You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1174 lines
40KB

  1. /*
  2. * AC-3 Audio Decoder
  3. * This code is developed as part of Google Summer of Code 2006 Program.
  4. *
  5. * Copyright (c) 2006 Kartikey Mahendra BHATT (bhattkm at gmail dot com).
  6. * Copyright (c) 2007 Justin Ruggles
  7. *
  8. * Portions of this code are derived from liba52
  9. * http://liba52.sourceforge.net
  10. * Copyright (C) 2000-2003 Michel Lespinasse <walken@zoy.org>
  11. * Copyright (C) 1999-2000 Aaron Holtzman <aholtzma@ess.engr.uvic.ca>
  12. *
  13. * This file is part of FFmpeg.
  14. *
  15. * FFmpeg is free software; you can redistribute it and/or
  16. * modify it under the terms of the GNU General Public
  17. * License as published by the Free Software Foundation; either
  18. * version 2 of the License, or (at your option) any later version.
  19. *
  20. * FFmpeg is distributed in the hope that it will be useful,
  21. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  22. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  23. * General Public License for more details.
  24. *
  25. * You should have received a copy of the GNU General Public
  26. * License along with FFmpeg; if not, write to the Free Software
  27. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  28. */
  29. #include <stdio.h>
  30. #include <stddef.h>
  31. #include <math.h>
  32. #include <string.h>
  33. #include "avcodec.h"
  34. #include "ac3_parser.h"
  35. #include "bitstream.h"
  36. #include "crc.h"
  37. #include "dsputil.h"
  38. #include "random.h"
  39. /**
  40. * Table of bin locations for rematrixing bands
  41. * reference: Section 7.5.2 Rematrixing : Frequency Band Definitions
  42. */
  43. static const uint8_t rematrix_band_tab[5] = { 13, 25, 37, 61, 253 };
  44. /**
  45. * table for exponent to scale_factor mapping
  46. * scale_factors[i] = 2 ^ -i
  47. */
  48. static float scale_factors[25];
  49. /** table for grouping exponents */
  50. static uint8_t exp_ungroup_tab[128][3];
  51. /** tables for ungrouping mantissas */
  52. static float b1_mantissas[32][3];
  53. static float b2_mantissas[128][3];
  54. static float b3_mantissas[8];
  55. static float b4_mantissas[128][2];
  56. static float b5_mantissas[16];
  57. /**
  58. * Quantization table: levels for symmetric. bits for asymmetric.
  59. * reference: Table 7.18 Mapping of bap to Quantizer
  60. */
  61. static const uint8_t quantization_tab[16] = {
  62. 0, 3, 5, 7, 11, 15,
  63. 5, 6, 7, 8, 9, 10, 11, 12, 14, 16
  64. };
  65. /** dynamic range table. converts codes to scale factors. */
  66. static float dynamic_range_tab[256];
  67. /** Adjustments in dB gain */
  68. #define LEVEL_MINUS_3DB 0.7071067811865476
  69. #define LEVEL_MINUS_4POINT5DB 0.5946035575013605
  70. #define LEVEL_MINUS_6DB 0.5000000000000000
  71. #define LEVEL_MINUS_9DB 0.3535533905932738
  72. #define LEVEL_ZERO 0.0000000000000000
  73. #define LEVEL_ONE 1.0000000000000000
  74. static const float gain_levels[6] = {
  75. LEVEL_ZERO,
  76. LEVEL_ONE,
  77. LEVEL_MINUS_3DB,
  78. LEVEL_MINUS_4POINT5DB,
  79. LEVEL_MINUS_6DB,
  80. LEVEL_MINUS_9DB
  81. };
  82. /**
  83. * Table for center mix levels
  84. * reference: Section 5.4.2.4 cmixlev
  85. */
  86. static const uint8_t center_levels[4] = { 2, 3, 4, 3 };
  87. /**
  88. * Table for surround mix levels
  89. * reference: Section 5.4.2.5 surmixlev
  90. */
  91. static const uint8_t surround_levels[4] = { 2, 4, 0, 4 };
  92. /**
  93. * Table for default stereo downmixing coefficients
  94. * reference: Section 7.8.2 Downmixing Into Two Channels
  95. */
  96. static const uint8_t ac3_default_coeffs[8][5][2] = {
  97. { { 1, 0 }, { 0, 1 }, },
  98. { { 2, 2 }, },
  99. { { 1, 0 }, { 0, 1 }, },
  100. { { 1, 0 }, { 3, 3 }, { 0, 1 }, },
  101. { { 1, 0 }, { 0, 1 }, { 4, 4 }, },
  102. { { 1, 0 }, { 3, 3 }, { 0, 1 }, { 5, 5 }, },
  103. { { 1, 0 }, { 0, 1 }, { 4, 0 }, { 0, 4 }, },
  104. { { 1, 0 }, { 3, 3 }, { 0, 1 }, { 4, 0 }, { 0, 4 }, },
  105. };
  106. /* override ac3.h to include coupling channel */
  107. #undef AC3_MAX_CHANNELS
  108. #define AC3_MAX_CHANNELS 7
  109. #define CPL_CH 0
  110. #define AC3_OUTPUT_LFEON 8
  111. typedef struct {
  112. int channel_mode; ///< channel mode (acmod)
  113. int block_switch[AC3_MAX_CHANNELS]; ///< block switch flags
  114. int dither_flag[AC3_MAX_CHANNELS]; ///< dither flags
  115. int dither_all; ///< true if all channels are dithered
  116. int cpl_in_use; ///< coupling in use
  117. int channel_in_cpl[AC3_MAX_CHANNELS]; ///< channel in coupling
  118. int phase_flags_in_use; ///< phase flags in use
  119. int phase_flags[18]; ///< phase flags
  120. int cpl_band_struct[18]; ///< coupling band structure
  121. int num_rematrixing_bands; ///< number of rematrixing bands
  122. int rematrixing_flags[4]; ///< rematrixing flags
  123. int exp_strategy[AC3_MAX_CHANNELS]; ///< exponent strategies
  124. int snr_offset[AC3_MAX_CHANNELS]; ///< signal-to-noise ratio offsets
  125. int fast_gain[AC3_MAX_CHANNELS]; ///< fast gain values (signal-to-mask ratio)
  126. int dba_mode[AC3_MAX_CHANNELS]; ///< delta bit allocation mode
  127. int dba_nsegs[AC3_MAX_CHANNELS]; ///< number of delta segments
  128. uint8_t dba_offsets[AC3_MAX_CHANNELS][8]; ///< delta segment offsets
  129. uint8_t dba_lengths[AC3_MAX_CHANNELS][8]; ///< delta segment lengths
  130. uint8_t dba_values[AC3_MAX_CHANNELS][8]; ///< delta values for each segment
  131. int sample_rate; ///< sample frequency, in Hz
  132. int bit_rate; ///< stream bit rate, in bits-per-second
  133. int frame_size; ///< current frame size, in bytes
  134. int channels; ///< number of total channels
  135. int fbw_channels; ///< number of full-bandwidth channels
