_I;
  1603. }
  1604. //FIXME something smarter
  1605. if(dmin>256*256*16) type&= ~CANDIDATE_MB_TYPE_DIRECT; //dont try direct mode if its invalid for this MB
  1606. #if 0
  1607. if(s->out_format == FMT_MPEG1)
  1608. type |= CANDIDATE_MB_TYPE_INTRA;
  1609. #endif
  1610. }
  1611. s->mb_type[mb_y*s->mb_stride + mb_x]= type;
  1612. }
  1613. /* find best f_code for ME which do unlimited searches */
  1614. int ff_get_best_fcode(MpegEncContext * s, int16_t (*mv_table)[2], int type)
  1615. {
  1616. if(s->me_method>=ME_EPZS){
  1617. int score[8];
  1618. int i, y;
  1619. uint8_t * fcode_tab= s->fcode_tab;
  1620. int best_fcode=-1;
  1621. int best_score=-10000000;
  1622. for(i=0; i<8; i++) score[i]= s->mb_num*(8-i);
  1623. for(y=0; y<s->mb_height; y++){
  1624. int x;
  1625. int xy= y*s->mb_stride;
  1626. for(x=0; x<s->mb_width; x++){
  1627. if(s->mb_type[xy] & type){
  1628. int fcode= FFMAX(fcode_tab[mv_table[xy][0] + MAX_MV],
  1629. fcode_tab[mv_table[xy][1] + MAX_MV]);
  1630. int j;
  1631. for(j=0; j<fcode && j<8; j++){
  1632. if(s->pict_type==B_TYPE || s->current_picture.mc_mb_var[xy] < s->current_picture.mb_var[xy])
  1633. score[j]-= 170;
  1634. }
  1635. }
  1636. xy++;
  1637. }
  1638. }
  1639. for(i=1; i<8; i++){
  1640. if(score[i] > best_score){
  1641. best_score= score[i];
  1642. best_fcode= i;
  1643. }
  1644. // printf("%d %d\n", i, score[i]);
  1645. }
  1646. // printf("fcode: %d type: %d\n", i, s->pict_type);
  1647. return best_fcode;
  1648. /* for(i=0; i<=MAX_FCODE; i++){
  1649. printf("%d ", mv_num[i]);
  1650. }
  1651. printf("\n");*/
  1652. }else{
  1653. return 1;
  1654. }
  1655. }
  1656. void ff_fix_long_p_mvs(MpegEncContext * s)
  1657. {
  1658. MotionEstContext * const c= &s->me;
  1659. const int f_code= s->f_code;
  1660. int y, range;
  1661. assert(s->pict_type==P_TYPE);
  1662. range = (((s->out_format == FMT_MPEG1) ? 8 : 16) << f_code);
  1663. if(s->msmpeg4_version) range= 16;
  1664. if(c->avctx->me_range && range > c->avctx->me_range) range= c->avctx->me_range;
  1665. //printf("%d no:%d %d//\n", clip, noclip, f_code);
  1666. if(s->flags&CODEC_FLAG_4MV){
  1667. const int wrap= s->b8_stride;
  1668. /* clip / convert to intra 8x8 type MVs */
  1669. for(y=0; y<s->mb_height; y++){
  1670. int xy= y*2*wrap;
  1671. int i= y*s->mb_stride;
  1672. int x;
  1673. for(x=0; x<s->mb_width; x++){
  1674. if(s->mb_type[i]&CANDIDATE_MB_TYPE_INTER4V){
  1675. int block;
  1676. for(block=0; block<4; block++){
  1677. int off= (block& 1) + (block>>1)*wrap;
  1678. int mx= s->current_picture.motion_val[0][ xy + off ][0];
  1679. int my= s->current_picture.motion_val[0][ xy + off ][1];
  1680. if( mx >=range || mx <-range
  1681. || my >=range || my <-range){
  1682. s->mb_type[i] &= ~CANDIDATE_MB_TYPE_INTER4V;
  1683. s->mb_type[i] |= CANDIDATE_MB_TYPE_INTRA;
  1684. s->current_picture.mb_type[i]= CANDIDATE_MB_TYPE_INTRA;
  1685. }
  1686. }
  1687. }
  1688. xy+=2;
  1689. i++;
  1690. }
  1691. }
  1692. }
  1693. }
  1694. /**
  1695. *
  1696. * @param truncate 1 for truncation, 0 for using intra
  1697. */
  1698. void ff_fix_long_mvs(MpegEncContext * s, uint8_t *field_select_table, int field_select,
  1699. int16_t (*mv_table)[2], int f_code, int type, int truncate)
  1700. {
  1701. MotionEstContext * const c= &s->me;
  1702. int y, h_range, v_range;
  1703. // RAL: 8 in MPEG-1, 16 in MPEG-4
  1704. int range = (((s->out_format == FMT_MPEG1) ? 8 : 16) << f_code);
  1705. if(s->msmpeg4_version) range= 16;
  1706. if(c->avctx->me_range && range > c->avctx->me_range) range= c->avctx->me_range;
  1707. h_range= range;
  1708. v_range= field_select_table ? range>>1 : range;
  1709. /* clip / convert to intra 16x16 type MVs */
  1710. for(y=0; y<s->mb_height; y++){
  1711. int x;
  1712. int xy= y*s->mb_stride;
  1713. for(x=0; x<s->mb_width; x++){
  1714. if (s->mb_type[xy] & type){ // RAL: "type" test added...
  1715. if(field_select_table==NULL || field_select_table[xy] == field_select){
  1716. if( mv_table[xy][0] >=h_range || mv_table[xy][0] <-h_range
  1717. || mv_table[xy][1] >=v_range || mv_table[xy][1] <-v_range){
  1718. if(truncate){
  1719. if (mv_table[xy][0] > h_range-1) mv_table[xy][0]= h_range-1;
  1720. else if(mv_table[xy][0] < -h_range ) mv_table[xy][0]= -h_range;
  1721. if (mv_table[xy][1] > v_range-1) mv_table[xy][1]= v_range-1;
  1722. else if(mv_table[xy][1] < -v_range ) mv_table[xy][1]= -v_range;
  1723. }else{
  1724. s->mb_type[xy] &= ~type;
  1725. s->mb_type[xy] |= CANDIDATE_MB_TYPE_INTRA;
  1726. mv_table[xy][0]=
  1727. mv_table[xy][1]= 0;
  1728. }
  1729. }
  1730. }
  1731. }
  1732. xy++;
  1733. }
  1734. }
  1735. }