You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

3123 lines
86KB

  1. @chapter Filtergraph description
  2. @c man begin FILTERGRAPH DESCRIPTION
  3. A filtergraph is a directed graph of connected filters. It can contain
  4. cycles, and there can be multiple links between a pair of
  5. filters. Each link has one input pad on one side connecting it to one
  6. filter from which it takes its input, and one output pad on the other
  7. side connecting it to the one filter accepting its output.
  8. Each filter in a filtergraph is an instance of a filter class
  9. registered in the application, which defines the features and the
  10. number of input and output pads of the filter.
  11. A filter with no input pads is called a "source", a filter with no
  12. output pads is called a "sink".
  13. @section Filtergraph syntax
  14. A filtergraph can be represented using a textual representation, which
  15. is recognized by the @code{-vf} option of the ff*
  16. tools, and by the @code{avfilter_graph_parse()} function defined in
  17. @file{libavfilter/avfiltergraph.h}.
  18. A filterchain consists of a sequence of connected filters, each one
  19. connected to the previous one in the sequence. A filterchain is
  20. represented by a list of ","-separated filter descriptions.
  21. A filtergraph consists of a sequence of filterchains. A sequence of
  22. filterchains is represented by a list of ";"-separated filterchain
  23. descriptions.
  24. A filter is represented by a string of the form:
  25. [@var{in_link_1}]...[@var{in_link_N}]@var{filter_name}=@var{arguments}[@var{out_link_1}]...[@var{out_link_M}]
  26. @var{filter_name} is the name of the filter class of which the
  27. described filter is an instance of, and has to be the name of one of
  28. the filter classes registered in the program.
  29. The name of the filter class is optionally followed by a string
  30. "=@var{arguments}".
  31. @var{arguments} is a string which contains the parameters used to
  32. initialize the filter instance, and are described in the filter
  33. descriptions below.
  34. The list of arguments can be quoted using the character "'" as initial
  35. and ending mark, and the character '\' for escaping the characters
  36. within the quoted text; otherwise the argument string is considered
  37. terminated when the next special character (belonging to the set
  38. "[]=;,") is encountered.
  39. The name and arguments of the filter are optionally preceded and
  40. followed by a list of link labels.
  41. A link label allows to name a link and associate it to a filter output
  42. or input pad. The preceding labels @var{in_link_1}
  43. ... @var{in_link_N}, are associated to the filter input pads,
  44. the following labels @var{out_link_1} ... @var{out_link_M}, are
  45. associated to the output pads.
  46. When two link labels with the same name are found in the
  47. filtergraph, a link between the corresponding input and output pad is
  48. created.
  49. If an output pad is not labelled, it is linked by default to the first
  50. unlabelled input pad of the next filter in the filterchain.
  51. For example in the filterchain:
  52. @example
  53. nullsrc, split[L1], [L2]overlay, nullsink
  54. @end example
  55. the split filter instance has two output pads, and the overlay filter
  56. instance two input pads. The first output pad of split is labelled
  57. "L1", the first input pad of overlay is labelled "L2", and the second
  58. output pad of split is linked to the second input pad of overlay,
  59. which are both unlabelled.
  60. In a complete filterchain all the unlabelled filter input and output
  61. pads must be connected. A filtergraph is considered valid if all the
  62. filter input and output pads of all the filterchains are connected.
  63. Follows a BNF description for the filtergraph syntax:
  64. @example
  65. @var{NAME} ::= sequence of alphanumeric characters and '_'
  66. @var{LINKLABEL} ::= "[" @var{NAME} "]"
  67. @var{LINKLABELS} ::= @var{LINKLABEL} [@var{LINKLABELS}]
  68. @var{FILTER_ARGUMENTS} ::= sequence of chars (eventually quoted)
  69. @var{FILTER} ::= [@var{LINKNAMES}] @var{NAME} ["=" @var{ARGUMENTS}] [@var{LINKNAMES}]
  70. @var{FILTERCHAIN} ::= @var{FILTER} [,@var{FILTERCHAIN}]
  71. @var{FILTERGRAPH} ::= @var{FILTERCHAIN} [;@var{FILTERGRAPH}]
  72. @end example
  73. @c man end FILTERGRAPH DESCRIPTION
  74. @chapter Audio Filters
  75. @c man begin AUDIO FILTERS
  76. When you configure your FFmpeg build, you can disable any of the
  77. existing filters using --disable-filters.
  78. The configure output will show the audio filters included in your
  79. build.
  80. Below is a description of the currently available audio filters.
  81. @section aconvert
  82. Convert the input audio format to the specified formats.
  83. The filter accepts a string of the form:
  84. "@var{sample_format}:@var{channel_layout}:@var{packing_format}".
  85. @var{sample_format} specifies the sample format, and can be a string or
  86. the corresponding numeric value defined in @file{libavutil/samplefmt.h}.
  87. @var{channel_layout} specifies the channel layout, and can be a string
  88. or the corresponding number value defined in @file{libavutil/audioconvert.h}.
  89. @var{packing_format} specifies the type of packing in output, can be one
  90. of "planar" or "packed", or the corresponding numeric values "0" or "1".
  91. The special parameter "auto", signifies that the filter will
  92. automatically select the output format depending on the output filter.
  93. Some examples follow.
  94. @itemize
  95. @item
  96. Convert input to unsigned 8-bit, stereo, packed:
  97. @example
  98. aconvert=u8:stereo:packed
  99. @end example
  100. @item
  101. Convert input to unsigned 8-bit, automatically select out channel layout
  102. and packing format:
  103. @example
  104. aconvert=u8:auto:auto
  105. @end example
  106. @end itemize
  107. @section aformat
  108. Convert the input audio to one of the specified formats. The framework will
  109. negotiate the most appropriate format to minimize conversions.
  110. The filter accepts three lists of formats, separated by ":", in the form:
  111. "@var{sample_formats}:@var{channel_layouts}:@var{packing_formats}".
  112. Elements in each list are separated by "," which has to be escaped in the
  113. filtergraph specification.
  114. The special parameter "all", in place of a list of elements, signifies all
  115. supported formats.
  116. Some examples follow:
  117. @example
  118. aformat=u8\\,s16:mono:packed
  119. aformat=s16:mono\\,stereo:all
  120. @end example
  121. @section anull
  122. Pass the audio source unchanged to the output.
  123. @section aresample
  124. Resample the input audio to the specified sample rate.
  125. The filter accepts exactly one parameter, the output sample rate. If not
  126. specified then the filter will automatically convert between its input
  127. and output sample rates.