  136. int lfe_on; ///< lfe channel in use
  137. int lfe_ch; ///< index of LFE channel
  138. int output_mode; ///< output channel configuration
  139. int out_channels; ///< number of output channels
  140. int center_mix_level; ///< Center mix level index
  141. int surround_mix_level; ///< Surround mix level index
  142. float downmix_coeffs[AC3_MAX_CHANNELS][2]; ///< stereo downmix coefficients
  143. float dynamic_range[2]; ///< dynamic range
  144. float cpl_coords[AC3_MAX_CHANNELS][18]; ///< coupling coordinates
  145. int num_cpl_bands; ///< number of coupling bands
  146. int num_cpl_subbands; ///< number of coupling sub bands
  147. int start_freq[AC3_MAX_CHANNELS]; ///< start frequency bin
  148. int end_freq[AC3_MAX_CHANNELS]; ///< end frequency bin
  149. AC3BitAllocParameters bit_alloc_params; ///< bit allocation parameters
  150. int8_t dexps[AC3_MAX_CHANNELS][256]; ///< decoded exponents
  151. uint8_t bap[AC3_MAX_CHANNELS][256]; ///< bit allocation pointers
  152. int16_t psd[AC3_MAX_CHANNELS][256]; ///< scaled exponents
  153. int16_t band_psd[AC3_MAX_CHANNELS][50]; ///< interpolated exponents
  154. int16_t mask[AC3_MAX_CHANNELS][50]; ///< masking curve values
  155. DECLARE_ALIGNED_16(float, transform_coeffs[AC3_MAX_CHANNELS][256]); ///< transform coefficients
  156. /* For IMDCT. */
  157. MDCTContext imdct_512; ///< for 512 sample IMDCT
  158. MDCTContext imdct_256; ///< for 256 sample IMDCT
  159. DSPContext dsp; ///< for optimization
  160. float add_bias; ///< offset for float_to_int16 conversion
  161. float mul_bias; ///< scaling for float_to_int16 conversion
  162. DECLARE_ALIGNED_16(float, output[AC3_MAX_CHANNELS-1][256]); ///< output after imdct transform and windowing
  163. DECLARE_ALIGNED_16(short, int_output[AC3_MAX_CHANNELS-1][256]); ///< final 16-bit integer output
  164. DECLARE_ALIGNED_16(float, delay[AC3_MAX_CHANNELS-1][256]); ///< delay - added to the next block
  165. DECLARE_ALIGNED_16(float, tmp_imdct[256]); ///< temporary storage for imdct transform
  166. DECLARE_ALIGNED_16(float, tmp_output[512]); ///< temporary storage for output before windowing
  167. DECLARE_ALIGNED_16(float, window[256]); ///< window coefficients
  168. /* Miscellaneous. */
  169. GetBitContext gbc; ///< bitstream reader
  170. AVRandomState dith_state; ///< for dither generation
  171. AVCodecContext *avctx; ///< parent context
  172. } AC3DecodeContext;
  173. /**
  174. * Symmetrical Dequantization
  175. * reference: Section 7.3.3 Expansion of Mantissas for Symmetrical Quantization
  176. * Tables 7.19 to 7.23
  177. */
  178. static inline float
  179. symmetric_dequant(int code, int levels)
  180. {
  181. return (code - (levels >> 1)) * (2.0f / levels);
  182. }
  183. /*
  184. * Initialize tables at runtime.
  185. */
  186. static void ac3_tables_init(void)
  187. {
  188. int i;
  189. /* generate grouped mantissa tables
  190. reference: Section 7.3.5 Ungrouping of Mantissas */
  191. for(i=0; i<32; i++) {
  192. /* bap=1 mantissas */
  193. b1_mantissas[i][0] = symmetric_dequant( i / 9 , 3);
  194. b1_mantissas[i][1] = symmetric_dequant((i % 9) / 3, 3);
  195. b1_mantissas[i][2] = symmetric_dequant((i % 9) % 3, 3);
  196. }
  197. for(i=0; i<128; i++) {
  198. /* bap=2 mantissas */
  199. b2_mantissas[i][0] = symmetric_dequant( i / 25 , 5);
  200. b2_mantissas[i][1] = symmetric_dequant((i % 25) / 5, 5);
  201. b2_mantissas[i][2] = symmetric_dequant((i % 25) % 5, 5);
  202. /* bap=4 mantissas */
  203. b4_mantissas[i][0] = symmetric_dequant(i / 11, 11);
  204. b4_mantissas[i][1] = symmetric_dequant(i % 11, 11);
  205. }
  206. /* generate ungrouped mantissa tables
  207. reference: Tables 7.21 and 7.23 */
  208. for(i=0; i<7; i++) {
  209. /* bap=3 mantissas */
  210. b3_mantissas[i] = symmetric_dequant(i, 7);
  211. }
  212. for(i=0; i<15; i++) {
  213. /* bap=5 mantissas */
  214. b5_mantissas[i] = symmetric_dequant(i, 15);
  215. }
  216. /* generate dynamic range table
  217. reference: Section 7.7.1 Dynamic Range Control */
  218. for(i=0; i<256; i++) {
  219. int v = (i >> 5) - ((i >> 7) << 3) - 5;
  220. dynamic_range_tab[i] = powf(2.0f, v) * ((i & 0x1F) | 0x20);
  221. }
  222. /* generate scale factors for exponents and asymmetrical dequantization
  223. reference: Section 7.3.2 Expansion of Mantissas for Asymmetric Quantization */
  224. for (i = 0; i < 25; i++)
  225. scale_factors[i] = pow(2.0, -i);
  226. /* generate exponent tables
  227. reference: Section 7.1.3 Exponent Decoding */
  228. for(i=0; i<128; i++) {
  229. exp_ungroup_tab[i][0] = i / 25;
  230. exp_ungroup_tab[i][1] = (i % 25) / 5;
  231. exp_ungroup_tab[i][2] = (i % 25) % 5;
  232. }
  233. }
  234. /**
  235. * AVCodec initialization
  236. */
  237. static int ac3_decode_init(AVCodecContext *avctx)
  238. {
  239. AC3DecodeContext *s = avctx->priv_data;
  240. s->avctx = avctx;
  241. ac3_common_init();
  242. ac3_tables_init();
  243. ff_mdct_init(&s->imdct_256, 8, 1);
  244. ff_mdct_init(&s->imdct_512, 9, 1);
  245. ff_kbd_window_init(s->window, 5.0, 256);
  246. dsputil_init(&s->dsp, avctx);
  247. av_init_random(0, &s->dith_state);
  248. /* set bias values for float to int16 conversion */
  249. if(s->dsp.float_to_int16 == ff_float_to_int16_c) {
  250. s->add_bias = 385.0f;
  251. s->mul_bias = 1.0f;
  252. } else {
  253. s->add_bias = 0.0f;
  254. s->mul_bias = 32767.0f;
  255. }
  256. /* allow downmixing to stereo or mono */
  257. if (avctx->channels > 0 && avctx->request_channels > 0 &&
  258. avctx->request_channels < avctx->channels &&
  259. avctx->request_channels <= 2) {
  260. avctx->channels = avctx->request_channels;
  261. }
  262. return 0;
  263. }
  264. /**
  265. * Parse the 'sync info' and 'bit stream info' from the AC-3 bitstream.
