You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

771 lines
23KB

  1. /*
  2. * Lagarith lossless decoder
  3. * Copyright (c) 2009 Nathan Caldwell <saintdev (at) gmail.com>
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * Lagarith lossless decoder
  24. * @author Nathan Caldwell
  25. */
  26. #include <inttypes.h>
  27. #include "avcodec.h"
  28. #include "get_bits.h"
  29. #include "mathops.h"
  30. #include "lagarithrac.h"
  31. #include "lossless_videodsp.h"
  32. #include "thread.h"
  33. enum LagarithFrameType {
  34. FRAME_RAW = 1, /**< uncompressed */
  35. FRAME_U_RGB24 = 2, /**< unaligned RGB24 */
  36. FRAME_ARITH_YUY2 = 3, /**< arithmetic coded YUY2 */
  37. FRAME_ARITH_RGB24 = 4, /**< arithmetic coded RGB24 */
  38. FRAME_SOLID_GRAY = 5, /**< solid grayscale color frame */
  39. FRAME_SOLID_COLOR = 6, /**< solid non-grayscale color frame */
  40. FRAME_OLD_ARITH_RGB = 7, /**< obsolete arithmetic coded RGB (no longer encoded by upstream since version 1.1.0) */
  41. FRAME_ARITH_RGBA = 8, /**< arithmetic coded RGBA */
  42. FRAME_SOLID_RGBA = 9, /**< solid RGBA color frame */
  43. FRAME_ARITH_YV12 = 10, /**< arithmetic coded YV12 */
  44. FRAME_REDUCED_RES = 11, /**< reduced resolution YV12 frame */
  45. };
  46. typedef struct LagarithContext {
  47. AVCodecContext *avctx;
  48. LLVidDSPContext llviddsp;
  49. int zeros; /**< number of consecutive zero bytes encountered */
  50. int zeros_rem; /**< number of zero bytes remaining to output */
  51. uint8_t *rgb_planes;
  52. int rgb_planes_allocated;
  53. int rgb_stride;
  54. } LagarithContext;
  55. /**
  56. * Compute the 52-bit mantissa of 1/(double)denom.
  57. * This crazy format uses floats in an entropy coder and we have to match x86
  58. * rounding exactly, thus ordinary floats aren't portable enough.
  59. * @param denom denominator
  60. * @return 52-bit mantissa
  61. * @see softfloat_mul
  62. */
  63. static uint64_t softfloat_reciprocal(uint32_t denom)
  64. {
  65. int shift = av_log2(denom - 1) + 1;
  66. uint64_t ret = (1ULL << 52) / denom;
  67. uint64_t err = (1ULL << 52) - ret * denom;
  68. ret <<= shift;
  69. err <<= shift;
  70. err += denom / 2;
  71. return ret + err / denom;
  72. }
  73. /**
  74. * (uint32_t)(x*f), where f has the given mantissa, and exponent 0
  75. * Used in combination with softfloat_reciprocal computes x/(double)denom.