  128. For example, to resample the input audio to 44100Hz:
  129. @example
  130. aresample=44100
  131. @end example
  132. @section ashowinfo
  133. Show a line containing various information for each input audio frame.
  134. The input audio is not modified.
  135. The shown line contains a sequence of key/value pairs of the form
  136. @var{key}:@var{value}.
  137. A description of each shown parameter follows:
  138. @table @option
  139. @item n
  140. sequential number of the input frame, starting from 0
  141. @item pts
  142. presentation TimeStamp of the input frame, expressed as a number of
  143. time base units. The time base unit depends on the filter input pad, and
  144. is usually 1/@var{sample_rate}.
  145. @item pts_time
  146. presentation TimeStamp of the input frame, expressed as a number of
  147. seconds
  148. @item pos
  149. position of the frame in the input stream, -1 if this information in
  150. unavailable and/or meaningless (for example in case of synthetic audio)
  151. @item fmt
  152. sample format name
  153. @item chlayout
  154. channel layout description
  155. @item nb_samples
  156. number of samples (per each channel) contained in the filtered frame
  157. @item rate
  158. sample rate for the audio frame
  159. @item planar
  160. if the packing format is planar, 0 if packed
  161. @item checksum
  162. Adler-32 checksum (printed in hexadecimal) of all the planes of the input frame
  163. @item plane_checksum
  164. Adler-32 checksum (printed in hexadecimal) for each input frame plane,
  165. expressed in the form "[@var{c0} @var{c1} @var{c2} @var{c3} @var{c4} @var{c5}
  166. @var{c6} @var{c7}]"
  167. @end table
  168. @section earwax
  169. Make audio easier to listen to on headphones.
  170. This filter adds `cues' to 44.1kHz stereo (i.e. audio CD format) audio
  171. so that when listened to on headphones the stereo image is moved from
  172. inside your head (standard for headphones) to outside and in front of
  173. the listener (standard for speakers).
  174. Ported from SoX.
  175. @section pan
  176. Mix channels with specific gain levels. The filter accepts the output
  177. channel layout followed by a set of channels definitions.
  178. The filter accepts parameters of the form:
  179. "@var{l}:@var{outdef}:@var{outdef}:..."
  180. @table @option
  181. @item l
  182. output channel layout or number of channels
  183. @item outdef
  184. output channel specification, of the form:
  185. "@var{out_name}=[@var{gain}*]@var{in_name}[+[@var{gain}*]@var{in_name}...]"
  186. @item out_name
  187. output channel to define, either a channel name (FL, FR, etc.) or a channel
  188. number (c0, c1, etc.)
  189. @item gain
  190. multiplicative coefficient for the channel, 1 leaving the volume unchanged
  191. @item in_name
  192. input channel to use, see out_name for details; it is not possible to mix
  193. named and numbered input channels
  194. @end table
  195. If the `=' in a channel specification is replaced by `<', then the gains for
  196. that specification will be renormalized so that the total is 1, thus
  197. avoiding clipping noise.
  198. For example, if you want to down-mix from stereo to mono, but with a bigger
  199. factor for the left channel:
  200. @example
  201. pan=1:c0=0.9*c0+0.1*c1
  202. @end example
  203. A customized down-mix to stereo that works automatically for 3-, 4-, 5- and
  204. 7-channels surround:
  205. @example
  206. pan=stereo: FL < FL + 0.5*FC + 0.6*BL + 0.6*SL : FR < FR + 0.5*FC + 0.6*BR + 0.6*SR
  207. @end example
  208. Note that @file{ffmpeg} integrates a default down-mix (and up-mix) system
  209. that should be preferred (see "-ac" option) unless you have very specific
  210. needs.
  211. @section volume
  212. Adjust the input audio volume.
  213. The filter accepts exactly one parameter @var{vol}, which expresses
  214. how the audio volume will be increased or decreased.
  215. Output values are clipped to the maximum value.
  216. If @var{vol} is expressed as a decimal number, and the output audio
  217. volume is given by the relation:
  218. @example
  219. @var{output_volume} = @var{vol} * @var{input_volume}
  220. @end example
  221. If @var{vol} is expressed as a decimal number followed by the string
  222. "dB", the value represents the requested change in decibels of the
  223. input audio power, and the output audio volume is given by the
  224. relation:
  225. @example
  226. @var{output_volume} = 10^(@var{vol}/20) * @var{input_volume}
  227. @end example
  228. Otherwise @var{vol} is considered an expression and its evaluated
  229. value is used for computing the output audio volume according to the
  230. first relation.
  231. Default value for @var{vol} is 1.0.
  232. @subsection Examples
  233. @itemize
  234. @item
  235. Half the input audio volume:
  236. @example
  237. volume=0.5
  238. @end example
  239. The above example is equivalent to:
  240. @example
  241. volume=1/2
  242. @end example
  243. @item
  244. Decrease input audio power by 12 decibels:
  245. @example
  246. volume=-12dB
  247. @end example
  248. @end itemize
  249. @c man end AUDIO FILTERS
  250. @chapter Audio Sources
  251. @c man begin AUDIO SOURCES
  252. Below is a description of the currently available audio sources.
  253. @section abuffer
  254. Buffer audio frames, and make them available to the filter chain.
  255. This source is mainly intended for a programmatic use, in particular
  256. through the interface defined in @file{libavfilter/asrc_abuffer.h}.
  257. It accepts the following mandatory parameters:
  258. @var{sample_rate}:@var{sample_fmt}:@var{channel_layout}:@var{packing}
  259. @table @option
  260. @item sample_rate
  261. The sample rate of the incoming audio buffers.
  262. @item sample_fmt
  263. The sample format of the incoming audio buffers.
  264. Either a sample format name or its corresponging integer representation from
  265. the enum AVSampleFormat in @file{libavutil/samplefmt.h}
  266. @item channel_layout
  267. The channel layout of the incoming audio buffers.
  268. Either a channel layout name from channel_layout_map in
  269. @file{libavutil/audioconvert.c} or its corresponding integer representation
  270. from the AV_CH_LAYOUT_* macros in @file{libavutil/audioconvert.h}
  271. @item packing
  272. Either "packed" or "planar", or their integer representation: 0 or 1
  273. respectively.
  274. @end table
  275. For example:
  276. @example
  277. abuffer=44100:s16:stereo:planar
  278. @end example
  279. will instruct the source to accept planar 16bit signed stereo at 44100Hz.