  266. * GetBitContext within AC3DecodeContext must point to
  267. * start of the synchronized ac3 bitstream.
  268. */
  269. static int ac3_parse_header(AC3DecodeContext *s)
  270. {
  271. AC3HeaderInfo hdr;
  272. GetBitContext *gbc = &s->gbc;
  273. int err, i;
  274. err = ff_ac3_parse_header(gbc->buffer, &hdr);
  275. if(err)
  276. return err;
  277. if(hdr.bitstream_id > 10)
  278. return AC3_PARSE_ERROR_BSID;
  279. /* get decoding parameters from header info */
  280. s->bit_alloc_params.sr_code = hdr.sr_code;
  281. s->channel_mode = hdr.channel_mode;
  282. s->lfe_on = hdr.lfe_on;
  283. s->bit_alloc_params.sr_shift = hdr.sr_shift;
  284. s->sample_rate = hdr.sample_rate;
  285. s->bit_rate = hdr.bit_rate;
  286. s->channels = hdr.channels;
  287. s->fbw_channels = s->channels - s->lfe_on;
  288. s->lfe_ch = s->fbw_channels + 1;
  289. s->frame_size = hdr.frame_size;
  290. /* set default output to all source channels */
  291. s->out_channels = s->channels;
  292. s->output_mode = s->channel_mode;
  293. if(s->lfe_on)
  294. s->output_mode |= AC3_OUTPUT_LFEON;
  295. /* set default mix levels */
  296. s->center_mix_level = 3; // -4.5dB
  297. s->surround_mix_level = 4; // -6.0dB
  298. /* skip over portion of header which has already been read */
  299. skip_bits(gbc, 16); // skip the sync_word
  300. skip_bits(gbc, 16); // skip crc1
  301. skip_bits(gbc, 8); // skip fscod and frmsizecod
  302. skip_bits(gbc, 11); // skip bsid, bsmod, and acmod
  303. if(s->channel_mode == AC3_CHMODE_STEREO) {
  304. skip_bits(gbc, 2); // skip dsurmod
  305. } else {
  306. if((s->channel_mode & 1) && s->channel_mode != AC3_CHMODE_MONO)
  307. s->center_mix_level = center_levels[get_bits(gbc, 2)];
  308. if(s->channel_mode & 4)
  309. s->surround_mix_level = surround_levels[get_bits(gbc, 2)];
  310. }
  311. skip_bits1(gbc); // skip lfeon
  312. /* read the rest of the bsi. read twice for dual mono mode. */
  313. i = !(s->channel_mode);
  314. do {
  315. skip_bits(gbc, 5); // skip dialog normalization
  316. if (get_bits1(gbc))
  317. skip_bits(gbc, 8); //skip compression
  318. if (get_bits1(gbc))
  319. skip_bits(gbc, 8); //skip language code
  320. if (get_bits1(gbc))
  321. skip_bits(gbc, 7); //skip audio production information
  322. } while (i--);
  323. skip_bits(gbc, 2); //skip copyright bit and original bitstream bit
  324. /* skip the timecodes (or extra bitstream information for Alternate Syntax)
  325. TODO: read & use the xbsi1 downmix levels */
  326. if (get_bits1(gbc))
  327. skip_bits(gbc, 14); //skip timecode1 / xbsi1
  328. if (get_bits1(gbc))
  329. skip_bits(gbc, 14); //skip timecode2 / xbsi2
  330. /* skip additional bitstream info */
  331. if (get_bits1(gbc)) {
  332. i = get_bits(gbc, 6);
  333. do {
  334. skip_bits(gbc, 8);
  335. } while(i--);
  336. }
  337. return 0;
  338. }
  339. /**
  340. * Set stereo downmixing coefficients based on frame header info.
  341. * reference: Section 7.8.2 Downmixing Into Two Channels
  342. */
  343. static void set_downmix_coeffs(AC3DecodeContext *s)
  344. {
  345. int i;
  346. float cmix = gain_levels[s->center_mix_level];
  347. float smix = gain_levels[s->surround_mix_level];
  348. for(i=0; i<s->fbw_channels; i++) {
  349. s->downmix_coeffs[i][0] = gain_levels[ac3_default_coeffs[s->channel_mode][i][0]];
  350. s->downmix_coeffs[i][1] = gain_levels[ac3_default_coeffs[s->channel_mode][i][1]];
  351. }
  352. if(s->channel_mode > 1 && s->channel_mode & 1) {
  353. s->downmix_coeffs[1][0] = s->downmix_coeffs[1][1] = cmix;
  354. }
  355. if(s->channel_mode == AC3_CHMODE_2F1R || s->channel_mode == AC3_CHMODE_3F1R) {
  356. int nf = s->channel_mode - 2;
  357. s->downmix_coeffs[nf][0] = s->downmix_coeffs[nf][1] = smix * LEVEL_MINUS_3DB;
  358. }
  359. if(s->channel_mode == AC3_CHMODE_2F2R || s->channel_mode == AC3_CHMODE_3F2R) {
  360. int nf = s->channel_mode - 4;
  361. s->downmix_coeffs[nf][0] = s->downmix_coeffs[nf+1][1] = smix;
  362. }
  363. }
  364. /**
  365. * Decode the grouped exponents according to exponent strategy.
