You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1139 lines
41KB

  1. /*
  2. * Indeo Video v3 compatible decoder
  3. * Copyright (c) 2009 - 2011 Maxim Poliakovski
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * This is a decoder for Intel Indeo Video v3.
  24. * It is based on vector quantization, run-length coding and motion compensation.
  25. * Known container formats: .avi and .mov
  26. * Known FOURCCs: 'IV31', 'IV32'
  27. *
  28. * @see http://wiki.multimedia.cx/index.php?title=Indeo_3
  29. */
  30. #include "libavutil/imgutils.h"
  31. #include "libavutil/intreadwrite.h"
  32. #include "avcodec.h"
  33. #include "copy_block.h"
  34. #include "bytestream.h"
  35. #include "get_bits.h"
  36. #include "hpeldsp.h"
  37. #include "internal.h"
  38. #include "indeo3data.h"
  39. /* RLE opcodes. */
  40. enum {
  41. RLE_ESC_F9 = 249, ///< same as RLE_ESC_FA + do the same with next block
  42. RLE_ESC_FA = 250, ///< INTRA: skip block, INTER: copy data from reference
  43. RLE_ESC_FB = 251, ///< apply null delta to N blocks / skip N blocks
  44. RLE_ESC_FC = 252, ///< same as RLE_ESC_FD + do the same with next block
  45. RLE_ESC_FD = 253, ///< apply null delta to all remaining lines of this block
  46. RLE_ESC_FE = 254, ///< apply null delta to all lines up to the 3rd line
  47. RLE_ESC_FF = 255 ///< apply null delta to all lines up to the 2nd line
  48. };
  49. /* Some constants for parsing frame bitstream flags. */
  50. #define BS_8BIT_PEL (1 << 1) ///< 8bit pixel bitdepth indicator
  51. #define BS_KEYFRAME (1 << 2) ///< intra frame indicator
  52. #define BS_MV_Y_HALF (1 << 4) ///< vertical mv halfpel resolution indicator
  53. #define BS_MV_X_HALF (1 << 5) ///< horizontal mv halfpel resolution indicator
  54. #define BS_NONREF (1 << 8) ///< nonref (discardable) frame indicator
  55. #define BS_BUFFER 9 ///< indicates which of two frame buffers should be used
  56. typedef struct Plane {
  57. uint8_t *buffers[2];
  58. uint8_t *pixels[2]; ///< pointer to the actual pixel data of the buffers above
  59. uint32_t width;
  60. uint32_t height;
  61. uint32_t pitch;
  62. } Plane;
  63. #define CELL_STACK_MAX 20
  64. typedef struct Cell {
  65. int16_t xpos; ///< cell coordinates in 4x4 blocks
  66. int16_t ypos;
  67. int16_t width; ///< cell width in 4x4 blocks
  68. int16_t height; ///< cell height in 4x4 blocks
  69. uint8_t tree; ///< tree id: 0- MC tree, 1 - VQ tree
  70. const int8_t *mv_ptr; ///< ptr to the motion vector if any
  71. } Cell;
  72. typedef struct Indeo3DecodeContext {
  73. AVCodecContext *avctx;
  74. HpelDSPContext hdsp;
  75. GetBitContext gb;
  76. int need_resync;
  77. int skip_bits;
  78. const uint8_t *next_cell_data;
  79. const uint8_t *last_byte;
  80. const int8_t *mc_vectors;
  81. unsigned num_vectors; ///< number of motion vectors in mc_vectors
  82. int16_t width, height;
  83. uint32_t frame_num; ///< current frame number (zero-based)
  84. uint32_t data_size; ///< size of the frame data in bytes
  85. uint16_t frame_flags; ///< frame properties
  86. uint8_t cb_offset; ///< needed for selecting VQ tables
  87. uint8_t buf_sel; ///< active frame buffer: 0 - primary, 1 -secondary
  88. const uint8_t *y_data_ptr;
  89. const uint8_t *v_data_ptr;
  90. const uint8_t *u_data_ptr;
  91. int32_t y_data_size;
  92. int32_t v_data_size;
  93. int32_t u_data_size;
  94. const uint8_t *alt_quant; ///< secondary VQ table set for the modes 1 and 4
  95. Plane planes[3];
  96. } Indeo3DecodeContext;
  97. static uint8_t requant_tab[8][128];
  98. /*
  99. * Build the static requantization table.
  100. * This table is used to remap pixel values according to a specific
  101. * quant index and thus avoid overflows while adding deltas.