  280. Since the sample format with name "s16" corresponds to the number
  281. 1 and the "stereo" channel layout corresponds to the value 3, this is
  282. equivalent to:
  283. @example
  284. abuffer=44100:1:3:1
  285. @end example
  286. @section aevalsrc
  287. Generate an audio signal specified by an expression.
  288. This source accepts in input one or more expressions (one for each
  289. channel), which are evaluated and used to generate a corresponding
  290. audio signal.
  291. It accepts the syntax: @var{exprs}[::@var{options}].
  292. @var{exprs} is a list of expressions separated by ":", one for each
  293. separate channel. The output channel layout depends on the number of
  294. provided expressions, up to 8 channels are supported.
  295. @var{options} is an optional sequence of @var{key}=@var{value} pairs,
  296. separated by ":".
  297. The description of the accepted options follows.
  298. @table @option
  299. @item duration, d
  300. Set the minimum duration of the sourced audio. See the function
  301. @code{av_parse_time()} for the accepted format.
  302. Note that the resulting duration may be greater than the specified
  303. duration, as the generated audio is always cut at the end of a
  304. complete frame.
  305. If not specified, or the expressed duration is negative, the audio is
  306. supposed to be generated forever.
  307. @item nb_samples, n
  308. Set the number of samples per channel per each output frame,
  309. default to 1024.
  310. @item sample_rate, s
  311. Specify the sample rate, default to 44100.
  312. @end table
  313. Each expression in @var{exprs} can contain the following constants:
  314. @table @option
  315. @item n
  316. number of the evaluated sample, starting from 0
  317. @item t
  318. time of the evaluated sample expressed in seconds, starting from 0
  319. @item s
  320. sample rate
  321. @end table
  322. @subsection Examples
  323. @itemize
  324. @item
  325. Generate silence:
  326. @example
  327. aevalsrc=0
  328. @end example
  329. @item
  330. Generate a sin signal with frequency of 440 Hz, set sample rate to
  331. 8000 Hz:
  332. @example
  333. aevalsrc="sin(440*2*PI*t)::s=8000"
  334. @end example
  335. @item
  336. Generate white noise:
  337. @example
  338. aevalsrc="-2+random(0)"
  339. @end example
  340. @item
  341. Generate an amplitude modulated signal:
  342. @example
  343. aevalsrc="sin(10*2*PI*t)*sin(880*2*PI*t)"
  344. @end example
  345. @item
  346. Generate 2.5 Hz binaural beats on a 360 Hz carrier:
  347. @example
  348. aevalsrc="0.1*sin(2*PI*(360-2.5/2)*t) : 0.1*sin(2*PI*(360+2.5/2)*t)"
  349. @end example
  350. @end itemize
  351. @section amovie
  352. Read an audio stream from a movie container.
  353. It accepts the syntax: @var{movie_name}[:@var{options}] where
  354. @var{movie_name} is the name of the resource to read (not necessarily
  355. a file but also a device or a stream accessed through some protocol),
  356. and @var{options} is an optional sequence of @var{key}=@var{value}
  357. pairs, separated by ":".
  358. The description of the accepted options follows.
  359. @table @option
  360. @item format_name, f
  361. Specify the format assumed for the movie to read, and can be either
  362. the name of a container or an input device. If not specified the
  363. format is guessed from @var{movie_name} or by probing.
  364. @item seek_point, sp
  365. Specify the seek point in seconds, the frames will be output
  366. starting from this seek point, the parameter is evaluated with
  367. @code{av_strtod} so the numerical value may be suffixed by an IS
  368. postfix. Default value is "0".
  369. @item stream_index, si
  370. Specify the index of the audio stream to read. If the value is -1,
  371. the best suited audio stream will be automatically selected. Default
  372. value is "-1".
  373. @end table
  374. @section anullsrc
  375. Null audio source, return unprocessed audio frames. It is mainly useful
  376. as a template and to be employed in analysis / debugging tools, or as
  377. the source for filters which ignore the input data (for example the sox
  378. synth filter).
  379. It accepts an optional sequence of @var{key}=@var{value} pairs,
  380. separated by ":".
  381. The description of the accepted options follows.
  382. @table @option
  383. @item sample_rate, s
  384. Specify the sample rate, and defaults to 44100.
  385. @item channel_layout, cl
  386. Specify the channel layout, and can be either an integer or a string
  387. representing a channel layout. The default value of @var{channel_layout}
  388. is "stereo".
  389. Check the channel_layout_map definition in
  390. @file{libavcodec/audioconvert.c} for the mapping between strings and
  391. channel layout values.
  392. @item nb_samples, n
  393. Set the number of samples per requested frames.
  394. @end table
  395. Follow some examples:
  396. @example
  397. # set the sample rate to 48000 Hz and the channel layout to AV_CH_LAYOUT_MONO.
  398. anullsrc=r=48000:cl=4
  399. # same as
  400. anullsrc=r=48000:cl=mono
  401. @end example
  402. @c man end AUDIO SOURCES
  403. @chapter Audio Sinks
  404. @c man begin AUDIO SINKS
  405. Below is a description of the currently available audio sinks.
  406. @section abuffersink
  407. Buffer audio frames, and make them available to the end of filter chain.
  408. This sink is mainly intended for programmatic use, in particular
  409. through the interface defined in @file{libavfilter/buffersink.h}.
  410. It requires a pointer to an AVABufferSinkContext structure, which
  411. defines the incoming buffers' formats, to be passed as the opaque
  412. parameter to @code{avfilter_init_filter} for initialization.
  413. @section anullsink
  414. Null audio sink, do absolutely nothing with the input audio. It is
  415. mainly useful as a template and to be employed in analysis / debugging
  416. tools.
  417. @c man end AUDIO SINKS
  418. @chapter Video Filters
  419. @c man begin VIDEO FILTERS
  420. When you configure your FFmpeg build, you can disable any of the
  421. existing filters using --disable-filters.
  422. The configure output will show the video filters included in your
  423. build.
  424. Below is a description of the currently available video filters.
  425. @section ass
  426. Draw ASS (Advanced Substation Alpha) subtitles on top of input video
  427. using the libass library.
  428. To enable compilation of this filter you need to configure FFmpeg with
  429. @code{--enable-libass}.
  430. This filter accepts in input the name of the ass file to render.
  431. For example, to render the file @file{sub.ass} on top of the input
  432. video, use the command:
  433. @example
  434. ass=sub.ass
  435. @end example
  436. @section blackframe
  437. Detect frames that are (almost) completely black. Can be useful to
  438. detect chapter transitions or commercials. Output lines consist of
  439. the frame number of the detected frame, the percentage of blackness,
  440. the position in the file if known or -1 and the timestamp in seconds.
  441. In order to display the output lines, you need to set the loglevel at
  442. least to the AV_LOG_INFO value.