  366. * reference: Section 7.1.3 Exponent Decoding
  367. */
  368. static void decode_exponents(GetBitContext *gbc, int exp_strategy, int ngrps,
  369. uint8_t absexp, int8_t *dexps)
  370. {
  371. int i, j, grp, group_size;
  372. int dexp[256];
  373. int expacc, prevexp;
  374. /* unpack groups */
  375. group_size = exp_strategy + (exp_strategy == EXP_D45);
  376. for(grp=0,i=0; grp<ngrps; grp++) {
  377. expacc = get_bits(gbc, 7);
  378. dexp[i++] = exp_ungroup_tab[expacc][0];
  379. dexp[i++] = exp_ungroup_tab[expacc][1];
  380. dexp[i++] = exp_ungroup_tab[expacc][2];
  381. }
  382. /* convert to absolute exps and expand groups */
  383. prevexp = absexp;
  384. for(i=0; i<ngrps*3; i++) {
  385. prevexp = av_clip(prevexp + dexp[i]-2, 0, 24);
  386. for(j=0; j<group_size; j++) {
  387. dexps[(i*group_size)+j] = prevexp;
  388. }
  389. }
  390. }
  391. /**
  392. * Generate transform coefficients for each coupled channel in the coupling
  393. * range using the coupling coefficients and coupling coordinates.
  394. * reference: Section 7.4.3 Coupling Coordinate Format
  395. */
  396. static void uncouple_channels(AC3DecodeContext *s)
  397. {
  398. int i, j, ch, bnd, subbnd;
  399. subbnd = -1;
  400. i = s->start_freq[CPL_CH];
  401. for(bnd=0; bnd<s->num_cpl_bands; bnd++) {
  402. do {
  403. subbnd++;
  404. for(j=0; j<12; j++) {
  405. for(ch=1; ch<=s->fbw_channels; ch++) {
  406. if(s->channel_in_cpl[ch]) {
  407. s->transform_coeffs[ch][i] = s->transform_coeffs[CPL_CH][i] * s->cpl_coords[ch][bnd] * 8.0f;
  408. if (ch == 2 && s->phase_flags[bnd])
  409. s->transform_coeffs[ch][i] = -s->transform_coeffs[ch][i];
  410. }
  411. }
  412. i++;
  413. }
  414. } while(s->cpl_band_struct[subbnd]);
  415. }
  416. }
  417. /**
  418. * Grouped mantissas for 3-level 5-level and 11-level quantization
  419. */
  420. typedef struct {
  421. float b1_mant[3];
  422. float b2_mant[3];
  423. float b4_mant[2];
  424. int b1ptr;
  425. int b2ptr;
  426. int b4ptr;
  427. } mant_groups;
  428. /**
  429. * Get the transform coefficients for a particular channel
  430. * reference: Section 7.3 Quantization and Decoding of Mantissas
  431. */
  432. static int get_transform_coeffs_ch(AC3DecodeContext *s, int ch_index, mant_groups *m)
  433. {
  434. GetBitContext *gbc = &s->gbc;
  435. int i, gcode, tbap, start, end;
  436. uint8_t *exps;
  437. uint8_t *bap;
  438. float *coeffs;
  439. exps = s->dexps[ch_index];
  440. bap = s->bap[ch_index];
  441. coeffs = s->transform_coeffs[ch_index];
  442. start = s->start_freq[ch_index];
  443. end = s->end_freq[ch_index];
  444. for (i = start; i < end; i++) {
  445. tbap = bap[i];
  446. switch (tbap) {
  447. case 0:
  448. coeffs[i] = ((av_random(&s->dith_state) & 0xFFFF) / 65535.0f) - 0.5f;
  449. break;
  450. case 1:
  451. if(m->b1ptr > 2) {
  452. gcode = get_bits(gbc, 5);
  453. m->b1_mant[0] = b1_mantissas[gcode][0];
  454. m->b1_mant[1] = b1_mantissas[gcode][1];
  455. m->b1_mant[2] = b1_mantissas[gcode][2];
  456. m->b1ptr = 0;
  457. }
  458. coeffs[i] = m->b1_mant[m->b1ptr++];
  459. break;
  460. case 2:
  461. if(m->b2ptr > 2) {
  462. gcode = get_bits(gbc, 7);
  463. m->b2_mant[0] = b2_mantissas[gcode][0];
  464. m->b2_mant[1] = b2_mantissas[gcode][1];
  465. m->b2_mant[2] = b2_mantissas[gcode][2];
  466. m->b2ptr = 0;
  467. }
  468. coeffs[i] = m->b2_mant[m->b2ptr++];
  469. break;
  470. case 3:
  471. coeffs[i] = b3_mantissas[get_bits(gbc, 3)];
  472. break;
  473. case 4:
  474. if(m->b4ptr > 1) {
  475. gcode = get_bits(gbc, 7);
  476. m->b4_mant[0] = b4_mantissas[gcode][0];
  477. m->b4_mant[1] = b4_mantissas[gcode][1];
  478. m->b4ptr = 0;
  479. }
  480. coeffs[i] = m->b4_mant[m->b4ptr++];
  481. break;
  482. case 5:
  483. coeffs[i] = b5_mantissas[get_bits(gbc, 4)];
  484. break;
  485. default:
  486. /* asymmetric dequantization */
  487. coeffs[i] = get_sbits(gbc, quantization_tab[tbap]) * scale_factors[quantization_tab[tbap]-1];
  488. break;
  489. }
  490. coeffs[i] *= scale_factors[exps[i]];
  491. }
  492. return 0;
  493. }
  494. /**
  495. * Remove random dithering from coefficients with zero-bit mantissas
  496. * reference: Section 7.3.4 Dither for Zero Bit Mantissas (bap=0)
  497. */
  498. static void remove_dithering(AC3DecodeContext *s) {
  499. int ch, i;
  500. int end=0;
  501. float *coeffs;
  502. uint8_t *bap;
  503. for(ch=1; ch<=s->fbw_channels; ch++) {
  504. if(!s->dither_flag[ch]) {
  505. coeffs = s->transform_coeffs[ch];
  506. bap = s->bap[ch];
  507. if(s->channel_in_cpl[ch])
  508. end = s->start_freq[CPL_CH];
  509. else
  510. end = s->end_freq[ch];
  511. for(i=0; i<end; i++) {
  512. if(!bap[i])
  513. coeffs[i] = 0.0f;
  514. }
  515. if(s->channel_in_cpl[ch]) {
  516. bap = s->bap[CPL_CH];
  517. for(; i<s->end_freq[CPL_CH]; i++) {
  518. if(!bap[i])
  519. coeffs[i] = 0.0f;
  520. }
  521. }
  522. }
  523. }
  524. }
  525. /**
  526. * Get the transform coefficients.
