You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

955 lines
31KB

  1. /*
  2. * WMA compatible decoder
  3. * Copyright (c) 2002 The Libav Project
  4. *
  5. * This file is part of Libav.
  6. *
  7. * Libav is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * Libav is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with Libav; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * WMA compatible decoder.
  24. * This decoder handles Microsoft Windows Media Audio data, versions 1 & 2.
  25. * WMA v1 is identified by audio format 0x160 in Microsoft media files
  26. * (ASF/AVI/WAV). WMA v2 is identified by audio format 0x161.
  27. *
  28. * To use this decoder, a calling application must supply the extra data
  29. * bytes provided with the WMA data. These are the extra, codec-specific
  30. * bytes at the end of a WAVEFORMATEX data structure. Transmit these bytes
  31. * to the decoder using the extradata[_size] fields in AVCodecContext. There
  32. * should be 4 extra bytes for v1 data and 6 extra bytes for v2 data.
  33. */
  34. #include "avcodec.h"
  35. #include "wma.h"
  36. #undef NDEBUG
  37. #include <assert.h>
  38. #define EXPVLCBITS 8
  39. #define EXPMAX ((19+EXPVLCBITS-1)/EXPVLCBITS)
  40. #define HGAINVLCBITS 9
  41. #define HGAINMAX ((13+HGAINVLCBITS-1)/HGAINVLCBITS)
  42. static void wma_lsp_to_curve_init(WMACodecContext *s, int frame_len);
  43. #ifdef TRACE
  44. static void dump_shorts(WMACodecContext *s, const char *name, const short *tab, int n)
  45. {
  46. int i;
  47. tprintf(s->avctx, "%s[%d]:\n", name, n);
  48. for(i=0;i<n;i++) {
  49. if ((i & 7) == 0)
  50. tprintf(s->avctx, "%4d: ", i);
  51. tprintf(s->avctx, " %5d.0", tab[i]);
  52. if ((i & 7) == 7)
  53. tprintf(s->avctx, "\n");
  54. }
  55. }
  56. static void dump_floats(WMACodecContext *s, const char *name, int prec, const float *tab, int n)
  57. {
  58. int i;
  59. tprintf(s->avctx, "%s[%d]:\n", name, n);
  60. for(i=0;i<n;i++) {
  61. if ((i & 7) == 0)
  62. tprintf(s->avctx, "%4d: ", i);
  63. tprintf(s->avctx, " %8.*f", prec, tab[i]);
  64. if ((i & 7) == 7)
  65. tprintf(s->avctx, "\n");
  66. }
  67. if ((i & 7) != 0)
  68. tprintf(s->avctx, "\n");
  69. }
  70. #endif
  71. static int wma_decode_init(AVCodecContext * avctx)
  72. {
  73. WMACodecContext *s = avctx->priv_data;
  74. int i, flags2;
  75. uint8_t *extradata;
  76. s->avctx = avctx;
  77. /* extract flag infos */
  78. flags2 = 0;
  79. extradata = avctx->extradata;
  80. if (avctx->codec->id == CODEC_ID_WMAV1 && avctx->extradata_size >= 4) {
  81. flags2 = AV_RL16(extradata+2);
  82. } else if (avctx->codec->id == CODEC_ID_WMAV2 && avctx->extradata_size >= 6) {
  83. flags2 = AV_RL16(extradata+4);
  84. }
  85. // for(i=0; i<avctx->extradata_size; i++)
  86. // av_log(NULL, AV_LOG_ERROR, "%02X ", extradata[i]);
  87. s->use_exp_vlc = flags2 & 0x0001;
  88. s->use_bit_reservoir = flags2 & 0x0002;
  89. s->use_variable_block_len = flags2 & 0x0004;
  90. if(ff_wma_init(avctx, flags2)<0)
  91. return -1;
  92. /* init MDCT */
  93. for(i = 0; i < s->nb_block_sizes; i++)
  94. ff_mdct_init(&s->mdct_ctx[i], s->frame_len_bits - i + 1, 1, 1.0);
  95. if (s->use_noise_coding) {
  96. init_vlc(&s->hgain_vlc, HGAINVLCBITS, sizeof(ff_wma_hgain_huffbits),
  97. ff_wma_hgain_huffbits, 1, 1,
  98. ff_wma_hgain_huffcodes, 2, 2, 0);
  99. }
  100. if (s->use_exp_vlc) {
  101. init_vlc(&s->exp_vlc, EXPVLCBITS, sizeof(ff_aac_scalefactor_bits), //FIXME move out of context
  102. ff_aac_scalefactor_bits, 1, 1,
  103. ff_aac_scalefactor_code, 4, 4, 0);
  104. } else {
  105. wma_lsp_to_curve_init(s, s->frame_len);
  106. }
  107. avctx->sample_fmt = AV_SAMPLE_FMT_S16;
  108. return 0;
  109. }
  110. /**
  111. * compute x^-0.25 with an exponent and mantissa table. We use linear
  112. * interpolation to reduce the mantissa table size at a small speed
  113. * expense (linear interpolation approximately doubles the number of
  114. * bits of precision).