  102. */
  103. static av_cold void build_requant_tab(void)
  104. {
  105. static int8_t offsets[8] = { 1, 1, 2, -3, -3, 3, 4, 4 };
  106. static int8_t deltas [8] = { 0, 1, 0, 4, 4, 1, 0, 1 };
  107. int i, j, step;
  108. for (i = 0; i < 8; i++) {
  109. step = i + 2;
  110. for (j = 0; j < 128; j++)
  111. requant_tab[i][j] = (j + offsets[i]) / step * step + deltas[i];
  112. }
  113. /* some last elements calculated above will have values >= 128 */
  114. /* pixel values shall never exceed 127 so set them to non-overflowing values */
  115. /* according with the quantization step of the respective section */
  116. requant_tab[0][127] = 126;
  117. requant_tab[1][119] = 118;
  118. requant_tab[1][120] = 118;
  119. requant_tab[2][126] = 124;
  120. requant_tab[2][127] = 124;
  121. requant_tab[6][124] = 120;
  122. requant_tab[6][125] = 120;
  123. requant_tab[6][126] = 120;
  124. requant_tab[6][127] = 120;
  125. /* Patch for compatibility with the Intel's binary decoders */
  126. requant_tab[1][7] = 10;
  127. requant_tab[4][8] = 10;
  128. }
  129. static av_cold int allocate_frame_buffers(Indeo3DecodeContext *ctx,
  130. AVCodecContext *avctx, int luma_width, int luma_height)
  131. {
  132. int p, chroma_width, chroma_height;
  133. int luma_pitch, chroma_pitch, luma_size, chroma_size;
  134. if (luma_width < 16 || luma_width > 640 ||
  135. luma_height < 16 || luma_height > 480 ||
  136. luma_width & 3 || luma_height & 3) {
  137. av_log(avctx, AV_LOG_ERROR, "Invalid picture dimensions: %d x %d!\n",
  138. luma_width, luma_height);
  139. return AVERROR_INVALIDDATA;
  140. }
  141. ctx->width = luma_width ;
  142. ctx->height = luma_height;
  143. chroma_width = FFALIGN(luma_width >> 2, 4);
  144. chroma_height = FFALIGN(luma_height >> 2, 4);
  145. luma_pitch = FFALIGN(luma_width, 16);
  146. chroma_pitch = FFALIGN(chroma_width, 16);
  147. /* Calculate size of the luminance plane. */
  148. /* Add one line more for INTRA prediction. */
  149. luma_size = luma_pitch * (luma_height + 1);
  150. /* Calculate size of a chrominance planes. */
  151. /* Add one line more for INTRA prediction. */
  152. chroma_size = chroma_pitch * (chroma_height + 1);
  153. /* allocate frame buffers */
  154. for (p = 0; p < 3; p++) {
  155. ctx->planes[p].pitch = !p ? luma_pitch : chroma_pitch;
  156. ctx->planes[p].width = !p ? luma_width : chroma_width;
  157. ctx->planes[p].height = !p ? luma_height : chroma_height;
  158. ctx->planes[p].buffers[0] = av_malloc(!p ? luma_size : chroma_size);
  159. ctx->planes[p].buffers[1] = av_malloc(!p ? luma_size : chroma_size);
  160. /* fill the INTRA prediction lines with the middle pixel value = 64 */
  161. memset(ctx->planes[p].buffers[0], 0x40, ctx->planes[p].pitch);
  162. memset(ctx->planes[p].buffers[1], 0x40, ctx->planes[p].pitch);
  163. /* set buffer pointers = buf_ptr + pitch and thus skip the INTRA prediction line */
  164. ctx->planes[p].pixels[0] = ctx->planes[p].buffers[0] + ctx->planes[p].pitch;
  165. ctx->planes[p].pixels[1] = ctx->planes[p].buffers[1] + ctx->planes[p].pitch;
  166. memset(ctx->planes[p].pixels[0], 0, ctx->planes[p].pitch * ctx->planes[p].height);
  167. memset(ctx->planes[p].pixels[1], 0, ctx->planes[p].pitch * ctx->planes[p].height);
  168. }
  169. return 0;
  170. }
  171. static av_cold void free_frame_buffers(Indeo3DecodeContext *ctx)
  172. {
  173. int p;
  174. ctx->width=
  175. ctx->height= 0;
  176. for (p = 0; p < 3; p++) {
  177. av_freep(&ctx->planes[p].buffers[0]);
  178. av_freep(&ctx->planes[p].buffers[1]);
  179. ctx->planes[p].pixels[0] = ctx->planes[p].pixels[1] = 0;
  180. }
  181. }
  182. /**
  183. * Copy pixels of the cell(x + mv_x, y + mv_y) from the previous frame into
  184. * the cell(x, y) in the current frame.
  185. *
  186. * @param ctx pointer to the decoder context
  187. * @param plane pointer to the plane descriptor
  188. * @param cell pointer to the cell descriptor
  189. */
  190. static void copy_cell(Indeo3DecodeContext *ctx, Plane *plane, Cell *cell)
  191. {
  192. int h, w, mv_x, mv_y, offset, offset_dst;
  193. uint8_t *src, *dst;
  194. /* setup output and reference pointers */
  195. offset_dst = (cell->ypos << 2) * plane->pitch + (cell->xpos << 2);
  196. dst = plane->pixels[ctx->buf_sel] + offset_dst;
  197. if(cell->mv_ptr){
  198. mv_y = cell->mv_ptr[0];
  199. mv_x = cell->mv_ptr[1];
  200. }else
  201. mv_x= mv_y= 0;
  202. offset = offset_dst + mv_y * plane->pitch + mv_x;
  203. src = plane->pixels[ctx->buf_sel ^ 1] + offset;
  204. h = cell->height << 2;
  205. for (w = cell->width; w > 0;) {
  206. /* copy using 16xH blocks */
  207. if (!((cell->xpos << 2) & 15) && w >= 4) {
  208. for (; w >= 4; src += 16, dst += 16, w -= 4)