  443. The filter accepts the syntax:
  444. @example
  445. blackframe[=@var{amount}:[@var{threshold}]]
  446. @end example
  447. @var{amount} is the percentage of the pixels that have to be below the
  448. threshold, and defaults to 98.
  449. @var{threshold} is the threshold below which a pixel value is
  450. considered black, and defaults to 32.
  451. @section boxblur
  452. Apply boxblur algorithm to the input video.
  453. This filter accepts the parameters:
  454. @var{luma_radius}:@var{luma_power}:@var{chroma_radius}:@var{chroma_power}:@var{alpha_radius}:@var{alpha_power}
  455. Chroma and alpha parameters are optional, if not specified they default
  456. to the corresponding values set for @var{luma_radius} and
  457. @var{luma_power}.
  458. @var{luma_radius}, @var{chroma_radius}, and @var{alpha_radius} represent
  459. the radius in pixels of the box used for blurring the corresponding
  460. input plane. They are expressions, and can contain the following
  461. constants:
  462. @table @option
  463. @item w, h
  464. the input width and height in pixels
  465. @item cw, ch
  466. the input chroma image width and height in pixels
  467. @item hsub, vsub
  468. horizontal and vertical chroma subsample values. For example for the
  469. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  470. @end table
  471. The radius must be a non-negative number, and must not be greater than
  472. the value of the expression @code{min(w,h)/2} for the luma and alpha planes,
  473. and of @code{min(cw,ch)/2} for the chroma planes.
  474. @var{luma_power}, @var{chroma_power}, and @var{alpha_power} represent
  475. how many times the boxblur filter is applied to the corresponding
  476. plane.
  477. Some examples follow:
  478. @itemize
  479. @item
  480. Apply a boxblur filter with luma, chroma, and alpha radius
  481. set to 2:
  482. @example
  483. boxblur=2:1
  484. @end example
  485. @item
  486. Set luma radius to 2, alpha and chroma radius to 0
  487. @example
  488. boxblur=2:1:0:0:0:0
  489. @end example
  490. @item
  491. Set luma and chroma radius to a fraction of the video dimension
  492. @example
  493. boxblur=min(h\,w)/10:1:min(cw\,ch)/10:1
  494. @end example
  495. @end itemize
  496. @section copy
  497. Copy the input source unchanged to the output. Mainly useful for
  498. testing purposes.
  499. @section crop
  500. Crop the input video to @var{out_w}:@var{out_h}:@var{x}:@var{y}.
  501. The parameters are expressions containing the following constants:
  502. @table @option
  503. @item x, y
  504. the computed values for @var{x} and @var{y}. They are evaluated for
  505. each new frame.
  506. @item in_w, in_h
  507. the input width and height
  508. @item iw, ih
  509. same as @var{in_w} and @var{in_h}
  510. @item out_w, out_h
  511. the output (cropped) width and height
  512. @item ow, oh
  513. same as @var{out_w} and @var{out_h}
  514. @item a
  515. same as @var{iw} / @var{ih}
  516. @item sar
  517. input sample aspect ratio
  518. @item dar
  519. input display aspect ratio, it is the same as (@var{iw} / @var{ih}) * @var{sar}
  520. @item hsub, vsub
  521. horizontal and vertical chroma subsample values. For example for the
  522. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  523. @item n
  524. the number of input frame, starting from 0
  525. @item pos
  526. the position in the file of the input frame, NAN if unknown
  527. @item t
  528. timestamp expressed in seconds, NAN if the input timestamp is unknown
  529. @end table
  530. The @var{out_w} and @var{out_h} parameters specify the expressions for
  531. the width and height of the output (cropped) video. They are
  532. evaluated just at the configuration of the filter.
  533. The default value of @var{out_w} is "in_w", and the default value of
  534. @var{out_h} is "in_h".
  535. The expression for @var{out_w} may depend on the value of @var{out_h},
  536. and the expression for @var{out_h} may depend on @var{out_w}, but they
  537. cannot depend on @var{x} and @var{y}, as @var{x} and @var{y} are
  538. evaluated after @var{out_w} and @var{out_h}.
  539. The @var{x} and @var{y} parameters specify the expressions for the
  540. position of the top-left corner of the output (non-cropped) area. They
  541. are evaluated for each frame. If the evaluated value is not valid, it
  542. is approximated to the nearest valid value.
  543. The default value of @var{x} is "(in_w-out_w)/2", and the default
  544. value for @var{y} is "(in_h-out_h)/2", which set the cropped area at
  545. the center of the input image.
  546. The expression for @var{x} may depend on @var{y}, and the expression
  547. for @var{y} may depend on @var{x}.
  548. Follow some examples:
  549. @example
  550. # crop the central input area with size 100x100
  551. crop=100:100
  552. # crop the central input area with size 2/3 of the input video
  553. "crop=2/3*in_w:2/3*in_h"
  554. # crop the input video central square
  555. crop=in_h
  556. # delimit the rectangle with the top-left corner placed at position
  557. # 100:100 and the right-bottom corner corresponding to the right-bottom
  558. # corner of the input image.
  559. crop=in_w-100:in_h-100:100:100
  560. # crop 10 pixels from the left and right borders, and 20 pixels from
  561. # the top and bottom borders
  562. "crop=in_w-2*10:in_h-2*20"
  563. # keep only the bottom right quarter of the input image
  564. "crop=in_w/2:in_h/2:in_w/2:in_h/2"
  565. # crop height for getting Greek harmony
  566. "crop=in_w:1/PHI*in_w"
  567. # trembling effect
  568. "crop=in_w/2:in_h/2:(in_w-out_w)/2+((in_w-out_w)/2)*sin(n/10):(in_h-out_h)/2 +((in_h-out_h)/2)*sin(n/7)"
  569. # erratic camera effect depending on timestamp
  570. "crop=in_w/2:in_h/2:(in_w-out_w)/2+((in_w-out_w)/2)*sin(t*10):(in_h-out_h)/2 +((in_h-out_h)/2)*sin(t*13)"
  571. # set x depending on the value of y
  572. "crop=in_w/2:in_h/2:y:10+10*sin(n/10)"
  573. @end example
  574. @section cropdetect
  575. Auto-detect crop size.
  576. Calculate necessary cropping parameters and prints the recommended
  577. parameters through the logging system. The detected dimensions
  578. correspond to the non-black area of the input video.
  579. It accepts the syntax:
  580. @example
  581. cropdetect[=@var{limit}[:@var{round}[:@var{reset}]]]
  582. @end example
  583. @table @option
  584. @item limit
  585. Threshold, which can be optionally specified from nothing (0) to
  586. everything (255), defaults to 24.