  76. * @param x 32-bit integer factor
  77. * @param mantissa mantissa of f with exponent 0
  78. * @return 32-bit integer value (x*f)
  79. * @see softfloat_reciprocal
  80. */
  81. static uint32_t softfloat_mul(uint32_t x, uint64_t mantissa)
  82. {
  83. uint64_t l = x * (mantissa & 0xffffffff);
  84. uint64_t h = x * (mantissa >> 32);
  85. h += l >> 32;
  86. l &= 0xffffffff;
  87. l += 1LL << av_log2(h >> 21);
  88. h += l >> 32;
  89. return h >> 20;
  90. }
  91. static uint8_t lag_calc_zero_run(int8_t x)
  92. {
  93. return (x * 2) ^ (x >> 7);
  94. }
  95. static int lag_decode_prob(GetBitContext *gb, uint32_t *value)
  96. {
  97. static const uint8_t series[] = { 1, 2, 3, 5, 8, 13, 21 };
  98. int i;
  99. int bit = 0;
  100. int bits = 0;
  101. int prevbit = 0;
  102. unsigned val;
  103. for (i = 0; i < 7; i++) {
  104. if (prevbit && bit)
  105. break;
  106. prevbit = bit;
  107. bit = get_bits1(gb);
  108. if (bit && !prevbit)
  109. bits += series[i];
  110. }
  111. bits--;
  112. if (bits < 0 || bits > 31) {
  113. *value = 0;
  114. return -1;
  115. } else if (bits == 0) {
  116. *value = 0;
  117. return 0;
  118. }
  119. val = get_bits_long(gb, bits);
  120. val |= 1U << bits;
  121. *value = val - 1;
  122. return 0;
  123. }
  124. static int lag_read_prob_header(lag_rac *rac, GetBitContext *gb)
  125. {
  126. int i, j, scale_factor;
  127. unsigned prob, cumulative_target;
  128. unsigned cumul_prob = 0;
  129. unsigned scaled_cumul_prob = 0;
  130. rac->prob[0] = 0;
  131. rac->prob[257] = UINT_MAX;
  132. /* Read probabilities from bitstream */
  133. for (i = 1; i < 257; i++) {
  134. if (lag_decode_prob(gb, &rac->prob[i]) < 0) {
  135. av_log(rac->avctx, AV_LOG_ERROR, "Invalid probability encountered.\n");
  136. return -1;
  137. }
  138. if ((uint64_t)cumul_prob + rac->prob[i] > UINT_MAX) {
  139. av_log(rac->avctx, AV_LOG_ERROR, "Integer overflow encountered in cumulative probability calculation.\n");
  140. return -1;
  141. }
  142. cumul_prob += rac->prob[i];
  143. if (!rac->prob[i]) {
  144. if (lag_decode_prob(gb, &prob)) {
  145. av_log(rac->avctx, AV_LOG_ERROR, "Invalid probability run encountered.\n");
  146. return -1;
  147. }
  148. if (prob > 256 - i)
  149. prob = 256 - i;
  150. for (j = 0; j < prob; j++)
  151. rac->prob[++i] = 0;
  152. }
  153. }
  154. if (!cumul_prob) {
  155. av_log(rac->avctx, AV_LOG_ERROR, "All probabilities are 0!\n");
  156. return -1;
  157. }
  158. /* Scale probabilities so cumulative probability is an even power of 2. */
  159. scale_factor = av_log2(cumul_prob);
  160. if (cumul_prob & (cumul_prob - 1)) {
  161. uint64_t mul = softfloat_reciprocal(cumul_prob);
  162. for (i = 1; i <= 128; i++) {
  163. rac->prob[i] = softfloat_mul(rac->prob[i], mul);
  164. scaled_cumul_prob += rac->prob[i];
  165. }
  166. if (scaled_cumul_prob <= 0) {
  167. av_log(rac->avctx, AV_LOG_ERROR, "Scaled probabilities invalid\n");
  168. return AVERROR_INVALIDDATA;
  169. }
  170. for (; i < 257; i++) {
  171. rac->prob[i] = softfloat_mul(rac->prob[i], mul);
  172. scaled_cumul_prob += rac->prob[i];
  173. }
  174. scale_factor++;
  175. if (scale_factor >= 32U)
  176. return AVERROR_INVALIDDATA;
  177. cumulative_target = 1U << scale_factor;
  178. if (scaled_cumul_prob > cumulative_target) {
  179. av_log(rac->avctx, AV_LOG_ERROR,
  180. "Scaled probabilities are larger than target!\n");
  181. return -1;
  182. }
  183. scaled_cumul_prob = cumulative_target - scaled_cumul_prob;
  184. for (i = 1; scaled_cumul_prob; i = (i & 0x7f) + 1) {
  185. if (rac->prob[i]) {
  186. rac->prob[i]++;
  187. scaled_cumul_prob--;
  188. }
  189. /* Comment from reference source:
  190. * if (b & 0x80 == 0) { // order of operations is 'wrong'; it has been left this way
  191. * // since the compression change is negligible and fixing it
  192. * // breaks backwards compatibility
  193. * b =- (signed int)b;
  194. * b &= 0xFF;
  195. * } else {
  196. * b++;
  197. * b &= 0x7f;
  198. * }
  199. */
  200. }
  201. }
  202. if (scale_factor > 23)
  203. return AVERROR_INVALIDDATA;
  204. rac->scale = scale_factor;
  205. /* Fill probability array with cumulative probability for each symbol. */
  206. for (i = 1; i < 257; i++)
  207. rac->prob[i] += rac->prob[i - 1];
  208. return 0;
  209. }
  210. static void add_lag_median_prediction(uint8_t *dst, uint8_t *src1,
  211. uint8_t *diff, int w, int *left,
  212. int *left_top)
  213. {
  214. /* This is almost identical to add_hfyu_median_pred in huffyuvdsp.h.