  527. */
  528. static int get_transform_coeffs(AC3DecodeContext *s)
  529. {
  530. int ch, end;
  531. int got_cplchan = 0;
  532. mant_groups m;
  533. m.b1ptr = m.b2ptr = m.b4ptr = 3;
  534. for (ch = 1; ch <= s->channels; ch++) {
  535. /* transform coefficients for full-bandwidth channel */
  536. if (get_transform_coeffs_ch(s, ch, &m))
  537. return -1;
  538. /* tranform coefficients for coupling channel come right after the
  539. coefficients for the first coupled channel*/
  540. if (s->channel_in_cpl[ch]) {
  541. if (!got_cplchan) {
  542. if (get_transform_coeffs_ch(s, CPL_CH, &m)) {
  543. av_log(s->avctx, AV_LOG_ERROR, "error in decoupling channels\n");
  544. return -1;
  545. }
  546. uncouple_channels(s);
  547. got_cplchan = 1;
  548. }
  549. end = s->end_freq[CPL_CH];
  550. } else {
  551. end = s->end_freq[ch];
  552. }
  553. do
  554. s->transform_coeffs[ch][end] = 0;
  555. while(++end < 256);
  556. }
  557. /* if any channel doesn't use dithering, zero appropriate coefficients */
  558. if(!s->dither_all)
  559. remove_dithering(s);
  560. return 0;
  561. }
  562. /**
  563. * Stereo rematrixing.
  564. * reference: Section 7.5.4 Rematrixing : Decoding Technique
  565. */
  566. static void do_rematrixing(AC3DecodeContext *s)
  567. {
  568. int bnd, i;
  569. int end, bndend;
  570. float tmp0, tmp1;
  571. end = FFMIN(s->end_freq[1], s->end_freq[2]);
  572. for(bnd=0; bnd<s->num_rematrixing_bands; bnd++) {
  573. if(s->rematrixing_flags[bnd]) {
  574. bndend = FFMIN(end, rematrix_band_tab[bnd+1]);
  575. for(i=rematrix_band_tab[bnd]; i<bndend; i++) {
  576. tmp0 = s->transform_coeffs[1][i];
  577. tmp1 = s->transform_coeffs[2][i];
  578. s->transform_coeffs[1][i] = tmp0 + tmp1;
  579. s->transform_coeffs[2][i] = tmp0 - tmp1;
  580. }
  581. }
  582. }
  583. }
  584. /**
  585. * Perform the 256-point IMDCT
  586. */
  587. static void do_imdct_256(AC3DecodeContext *s, int chindex)
  588. {
  589. int i, k;
  590. DECLARE_ALIGNED_16(float, x[128]);
  591. FFTComplex z[2][64];
  592. float *o_ptr = s->tmp_output;
  593. for(i=0; i<2; i++) {
  594. /* de-interleave coefficients */
  595. for(k=0; k<128; k++) {
  596. x[k] = s->transform_coeffs[chindex][2*k+i];
  597. }
  598. /* run standard IMDCT */
  599. s->imdct_256.fft.imdct_calc(&s->imdct_256, o_ptr, x, s->tmp_imdct);
  600. /* reverse the post-rotation & reordering from standard IMDCT */
  601. for(k=0; k<32; k++) {
  602. z[i][32+k].re = -o_ptr[128+2*k];
  603. z[i][32+k].im = -o_ptr[2*k];
  604. z[i][31-k].re = o_ptr[2*k+1];
  605. z[i][31-k].im = o_ptr[128+2*k+1];
  606. }
  607. }
  608. /* apply AC-3 post-rotation & reordering */
  609. for(k=0; k<64; k++) {
  610. o_ptr[ 2*k ] = -z[0][ k].im;
  611. o_ptr[ 2*k+1] = z[0][63-k].re;
  612. o_ptr[128+2*k ] = -z[0][ k].re;
  613. o_ptr[128+2*k+1] = z[0][63-k].im;
  614. o_ptr[256+2*k ] = -z[1][ k].re;
  615. o_ptr[256+2*k+1] = z[1][63-k].im;
  616. o_ptr[384+2*k ] = z[1][ k].im;
  617. o_ptr[384+2*k+1] = -z[1][63-k].re;
  618. }
  619. }
  620. /**
  621. * Inverse MDCT Transform.
  622. * Convert frequency domain coefficients to time-domain audio samples.
  623. * reference: Section 7.9.4 Transformation Equations
  624. */
  625. static inline void do_imdct(AC3DecodeContext *s)
  626. {
  627. int ch;
  628. int channels;
  629. /* Don't perform the IMDCT on the LFE channel unless it's used in the output */
  630. channels = s->fbw_channels;
  631. if(s->output_mode & AC3_OUTPUT_LFEON)
  632. channels++;
  633. for (ch=1; ch<=channels; ch++) {
  634. if (s->block_switch[ch]) {
  635. do_imdct_256(s, ch);
  636. } else {
  637. s->imdct_512.fft.imdct_calc(&s->imdct_512, s->tmp_output,
  638. s->transform_coeffs[ch], s->tmp_imdct);
  639. }
  640. /* For the first half of the block, apply the window, add the delay
  641. from the previous block, and send to output */
  642. s->dsp.vector_fmul_add_add(s->output[ch-1], s->tmp_output,
  643. s->window, s->delay[ch-1], 0, 256, 1);
  644. /* For the second half of the block, apply the window and store the
  645. samples to delay, to be combined with the next block */
  646. s->dsp.vector_fmul_reverse(s->delay[ch-1], s->tmp_output+256,
  647. s->window, 256);
  648. }
  649. }
  650. /**
  651. * Downmix the output to mono or stereo.