  587. @item round
  588. Value which the width/height should be divisible by, defaults to
  589. 16. The offset is automatically adjusted to center the video. Use 2 to
  590. get only even dimensions (needed for 4:2:2 video). 16 is best when
  591. encoding to most video codecs.
  592. @item reset
  593. Counter that determines after how many frames cropdetect will reset
  594. the previously detected largest video area and start over to detect
  595. the current optimal crop area. Defaults to 0.
  596. This can be useful when channel logos distort the video area. 0
  597. indicates never reset and return the largest area encountered during
  598. playback.
  599. @end table
  600. @section delogo
  601. Suppress a TV station logo by a simple interpolation of the surrounding
  602. pixels. Just set a rectangle covering the logo and watch it disappear
  603. (and sometimes something even uglier appear - your mileage may vary).
  604. The filter accepts parameters as a string of the form
  605. "@var{x}:@var{y}:@var{w}:@var{h}:@var{band}", or as a list of
  606. @var{key}=@var{value} pairs, separated by ":".
  607. The description of the accepted parameters follows.
  608. @table @option
  609. @item x, y
  610. Specify the top left corner coordinates of the logo. They must be
  611. specified.
  612. @item w, h
  613. Specify the width and height of the logo to clear. They must be
  614. specified.
  615. @item band, t
  616. Specify the thickness of the fuzzy edge of the rectangle (added to
  617. @var{w} and @var{h}). The default value is 4.
  618. @item show
  619. When set to 1, a green rectangle is drawn on the screen to simplify
  620. finding the right @var{x}, @var{y}, @var{w}, @var{h} parameters, and
  621. @var{band} is set to 4. The default value is 0.
  622. @end table
  623. Some examples follow.
  624. @itemize
  625. @item
  626. Set a rectangle covering the area with top left corner coordinates 0,0
  627. and size 100x77, setting a band of size 10:
  628. @example
  629. delogo=0:0:100:77:10
  630. @end example
  631. @item
  632. As the previous example, but use named options:
  633. @example
  634. delogo=x=0:y=0:w=100:h=77:band=10
  635. @end example
  636. @end itemize
  637. @section deshake
  638. Attempt to fix small changes in horizontal and/or vertical shift. This
  639. filter helps remove camera shake from hand-holding a camera, bumping a
  640. tripod, moving on a vehicle, etc.
  641. The filter accepts parameters as a string of the form
  642. "@var{x}:@var{y}:@var{w}:@var{h}:@var{rx}:@var{ry}:@var{edge}:@var{blocksize}:@var{contrast}:@var{search}:@var{filename}"
  643. A description of the accepted parameters follows.
  644. @table @option
  645. @item x, y, w, h
  646. Specify a rectangular area where to limit the search for motion
  647. vectors.
  648. If desired the search for motion vectors can be limited to a
  649. rectangular area of the frame defined by its top left corner, width
  650. and height. These parameters have the same meaning as the drawbox
  651. filter which can be used to visualise the position of the bounding
  652. box.
  653. This is useful when simultaneous movement of subjects within the frame
  654. might be confused for camera motion by the motion vector search.
  655. If any or all of @var{x}, @var{y}, @var{w} and @var{h} are set to -1
  656. then the full frame is used. This allows later options to be set
  657. without specifying the bounding box for the motion vector search.
  658. Default - search the whole frame.
  659. @item rx, ry
  660. Specify the maximum extent of movement in x and y directions in the
  661. range 0-64 pixels. Default 16.
  662. @item edge
  663. Specify how to generate pixels to fill blanks at the edge of the
  664. frame. An integer from 0 to 3 as follows:
  665. @table @option
  666. @item 0
  667. Fill zeroes at blank locations
  668. @item 1
  669. Original image at blank locations
  670. @item 2
  671. Extruded edge value at blank locations
  672. @item 3
  673. Mirrored edge at blank locations
  674. @end table
  675. The default setting is mirror edge at blank locations.
  676. @item blocksize
  677. Specify the blocksize to use for motion search. Range 4-128 pixels,
  678. default 8.
  679. @item contrast
  680. Specify the contrast threshold for blocks. Only blocks with more than
  681. the specified contrast (difference between darkest and lightest
  682. pixels) will be considered. Range 1-255, default 125.
  683. @item search
  684. Specify the search strategy 0 = exhaustive search, 1 = less exhaustive
  685. search. Default - exhaustive search.
  686. @item filename
  687. If set then a detailed log of the motion search is written to the
  688. specified file.
  689. @end table
  690. @section drawbox
  691. Draw a colored box on the input image.
  692. It accepts the syntax:
  693. @example
  694. drawbox=@var{x}:@var{y}:@var{width}:@var{height}:@var{color}
  695. @end example
  696. @table @option
  697. @item x, y
  698. Specify the top left corner coordinates of the box. Default to 0.
  699. @item width, height
  700. Specify the width and height of the box, if 0 they are interpreted as
  701. the input width and height. Default to 0.
  702. @item color
  703. Specify the color of the box to write, it can be the name of a color
  704. (case insensitive match) or a 0xRRGGBB[AA] sequence.
  705. @end table
  706. Follow some examples:
  707. @example
  708. # draw a black box around the edge of the input image
  709. drawbox
  710. # draw a box with color red and an opacity of 50%
  711. drawbox=10:20:200:60:red@@0.5"
  712. @end example
  713. @section drawtext
  714. Draw text string or text from specified file on top of video using the
  715. libfreetype library.
  716. To enable compilation of this filter you need to configure FFmpeg with
  717. @code{--enable-libfreetype}.
  718. The filter also recognizes strftime() sequences in the provided text
  719. and expands them accordingly. Check the documentation of strftime().
  720. The filter accepts parameters as a list of @var{key}=@var{value} pairs,
  721. separated by ":".
  722. The description of the accepted parameters follows.
  723. @table @option
  724. @item fontfile
  725. The font file to be used for drawing text. Path must be included.
  726. This parameter is mandatory.
  727. @item text
  728. The text string to be drawn. The text must be a sequence of UTF-8
  729. encoded characters.
  730. This parameter is mandatory if no file is specified with the parameter
  731. @var{textfile}.
  732. @item textfile
  733. A text file containing text to be drawn. The text must be a sequence
  734. of UTF-8 encoded characters.
  735. This parameter is mandatory if no text string is specified with the
  736. parameter @var{text}.
  737. If both text and textfile are specified, an error is thrown.
  738. @item x, y
  739. The expressions which specify the offsets where text will be drawn
  740. within the video frame. They are relative to the top/left border of the
  741. output image.