  215. * However the &0xFF on the gradient predictor yields incorrect output
  216. * for lagarith.
  217. */
  218. int i;
  219. uint8_t l, lt;
  220. l = *left;
  221. lt = *left_top;
  222. for (i = 0; i < w; i++) {
  223. l = mid_pred(l, src1[i], l + src1[i] - lt) + diff[i];
  224. lt = src1[i];
  225. dst[i] = l;
  226. }
  227. *left = l;
  228. *left_top = lt;
  229. }
  230. static void lag_pred_line(LagarithContext *l, uint8_t *buf,
  231. int width, int stride, int line)
  232. {
  233. int L, TL;
  234. if (!line) {
  235. /* Left prediction only for first line */
  236. L = l->llviddsp.add_left_pred(buf, buf, width, 0);
  237. } else {
  238. /* Left pixel is actually prev_row[width] */
  239. L = buf[width - stride - 1];
  240. if (line == 1) {
  241. /* Second line, left predict first pixel, the rest of the line is median predicted
  242. * NOTE: In the case of RGB this pixel is top predicted */
  243. TL = l->avctx->pix_fmt == AV_PIX_FMT_YUV420P ? buf[-stride] : L;
  244. } else {
  245. /* Top left is 2 rows back, last pixel */
  246. TL = buf[width - (2 * stride) - 1];
  247. }
  248. add_lag_median_prediction(buf, buf - stride, buf,
  249. width, &L, &TL);
  250. }
  251. }
  252. static void lag_pred_line_yuy2(LagarithContext *l, uint8_t *buf,
  253. int width, int stride, int line,
  254. int is_luma)
  255. {
  256. int L, TL;
  257. if (!line) {
  258. L= buf[0];
  259. if (is_luma)
  260. buf[0] = 0;
  261. l->llviddsp.add_left_pred(buf, buf, width, 0);
  262. if (is_luma)
  263. buf[0] = L;
  264. return;
  265. }
  266. if (line == 1) {
  267. const int HEAD = is_luma ? 4 : 2;
  268. int i;
  269. L = buf[width - stride - 1];
  270. TL = buf[HEAD - stride - 1];
  271. for (i = 0; i < HEAD; i++) {
  272. L += buf[i];
  273. buf[i] = L;
  274. }
  275. for (; i < width; i++) {
  276. L = mid_pred(L & 0xFF, buf[i - stride], (L + buf[i - stride] - TL) & 0xFF) + buf[i];
  277. TL = buf[i - stride];
  278. buf[i] = L;
  279. }
  280. } else {
  281. TL = buf[width - (2 * stride) - 1];
  282. L = buf[width - stride - 1];
  283. l->llviddsp.add_median_pred(buf, buf - stride, buf, width, &L, &TL);
  284. }
  285. }
  286. static int lag_decode_line(LagarithContext *l, lag_rac *rac,
  287. uint8_t *dst, int width, int stride,
  288. int esc_count)
  289. {
  290. int i = 0;
  291. int ret = 0;
  292. if (!esc_count)
  293. esc_count = -1;
  294. /* Output any zeros remaining from the previous run */
  295. handle_zeros:
  296. if (l->zeros_rem) {
  297. int count = FFMIN(l->zeros_rem, width - i);
  298. memset(dst + i, 0, count);
  299. i += count;
  300. l->zeros_rem -= count;
  301. }
  302. while (i < width) {
  303. dst[i] = lag_get_rac(rac);
  304. ret++;
  305. if (dst[i])
  306. l->zeros = 0;
  307. else
  308. l->zeros++;
  309. i++;
  310. if (l->zeros == esc_count) {
  311. int index = lag_get_rac(rac);
  312. ret++;
  313. l->zeros = 0;
  314. l->zeros_rem = lag_calc_zero_run(index);
  315. goto handle_zeros;
  316. }
  317. }
  318. return ret;
  319. }
  320. static int lag_decode_zero_run_line(LagarithContext *l, uint8_t *dst,
  321. const uint8_t *src, const uint8_t *src_end,
  322. int width, int esc_count)
  323. {
  324. int i = 0;
  325. int count;
  326. uint8_t zero_run = 0;
  327. const uint8_t *src_start = src;