  209. ctx->hdsp.put_no_rnd_pixels_tab[0][0](dst, src, plane->pitch, h);
  210. }
  211. /* copy using 8xH blocks */
  212. if (!((cell->xpos << 2) & 7) && w >= 2) {
  213. ctx->hdsp.put_no_rnd_pixels_tab[1][0](dst, src, plane->pitch, h);
  214. w -= 2;
  215. src += 8;
  216. dst += 8;
  217. }
  218. if (w >= 1) {
  219. copy_block4(dst, src, plane->pitch, plane->pitch, h);
  220. w--;
  221. src += 4;
  222. dst += 4;
  223. }
  224. }
  225. }
  226. /* Average 4/8 pixels at once without rounding using SWAR */
  227. #define AVG_32(dst, src, ref) \
  228. AV_WN32A(dst, ((AV_RN32A(src) + AV_RN32A(ref)) >> 1) & 0x7F7F7F7FUL)
  229. #define AVG_64(dst, src, ref) \
  230. AV_WN64A(dst, ((AV_RN64A(src) + AV_RN64A(ref)) >> 1) & 0x7F7F7F7F7F7F7F7FULL)
  231. /*
  232. * Replicate each even pixel as follows:
  233. * ABCDEFGH -> AACCEEGG
  234. */
  235. static inline uint64_t replicate64(uint64_t a) {
  236. #if HAVE_BIGENDIAN
  237. a &= 0xFF00FF00FF00FF00ULL;
  238. a |= a >> 8;
  239. #else
  240. a &= 0x00FF00FF00FF00FFULL;
  241. a |= a << 8;
  242. #endif
  243. return a;
  244. }
  245. static inline uint32_t replicate32(uint32_t a) {
  246. #if HAVE_BIGENDIAN
  247. a &= 0xFF00FF00UL;
  248. a |= a >> 8;
  249. #else
  250. a &= 0x00FF00FFUL;
  251. a |= a << 8;
  252. #endif
  253. return a;
  254. }
  255. /* Fill n lines with 64bit pixel value pix */
  256. static inline void fill_64(uint8_t *dst, const uint64_t pix, int32_t n,
  257. int32_t row_offset)
  258. {
  259. for (; n > 0; dst += row_offset, n--)
  260. AV_WN64A(dst, pix);
  261. }
  262. /* Error codes for cell decoding. */
  263. enum {
  264. IV3_NOERR = 0,
  265. IV3_BAD_RLE = 1,
  266. IV3_BAD_DATA = 2,
  267. IV3_BAD_COUNTER = 3,
  268. IV3_UNSUPPORTED = 4,
  269. IV3_OUT_OF_DATA = 5
  270. };
  271. #define BUFFER_PRECHECK \
  272. if (*data_ptr >= last_ptr) \
  273. return IV3_OUT_OF_DATA; \
  274. #define RLE_BLOCK_COPY \
  275. if (cell->mv_ptr || !skip_flag) \
  276. copy_block4(dst, ref, row_offset, row_offset, 4 << v_zoom)
  277. #define RLE_BLOCK_COPY_8 \
  278. pix64 = AV_RN64A(ref);\
  279. if (is_first_row) {/* special prediction case: top line of a cell */\
  280. pix64 = replicate64(pix64);\
  281. fill_64(dst + row_offset, pix64, 7, row_offset);\
  282. AVG_64(dst, ref, dst + row_offset);\
  283. } else \
  284. fill_64(dst, pix64, 8, row_offset)
  285. #define RLE_LINES_COPY \
  286. copy_block4(dst, ref, row_offset, row_offset, num_lines << v_zoom)
  287. #define RLE_LINES_COPY_M10 \
  288. pix64 = AV_RN64A(ref);\
  289. if (is_top_of_cell) {\
  290. pix64 = replicate64(pix64);\
  291. fill_64(dst + row_offset, pix64, (num_lines << 1) - 1, row_offset);\
  292. AVG_64(dst, ref, dst + row_offset);\
  293. } else \
  294. fill_64(dst, pix64, num_lines << 1, row_offset)
  295. #define APPLY_DELTA_4 \
  296. AV_WN16A(dst + line_offset ,\
  297. (AV_RN16A(ref ) + delta_tab->deltas[dyad1]) & 0x7F7F);\
  298. AV_WN16A(dst + line_offset + 2,\
  299. (AV_RN16A(ref + 2) + delta_tab->deltas[dyad2]) & 0x7F7F);\
  300. if (mode >= 3) {\
  301. if (is_top_of_cell && !cell->ypos) {\
  302. AV_COPY32(dst, dst + row_offset);\
  303. } else {\
  304. AVG_32(dst, ref, dst + row_offset);\
  305. }\
  306. }
  307. #define APPLY_DELTA_8 \
  308. /* apply two 32-bit VQ deltas to next even line */\
  309. if (is_top_of_cell) { \
  310. AV_WN32A(dst + row_offset , \
  311. (replicate32(AV_RN32A(ref )) + delta_tab->deltas_m10[dyad1]) & 0x7F7F7F7F);\
  312. AV_WN32A(dst + row_offset + 4, \
  313. (replicate32(AV_RN32A(ref + 4)) + delta_tab->deltas_m10[dyad2]) & 0x7F7F7F7F);\
  314. } else { \
  315. AV_WN32A(dst + row_offset , \
  316. (AV_RN32A(ref ) + delta_tab->deltas_m10[dyad1]) & 0x7F7F7F7F);\
  317. AV_WN32A(dst + row_offset + 4, \
  318. (AV_RN32A(ref + 4) + delta_tab->deltas_m10[dyad2]) & 0x7F7F7F7F);\
  319. } \
  320. /* odd lines are not coded but rather interpolated/replicated */\
  321. /* first line of the cell on the top of image? - replicate */\
  322. /* otherwise - interpolate */\
  323. if (is_top_of_cell && !cell->ypos) {\
  324. AV_COPY64(dst, dst + row_offset);\
  325. } else \
  326. AVG_64(dst, ref, dst + row_offset);
  327. #define APPLY_DELTA_1011_INTER \
  328. if (mode == 10) { \
  329. AV_WN32A(dst , \
  330. (AV_RN32A(dst ) + delta_tab->deltas_m10[dyad1]) & 0x7F7F7F7F);\
  331. AV_WN32A(dst + 4 , \
  332. (AV_RN32A(dst + 4 ) + delta_tab->deltas_m10[dyad2]) & 0x7F7F7F7F);\
  333. AV_WN32A(dst + row_offset , \
  334. (AV_RN32A(dst + row_offset ) + delta_tab->deltas_m10[dyad1]) & 0x7F7F7F7F);\
  335. AV_WN32A(dst + row_offset + 4, \
  336. (AV_RN32A(dst + row_offset + 4) + delta_tab->deltas_m10[dyad2]) & 0x7F7F7F7F);\