  742. The default value of @var{x} and @var{y} is "0".
  743. See below for the list of accepted constants.
  744. @item fontsize
  745. The font size to be used for drawing text.
  746. The default value of @var{fontsize} is 16.
  747. @item fontcolor
  748. The color to be used for drawing fonts.
  749. Either a string (e.g. "red") or in 0xRRGGBB[AA] format
  750. (e.g. "0xff000033"), possibly followed by an alpha specifier.
  751. The default value of @var{fontcolor} is "black".
  752. @item boxcolor
  753. The color to be used for drawing box around text.
  754. Either a string (e.g. "yellow") or in 0xRRGGBB[AA] format
  755. (e.g. "0xff00ff"), possibly followed by an alpha specifier.
  756. The default value of @var{boxcolor} is "white".
  757. @item box
  758. Used to draw a box around text using background color.
  759. Value should be either 1 (enable) or 0 (disable).
  760. The default value of @var{box} is 0.
  761. @item shadowx, shadowy
  762. The x and y offsets for the text shadow position with respect to the
  763. position of the text. They can be either positive or negative
  764. values. Default value for both is "0".
  765. @item shadowcolor
  766. The color to be used for drawing a shadow behind the drawn text. It
  767. can be a color name (e.g. "yellow") or a string in the 0xRRGGBB[AA]
  768. form (e.g. "0xff00ff"), possibly followed by an alpha specifier.
  769. The default value of @var{shadowcolor} is "black".
  770. @item ft_load_flags
  771. Flags to be used for loading the fonts.
  772. The flags map the corresponding flags supported by libfreetype, and are
  773. a combination of the following values:
  774. @table @var
  775. @item default
  776. @item no_scale
  777. @item no_hinting
  778. @item render
  779. @item no_bitmap
  780. @item vertical_layout
  781. @item force_autohint
  782. @item crop_bitmap
  783. @item pedantic
  784. @item ignore_global_advance_width
  785. @item no_recurse
  786. @item ignore_transform
  787. @item monochrome
  788. @item linear_design
  789. @item no_autohint
  790. @item end table
  791. @end table
  792. Default value is "render".
  793. For more information consult the documentation for the FT_LOAD_*
  794. libfreetype flags.
  795. @item tabsize
  796. The size in number of spaces to use for rendering the tab.
  797. Default value is 4.
  798. @end table
  799. The parameters for @var{x} and @var{y} are expressions containing the
  800. following constants:
  801. @table @option
  802. @item W, H
  803. the input width and height
  804. @item tw, text_w
  805. the width of the rendered text
  806. @item th, text_h
  807. the height of the rendered text
  808. @item lh, line_h
  809. the height of each text line
  810. @item sar
  811. input sample aspect ratio
  812. @item dar
  813. input display aspect ratio, it is the same as (@var{w} / @var{h}) * @var{sar}
  814. @item hsub, vsub
  815. horizontal and vertical chroma subsample values. For example for the
  816. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  817. @item max_glyph_w
  818. maximum glyph width, that is the maximum width for all the glyphs
  819. contained in the rendered text
  820. @item max_glyph_h
  821. maximum glyph height, that is the maximum height for all the glyphs
  822. contained in the rendered text, it is equivalent to @var{ascent} -
  823. @var{descent}.
  824. @item max_glyph_a, ascent
  825. the maximum distance from the baseline to the highest/upper grid
  826. coordinate used to place a glyph outline point, for all the rendered
  827. glyphs.
  828. It is a positive value, due to the grid's orientation with the Y axis
  829. upwards.
  830. @item max_glyph_d, descent
  831. the maximum distance from the baseline to the lowest grid coordinate
  832. used to place a glyph outline point, for all the rendered glyphs.
  833. This is a negative value, due to the grid's orientation, with the Y axis
  834. upwards.
  835. @item n
  836. the number of input frame, starting from 0
  837. @item t
  838. timestamp expressed in seconds, NAN if the input timestamp is unknown
  839. @item timecode
  840. initial timecode representation in "hh:mm:ss[:;.]ff" format. It can be used
  841. with or without text parameter. @var{rate} option must be specified
  842. @item r, rate
  843. frame rate (timecode only)
  844. @end table
  845. Some examples follow.
  846. @itemize
  847. @item
  848. Draw "Test Text" with font FreeSerif, using the default values for the
  849. optional parameters.
  850. @example
  851. drawtext="fontfile=/usr/share/fonts/truetype/freefont/FreeSerif.ttf: text='Test Text'"
  852. @end example
  853. @item
  854. Draw 'Test Text' with font FreeSerif of size 24 at position x=100
  855. and y=50 (counting from the top-left corner of the screen), text is
  856. yellow with a red box around it. Both the text and the box have an
  857. opacity of 20%.
  858. @example
  859. drawtext="fontfile=/usr/share/fonts/truetype/freefont/FreeSerif.ttf: text='Test Text':\
  860. x=100: y=50: fontsize=24: fontcolor=yellow@@0.2: box=1: boxcolor=red@@0.2"
  861. @end example
  862. Note that the double quotes are not necessary if spaces are not used
  863. within the parameter list.
  864. @item
  865. Show the text at the center of the video frame:
  866. @example
  867. drawtext=fontsize=30:fontfile=FreeSerif.ttf:text='hello world':x=(w-text_w)/2:y=(h-text_h-line_h)/2"
  868. @end example
  869. @item
  870. Show a text line sliding from right to left in the last row of the video
  871. frame. The file @file{LONG_LINE} is assumed to contain a single line
  872. with no newlines.
  873. @example
  874. drawtext=fontsize=15:fontfile=FreeSerif.ttf:text=LONG_LINE:y=h-line_h:x=-50*t
  875. @end example
  876. @item
  877. Show the content of file @file{CREDITS} off the bottom of the frame and scroll up.
  878. @example
  879. drawtext=fontsize=20:fontfile=FreeSerif.ttf:textfile=CREDITS:y=h-20*t"
  880. @end example
  881. @item
  882. Draw a single green letter "g", at the center of the input video.
  883. The glyph baseline is placed at half screen height.
  884. @example
  885. drawtext=fontsize=60:fontfile=FreeSerif.ttf:fontcolor=green:text=g:x=(w-max_glyph_w)/2:y=h/2-ascent
  886. @end example
  887. @end itemize
  888. For more information about libfreetype, check:
  889. @url{http://www.freetype.org/}.