  115. */
  116. static inline float pow_m1_4(WMACodecContext *s, float x)
  117. {
  118. union {
  119. float f;
  120. unsigned int v;
  121. } u, t;
  122. unsigned int e, m;
  123. float a, b;
  124. u.f = x;
  125. e = u.v >> 23;
  126. m = (u.v >> (23 - LSP_POW_BITS)) & ((1 << LSP_POW_BITS) - 1);
  127. /* build interpolation scale: 1 <= t < 2. */
  128. t.v = ((u.v << LSP_POW_BITS) & ((1 << 23) - 1)) | (127 << 23);
  129. a = s->lsp_pow_m_table1[m];
  130. b = s->lsp_pow_m_table2[m];
  131. return s->lsp_pow_e_table[e] * (a + b * t.f);
  132. }
  133. static void wma_lsp_to_curve_init(WMACodecContext *s, int frame_len)
  134. {
  135. float wdel, a, b;
  136. int i, e, m;
  137. wdel = M_PI / frame_len;
  138. for(i=0;i<frame_len;i++)
  139. s->lsp_cos_table[i] = 2.0f * cos(wdel * i);
  140. /* tables for x^-0.25 computation */
  141. for(i=0;i<256;i++) {
  142. e = i - 126;
  143. s->lsp_pow_e_table[i] = pow(2.0, e * -0.25);
  144. }
  145. /* NOTE: these two tables are needed to avoid two operations in
  146. pow_m1_4 */
  147. b = 1.0;
  148. for(i=(1 << LSP_POW_BITS) - 1;i>=0;i--) {
  149. m = (1 << LSP_POW_BITS) + i;
  150. a = (float)m * (0.5 / (1 << LSP_POW_BITS));
  151. a = pow(a, -0.25);
  152. s->lsp_pow_m_table1[i] = 2 * a - b;
  153. s->lsp_pow_m_table2[i] = b - a;
  154. b = a;
  155. }
  156. #if 0
  157. for(i=1;i<20;i++) {
  158. float v, r1, r2;
  159. v = 5.0 / i;
  160. r1 = pow_m1_4(s, v);
  161. r2 = pow(v,-0.25);
  162. printf("%f^-0.25=%f e=%f\n", v, r1, r2 - r1);
  163. }
  164. #endif
  165. }
  166. /**
  167. * NOTE: We use the same code as Vorbis here
  168. * @todo optimize it further with SSE/3Dnow
  169. */
  170. static void wma_lsp_to_curve(WMACodecContext *s,
  171. float *out, float *val_max_ptr,
  172. int n, float *lsp)
  173. {
  174. int i, j;
  175. float p, q, w, v, val_max;
  176. val_max = 0;
  177. for(i=0;i<n;i++) {
  178. p = 0.5f;
  179. q = 0.5f;
  180. w = s->lsp_cos_table[i];
  181. for(j=1;j<NB_LSP_COEFS;j+=2){
  182. q *= w - lsp[j - 1];
  183. p *= w - lsp[j];
  184. }
  185. p *= p * (2.0f - w);
  186. q *= q * (2.0f + w);
  187. v = p + q;
  188. v = pow_m1_4(s, v);
  189. if (v > val_max)
  190. val_max = v;
  191. out[i] = v;
  192. }
  193. *val_max_ptr = val_max;
  194. }
  195. /**
  196. * decode exponents coded with LSP coefficients (same idea as Vorbis)
  197. */
  198. static void decode_exp_lsp(WMACodecContext *s, int ch)
  199. {
  200. float lsp_coefs[NB_LSP_COEFS];
  201. int val, i;
  202. for(i = 0; i < NB_LSP_COEFS; i++) {
  203. if (i == 0 || i >= 8)
  204. val = get_bits(&s->gb, 3);
  205. else
  206. val = get_bits(&s->gb, 4);
  207. lsp_coefs[i] = ff_wma_lsp_codebook[i][val];
  208. }
  209. wma_lsp_to_curve(s, s->exponents[ch], &s->max_exponent[ch],
  210. s->block_len, lsp_coefs);
  211. }
  212. /** pow(10, i / 16.0) for i in -60..95 */
  213. static const float pow_tab[] = {
  214. 1.7782794100389e-04, 2.0535250264571e-04,
  215. 2.3713737056617e-04, 2.7384196342644e-04,
  216. 3.1622776601684e-04, 3.6517412725484e-04,
  217. 4.2169650342858e-04, 4.8696752516586e-04,
  218. 5.6234132519035e-04, 6.4938163157621e-04,
  219. 7.4989420933246e-04, 8.6596432336006e-04,
  220. 1.0000000000000e-03, 1.1547819846895e-03,
  221. 1.3335214321633e-03, 1.5399265260595e-03,
  222. 1.7782794100389e-03, 2.0535250264571e-03,