  652. */
  653. static void ac3_downmix(AC3DecodeContext *s)
  654. {
  655. int i, j;
  656. float v0, v1, s0, s1;
  657. for(i=0; i<256; i++) {
  658. v0 = v1 = s0 = s1 = 0.0f;
  659. for(j=0; j<s->fbw_channels; j++) {
  660. v0 += s->output[j][i] * s->downmix_coeffs[j][0];
  661. v1 += s->output[j][i] * s->downmix_coeffs[j][1];
  662. s0 += s->downmix_coeffs[j][0];
  663. s1 += s->downmix_coeffs[j][1];
  664. }
  665. v0 /= s0;
  666. v1 /= s1;
  667. if(s->output_mode == AC3_CHMODE_MONO) {
  668. s->output[0][i] = (v0 + v1) * LEVEL_MINUS_3DB;
  669. } else if(s->output_mode == AC3_CHMODE_STEREO) {
  670. s->output[0][i] = v0;
  671. s->output[1][i] = v1;
  672. }
  673. }
  674. }
  675. /**
  676. * Parse an audio block from AC-3 bitstream.
  677. */
  678. static int ac3_parse_audio_block(AC3DecodeContext *s, int blk)
  679. {
  680. int fbw_channels = s->fbw_channels;
  681. int channel_mode = s->channel_mode;
  682. int i, bnd, seg, ch;
  683. GetBitContext *gbc = &s->gbc;
  684. uint8_t bit_alloc_stages[AC3_MAX_CHANNELS];
  685. memset(bit_alloc_stages, 0, AC3_MAX_CHANNELS);
  686. /* block switch flags */
  687. for (ch = 1; ch <= fbw_channels; ch++)
  688. s->block_switch[ch] = get_bits1(gbc);
  689. /* dithering flags */
  690. s->dither_all = 1;
  691. for (ch = 1; ch <= fbw_channels; ch++) {
  692. s->dither_flag[ch] = get_bits1(gbc);
  693. if(!s->dither_flag[ch])
  694. s->dither_all = 0;
  695. }
  696. /* dynamic range */
  697. i = !(s->channel_mode);
  698. do {
  699. if(get_bits1(gbc)) {
  700. s->dynamic_range[i] = ((dynamic_range_tab[get_bits(gbc, 8)]-1.0) *
  701. s->avctx->drc_scale)+1.0;
  702. } else if(blk == 0) {
  703. s->dynamic_range[i] = 1.0f;
  704. }
  705. } while(i--);
  706. /* coupling strategy */
  707. if (get_bits1(gbc)) {
  708. memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS);
  709. s->cpl_in_use = get_bits1(gbc);
  710. if (s->cpl_in_use) {
  711. /* coupling in use */
  712. int cpl_begin_freq, cpl_end_freq;
  713. /* determine which channels are coupled */
  714. for (ch = 1; ch <= fbw_channels; ch++)
  715. s->channel_in_cpl[ch] = get_bits1(gbc);
  716. /* phase flags in use */
  717. if (channel_mode == AC3_CHMODE_STEREO)
  718. s->phase_flags_in_use = get_bits1(gbc);
  719. /* coupling frequency range and band structure */
  720. cpl_begin_freq = get_bits(gbc, 4);
  721. cpl_end_freq = get_bits(gbc, 4);
  722. if (3 + cpl_end_freq - cpl_begin_freq < 0) {
  723. av_log(s->avctx, AV_LOG_ERROR, "3+cplendf = %d < cplbegf = %d\n", 3+cpl_end_freq, cpl_begin_freq);
  724. return -1;
  725. }
  726. s->num_cpl_bands = s->num_cpl_subbands = 3 + cpl_end_freq - cpl_begin_freq;
  727. s->start_freq[CPL_CH] = cpl_begin_freq * 12 + 37;
  728. s->end_freq[CPL_CH] = cpl_end_freq * 12 + 73;
  729. for (bnd = 0; bnd < s->num_cpl_subbands - 1; bnd++) {
  730. if (get_bits1(gbc)) {
  731. s->cpl_band_struct[bnd] = 1;
  732. s->num_cpl_bands--;
  733. }
  734. }
  735. s->cpl_band_struct[s->num_cpl_subbands-1] = 0;
  736. } else {
  737. /* coupling not in use */
  738. for (ch = 1; ch <= fbw_channels; ch++)
  739. s->channel_in_cpl[ch] = 0;
  740. }
  741. }
  742. /* coupling coordinates */
  743. if (s->cpl_in_use) {
  744. int cpl_coords_exist = 0;
  745. for (ch = 1; ch <= fbw_channels; ch++) {
  746. if (s->channel_in_cpl[ch]) {
  747. if (get_bits1(gbc)) {
  748. int master_cpl_coord, cpl_coord_exp, cpl_coord_mant;
  749. cpl_coords_exist = 1;
  750. master_cpl_coord = 3 * get_bits(gbc, 2);
  751. for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
  752. cpl_coord_exp = get_bits(gbc, 4);
  753. cpl_coord_mant = get_bits(gbc, 4);
  754. if (cpl_coord_exp == 15)
  755. s->cpl_coords[ch][bnd] = cpl_coord_mant / 16.0f;
  756. else
  757. s->cpl_coords[ch][bnd] = (cpl_coord_mant + 16.0f) / 32.0f;
  758. s->cpl_coords[ch][bnd] *= scale_factors[cpl_coord_exp + master_cpl_coord];
  759. }
  760. }
  761. }
  762. }
  763. /* phase flags */
  764. if (channel_mode == AC3_CHMODE_STEREO && cpl_coords_exist) {
  765. for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
  766. s->phase_flags[bnd] = s->phase_flags_in_use? get_bits1(gbc) : 0;
  767. }
  768. }
  769. }
  770. /* stereo rematrixing strategy and band structure */
  771. if (channel_mode == AC3_CHMODE_STEREO) {
  772. if (get_bits1(gbc)) {
  773. s->num_rematrixing_bands = 4;
  774. if(s->cpl_in_use && s->start_freq[CPL_CH] <= 61)
  775. s->num_rematrixing_bands -= 1 + (s->start_freq[CPL_CH] == 37);
  776. for(bnd=0; bnd<s->num_rematrixing_bands; bnd++)
  777. s->rematrixing_flags[bnd] = get_bits1(gbc);
  778. }
  779. }
  780. /* exponent strategies for each channel */
  781. s->exp_strategy[CPL_CH] = EXP_REUSE;
  782. s->exp_strategy[s->lfe_ch] = EXP_REUSE;
  783. for (ch = !s->cpl_in_use; ch <= s->channels; ch++) {
  784. if(ch == s->lfe_ch)
  785. s->exp_strategy[ch] = get_bits(gbc, 1);
  786. else
  787. s->exp_strategy[ch] = get_bits(gbc, 2);