  328. uint8_t mask1 = -(esc_count < 2);
  329. uint8_t mask2 = -(esc_count < 3);
  330. uint8_t *end = dst + (width - 2);
  331. avpriv_request_sample(l->avctx, "zero_run_line");
  332. memset(dst, 0, width);
  333. output_zeros:
  334. if (l->zeros_rem) {
  335. count = FFMIN(l->zeros_rem, width - i);
  336. if (end - dst < count) {
  337. av_log(l->avctx, AV_LOG_ERROR, "Too many zeros remaining.\n");
  338. return AVERROR_INVALIDDATA;
  339. }
  340. memset(dst, 0, count);
  341. l->zeros_rem -= count;
  342. dst += count;
  343. }
  344. while (dst < end) {
  345. i = 0;
  346. while (!zero_run && dst + i < end) {
  347. i++;
  348. if (i+2 >= src_end - src)
  349. return AVERROR_INVALIDDATA;
  350. zero_run =
  351. !(src[i] | (src[i + 1] & mask1) | (src[i + 2] & mask2));
  352. }
  353. if (zero_run) {
  354. zero_run = 0;
  355. i += esc_count;
  356. memcpy(dst, src, i);
  357. dst += i;
  358. l->zeros_rem = lag_calc_zero_run(src[i]);
  359. src += i + 1;
  360. goto output_zeros;
  361. } else {
  362. memcpy(dst, src, i);
  363. src += i;
  364. dst += i;
  365. }
  366. }
  367. return src - src_start;
  368. }
  369. static int lag_decode_arith_plane(LagarithContext *l, uint8_t *dst,
  370. int width, int height, int stride,
  371. const uint8_t *src, int src_size)
  372. {
  373. int i = 0;
  374. int read = 0;
  375. uint32_t length;
  376. uint32_t offset = 1;
  377. int esc_count;
  378. GetBitContext gb;
  379. lag_rac rac;
  380. const uint8_t *src_end = src + src_size;
  381. int ret;
  382. rac.avctx = l->avctx;
  383. l->zeros = 0;
  384. if(src_size < 2)
  385. return AVERROR_INVALIDDATA;
  386. esc_count = src[0];
  387. if (esc_count < 4) {
  388. length = width * height;
  389. if(src_size < 5)
  390. return AVERROR_INVALIDDATA;
  391. if (esc_count && AV_RL32(src + 1) < length) {
  392. length = AV_RL32(src + 1);
  393. offset += 4;
  394. }
  395. if ((ret = init_get_bits8(&gb, src + offset, src_size - offset)) < 0)
  396. return ret;
  397. if (lag_read_prob_header(&rac, &gb) < 0)
  398. return -1;
  399. ff_lag_rac_init(&rac, &gb, length - stride);
  400. for (i = 0; i < height; i++) {
  401. if (rac.overread > MAX_OVERREAD)
  402. return AVERROR_INVALIDDATA;
  403. read += lag_decode_line(l, &rac, dst + (i * stride), width,
  404. stride, esc_count);
  405. }
  406. if (read > length)
  407. av_log(l->avctx, AV_LOG_WARNING,
  408. "Output more bytes than length (%d of %"PRIu32")\n", read,
  409. length);
  410. } else if (esc_count < 8) {
  411. esc_count -= 4;
  412. src ++;
  413. src_size --;
  414. if (esc_count > 0) {
  415. /* Zero run coding only, no range coding. */
  416. for (i = 0; i < height; i++) {
  417. int res = lag_decode_zero_run_line(l, dst + (i * stride), src,
  418. src_end, width, esc_count);
  419. if (res < 0)
  420. return res;
  421. src += res;
  422. }
  423. } else {
  424. if (src_size < width * height)
  425. return AVERROR_INVALIDDATA; // buffer not big enough
  426. /* Plane is stored uncompressed */
  427. for (i = 0; i < height; i++) {
  428. memcpy(dst + (i * stride), src, width);
  429. src += width;
  430. }
  431. }
  432. } else if (esc_count == 0xff) {
  433. /* Plane is a solid run of given value */
  434. for (i = 0; i < height; i++)
  435. memset(dst + i * stride, src[1], width);
  436. /* Do not apply prediction.