  223. 2.3713737056617e-03, 2.7384196342644e-03,
  224. 3.1622776601684e-03, 3.6517412725484e-03,
  225. 4.2169650342858e-03, 4.8696752516586e-03,
  226. 5.6234132519035e-03, 6.4938163157621e-03,
  227. 7.4989420933246e-03, 8.6596432336006e-03,
  228. 1.0000000000000e-02, 1.1547819846895e-02,
  229. 1.3335214321633e-02, 1.5399265260595e-02,
  230. 1.7782794100389e-02, 2.0535250264571e-02,
  231. 2.3713737056617e-02, 2.7384196342644e-02,
  232. 3.1622776601684e-02, 3.6517412725484e-02,
  233. 4.2169650342858e-02, 4.8696752516586e-02,
  234. 5.6234132519035e-02, 6.4938163157621e-02,
  235. 7.4989420933246e-02, 8.6596432336007e-02,
  236. 1.0000000000000e-01, 1.1547819846895e-01,
  237. 1.3335214321633e-01, 1.5399265260595e-01,
  238. 1.7782794100389e-01, 2.0535250264571e-01,
  239. 2.3713737056617e-01, 2.7384196342644e-01,
  240. 3.1622776601684e-01, 3.6517412725484e-01,
  241. 4.2169650342858e-01, 4.8696752516586e-01,
  242. 5.6234132519035e-01, 6.4938163157621e-01,
  243. 7.4989420933246e-01, 8.6596432336007e-01,
  244. 1.0000000000000e+00, 1.1547819846895e+00,
  245. 1.3335214321633e+00, 1.5399265260595e+00,
  246. 1.7782794100389e+00, 2.0535250264571e+00,
  247. 2.3713737056617e+00, 2.7384196342644e+00,
  248. 3.1622776601684e+00, 3.6517412725484e+00,
  249. 4.2169650342858e+00, 4.8696752516586e+00,
  250. 5.6234132519035e+00, 6.4938163157621e+00,
  251. 7.4989420933246e+00, 8.6596432336007e+00,
  252. 1.0000000000000e+01, 1.1547819846895e+01,
  253. 1.3335214321633e+01, 1.5399265260595e+01,
  254. 1.7782794100389e+01, 2.0535250264571e+01,
  255. 2.3713737056617e+01, 2.7384196342644e+01,
  256. 3.1622776601684e+01, 3.6517412725484e+01,
  257. 4.2169650342858e+01, 4.8696752516586e+01,
  258. 5.6234132519035e+01, 6.4938163157621e+01,
  259. 7.4989420933246e+01, 8.6596432336007e+01,
  260. 1.0000000000000e+02, 1.1547819846895e+02,
  261. 1.3335214321633e+02, 1.5399265260595e+02,
  262. 1.7782794100389e+02, 2.0535250264571e+02,
  263. 2.3713737056617e+02, 2.7384196342644e+02,
  264. 3.1622776601684e+02, 3.6517412725484e+02,
  265. 4.2169650342858e+02, 4.8696752516586e+02,
  266. 5.6234132519035e+02, 6.4938163157621e+02,
  267. 7.4989420933246e+02, 8.6596432336007e+02,
  268. 1.0000000000000e+03, 1.1547819846895e+03,
  269. 1.3335214321633e+03, 1.5399265260595e+03,
  270. 1.7782794100389e+03, 2.0535250264571e+03,
  271. 2.3713737056617e+03, 2.7384196342644e+03,
  272. 3.1622776601684e+03, 3.6517412725484e+03,
  273. 4.2169650342858e+03, 4.8696752516586e+03,
  274. 5.6234132519035e+03, 6.4938163157621e+03,
  275. 7.4989420933246e+03, 8.6596432336007e+03,
  276. 1.0000000000000e+04, 1.1547819846895e+04,
  277. 1.3335214321633e+04, 1.5399265260595e+04,
  278. 1.7782794100389e+04, 2.0535250264571e+04,
  279. 2.3713737056617e+04, 2.7384196342644e+04,
  280. 3.1622776601684e+04, 3.6517412725484e+04,
  281. 4.2169650342858e+04, 4.8696752516586e+04,
  282. 5.6234132519035e+04, 6.4938163157621e+04,
  283. 7.4989420933246e+04, 8.6596432336007e+04,
  284. 1.0000000000000e+05, 1.1547819846895e+05,
  285. 1.3335214321633e+05, 1.5399265260595e+05,
  286. 1.7782794100389e+05, 2.0535250264571e+05,
  287. 2.3713737056617e+05, 2.7384196342644e+05,
  288. 3.1622776601684e+05, 3.6517412725484e+05,
  289. 4.2169650342858e+05, 4.8696752516586e+05,
  290. 5.6234132519035e+05, 6.4938163157621e+05,
  291. 7.4989420933246e+05, 8.6596432336007e+05,
  292. };
  293. /**