  337. } else { \
  338. AV_WN16A(dst , \
  339. (AV_RN16A(dst ) + delta_tab->deltas[dyad1]) & 0x7F7F);\
  340. AV_WN16A(dst + 2 , \
  341. (AV_RN16A(dst + 2 ) + delta_tab->deltas[dyad2]) & 0x7F7F);\
  342. AV_WN16A(dst + row_offset , \
  343. (AV_RN16A(dst + row_offset ) + delta_tab->deltas[dyad1]) & 0x7F7F);\
  344. AV_WN16A(dst + row_offset + 2, \
  345. (AV_RN16A(dst + row_offset + 2) + delta_tab->deltas[dyad2]) & 0x7F7F);\
  346. }
  347. static int decode_cell_data(Indeo3DecodeContext *ctx, Cell *cell,
  348. uint8_t *block, uint8_t *ref_block,
  349. int pitch, int h_zoom, int v_zoom, int mode,
  350. const vqEntry *delta[2], int swap_quads[2],
  351. const uint8_t **data_ptr, const uint8_t *last_ptr)
  352. {
  353. int x, y, line, num_lines;
  354. int rle_blocks = 0;
  355. uint8_t code, *dst, *ref;
  356. const vqEntry *delta_tab;
  357. unsigned int dyad1, dyad2;
  358. uint64_t pix64;
  359. int skip_flag = 0, is_top_of_cell, is_first_row = 1;
  360. int row_offset, blk_row_offset, line_offset;
  361. row_offset = pitch;
  362. blk_row_offset = (row_offset << (2 + v_zoom)) - (cell->width << 2);
  363. line_offset = v_zoom ? row_offset : 0;
  364. if (cell->height & v_zoom || cell->width & h_zoom)
  365. return IV3_BAD_DATA;
  366. for (y = 0; y < cell->height; is_first_row = 0, y += 1 + v_zoom) {
  367. for (x = 0; x < cell->width; x += 1 + h_zoom) {
  368. ref = ref_block;
  369. dst = block;
  370. if (rle_blocks > 0) {
  371. if (mode <= 4) {
  372. RLE_BLOCK_COPY;
  373. } else if (mode == 10 && !cell->mv_ptr) {
  374. RLE_BLOCK_COPY_8;
  375. }
  376. rle_blocks--;
  377. } else {
  378. for (line = 0; line < 4;) {
  379. num_lines = 1;
  380. is_top_of_cell = is_first_row && !line;
  381. /* select primary VQ table for odd, secondary for even lines */
  382. if (mode <= 4)
  383. delta_tab = delta[line & 1];
  384. else
  385. delta_tab = delta[1];
  386. BUFFER_PRECHECK;
  387. code = bytestream_get_byte(data_ptr);
  388. if (code < 248) {
  389. if (code < delta_tab->num_dyads) {
  390. BUFFER_PRECHECK;
  391. dyad1 = bytestream_get_byte(data_ptr);
  392. dyad2 = code;
  393. if (dyad1 >= delta_tab->num_dyads || dyad1 >= 248)
  394. return IV3_BAD_DATA;
  395. } else {
  396. /* process QUADS */
  397. code -= delta_tab->num_dyads;
  398. dyad1 = code / delta_tab->quad_exp;
  399. dyad2 = code % delta_tab->quad_exp;
  400. if (swap_quads[line & 1])
  401. FFSWAP(unsigned int, dyad1, dyad2);
  402. }
  403. if (mode <= 4) {
  404. APPLY_DELTA_4;
  405. } else if (mode == 10 && !cell->mv_ptr) {
  406. APPLY_DELTA_8;
  407. } else {
  408. APPLY_DELTA_1011_INTER;
  409. }
  410. } else {
  411. /* process RLE codes */
  412. switch (code) {
  413. case RLE_ESC_FC:
  414. skip_flag = 0;
  415. rle_blocks = 1;
  416. code = 253;
  417. /* FALLTHROUGH */
  418. case RLE_ESC_FF:
  419. case RLE_ESC_FE:
  420. case RLE_ESC_FD:
  421. num_lines = 257 - code - line;
  422. if (num_lines <= 0)
  423. return IV3_BAD_RLE;
  424. if (mode <= 4) {
  425. RLE_LINES_COPY;
  426. } else if (mode == 10 && !cell->mv_ptr) {
  427. RLE_LINES_COPY_M10;
  428. }
  429. break;
  430. case RLE_ESC_FB:
  431. BUFFER_PRECHECK;
  432. code = bytestream_get_byte(data_ptr);
  433. rle_blocks = (code & 0x1F) - 1; /* set block counter */
  434. if (code >= 64 || rle_blocks < 0)
  435. return IV3_BAD_COUNTER;
  436. skip_flag = code & 0x20;
  437. num_lines = 4 - line; /* enforce next block processing */
  438. if (mode >= 10 || (cell->mv_ptr || !skip_flag)) {
  439. if (mode <= 4) {
  440. RLE_LINES_COPY;
  441. } else if (mode == 10 && !cell->mv_ptr) {
  442. RLE_LINES_COPY_M10;
  443. }
  444. }
  445. break;
  446. case RLE_ESC_F9:
  447. skip_flag = 1;
  448. rle_blocks = 1;
  449. /* FALLTHROUGH */
  450. case RLE_ESC_FA:
  451. if (line)
  452. return IV3_BAD_RLE;
  453. num_lines = 4; /* enforce next block processing */
  454. if (cell->mv_ptr) {
  455. if (mode <= 4) {
  456. RLE_LINES_COPY;
  457. } else if (mode == 10 && !cell->mv_ptr) {
  458. RLE_LINES_COPY_M10;
  459. }
  460. }
  461. break;
  462. default:
  463. return IV3_UNSUPPORTED;
  464. }
  465. }
  466. line += num_lines;
  467. ref += row_offset * (num_lines << v_zoom);
  468. dst += row_offset * (num_lines << v_zoom);
  469. }
  470. }
  471. /* move to next horizontal block */
  472. block += 4 << h_zoom;
  473. ref_block += 4 << h_zoom;
  474. }
  475. /* move to next line of blocks */
  476. ref_block += blk_row_offset;
  477. block += blk_row_offset;
  478. }
  479. return IV3_NOERR;
  480. }
  481. /**
  482. * Decode a vector-quantized cell.
  483. * It consists of several routines, each of which handles one or more "modes"
  484. * with which a cell can be encoded.