  890. @section fade
  891. Apply fade-in/out effect to input video.
  892. It accepts the parameters:
  893. @var{type}:@var{start_frame}:@var{nb_frames}[:@var{options}]
  894. @var{type} specifies if the effect type, can be either "in" for
  895. fade-in, or "out" for a fade-out effect.
  896. @var{start_frame} specifies the number of the start frame for starting
  897. to apply the fade effect.
  898. @var{nb_frames} specifies the number of frames for which the fade
  899. effect has to last. At the end of the fade-in effect the output video
  900. will have the same intensity as the input video, at the end of the
  901. fade-out transition the output video will be completely black.
  902. @var{options} is an optional sequence of @var{key}=@var{value} pairs,
  903. separated by ":". The description of the accepted options follows.
  904. @table @option
  905. @item type, t
  906. See @var{type}.
  907. @item start_frame, s
  908. See @var{start_frame}.
  909. @item nb_frames, n
  910. See @var{nb_frames}.
  911. @item alpha
  912. If set to 1, fade only alpha channel, if one exists on the input.
  913. Default value is 0.
  914. @end table
  915. A few usage examples follow, usable too as test scenarios.
  916. @example
  917. # fade in first 30 frames of video
  918. fade=in:0:30
  919. # fade out last 45 frames of a 200-frame video
  920. fade=out:155:45
  921. # fade in first 25 frames and fade out last 25 frames of a 1000-frame video
  922. fade=in:0:25, fade=out:975:25
  923. # make first 5 frames black, then fade in from frame 5-24
  924. fade=in:5:20
  925. # fade in alpha over first 25 frames of video
  926. fade=in:0:25:alpha=1
  927. @end example
  928. @section fieldorder
  929. Transform the field order of the input video.
  930. It accepts one parameter which specifies the required field order that
  931. the input interlaced video will be transformed to. The parameter can
  932. assume one of the following values:
  933. @table @option
  934. @item 0 or bff
  935. output bottom field first
  936. @item 1 or tff
  937. output top field first
  938. @end table
  939. Default value is "tff".
  940. Transformation is achieved by shifting the picture content up or down
  941. by one line, and filling the remaining line with appropriate picture content.
  942. This method is consistent with most broadcast field order converters.
  943. If the input video is not flagged as being interlaced, or it is already
  944. flagged as being of the required output field order then this filter does
  945. not alter the incoming video.
  946. This filter is very useful when converting to or from PAL DV material,
  947. which is bottom field first.
  948. For example:
  949. @example
  950. ffmpeg -i in.vob -vf "fieldorder=bff" out.dv
  951. @end example
  952. @section fifo
  953. Buffer input images and send them when they are requested.
  954. This filter is mainly useful when auto-inserted by the libavfilter
  955. framework.
  956. The filter does not take parameters.
  957. @section format
  958. Convert the input video to one of the specified pixel formats.
  959. Libavfilter will try to pick one that is supported for the input to
  960. the next filter.
  961. The filter accepts a list of pixel format names, separated by ":",
  962. for example "yuv420p:monow:rgb24".
  963. Some examples follow:
  964. @example
  965. # convert the input video to the format "yuv420p"
  966. format=yuv420p
  967. # convert the input video to any of the formats in the list
  968. format=yuv420p:yuv444p:yuv410p
  969. @end example
  970. @anchor{frei0r}
  971. @section frei0r
  972. Apply a frei0r effect to the input video.
  973. To enable compilation of this filter you need to install the frei0r
  974. header and configure FFmpeg with --enable-frei0r.
  975. The filter supports the syntax:
  976. @example
  977. @var{filter_name}[@{:|=@}@var{param1}:@var{param2}:...:@var{paramN}]
  978. @end example
  979. @var{filter_name} is the name to the frei0r effect to load. If the
  980. environment variable @env{FREI0R_PATH} is defined, the frei0r effect
  981. is searched in each one of the directories specified by the colon
  982. separated list in @env{FREIOR_PATH}, otherwise in the standard frei0r
  983. paths, which are in this order: @file{HOME/.frei0r-1/lib/},
  984. @file{/usr/local/lib/frei0r-1/}, @file{/usr/lib/frei0r-1/}.
  985. @var{param1}, @var{param2}, ... , @var{paramN} specify the parameters
  986. for the frei0r effect.
  987. A frei0r effect parameter can be a boolean (whose values are specified
  988. with "y" and "n"), a double, a color (specified by the syntax
  989. @var{R}/@var{G}/@var{B}, @var{R}, @var{G}, and @var{B} being float
  990. numbers from 0.0 to 1.0) or by an @code{av_parse_color()} color
  991. description), a position (specified by the syntax @var{X}/@var{Y},
  992. @var{X} and @var{Y} being float numbers) and a string.
  993. The number and kind of parameters depend on the loaded effect. If an
  994. effect parameter is not specified the default value is set.
  995. Some examples follow:
  996. @example
  997. # apply the distort0r effect, set the first two double parameters
  998. frei0r=distort0r:0.5:0.01
  999. # apply the colordistance effect, takes a color as first parameter
  1000. frei0r=colordistance:0.2/0.3/0.4
  1001. frei0r=colordistance:violet
  1002. frei0r=colordistance:0x112233
  1003. # apply the perspective effect, specify the top left and top right
  1004. # image positions
  1005. frei0r=perspective:0.2/0.2:0.8/0.2
  1006. @end example
  1007. For more information see:
  1008. @url{http://piksel.org/frei0r}
  1009. @section gradfun
  1010. Fix the banding artifacts that are sometimes introduced into nearly flat
  1011. regions by truncation to 8bit color depth.
  1012. Interpolate the gradients that should go where the bands are, and
  1013. dither them.
  1014. This filter is designed for playback only. Do not use it prior to
  1015. lossy compression, because compression tends to lose the dither and
  1016. bring back the bands.
  1017. The filter takes two optional parameters, separated by ':':
  1018. @var{strength}:@var{radius}
  1019. @var{strength} is the maximum amount by which the filter will change
  1020. any one pixel. Also the threshold for detecting nearly flat
  1021. regions. Acceptable values range from .51 to 255, default value is
  1022. 1.2, out-of-range values will be clipped to the valid range.
  1023. @var{radius} is the neighborhood to fit the gradient to. A larger
  1024. radius makes for smoother gradients, but also prevents the filter from
  1025. modifying the pixels near detailed regions. Acceptable values are
  1026. 8-32, default value is 16, out-of-range values will be clipped to the
  1027. valid range.