  294. * decode exponents coded with VLC codes
  295. */
  296. static int decode_exp_vlc(WMACodecContext *s, int ch)
  297. {
  298. int last_exp, n, code;
  299. const uint16_t *ptr;
  300. float v, max_scale;
  301. uint32_t *q, *q_end, iv;
  302. const float *ptab = pow_tab + 60;
  303. const uint32_t *iptab = (const uint32_t*)ptab;
  304. ptr = s->exponent_bands[s->frame_len_bits - s->block_len_bits];
  305. q = (uint32_t *)s->exponents[ch];
  306. q_end = q + s->block_len;
  307. max_scale = 0;
  308. if (s->version == 1) {
  309. last_exp = get_bits(&s->gb, 5) + 10;
  310. v = ptab[last_exp];
  311. iv = iptab[last_exp];
  312. max_scale = v;
  313. n = *ptr++;
  314. switch (n & 3) do {
  315. case 0: *q++ = iv;
  316. case 3: *q++ = iv;
  317. case 2: *q++ = iv;
  318. case 1: *q++ = iv;
  319. } while ((n -= 4) > 0);
  320. }else
  321. last_exp = 36;
  322. while (q < q_end) {
  323. code = get_vlc2(&s->gb, s->exp_vlc.table, EXPVLCBITS, EXPMAX);
  324. if (code < 0){
  325. av_log(s->avctx, AV_LOG_ERROR, "Exponent vlc invalid\n");
  326. return -1;
  327. }
  328. /* NOTE: this offset is the same as MPEG4 AAC ! */
  329. last_exp += code - 60;
  330. if ((unsigned)last_exp + 60 > FF_ARRAY_ELEMS(pow_tab)) {
  331. av_log(s->avctx, AV_LOG_ERROR, "Exponent out of range: %d\n",
  332. last_exp);
  333. return -1;
  334. }
  335. v = ptab[last_exp];
  336. iv = iptab[last_exp];
  337. if (v > max_scale)
  338. max_scale = v;
  339. n = *ptr++;
  340. switch (n & 3) do {
  341. case 0: *q++ = iv;
  342. case 3: *q++ = iv;
  343. case 2: *q++ = iv;
  344. case 1: *q++ = iv;
  345. } while ((n -= 4) > 0);
  346. }
  347. s->max_exponent[ch] = max_scale;
  348. return 0;
  349. }
  350. /**
  351. * Apply MDCT window and add into output.
  352. *
  353. * We ensure that when the windows overlap their squared sum
  354. * is always 1 (MDCT reconstruction rule).
  355. */
  356. static void wma_window(WMACodecContext *s, float *out)
  357. {
  358. float *in = s->output;
  359. int block_len, bsize, n;
  360. /* left part */
  361. if (s->block_len_bits <= s->prev_block_len_bits) {
  362. block_len = s->block_len;
  363. bsize = s->frame_len_bits - s->block_len_bits;
  364. s->dsp.vector_fmul_add(out, in, s->windows[bsize],
  365. out, block_len);
  366. } else {
  367. block_len = 1 << s->prev_block_len_bits;
  368. n = (s->block_len - block_len) / 2;
  369. bsize = s->frame_len_bits - s->prev_block_len_bits;
  370. s->dsp.vector_fmul_add(out+n, in+n, s->windows[bsize],
  371. out+n, block_len);
  372. memcpy(out+n+block_len, in+n+block_len, n*sizeof(float));
  373. }
  374. out += s->block_len;
  375. in += s->block_len;
  376. /* right part */
  377. if (s->block_len_bits <= s->next_block_len_bits) {
  378. block_len = s->block_len;
  379. bsize = s->frame_len_bits - s->block_len_bits;
  380. s->dsp.vector_fmul_reverse(out, in, s->windows[bsize], block_len);
  381. } else {
  382. block_len = 1 << s->next_block_len_bits;
  383. n = (s->block_len - block_len) / 2;
  384. bsize = s->frame_len_bits - s->next_block_len_bits;
  385. memcpy(out, in, n*sizeof(float));
  386. s->dsp.vector_fmul_reverse(out+n, in+n, s->windows[bsize], block_len);
  387. memset(out+n+block_len, 0, n*sizeof(float));
  388. }
  389. }
  390. /**
  391. * @return 0 if OK. 1 if last block of frame. return -1 if
  392. * unrecorrable error.