  485. *
  486. * @param ctx pointer to the decoder context
  487. * @param avctx ptr to the AVCodecContext
  488. * @param plane pointer to the plane descriptor
  489. * @param cell pointer to the cell descriptor
  490. * @param data_ptr pointer to the compressed data
  491. * @param last_ptr pointer to the last byte to catch reads past end of buffer
  492. * @return number of consumed bytes or negative number in case of error
  493. */
  494. static int decode_cell(Indeo3DecodeContext *ctx, AVCodecContext *avctx,
  495. Plane *plane, Cell *cell, const uint8_t *data_ptr,
  496. const uint8_t *last_ptr)
  497. {
  498. int x, mv_x, mv_y, mode, vq_index, prim_indx, second_indx;
  499. int zoom_fac;
  500. int offset, error = 0, swap_quads[2];
  501. uint8_t code, *block, *ref_block = 0;
  502. const vqEntry *delta[2];
  503. const uint8_t *data_start = data_ptr;
  504. /* get coding mode and VQ table index from the VQ descriptor byte */
  505. code = *data_ptr++;
  506. mode = code >> 4;
  507. vq_index = code & 0xF;
  508. /* setup output and reference pointers */
  509. offset = (cell->ypos << 2) * plane->pitch + (cell->xpos << 2);
  510. block = plane->pixels[ctx->buf_sel] + offset;
  511. if (cell->mv_ptr) {
  512. mv_y = cell->mv_ptr[0];
  513. mv_x = cell->mv_ptr[1];
  514. if ( mv_x + 4*cell->xpos < 0
  515. || mv_y + 4*cell->ypos < 0
  516. || mv_x + 4*cell->xpos + 4*cell->width > plane->width
  517. || mv_y + 4*cell->ypos + 4*cell->height > plane->height) {
  518. av_log(avctx, AV_LOG_ERROR, "motion vector %d %d outside reference\n", mv_x + 4*cell->xpos, mv_y + 4*cell->ypos);
  519. return AVERROR_INVALIDDATA;
  520. }
  521. }
  522. if (!cell->mv_ptr) {
  523. /* use previous line as reference for INTRA cells */
  524. ref_block = block - plane->pitch;
  525. } else if (mode >= 10) {
  526. /* for mode 10 and 11 INTER first copy the predicted cell into the current one */
  527. /* so we don't need to do data copying for each RLE code later */
  528. copy_cell(ctx, plane, cell);
  529. } else {
  530. /* set the pointer to the reference pixels for modes 0-4 INTER */
  531. mv_y = cell->mv_ptr[0];
  532. mv_x = cell->mv_ptr[1];
  533. offset += mv_y * plane->pitch + mv_x;
  534. ref_block = plane->pixels[ctx->buf_sel ^ 1] + offset;
  535. }
  536. /* select VQ tables as follows: */
  537. /* modes 0 and 3 use only the primary table for all lines in a block */
  538. /* while modes 1 and 4 switch between primary and secondary tables on alternate lines */
  539. if (mode == 1 || mode == 4) {
  540. code = ctx->alt_quant[vq_index];
  541. prim_indx = (code >> 4) + ctx->cb_offset;
  542. second_indx = (code & 0xF) + ctx->cb_offset;
  543. } else {
  544. vq_index += ctx->cb_offset;
  545. prim_indx = second_indx = vq_index;
  546. }
  547. if (prim_indx >= 24 || second_indx >= 24) {
  548. av_log(avctx, AV_LOG_ERROR, "Invalid VQ table indexes! Primary: %d, secondary: %d!\n",
  549. prim_indx, second_indx);
  550. return AVERROR_INVALIDDATA;
  551. }
  552. delta[0] = &vq_tab[second_indx];
  553. delta[1] = &vq_tab[prim_indx];
  554. swap_quads[0] = second_indx >= 16;
  555. swap_quads[1] = prim_indx >= 16;
  556. /* requantize the prediction if VQ index of this cell differs from VQ index */
  557. /* of the predicted cell in order to avoid overflows. */
  558. if (vq_index >= 8 && ref_block) {
  559. for (x = 0; x < cell->width << 2; x++)
  560. ref_block[x] = requant_tab[vq_index & 7][ref_block[x] & 127];
  561. }
  562. error = IV3_NOERR;
  563. switch (mode) {
  564. case 0: /*------------------ MODES 0 & 1 (4x4 block processing) --------------------*/
  565. case 1:
  566. case 3: /*------------------ MODES 3 & 4 (4x8 block processing) --------------------*/
  567. case 4:
  568. if (mode >= 3 && cell->mv_ptr) {
  569. av_log(avctx, AV_LOG_ERROR, "Attempt to apply Mode 3/4 to an INTER cell!\n");
  570. return AVERROR_INVALIDDATA;
  571. }
  572. zoom_fac = mode >= 3;
  573. error = decode_cell_data(ctx, cell, block, ref_block, plane->pitch,
  574. 0, zoom_fac, mode, delta, swap_quads,
  575. &data_ptr, last_ptr);
  576. break;
  577. case 10: /*-------------------- MODE 10 (8x8 block processing) ---------------------*/
  578. case 11: /*----------------- MODE 11 (4x8 INTER block processing) ------------------*/
  579. if (mode == 10 && !cell->mv_ptr) { /* MODE 10 INTRA processing */
  580. error = decode_cell_data(ctx, cell, block, ref_block, plane->pitch,
  581. 1, 1, mode, delta, swap_quads,
  582. &data_ptr, last_ptr);
  583. } else { /* mode 10 and 11 INTER processing */
  584. if (mode == 11 && !cell->mv_ptr) {
  585. av_log(avctx, AV_LOG_ERROR, "Attempt to use Mode 11 for an INTRA cell!\n");
  586. return AVERROR_INVALIDDATA;
  587. }
  588. zoom_fac = mode == 10;
  589. error = decode_cell_data(ctx, cell, block, ref_block, plane->pitch,
  590. zoom_fac, 1, mode, delta, swap_quads,
  591. &data_ptr, last_ptr);
  592. }
  593. break;
  594. default:
  595. av_log(avctx, AV_LOG_ERROR, "Unsupported coding mode: %d\n", mode);
  596. return AVERROR_INVALIDDATA;
  597. }//switch mode
  598. switch (error) {
  599. case IV3_BAD_RLE:
  600. av_log(avctx, AV_LOG_ERROR, "Mode %d: RLE code %X is not allowed at the current line\n",
  601. mode, data_ptr[-1]);
  602. return AVERROR_INVALIDDATA;
  603. case IV3_BAD_DATA:
  604. av_log(avctx, AV_LOG_ERROR, "Mode %d: invalid VQ data\n", mode);
  605. return AVERROR_INVALIDDATA;
  606. case IV3_BAD_COUNTER:
  607. av_log(avctx, AV_LOG_ERROR, "Mode %d: RLE-FB invalid counter: %d\n", mode, code);
  608. return AVERROR_INVALIDDATA;
  609. case IV3_UNSUPPORTED:
  610. av_log(avctx, AV_LOG_ERROR, "Mode %d: unsupported RLE code: %X\n", mode, data_ptr[-1]);
  611. return AVERROR_INVALIDDATA;
  612. case IV3_OUT_OF_DATA:
  613. av_log(avctx, AV_LOG_ERROR, "Mode %d: attempt to read past end of buffer\n", mode);
  614. return AVERROR_INVALIDDATA;
  615. }
  616. return data_ptr - data_start; /* report number of bytes consumed from the input buffer */
  617. }
  618. /* Binary tree codes. */
  619. enum {
  620. H_SPLIT = 0,
  621. V_SPLIT = 1,
  622. INTRA_NULL = 2,
  623. INTER_DATA = 3
  624. };
  625. #define SPLIT_CELL(size, new_size) (new_size) = ((size) > 2) ? ((((size) + 2) >> 2) << 1) : 1
  626. #define UPDATE_BITPOS(n) \
  627. ctx->skip_bits += (n); \
  628. ctx->need_resync = 1
  629. #define RESYNC_BITSTREAM \
  630. if (ctx->need_resync && !(get_bits_count(&ctx->gb) & 7)) { \
  631. skip_bits_long(&ctx->gb, ctx->skip_bits); \
  632. ctx->skip_bits = 0; \
  633. ctx->need_resync = 0; \
  634. }
  635. #define CHECK_CELL \
  636. if (curr_cell.xpos + curr_cell.width > (plane->width >> 2) || \
  637. curr_cell.ypos + curr_cell.height > (plane->height >> 2)) { \
  638. av_log(avctx, AV_LOG_ERROR, "Invalid cell: x=%d, y=%d, w=%d, h=%d\n", \
  639. curr_cell.xpos, curr_cell.ypos, curr_cell.width, curr_cell.height); \
  640. return AVERROR_INVALIDDATA; \
  641. }
  642. static int parse_bintree(Indeo3DecodeContext *ctx, AVCodecContext *avctx,
  643. Plane *plane, int code, Cell *ref_cell,
  644. const int depth, const int strip_width)
  645. {
  646. Cell curr_cell;
  647. int bytes_used;
  648. int mv_x, mv_y;
  649. if (depth <= 0) {
  650. av_log(avctx, AV_LOG_ERROR, "Stack overflow (corrupted binary tree)!\n");
  651. return AVERROR_INVALIDDATA; // unwind recursion
  652. }
  653. curr_cell = *ref_cell; // clone parent cell
  654. if (code == H_SPLIT) {
  655. SPLIT_CELL(ref_cell->height, curr_cell.height);
  656. ref_cell->ypos += curr_cell.height;
  657. ref_cell->height -= curr_cell.height;
  658. if (ref_cell->height <= 0 || curr_cell.height <= 0)
  659. return AVERROR_INVALIDDATA;
  660. } else if (code == V_SPLIT) {
  661. if (curr_cell.width > strip_width) {
  662. /* split strip */
  663. curr_cell.width = (curr_cell.width <= (strip_width << 1) ? 1 : 2) * strip_width;
  664. } else
  665. SPLIT_CELL(ref_cell->width, curr_cell.width);
  666. ref_cell->xpos += curr_cell.width;
  667. ref_cell->width -= curr_cell.width;
  668. if (ref_cell->width <= 0 || curr_cell.width <= 0)
  669. return AVERROR_INVALIDDATA;
  670. }
  671. while (get_bits_left(&ctx->gb) >= 2) { /* loop until return */
  672. RESYNC_BITSTREAM;
  673. switch (code = get_bits(&ctx->gb, 2)) {
  674. case H_SPLIT:
  675. case V_SPLIT:
  676. if (parse_bintree(ctx, avctx, plane, code, &curr_cell, depth - 1, strip_width))
  677. return AVERROR_INVALIDDATA;
  678. break;
  679. case INTRA_NULL:
  680. if (!curr_cell.tree) { /* MC tree INTRA code */
  681. curr_cell.mv_ptr = 0; /* mark the current strip as INTRA */
  682. curr_cell.tree = 1; /* enter the VQ tree */
  683. } else { /* VQ tree NULL code */
  684. RESYNC_BITSTREAM;
  685. code = get_bits(&ctx->gb, 2);
  686. if (code >= 2) {
  687. av_log(avctx, AV_LOG_ERROR, "Invalid VQ_NULL code: %d\n", code);
  688. return AVERROR_INVALIDDATA;
  689. }
  690. if (code == 1)
  691. av_log(avctx, AV_LOG_ERROR, "SkipCell procedure not implemented yet!\n");
  692. CHECK_CELL
  693. if (!curr_cell.mv_ptr)
  694. return AVERROR_INVALIDDATA;
  695. mv_y = curr_cell.mv_ptr[0];
  696. mv_x = curr_cell.mv_ptr[1];
  697. if ( mv_x + 4*curr_cell.xpos < 0
  698. || mv_y + 4*curr_cell.ypos < 0
  699. || mv_x + 4*curr_cell.xpos + 4*curr_cell.width > plane->width
  700. || mv_y + 4*curr_cell.ypos + 4*curr_cell.height > plane->height) {
  701. av_log(avctx, AV_LOG_ERROR, "motion vector %d %d outside reference\n", mv_x + 4*curr_cell.xpos, mv_y + 4*curr_cell.ypos);
  702. return AVERROR_INVALIDDATA;
  703. }
  704. copy_cell(ctx, plane, &curr_cell);
  705. return 0;
  706. }
  707. break;
  708. case INTER_DATA:
  709. if (!curr_cell.tree) { /* MC tree INTER code */
  710. unsigned mv_idx;
  711. /* get motion vector index and setup the pointer to the mv set */
  712. if (!ctx->need_resync)
  713. ctx->next_cell_data = &ctx->gb.buffer[(get_bits_count(&ctx->gb) + 7) >> 3];
  714. if (ctx->next_cell_data >= ctx->last_byte) {
  715. av_log(avctx, AV_LOG_ERROR, "motion vector out of array\n");
  716. return AVERROR_INVALIDDATA;
  717. }
  718. mv_idx = *(ctx->next_cell_data++);
  719. if (mv_idx >= ctx->num_vectors) {
  720. av_log(avctx, AV_LOG_ERROR, "motion vector index out of range\n");
  721. return AVERROR_INVALIDDATA;
  722. }
  723. curr_cell.mv_ptr = &ctx->mc_vectors[mv_idx << 1];
  724. curr_cell.tree = 1; /* enter the VQ tree */
  725. UPDATE_BITPOS(8);
  726. } else { /* VQ tree DATA code */
  727. if (!ctx->need_resync)
  728. ctx->next_cell_data = &ctx->gb.buffer[(get_bits_count(&ctx->gb) + 7) >> 3];
  729. CHECK_CELL
  730. bytes_used = decode_cell(ctx, avctx, plane, &curr_cell,
  731. ctx->next_cell_data, ctx->last_byte);
  732. if (bytes_used < 0)
  733. return AVERROR_INVALIDDATA;
  734. UPDATE_BITPOS(bytes_used << 3);
  735. ctx->next_cell_data += bytes_used;
  736. return 0;
  737. }
  738. break;
  739. }
  740. }//while