  788. if(s->exp_strategy[ch] != EXP_REUSE)
  789. bit_alloc_stages[ch] = 3;
  790. }
  791. /* channel bandwidth */
  792. for (ch = 1; ch <= fbw_channels; ch++) {
  793. s->start_freq[ch] = 0;
  794. if (s->exp_strategy[ch] != EXP_REUSE) {
  795. int prev = s->end_freq[ch];
  796. if (s->channel_in_cpl[ch])
  797. s->end_freq[ch] = s->start_freq[CPL_CH];
  798. else {
  799. int bandwidth_code = get_bits(gbc, 6);
  800. if (bandwidth_code > 60) {
  801. av_log(s->avctx, AV_LOG_ERROR, "bandwidth code = %d > 60", bandwidth_code);
  802. return -1;
  803. }
  804. s->end_freq[ch] = bandwidth_code * 3 + 73;
  805. }
  806. if(blk > 0 && s->end_freq[ch] != prev)
  807. memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS);
  808. }
  809. }
  810. s->start_freq[s->lfe_ch] = 0;
  811. s->end_freq[s->lfe_ch] = 7;
  812. /* decode exponents for each channel */
  813. for (ch = !s->cpl_in_use; ch <= s->channels; ch++) {
  814. if (s->exp_strategy[ch] != EXP_REUSE) {
  815. int group_size, num_groups;
  816. group_size = 3 << (s->exp_strategy[ch] - 1);
  817. if(ch == CPL_CH)
  818. num_groups = (s->end_freq[ch] - s->start_freq[ch]) / group_size;
  819. else if(ch == s->lfe_ch)
  820. num_groups = 2;
  821. else
  822. num_groups = (s->end_freq[ch] + group_size - 4) / group_size;
  823. s->dexps[ch][0] = get_bits(gbc, 4) << !ch;
  824. decode_exponents(gbc, s->exp_strategy[ch], num_groups, s->dexps[ch][0],
  825. &s->dexps[ch][s->start_freq[ch]+!!ch]);
  826. if(ch != CPL_CH && ch != s->lfe_ch)
  827. skip_bits(gbc, 2); /* skip gainrng */
  828. }
  829. }
  830. /* bit allocation information */
  831. if (get_bits1(gbc)) {
  832. s->bit_alloc_params.slow_decay = ff_ac3_slow_decay_tab[get_bits(gbc, 2)] >> s->bit_alloc_params.sr_shift;
  833. s->bit_alloc_params.fast_decay = ff_ac3_fast_decay_tab[get_bits(gbc, 2)] >> s->bit_alloc_params.sr_shift;
  834. s->bit_alloc_params.slow_gain = ff_ac3_slow_gain_tab[get_bits(gbc, 2)];
  835. s->bit_alloc_params.db_per_bit = ff_ac3_db_per_bit_tab[get_bits(gbc, 2)];
  836. s->bit_alloc_params.floor = ff_ac3_floor_tab[get_bits(gbc, 3)];
  837. for(ch=!s->cpl_in_use; ch<=s->channels; ch++) {
  838. bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
  839. }
  840. }
  841. /* signal-to-noise ratio offsets and fast gains (signal-to-mask ratios) */
  842. if (get_bits1(gbc)) {
  843. int csnr;
  844. csnr = (get_bits(gbc, 6) - 15) << 4;
  845. for (ch = !s->cpl_in_use; ch <= s->channels; ch++) { /* snr offset and fast gain */
  846. s->snr_offset[ch] = (csnr + get_bits(gbc, 4)) << 2;
  847. s->fast_gain[ch] = ff_ac3_fast_gain_tab[get_bits(gbc, 3)];
  848. }
  849. memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS);
  850. }
  851. /* coupling leak information */
  852. if (s->cpl_in_use && get_bits1(gbc)) {
  853. s->bit_alloc_params.cpl_fast_leak = get_bits(gbc, 3);
  854. s->bit_alloc_params.cpl_slow_leak = get_bits(gbc, 3);
  855. bit_alloc_stages[CPL_CH] = FFMAX(bit_alloc_stages[CPL_CH], 2);
  856. }
  857. /* delta bit allocation information */
  858. if (get_bits1(gbc)) {
  859. /* delta bit allocation exists (strategy) */
  860. for (ch = !s->cpl_in_use; ch <= fbw_channels; ch++) {
  861. s->dba_mode[ch] = get_bits(gbc, 2);
  862. if (s->dba_mode[ch] == DBA_RESERVED) {
  863. av_log(s->avctx, AV_LOG_ERROR, "delta bit allocation strategy reserved\n");
  864. return -1;
  865. }
  866. bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
  867. }
  868. /* channel delta offset, len and bit allocation */
  869. for (ch = !s->cpl_in_use; ch <= fbw_channels; ch++) {
  870. if (s->dba_mode[ch] == DBA_NEW) {
  871. s->dba_nsegs[ch] = get_bits(gbc, 3);
  872. for (seg = 0; seg <= s->dba_nsegs[ch]; seg++) {
  873. s->dba_offsets[ch][seg] = get_bits(gbc, 5);
  874. s->dba_lengths[ch][seg] = get_bits(gbc, 4);
  875. s->dba_values[ch][seg] = get_bits(gbc, 3);
  876. }
  877. }
  878. }
  879. } else if(blk == 0) {
  880. for(ch=0; ch<=s->channels; ch++) {
  881. s->dba_mode[ch] = DBA_NONE;
  882. }
  883. }
  884. /* Bit allocation */
  885. for(ch=!s->cpl_in_use; ch<=s->channels; ch++) {
  886. if(bit_alloc_stages[ch] > 2) {
  887. /* Exponent mapping into PSD and PSD integration */
  888. ff_ac3_bit_alloc_calc_psd(s->dexps[ch],
  889. s->start_freq[ch], s->end_freq[ch],
  890. s->psd[ch], s->band_psd[ch]);
  891. }
  892. if(bit_alloc_stages[ch] > 1) {
  893. /* Compute excitation function, Compute masking curve, and
  894. Apply delta bit allocation */
  895. ff_ac3_bit_alloc_calc_mask(&s->bit_alloc_params, s->band_psd[ch],
  896. s->start_freq[ch], s->end_freq[ch],
  897. s->fast_gain[ch], (ch == s->lfe_ch),
  898. s->dba_mode[ch], s->dba_nsegs[ch],
  899. s->dba_offsets[ch], s->dba_lengths[ch],
  900. s->dba_values[ch], s->mask[ch]);
  901. }
  902. if(bit_alloc_stages[ch] > 0) {
  903. /* Compute bit allocation */
  904. ff_ac3_bit_alloc_calc_bap(s->mask[ch], s->psd[ch],