  393. */
  394. static int wma_decode_block(WMACodecContext *s)
  395. {
  396. int n, v, a, ch, bsize;
  397. int coef_nb_bits, total_gain;
  398. int nb_coefs[MAX_CHANNELS];
  399. float mdct_norm;
  400. FFTContext *mdct;
  401. #ifdef TRACE
  402. tprintf(s->avctx, "***decode_block: %d:%d\n", s->frame_count - 1, s->block_num);
  403. #endif
  404. /* compute current block length */
  405. if (s->use_variable_block_len) {
  406. n = av_log2(s->nb_block_sizes - 1) + 1;
  407. if (s->reset_block_lengths) {
  408. s->reset_block_lengths = 0;
  409. v = get_bits(&s->gb, n);
  410. if (v >= s->nb_block_sizes){
  411. av_log(s->avctx, AV_LOG_ERROR, "prev_block_len_bits %d out of range\n", s->frame_len_bits - v);
  412. return -1;
  413. }
  414. s->prev_block_len_bits = s->frame_len_bits - v;
  415. v = get_bits(&s->gb, n);
  416. if (v >= s->nb_block_sizes){
  417. av_log(s->avctx, AV_LOG_ERROR, "block_len_bits %d out of range\n", s->frame_len_bits - v);
  418. return -1;
  419. }
  420. s->block_len_bits = s->frame_len_bits - v;
  421. } else {
  422. /* update block lengths */
  423. s->prev_block_len_bits = s->block_len_bits;
  424. s->block_len_bits = s->next_block_len_bits;
  425. }
  426. v = get_bits(&s->gb, n);
  427. if (v >= s->nb_block_sizes){
  428. av_log(s->avctx, AV_LOG_ERROR, "next_block_len_bits %d out of range\n", s->frame_len_bits - v);
  429. return -1;
  430. }
  431. s->next_block_len_bits = s->frame_len_bits - v;
  432. } else {
  433. /* fixed block len */
  434. s->next_block_len_bits = s->frame_len_bits;
  435. s->prev_block_len_bits = s->frame_len_bits;
  436. s->block_len_bits = s->frame_len_bits;
  437. }
  438. /* now check if the block length is coherent with the frame length */
  439. s->block_len = 1 << s->block_len_bits;
  440. if ((s->block_pos + s->block_len) > s->frame_len){
  441. av_log(s->avctx, AV_LOG_ERROR, "frame_len overflow\n");
  442. return -1;
  443. }
  444. if (s->nb_channels == 2) {
  445. s->ms_stereo = get_bits1(&s->gb);
  446. }
  447. v = 0;
  448. for(ch = 0; ch < s->nb_channels; ch++) {
  449. a = get_bits1(&s->gb);
  450. s->channel_coded[ch] = a;
  451. v |= a;
  452. }
  453. bsize = s->frame_len_bits - s->block_len_bits;
  454. /* if no channel coded, no need to go further */
  455. /* XXX: fix potential framing problems */
  456. if (!v)
  457. goto next;
  458. /* read total gain and extract corresponding number of bits for
  459. coef escape coding */
  460. total_gain = 1;
  461. for(;;) {
  462. a = get_bits(&s->gb, 7);
  463. total_gain += a;
  464. if (a != 127)
  465. break;
  466. }
  467. coef_nb_bits= ff_wma_total_gain_to_bits(total_gain);
  468. /* compute number of coefficients */
  469. n = s->coefs_end[bsize] - s->coefs_start;
  470. for(ch = 0; ch < s->nb_channels; ch++)
  471. nb_coefs[ch] = n;
  472. /* complex coding */
  473. if (s->use_noise_coding) {
  474. for(ch = 0; ch < s->nb_channels; ch++) {
  475. if (s->channel_coded[ch]) {
  476. int i, n, a;
  477. n = s->exponent_high_sizes[bsize];
  478. for(i=0;i<n;i++) {
  479. a = get_bits1(&s->gb);
  480. s->high_band_coded[ch][i] = a;
  481. /* if noise coding, the coefficients are not transmitted */
  482. if (a)
  483. nb_coefs[ch] -= s->exponent_high_bands[bsize][i];
  484. }
  485. }
  486. }
  487. for(ch = 0; ch < s->nb_channels; ch++) {
  488. if (s->channel_coded[ch]) {
  489. int i, n, val, code;
  490. n = s->exponent_high_sizes[bsize];
  491. val = (int)0x80000000;
  492. for(i=0;i<n;i++) {
  493. if (s->high_band_coded[ch][i]) {
  494. if (val == (int)0x80000000) {
  495. val = get_bits(&s->gb, 7) - 19;
  496. } else {
  497. code = get_vlc2(&s->gb, s->hgain_vlc.table, HGAINVLCBITS, HGAINMAX);
  498. if (code < 0){
  499. av_log(s->avctx, AV_LOG_ERROR, "hgain vlc invalid\n");
  500. return -1;
  501. }
  502. val += code - 18;
  503. }
  504. s->high_band_values[ch][i] = val;
  505. }
  506. }
  507. }
  508. }
  509. }