  437. Note: memset to 0 above, setting first value to src[1]
  438. and applying prediction gives the same result. */
  439. return 0;
  440. } else {
  441. av_log(l->avctx, AV_LOG_ERROR,
  442. "Invalid zero run escape code! (%#x)\n", esc_count);
  443. return -1;
  444. }
  445. if (l->avctx->pix_fmt != AV_PIX_FMT_YUV422P) {
  446. for (i = 0; i < height; i++) {
  447. lag_pred_line(l, dst, width, stride, i);
  448. dst += stride;
  449. }
  450. } else {
  451. for (i = 0; i < height; i++) {
  452. lag_pred_line_yuy2(l, dst, width, stride, i,
  453. width == l->avctx->width);
  454. dst += stride;
  455. }
  456. }
  457. return 0;
  458. }
  459. /**
  460. * Decode a frame.
  461. * @param avctx codec context
  462. * @param data output AVFrame
  463. * @param data_size size of output data or 0 if no picture is returned
  464. * @param avpkt input packet
  465. * @return number of consumed bytes on success or negative if decode fails
  466. */
  467. static int lag_decode_frame(AVCodecContext *avctx,
  468. void *data, int *got_frame, AVPacket *avpkt)
  469. {
  470. const uint8_t *buf = avpkt->data;
  471. unsigned int buf_size = avpkt->size;
  472. LagarithContext *l = avctx->priv_data;
  473. ThreadFrame frame = { .f = data };
  474. AVFrame *const p = data;
  475. uint8_t frametype = 0;
  476. uint32_t offset_gu = 0, offset_bv = 0, offset_ry = 9;
  477. uint32_t offs[4];
  478. uint8_t *srcs[4], *dst;
  479. int i, j, planes = 3;
  480. int ret;
  481. p->key_frame = 1;
  482. frametype = buf[0];
  483. offset_gu = AV_RL32(buf + 1);
  484. offset_bv = AV_RL32(buf + 5);
  485. switch (frametype) {
  486. case FRAME_SOLID_RGBA:
  487. avctx->pix_fmt = AV_PIX_FMT_RGB32;
  488. case FRAME_SOLID_GRAY:
  489. if (frametype == FRAME_SOLID_GRAY)
  490. if (avctx->bits_per_coded_sample == 24) {
  491. avctx->pix_fmt = AV_PIX_FMT_RGB24;
  492. } else {
  493. avctx->pix_fmt = AV_PIX_FMT_0RGB32;
  494. planes = 4;
  495. }
  496. if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0)
  497. return ret;
  498. dst = p->data[0];
  499. if (frametype == FRAME_SOLID_RGBA) {
  500. for (j = 0; j < avctx->height; j++) {
  501. for (i = 0; i < avctx->width; i++)
  502. AV_WN32(dst + i * 4, offset_gu);
  503. dst += p->linesize[0];
  504. }
  505. } else {
  506. for (j = 0; j < avctx->height; j++) {
  507. memset(dst, buf[1], avctx->width * planes);
  508. dst += p->linesize[0];
  509. }
  510. }
  511. break;
  512. case FRAME_SOLID_COLOR:
  513. if (avctx->bits_per_coded_sample == 24) {
  514. avctx->pix_fmt = AV_PIX_FMT_RGB24;
  515. } else {
  516. avctx->pix_fmt = AV_PIX_FMT_RGB32;
  517. offset_gu |= 0xFFU << 24;
  518. }
  519. if ((ret = ff_thread_get_buffer(avctx, &frame,0)) < 0)
  520. return ret;