  905. s->start_freq[ch], s->end_freq[ch],
  906. s->snr_offset[ch],
  907. s->bit_alloc_params.floor,
  908. s->bap[ch]);
  909. }
  910. }
  911. /* unused dummy data */
  912. if (get_bits1(gbc)) {
  913. int skipl = get_bits(gbc, 9);
  914. while(skipl--)
  915. skip_bits(gbc, 8);
  916. }
  917. /* unpack the transform coefficients
  918. this also uncouples channels if coupling is in use. */
  919. if (get_transform_coeffs(s)) {
  920. av_log(s->avctx, AV_LOG_ERROR, "Error in routine get_transform_coeffs\n");
  921. return -1;
  922. }
  923. /* recover coefficients if rematrixing is in use */
  924. if(s->channel_mode == AC3_CHMODE_STEREO)
  925. do_rematrixing(s);
  926. /* apply scaling to coefficients (headroom, dynrng) */
  927. for(ch=1; ch<=s->channels; ch++) {
  928. float gain = 2.0f * s->mul_bias;
  929. if(s->channel_mode == AC3_CHMODE_DUALMONO) {
  930. gain *= s->dynamic_range[ch-1];
  931. } else {
  932. gain *= s->dynamic_range[0];
  933. }
  934. for(i=0; i<s->end_freq[ch]; i++) {
  935. s->transform_coeffs[ch][i] *= gain;
  936. }
  937. }
  938. do_imdct(s);
  939. /* downmix output if needed */
  940. if(s->channels != s->out_channels && !((s->output_mode & AC3_OUTPUT_LFEON) &&
  941. s->fbw_channels == s->out_channels)) {
  942. ac3_downmix(s);
  943. }
  944. /* convert float to 16-bit integer */
  945. for(ch=0; ch<s->out_channels; ch++) {
  946. for(i=0; i<256; i++) {
  947. s->output[ch][i] += s->add_bias;
  948. }
  949. s->dsp.float_to_int16(s->int_output[ch], s->output[ch], 256);
  950. }
  951. return 0;
  952. }
  953. /**
  954. * Decode a single AC-3 frame.
  955. */
  956. static int ac3_decode_frame(AVCodecContext * avctx, void *data, int *data_size, uint8_t *buf, int buf_size)
  957. {
  958. AC3DecodeContext *s = avctx->priv_data;
  959. int16_t *out_samples = (int16_t *)data;
  960. int i, blk, ch, err;
  961. /* initialize the GetBitContext with the start of valid AC-3 Frame */
  962. init_get_bits(&s->gbc, buf, buf_size * 8);
  963. /* parse the syncinfo */
  964. err = ac3_parse_header(s);
  965. if(err) {
  966. switch(err) {
  967. case AC3_PARSE_ERROR_SYNC:
  968. av_log(avctx, AV_LOG_ERROR, "frame sync error\n");
  969. break;
  970. case AC3_PARSE_ERROR_BSID:
  971. av_log(avctx, AV_LOG_ERROR, "invalid bitstream id\n");
  972. break;
  973. case AC3_PARSE_ERROR_SAMPLE_RATE:
  974. av_log(avctx, AV_LOG_ERROR, "invalid sample rate\n");
  975. break;
  976. case AC3_PARSE_ERROR_FRAME_SIZE:
  977. av_log(avctx, AV_LOG_ERROR, "invalid frame size\n");
  978. break;
  979. default:
  980. av_log(avctx, AV_LOG_ERROR, "invalid header\n");
  981. break;
  982. }
  983. return -1;
  984. }
  985. /* check that reported frame size fits in input buffer */
  986. if(s->frame_size > buf_size) {
  987. av_log(avctx, AV_LOG_ERROR, "incomplete frame\n");
  988. return -1;
  989. }
  990. /* check for crc mismatch */
  991. if(avctx->error_resilience >= FF_ER_CAREFUL) {
  992. if(av_crc(av_crc_get_table(AV_CRC_16_ANSI), 0, &buf[2], s->frame_size-2)) {
  993. av_log(avctx, AV_LOG_ERROR, "frame CRC mismatch\n");
  994. return -1;
  995. }
  996. /* TODO: error concealment */
  997. }
  998. avctx->sample_rate = s->sample_rate;
  999. avctx->bit_rate = s->bit_rate;
  1000. /* channel config */
  1001. s->out_channels = s->channels;
  1002. if (avctx->request_channels > 0 && avctx->request_channels <= 2 &&
  1003. avctx->request_channels < s->channels) {
  1004. s->out_channels = avctx->request_channels;
  1005. s->output_mode = avctx->request_channels == 1 ? AC3_CHMODE_MONO : AC3_CHMODE_STEREO;
  1006. }
  1007. avctx->channels = s->out_channels;
  1008. /* set downmixing coefficients if needed */
  1009. if(s->channels != s->out_channels && !((s->output_mode & AC3_OUTPUT_LFEON) &&
  1010. s->fbw_channels == s->out_channels)) {
  1011. set_downmix_coeffs(s);
  1012. }
  1013. /* parse the audio blocks */
  1014. for (blk = 0; blk < NB_BLOCKS; blk++) {
  1015. if (ac3_parse_audio_block(s, blk)) {
  1016. av_log(avctx, AV_LOG_ERROR, "error parsing the audio block\n");
  1017. *data_size = 0;
  1018. return s->frame_size;
  1019. }
  1020. for (i = 0; i < 256; i++)
  1021. for (ch = 0; ch < s->out_channels; ch++)
  1022. *(out_samples++) = s->int_output[ch][i];
  1023. }
  1024. *data_size = NB_BLOCKS * 256 * avctx->channels * sizeof (int16_t);
  1025. return s->frame_size;
  1026. }
  1027. /**
  1028. * Uninitialize the AC-3 decoder.
  1029. */
  1030. static int ac3_decode_end(AVCodecContext *avctx)
  1031. {
  1032. AC3DecodeContext *s = avctx->priv_data;
  1033. ff_mdct_end(&s->imdct_512);
  1034. ff_mdct_end(&s->imdct_256);
  1035. return 0;
  1036. }
  1037. AVCodec ac3_decoder = {
  1038. .name = "ac3",
  1039. .type = CODEC_TYPE_AUDIO,
  1040. .id = CODEC_ID_AC3,
  1041. .priv_data_size = sizeof (AC3DecodeContext),
  1042. .init = ac3_decode_init,
  1043. .close = ac3_decode_end,
  1044. .decode = ac3_decode_frame,
  1045. };