  510. /* exponents can be reused in short blocks. */
  511. if ((s->block_len_bits == s->frame_len_bits) ||
  512. get_bits1(&s->gb)) {
  513. for(ch = 0; ch < s->nb_channels; ch++) {
  514. if (s->channel_coded[ch]) {
  515. if (s->use_exp_vlc) {
  516. if (decode_exp_vlc(s, ch) < 0)
  517. return -1;
  518. } else {
  519. decode_exp_lsp(s, ch);
  520. }
  521. s->exponents_bsize[ch] = bsize;
  522. }
  523. }
  524. }
  525. /* parse spectral coefficients : just RLE encoding */
  526. for(ch = 0; ch < s->nb_channels; ch++) {
  527. if (s->channel_coded[ch]) {
  528. int tindex;
  529. WMACoef* ptr = &s->coefs1[ch][0];
  530. /* special VLC tables are used for ms stereo because
  531. there is potentially less energy there */
  532. tindex = (ch == 1 && s->ms_stereo);
  533. memset(ptr, 0, s->block_len * sizeof(WMACoef));
  534. ff_wma_run_level_decode(s->avctx, &s->gb, &s->coef_vlc[tindex],
  535. s->level_table[tindex], s->run_table[tindex],
  536. 0, ptr, 0, nb_coefs[ch],
  537. s->block_len, s->frame_len_bits, coef_nb_bits);
  538. }
  539. if (s->version == 1 && s->nb_channels >= 2) {
  540. align_get_bits(&s->gb);
  541. }
  542. }
  543. /* normalize */
  544. {
  545. int n4 = s->block_len / 2;
  546. mdct_norm = 1.0 / (float)n4;
  547. if (s->version == 1) {
  548. mdct_norm *= sqrt(n4);
  549. }
  550. }
  551. /* finally compute the MDCT coefficients */
  552. for(ch = 0; ch < s->nb_channels; ch++) {
  553. if (s->channel_coded[ch]) {
  554. WMACoef *coefs1;
  555. float *coefs, *exponents, mult, mult1, noise;
  556. int i, j, n, n1, last_high_band, esize;
  557. float exp_power[HIGH_BAND_MAX_SIZE];
  558. coefs1 = s->coefs1[ch];
  559. exponents = s->exponents[ch];
  560. esize = s->exponents_bsize[ch];
  561. mult = pow(10, total_gain * 0.05) / s->max_exponent[ch];
  562. mult *= mdct_norm;
  563. coefs = s->coefs[ch];
  564. if (s->use_noise_coding) {
  565. mult1 = mult;
  566. /* very low freqs : noise */
  567. for(i = 0;i < s->coefs_start; i++) {
  568. *coefs++ = s->noise_table[s->noise_index] *
  569. exponents[i<<bsize>>esize] * mult1;
  570. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  571. }
  572. n1 = s->exponent_high_sizes[bsize];
  573. /* compute power of high bands */
  574. exponents = s->exponents[ch] +
  575. (s->high_band_start[bsize]<<bsize>>esize);
  576. last_high_band = 0; /* avoid warning */
  577. for(j=0;j<n1;j++) {
  578. n = s->exponent_high_bands[s->frame_len_bits -
  579. s->block_len_bits][j];
  580. if (s->high_band_coded[ch][j]) {
  581. float e2, v;
  582. e2 = 0;
  583. for(i = 0;i < n; i++) {
  584. v = exponents[i<<bsize>>esize];
  585. e2 += v * v;
  586. }
  587. exp_power[j] = e2 / n;
  588. last_high_band = j;
  589. tprintf(s->avctx, "%d: power=%f (%d)\n", j, exp_power[j], n);
  590. }
  591. exponents += n<<bsize>>esize;
  592. }
  593. /* main freqs and high freqs */
  594. exponents = s->exponents[ch] + (s->coefs_start<<bsize>>esize);
  595. for(j=-1;j<n1;j++) {
  596. if (j < 0) {
  597. n = s->high_band_start[bsize] -
  598. s->coefs_start;
  599. } else {
  600. n = s->exponent_high_bands[s->frame_len_bits -
  601. s->block_len_bits][j];
  602. }
  603. if (j >= 0 && s->high_band_coded[ch][j]) {
  604. /* use noise with specified power */
  605. mult1 = sqrt(exp_power[j] / exp_power[last_high_band]);
  606. /* XXX: use a table */
  607. mult1 = mult1 * pow(10, s->high_band_values[ch][j] * 0.05);
  608. mult1 = mult1 / (s->max_exponent[ch] * s->noise_mult);
  609. mult1 *= mdct_norm;
  610. for(i = 0;i < n; i++) {
  611. noise = s->noise_table[s->noise_index];
  612. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  613. *coefs++ = noise *
  614. exponents[i<<bsize>>esize] * mult1;
  615. }
  616. exponents += n<<bsize>>esize;
  617. } else {
  618. /* coded values + small noise */
  619. for(i = 0;i < n; i++) {
  620. noise = s->noise_table[s->noise_index];