  521. dst = p->data[0];
  522. for (j = 0; j < avctx->height; j++) {
  523. for (i = 0; i < avctx->width; i++)
  524. if (avctx->bits_per_coded_sample == 24) {
  525. AV_WB24(dst + i * 3, offset_gu);
  526. } else {
  527. AV_WN32(dst + i * 4, offset_gu);
  528. }
  529. dst += p->linesize[0];
  530. }
  531. break;
  532. case FRAME_ARITH_RGBA:
  533. avctx->pix_fmt = AV_PIX_FMT_RGB32;
  534. planes = 4;
  535. offset_ry += 4;
  536. offs[3] = AV_RL32(buf + 9);
  537. case FRAME_ARITH_RGB24:
  538. case FRAME_U_RGB24:
  539. if (frametype == FRAME_ARITH_RGB24 || frametype == FRAME_U_RGB24)
  540. avctx->pix_fmt = AV_PIX_FMT_RGB24;
  541. if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0)
  542. return ret;
  543. offs[0] = offset_bv;
  544. offs[1] = offset_gu;
  545. offs[2] = offset_ry;
  546. l->rgb_stride = FFALIGN(avctx->width, 16);
  547. av_fast_malloc(&l->rgb_planes, &l->rgb_planes_allocated,
  548. l->rgb_stride * avctx->height * planes + 1);
  549. if (!l->rgb_planes) {
  550. av_log(avctx, AV_LOG_ERROR, "cannot allocate temporary buffer\n");
  551. return AVERROR(ENOMEM);
  552. }
  553. for (i = 0; i < planes; i++)
  554. srcs[i] = l->rgb_planes + (i + 1) * l->rgb_stride * avctx->height - l->rgb_stride;
  555. for (i = 0; i < planes; i++)
  556. if (buf_size <= offs[i]) {
  557. av_log(avctx, AV_LOG_ERROR,
  558. "Invalid frame offsets\n");
  559. return AVERROR_INVALIDDATA;
  560. }
  561. for (i = 0; i < planes; i++)
  562. lag_decode_arith_plane(l, srcs[i],
  563. avctx->width, avctx->height,
  564. -l->rgb_stride, buf + offs[i],
  565. buf_size - offs[i]);
  566. dst = p->data[0];
  567. for (i = 0; i < planes; i++)
  568. srcs[i] = l->rgb_planes + i * l->rgb_stride * avctx->height;
  569. for (j = 0; j < avctx->height; j++) {
  570. for (i = 0; i < avctx->width; i++) {
  571. uint8_t r, g, b, a;
  572. r = srcs[0][i];
  573. g = srcs[1][i];
  574. b = srcs[2][i];
  575. r += g;
  576. b += g;
  577. if (frametype == FRAME_ARITH_RGBA) {
  578. a = srcs[3][i];
  579. AV_WN32(dst + i * 4, MKBETAG(a, r, g, b));
  580. } else {
  581. dst[i * 3 + 0] = r;
  582. dst[i * 3 + 1] = g;
  583. dst[i * 3 + 2] = b;
  584. }
  585. }
  586. dst += p->linesize[0];
  587. for (i = 0; i < planes; i++)
  588. srcs[i] += l->rgb_stride;
  589. }
  590. break;
  591. case FRAME_ARITH_YUY2:
  592. avctx->pix_fmt = AV_PIX_FMT_YUV422P;
  593. if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0)
  594. return ret;
  595. if (offset_ry >= buf_size ||
  596. offset_gu >= buf_size ||
  597. offset_bv >= buf_size) {
  598. av_log(avctx, AV_LOG_ERROR,
  599. "Invalid frame offsets\n");
  600. return AVERROR_INVALIDDATA;
  601. }
  602. lag_decode_arith_plane(l, p->data[0], avctx->width, avctx->height,