  741. return AVERROR_INVALIDDATA;
  742. }
  743. static int decode_plane(Indeo3DecodeContext *ctx, AVCodecContext *avctx,
  744. Plane *plane, const uint8_t *data, int32_t data_size,
  745. int32_t strip_width)
  746. {
  747. Cell curr_cell;
  748. unsigned num_vectors;
  749. /* each plane data starts with mc_vector_count field, */
  750. /* an optional array of motion vectors followed by the vq data */
  751. num_vectors = bytestream_get_le32(&data); data_size -= 4;
  752. if (num_vectors > 256) {
  753. av_log(ctx->avctx, AV_LOG_ERROR,
  754. "Read invalid number of motion vectors %d\n", num_vectors);
  755. return AVERROR_INVALIDDATA;
  756. }
  757. if (num_vectors * 2 > data_size)
  758. return AVERROR_INVALIDDATA;
  759. ctx->num_vectors = num_vectors;
  760. ctx->mc_vectors = num_vectors ? data : 0;
  761. /* init the bitreader */
  762. init_get_bits(&ctx->gb, &data[num_vectors * 2], (data_size - num_vectors * 2) << 3);
  763. ctx->skip_bits = 0;
  764. ctx->need_resync = 0;
  765. ctx->last_byte = data + data_size;
  766. /* initialize the 1st cell and set its dimensions to whole plane */
  767. curr_cell.xpos = curr_cell.ypos = 0;
  768. curr_cell.width = plane->width >> 2;
  769. curr_cell.height = plane->height >> 2;
  770. curr_cell.tree = 0; // we are in the MC tree now
  771. curr_cell.mv_ptr = 0; // no motion vector = INTRA cell
  772. return parse_bintree(ctx, avctx, plane, INTRA_NULL, &curr_cell, CELL_STACK_MAX, strip_width);
  773. }
  774. #define OS_HDR_ID MKBETAG('F', 'R', 'M', 'H')
  775. static int decode_frame_headers(Indeo3DecodeContext *ctx, AVCodecContext *avctx,
  776. const uint8_t *buf, int buf_size)
  777. {
  778. const uint8_t *buf_ptr = buf, *bs_hdr;
  779. uint32_t frame_num, word2, check_sum, data_size;
  780. uint32_t y_offset, u_offset, v_offset, starts[3], ends[3];
  781. uint16_t height, width;
  782. int i, j;
  783. /* parse and check the OS header */
  784. frame_num = bytestream_get_le32(&buf_ptr);
  785. word2 = bytestream_get_le32(&buf_ptr);
  786. check_sum = bytestream_get_le32(&buf_ptr);
  787. data_size = bytestream_get_le32(&buf_ptr);
  788. if ((frame_num ^ word2 ^ data_size ^ OS_HDR_ID) != check_sum) {
  789. av_log(avctx, AV_LOG_ERROR, "OS header checksum mismatch!\n");
  790. return AVERROR_INVALIDDATA;
  791. }
  792. /* parse the bitstream header */
  793. bs_hdr = buf_ptr;
  794. buf_size -= 16;
  795. if (bytestream_get_le16(&buf_ptr) != 32) {
  796. av_log(avctx, AV_LOG_ERROR, "Unsupported codec version!\n");
  797. return AVERROR_INVALIDDATA;
  798. }
  799. ctx->frame_num = frame_num;
  800. ctx->frame_flags = bytestream_get_le16(&buf_ptr);
  801. ctx->data_size = (bytestream_get_le32(&buf_ptr) + 7) >> 3;
  802. ctx->cb_offset = *buf_ptr++;
  803. if (ctx->data_size == 16)
  804. return 4;
  805. if (ctx->data_size > buf_size)
  806. ctx->data_size = buf_size;
  807. buf_ptr += 3; // skip reserved byte and checksum
  808. /* check frame dimensions */
  809. height = bytestream_get_le16(&buf_ptr);
  810. width = bytestream_get_le16(&buf_ptr);
  811. if (av_image_check_size(width, height, 0, avctx))
  812. return AVERROR_INVALIDDATA;
  813. if (width != ctx->width || height != ctx->height) {
  814. int res;
  815. av_dlog(avctx, "Frame dimensions changed!\n");
  816. if (width < 16 || width > 640 ||
  817. height < 16 || height > 480 ||
  818. width & 3 || height & 3) {
  819. av_log(avctx, AV_LOG_ERROR,
  820. "Invalid picture dimensions: %d x %d!\n", width, height);
  821. return AVERROR_INVALIDDATA;
  822. }
  823. free_frame_buffers(ctx);
  824. if ((res = allocate_frame_buffers(ctx, avctx, width, height)) < 0)
  825. return res;
  826. avcodec_set_dimensions(avctx, width, height);
  827. }
  828. y_offset = bytestream_get_le32(&buf_ptr);
  829. v_offset = bytestream_get_le32(&buf_ptr);
  830. u_offset = bytestream_get_le32(&buf_ptr);
  831. /* unfortunately there is no common order of planes in the buffer */
  832. /* so we use that sorting algo for determining planes data sizes */
  833. starts[0] = y_offset;
  834. starts[1] = v_offset;
  835. starts[2] = u_offset;
  836. for (j = 0; j < 3; j++) {
  837. ends[j] = ctx->data_size;
  838. for (i = 2; i >= 0; i--)
  839. if (starts[i] < ends[j] && starts[i] > starts[j])
  840. ends[j] = starts[i];
  841. }
  842. ctx->y_data_size = ends[0] - starts[0];
  843. ctx->v_data_size = ends[1] - starts[1];
  844. ctx->u_data_size = ends[2] - starts[2];
  845. if (FFMAX3(y_offset, v_offset, u_offset) >= ctx->data_size - 16 ||
  846. FFMIN3(ctx->y_data_size, ctx->v_data_size, ctx->u_data_size) <= 0) {
  847. av_log(avctx, AV_LOG_ERROR, "One of the y/u/v offsets is invalid\n");
  848. return AVERROR_INVALIDDATA;
  849. }
  850. ctx->y_data_ptr = bs_hdr + y_offset;
  851. ctx->v_data_ptr = bs_hdr + v_offset;
  852. ctx->u_data_ptr = bs_hdr + u_offset;
  853. ctx->alt_quant = buf_ptr + sizeof(uint32_t);
  854. if (ctx->data_size == 16) {
  855. av_log(avctx, AV_LOG_DEBUG, "Sync frame encountered!\n");
  856. return 16;
  857. }
  858. if (ctx->frame_flags & BS_8BIT_PEL) {
  859. avpriv_request_sample(avctx, "8-bit pixel format");
  860. return AVERROR_PATCHWELCOME;
  861. }
  862. if (ctx->frame_flags & BS_MV_X_HALF || ctx->frame_flags & BS_MV_Y_HALF) {
  863. avpriv_request_sample(avctx, "Halfpel motion vectors");
  864. return AVERROR_PATCHWELCOME;
  865. }
  866. return 0;
  867. }
  868. /**
  869. * Convert and output the current plane.