  621. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  622. *coefs++ = ((*coefs1++) + noise) *
  623. exponents[i<<bsize>>esize] * mult;
  624. }
  625. exponents += n<<bsize>>esize;
  626. }
  627. }
  628. /* very high freqs : noise */
  629. n = s->block_len - s->coefs_end[bsize];
  630. mult1 = mult * exponents[((-1<<bsize))>>esize];
  631. for(i = 0; i < n; i++) {
  632. *coefs++ = s->noise_table[s->noise_index] * mult1;
  633. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  634. }
  635. } else {
  636. /* XXX: optimize more */
  637. for(i = 0;i < s->coefs_start; i++)
  638. *coefs++ = 0.0;
  639. n = nb_coefs[ch];
  640. for(i = 0;i < n; i++) {
  641. *coefs++ = coefs1[i] * exponents[i<<bsize>>esize] * mult;
  642. }
  643. n = s->block_len - s->coefs_end[bsize];
  644. for(i = 0;i < n; i++)
  645. *coefs++ = 0.0;
  646. }
  647. }
  648. }
  649. #ifdef TRACE
  650. for(ch = 0; ch < s->nb_channels; ch++) {
  651. if (s->channel_coded[ch]) {
  652. dump_floats(s, "exponents", 3, s->exponents[ch], s->block_len);
  653. dump_floats(s, "coefs", 1, s->coefs[ch], s->block_len);
  654. }
  655. }
  656. #endif
  657. if (s->ms_stereo && s->channel_coded[1]) {
  658. /* nominal case for ms stereo: we do it before mdct */
  659. /* no need to optimize this case because it should almost
  660. never happen */
  661. if (!s->channel_coded[0]) {
  662. tprintf(s->avctx, "rare ms-stereo case happened\n");
  663. memset(s->coefs[0], 0, sizeof(float) * s->block_len);
  664. s->channel_coded[0] = 1;
  665. }
  666. s->dsp.butterflies_float(s->coefs[0], s->coefs[1], s->block_len);
  667. }
  668. next:
  669. mdct = &s->mdct_ctx[bsize];
  670. for(ch = 0; ch < s->nb_channels; ch++) {
  671. int n4, index;
  672. n4 = s->block_len / 2;
  673. if(s->channel_coded[ch]){
  674. mdct->imdct_calc(mdct, s->output, s->coefs[ch]);
  675. }else if(!(s->ms_stereo && ch==1))
  676. memset(s->output, 0, sizeof(s->output));
  677. /* multiply by the window and add in the frame */
  678. index = (s->frame_len / 2) + s->block_pos - n4;
  679. wma_window(s, &s->frame_out[ch][index]);
  680. }
  681. /* update block number */
  682. s->block_num++;
  683. s->block_pos += s->block_len;
  684. if (s->block_pos >= s->frame_len)
  685. return 1;
  686. else
  687. return 0;
  688. }
  689. /* decode a frame of frame_len samples */
  690. static int wma_decode_frame(WMACodecContext *s, int16_t *samples)
  691. {
  692. int ret, n, ch, incr;
  693. const float *output[MAX_CHANNELS];
  694. #ifdef TRACE
  695. tprintf(s->avctx, "***decode_frame: %d size=%d\n", s->frame_count++, s->frame_len);
  696. #endif
  697. /* read each block */
  698. s->block_num = 0;
  699. s->block_pos = 0;
  700. for(;;) {
  701. ret = wma_decode_block(s);
  702. if (ret < 0)
  703. return -1;
  704. if (ret)
  705. break;
  706. }
  707. /* convert frame to integer */
  708. n = s->frame_len;
  709. incr = s->nb_channels;
  710. for (ch = 0; ch < MAX_CHANNELS; ch++)
  711. output[ch] = s->frame_out[ch];
  712. s->fmt_conv.float_to_int16_interleave(samples, output, n, incr);
  713. for (ch = 0; ch < incr; ch++) {
  714. /* prepare for next block */
  715. memmove(&s->frame_out[ch][0], &s->frame_out[ch][n], n * sizeof(float));
  716. }
  717. #ifdef TRACE
  718. dump_shorts(s, "samples", samples, n * s->nb_channels);
  719. #endif
  720. return 0;
  721. }
  722. static int wma_decode_superframe(AVCodecContext *avctx,
  723. void *data, int *data_size,
  724. AVPacket *avpkt)
  725. {
  726. const uint8_t *buf = avpkt->data;
  727. int buf_size = avpkt->size;
  728. WMACodecContext *s = avctx->priv_data;
  729. int nb_frames, bit_offset, i, pos, len;
  730. uint8_t *q;
  731. int16_t *samples;
  732. tprintf(avctx, "***decode_superframe:\n");
  733. if(buf_size==0){
  734. s->last_superframe_len = 0;
  735. return 0;
  736. }
  737. if (buf_size < s->block_align)
  738. return 0;
  739. buf_size = s->block_align;
  740. samples = data;