  603. p->linesize[0], buf + offset_ry,
  604. buf_size - offset_ry);
  605. lag_decode_arith_plane(l, p->data[1], (avctx->width + 1) / 2,
  606. avctx->height, p->linesize[1],
  607. buf + offset_gu, buf_size - offset_gu);
  608. lag_decode_arith_plane(l, p->data[2], (avctx->width + 1) / 2,
  609. avctx->height, p->linesize[2],
  610. buf + offset_bv, buf_size - offset_bv);
  611. break;
  612. case FRAME_ARITH_YV12:
  613. avctx->pix_fmt = AV_PIX_FMT_YUV420P;
  614. if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0)
  615. return ret;
  616. if (buf_size <= offset_ry || buf_size <= offset_gu || buf_size <= offset_bv) {
  617. return AVERROR_INVALIDDATA;
  618. }
  619. if (offset_ry >= buf_size ||
  620. offset_gu >= buf_size ||
  621. offset_bv >= buf_size) {
  622. av_log(avctx, AV_LOG_ERROR,
  623. "Invalid frame offsets\n");
  624. return AVERROR_INVALIDDATA;
  625. }
  626. lag_decode_arith_plane(l, p->data[0], avctx->width, avctx->height,
  627. p->linesize[0], buf + offset_ry,
  628. buf_size - offset_ry);
  629. lag_decode_arith_plane(l, p->data[2], (avctx->width + 1) / 2,
  630. (avctx->height + 1) / 2, p->linesize[2],
  631. buf + offset_gu, buf_size - offset_gu);
  632. lag_decode_arith_plane(l, p->data[1], (avctx->width + 1) / 2,
  633. (avctx->height + 1) / 2, p->linesize[1],
  634. buf + offset_bv, buf_size - offset_bv);
  635. break;
  636. default:
  637. av_log(avctx, AV_LOG_ERROR,
  638. "Unsupported Lagarith frame type: %#"PRIx8"\n", frametype);
  639. return AVERROR_PATCHWELCOME;
  640. }
  641. *got_frame = 1;
  642. return buf_size;
  643. }
  644. static av_cold int lag_decode_init(AVCodecContext *avctx)
  645. {
  646. LagarithContext *l = avctx->priv_data;
  647. l->avctx = avctx;
  648. ff_llviddsp_init(&l->llviddsp);
  649. return 0;
  650. }
  651. #if HAVE_THREADS
  652. static av_cold int lag_decode_init_thread_copy(AVCodecContext *avctx)
  653. {
  654. LagarithContext *l = avctx->priv_data;
  655. l->avctx = avctx;
  656. return 0;
  657. }
  658. #endif
  659. static av_cold int lag_decode_end(AVCodecContext *avctx)
  660. {
  661. LagarithContext *l = avctx->priv_data;
  662. av_freep(&l->rgb_planes);
  663. return 0;
  664. }
  665. AVCodec ff_lagarith_decoder = {
  666. .name = "lagarith",
  667. .long_name = NULL_IF_CONFIG_SMALL("Lagarith lossless"),
  668. .type = AVMEDIA_TYPE_VIDEO,
  669. .id = AV_CODEC_ID_LAGARITH,
  670. .priv_data_size = sizeof(LagarithContext),
  671. .init = lag_decode_init,
  672. .init_thread_copy = ONLY_IF_THREADS_ENABLED(lag_decode_init_thread_copy),
  673. .close = lag_decode_end,
  674. .decode = lag_decode_frame,
  675. .capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_FRAME_THREADS,
  676. };