  870. * All pixel values will be upsampled by shifting right by one bit.
  871. *
  872. * @param[in] plane pointer to the descriptor of the plane being processed
  873. * @param[in] buf_sel indicates which frame buffer the input data stored in
  874. * @param[out] dst pointer to the buffer receiving converted pixels
  875. * @param[in] dst_pitch pitch for moving to the next y line
  876. * @param[in] dst_height output plane height
  877. */
  878. static void output_plane(const Plane *plane, int buf_sel, uint8_t *dst,
  879. int dst_pitch, int dst_height)
  880. {
  881. int x,y;
  882. const uint8_t *src = plane->pixels[buf_sel];
  883. uint32_t pitch = plane->pitch;
  884. dst_height = FFMIN(dst_height, plane->height);
  885. for (y = 0; y < dst_height; y++) {
  886. /* convert four pixels at once using SWAR */
  887. for (x = 0; x < plane->width >> 2; x++) {
  888. AV_WN32A(dst, (AV_RN32A(src) & 0x7F7F7F7F) << 1);
  889. src += 4;
  890. dst += 4;
  891. }
  892. for (x <<= 2; x < plane->width; x++)
  893. *dst++ = *src++ << 1;
  894. src += pitch - plane->width;
  895. dst += dst_pitch - plane->width;
  896. }
  897. }
  898. static av_cold int decode_init(AVCodecContext *avctx)
  899. {
  900. Indeo3DecodeContext *ctx = avctx->priv_data;
  901. ctx->avctx = avctx;
  902. avctx->pix_fmt = AV_PIX_FMT_YUV410P;
  903. build_requant_tab();
  904. ff_hpeldsp_init(&ctx->hdsp, avctx->flags);
  905. return allocate_frame_buffers(ctx, avctx, avctx->width, avctx->height);
  906. }
  907. static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame,
  908. AVPacket *avpkt)
  909. {
  910. Indeo3DecodeContext *ctx = avctx->priv_data;
  911. const uint8_t *buf = avpkt->data;
  912. int buf_size = avpkt->size;
  913. AVFrame *frame = data;
  914. int res;
  915. res = decode_frame_headers(ctx, avctx, buf, buf_size);
  916. if (res < 0)
  917. return res;
  918. /* skip sync(null) frames */
  919. if (res) {
  920. // we have processed 16 bytes but no data was decoded
  921. *got_frame = 0;
  922. return buf_size;
  923. }
  924. /* skip droppable INTER frames if requested */
  925. if (ctx->frame_flags & BS_NONREF &&
  926. (avctx->skip_frame >= AVDISCARD_NONREF))
  927. return 0;
  928. /* skip INTER frames if requested */
  929. if (!(ctx->frame_flags & BS_KEYFRAME) && avctx->skip_frame >= AVDISCARD_NONKEY)
  930. return 0;
  931. /* use BS_BUFFER flag for buffer switching */
  932. ctx->buf_sel = (ctx->frame_flags >> BS_BUFFER) & 1;
  933. if ((res = ff_get_buffer(avctx, frame, 0)) < 0)
  934. return res;
  935. /* decode luma plane */
  936. if ((res = decode_plane(ctx, avctx, ctx->planes, ctx->y_data_ptr, ctx->y_data_size, 40)))
  937. return res;
  938. /* decode chroma planes */
  939. if ((res = decode_plane(ctx, avctx, &ctx->planes[1], ctx->u_data_ptr, ctx->u_data_size, 10)))
  940. return res;
  941. if ((res = decode_plane(ctx, avctx, &ctx->planes[2], ctx->v_data_ptr, ctx->v_data_size, 10)))
  942. return res;
  943. output_plane(&ctx->planes[0], ctx->buf_sel,
  944. frame->data[0], frame->linesize[0],
  945. avctx->height);
  946. output_plane(&ctx->planes[1], ctx->buf_sel,
  947. frame->data[1], frame->linesize[1],
  948. (avctx->height + 3) >> 2);
  949. output_plane(&ctx->planes[2], ctx->buf_sel,
  950. frame->data[2], frame->linesize[2],
  951. (avctx->height + 3) >> 2);
  952. *got_frame = 1;
  953. return buf_size;
  954. }
  955. static av_cold int decode_close(AVCodecContext *avctx)
  956. {
  957. free_frame_buffers(avctx->priv_data);
  958. return 0;
  959. }
  960. AVCodec ff_indeo3_decoder = {
  961. .name = "indeo3",
  962. .type = AVMEDIA_TYPE_VIDEO,
  963. .id = AV_CODEC_ID_INDEO3,
  964. .priv_data_size = sizeof(Indeo3DecodeContext),
  965. .init = decode_init,
  966. .close = decode_close,
  967. .decode = decode_frame,
  968. .long_name = NULL_IF_CONFIG_SMALL("Intel Indeo 3"),
  969. .capabilities = CODEC_CAP_DR1,
  970. };