  741. init_get_bits(&s->gb, buf, buf_size*8);
  742. if (s->use_bit_reservoir) {
  743. /* read super frame header */
  744. skip_bits(&s->gb, 4); /* super frame index */
  745. nb_frames = get_bits(&s->gb, 4) - 1;
  746. if((nb_frames+1) * s->nb_channels * s->frame_len * sizeof(int16_t) > *data_size){
  747. av_log(s->avctx, AV_LOG_ERROR, "Insufficient output space\n");
  748. goto fail;
  749. }
  750. bit_offset = get_bits(&s->gb, s->byte_offset_bits + 3);
  751. if (s->last_superframe_len > 0) {
  752. // printf("skip=%d\n", s->last_bitoffset);
  753. /* add bit_offset bits to last frame */
  754. if ((s->last_superframe_len + ((bit_offset + 7) >> 3)) >
  755. MAX_CODED_SUPERFRAME_SIZE)
  756. goto fail;
  757. q = s->last_superframe + s->last_superframe_len;
  758. len = bit_offset;
  759. while (len > 7) {
  760. *q++ = (get_bits)(&s->gb, 8);
  761. len -= 8;
  762. }
  763. if (len > 0) {
  764. *q++ = (get_bits)(&s->gb, len) << (8 - len);
  765. }
  766. /* XXX: bit_offset bits into last frame */
  767. init_get_bits(&s->gb, s->last_superframe, MAX_CODED_SUPERFRAME_SIZE*8);
  768. /* skip unused bits */
  769. if (s->last_bitoffset > 0)
  770. skip_bits(&s->gb, s->last_bitoffset);
  771. /* this frame is stored in the last superframe and in the
  772. current one */
  773. if (wma_decode_frame(s, samples) < 0)
  774. goto fail;
  775. samples += s->nb_channels * s->frame_len;
  776. }
  777. /* read each frame starting from bit_offset */
  778. pos = bit_offset + 4 + 4 + s->byte_offset_bits + 3;
  779. init_get_bits(&s->gb, buf + (pos >> 3), (MAX_CODED_SUPERFRAME_SIZE - (pos >> 3))*8);
  780. len = pos & 7;
  781. if (len > 0)
  782. skip_bits(&s->gb, len);
  783. s->reset_block_lengths = 1;
  784. for(i=0;i<nb_frames;i++) {
  785. if (wma_decode_frame(s, samples) < 0)
  786. goto fail;
  787. samples += s->nb_channels * s->frame_len;
  788. }
  789. /* we copy the end of the frame in the last frame buffer */
  790. pos = get_bits_count(&s->gb) + ((bit_offset + 4 + 4 + s->byte_offset_bits + 3) & ~7);
  791. s->last_bitoffset = pos & 7;
  792. pos >>= 3;
  793. len = buf_size - pos;
  794. if (len > MAX_CODED_SUPERFRAME_SIZE || len < 0) {
  795. av_log(s->avctx, AV_LOG_ERROR, "len %d invalid\n", len);
  796. goto fail;
  797. }
  798. s->last_superframe_len = len;
  799. memcpy(s->last_superframe, buf + pos, len);
  800. } else {
  801. if(s->nb_channels * s->frame_len * sizeof(int16_t) > *data_size){
  802. av_log(s->avctx, AV_LOG_ERROR, "Insufficient output space\n");
  803. goto fail;
  804. }
  805. /* single frame decode */
  806. if (wma_decode_frame(s, samples) < 0)
  807. goto fail;
  808. samples += s->nb_channels * s->frame_len;
  809. }
  810. //av_log(NULL, AV_LOG_ERROR, "%d %d %d %d outbytes:%d eaten:%d\n", s->frame_len_bits, s->block_len_bits, s->frame_len, s->block_len, (int8_t *)samples - (int8_t *)data, s->block_align);
  811. *data_size = (int8_t *)samples - (int8_t *)data;
  812. return s->block_align;
  813. fail:
  814. /* when error, we reset the bit reservoir */
  815. s->last_superframe_len = 0;
  816. return -1;
  817. }
  818. static av_cold void flush(AVCodecContext *avctx)
  819. {
  820. WMACodecContext *s = avctx->priv_data;
  821. s->last_bitoffset=
  822. s->last_superframe_len= 0;
  823. }
  824. AVCodec ff_wmav1_decoder =
  825. {
  826. "wmav1",
  827. AVMEDIA_TYPE_AUDIO,
  828. CODEC_ID_WMAV1,
  829. sizeof(WMACodecContext),
  830. wma_decode_init,
  831. NULL,
  832. ff_wma_end,
  833. wma_decode_superframe,
  834. .flush=flush,
  835. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Audio 1"),
  836. };
  837. AVCodec ff_wmav2_decoder =
  838. {
  839. "wmav2",
  840. AVMEDIA_TYPE_AUDIO,
  841. CODEC_ID_WMAV2,
  842. sizeof(WMACodecContext),
  843. wma_decode_init,
  844. NULL,
  845. ff_wma_end,
  846. wma_decode_superframe,
  847. .flush=flush,
  848. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Audio 2"),
  849. };