  1028. @example
  1029. # default parameters
  1030. gradfun=1.2:16
  1031. # omitting radius
  1032. gradfun=1.2
  1033. @end example
  1034. @section hflip
  1035. Flip the input video horizontally.
  1036. For example to horizontally flip the input video with @command{ffmpeg}:
  1037. @example
  1038. ffmpeg -i in.avi -vf "hflip" out.avi
  1039. @end example
  1040. @section hqdn3d
  1041. High precision/quality 3d denoise filter. This filter aims to reduce
  1042. image noise producing smooth images and making still images really
  1043. still. It should enhance compressibility.
  1044. It accepts the following optional parameters:
  1045. @var{luma_spatial}:@var{chroma_spatial}:@var{luma_tmp}:@var{chroma_tmp}
  1046. @table @option
  1047. @item luma_spatial
  1048. a non-negative float number which specifies spatial luma strength,
  1049. defaults to 4.0
  1050. @item chroma_spatial
  1051. a non-negative float number which specifies spatial chroma strength,
  1052. defaults to 3.0*@var{luma_spatial}/4.0
  1053. @item luma_tmp
  1054. a float number which specifies luma temporal strength, defaults to
  1055. 6.0*@var{luma_spatial}/4.0
  1056. @item chroma_tmp
  1057. a float number which specifies chroma temporal strength, defaults to
  1058. @var{luma_tmp}*@var{chroma_spatial}/@var{luma_spatial}
  1059. @end table
  1060. @section lut, lutrgb, lutyuv
  1061. Compute a look-up table for binding each pixel component input value
  1062. to an output value, and apply it to input video.
  1063. @var{lutyuv} applies a lookup table to a YUV input video, @var{lutrgb}
  1064. to an RGB input video.
  1065. These filters accept in input a ":"-separated list of options, which
  1066. specify the expressions used for computing the lookup table for the
  1067. corresponding pixel component values.
  1068. The @var{lut} filter requires either YUV or RGB pixel formats in
  1069. input, and accepts the options:
  1070. @table @option
  1071. @item c0
  1072. first pixel component
  1073. @item c1
  1074. second pixel component
  1075. @item c2
  1076. third pixel component
  1077. @item c3
  1078. fourth pixel component, corresponds to the alpha component
  1079. @end table
  1080. The exact component associated to each option depends on the format in
  1081. input.
  1082. The @var{lutrgb} filter requires RGB pixel formats in input, and
  1083. accepts the options:
  1084. @table @option
  1085. @item r
  1086. red component
  1087. @item g
  1088. green component
  1089. @item b
  1090. blue component
  1091. @item a
  1092. alpha component
  1093. @end table
  1094. The @var{lutyuv} filter requires YUV pixel formats in input, and
  1095. accepts the options:
  1096. @table @option
  1097. @item y
  1098. Y/luminance component
  1099. @item u
  1100. U/Cb component
  1101. @item v
  1102. V/Cr component
  1103. @item a
  1104. alpha component
  1105. @end table
  1106. The expressions can contain the following constants and functions:
  1107. @table @option
  1108. @item w, h
  1109. the input width and height
  1110. @item val
  1111. input value for the pixel component
  1112. @item clipval
  1113. the input value clipped in the @var{minval}-@var{maxval} range
  1114. @item maxval
  1115. maximum value for the pixel component
  1116. @item minval
  1117. minimum value for the pixel component
  1118. @item negval
  1119. the negated value for the pixel component value clipped in the
  1120. @var{minval}-@var{maxval} range , it corresponds to the expression
  1121. "maxval-clipval+minval"
  1122. @item clip(val)
  1123. the computed value in @var{val} clipped in the
  1124. @var{minval}-@var{maxval} range
  1125. @item gammaval(gamma)
  1126. the computed gamma correction value of the pixel component value
  1127. clipped in the @var{minval}-@var{maxval} range, corresponds to the
  1128. expression
  1129. "pow((clipval-minval)/(maxval-minval)\,@var{gamma})*(maxval-minval)+minval"
  1130. @end table
  1131. All expressions default to "val".
  1132. Some examples follow:
  1133. @example
  1134. # negate input video
  1135. lutrgb="r=maxval+minval-val:g=maxval+minval-val:b=maxval+minval-val"
  1136. lutyuv="y=maxval+minval-val:u=maxval+minval-val:v=maxval+minval-val"
  1137. # the above is the same as
  1138. lutrgb="r=negval:g=negval:b=negval"
  1139. lutyuv="y=negval:u=negval:v=negval"
  1140. # negate luminance
  1141. lutyuv=y=negval
  1142. # remove chroma components, turns the video into a graytone image
  1143. lutyuv="u=128:v=128"
  1144. # apply a luma burning effect
  1145. lutyuv="y=2*val"
  1146. # remove green and blue components
  1147. lutrgb="g=0:b=0"
  1148. # set a constant alpha channel value on input
  1149. format=rgba,lutrgb=a="maxval-minval/2"
  1150. # correct luminance gamma by a 0.5 factor
  1151. lutyuv=y=gammaval(0.5)
  1152. @end example
  1153. @section mp
  1154. Apply an MPlayer filter to the input video.
  1155. This filter provides a wrapper around most of the filters of
  1156. MPlayer/MEncoder.
  1157. This wrapper is considered experimental. Some of the wrapped filters
  1158. may not work properly and we may drop support for them, as they will
  1159. be implemented natively into FFmpeg. Thus you should avoid
  1160. depending on them when writing portable scripts.
  1161. The filters accepts the parameters:
  1162. @var{filter_name}[:=]@var{filter_params}
  1163. @var{filter_name} is the name of a supported MPlayer filter,
  1164. @var{filter_params} is a string containing the parameters accepted by
  1165. the named filter.
  1166. The list of the currently supported filters follows:
  1167. @table @var
  1168. @item 2xsai
  1169. @item decimate
  1170. @item denoise3d
  1171. @item detc
  1172. @item dint
  1173. @item divtc
  1174. @item down3dright
  1175. @item dsize
  1176. @item eq2
  1177. @item eq
  1178. @item field
  1179. @item fil
  1180. @item fixpts
  1181. @item framestep
  1182. @item fspp
  1183. @item geq
  1184. @item harddup
  1185. @item hqdn3d
  1186. @item hue
  1187. @item il
  1188. @item ilpack
  1189. @item ivtc
  1190. @item kerndeint
  1191. @item mcdeint
  1192. @item mirror
  1193. @item noise
  1194. @item ow
  1195. @item palette
  1196. @item perspective
  1197. @item phase
  1198. @item pp7
  1199. @item pullup
  1200. @item qp
  1201. @item rectangle
  1202. @item remove-logo
  1203. @item rotate
  1204. @item sab
  1205. @item screenshot
  1206. @item smartblur
  1207. @item softpulldown
  1208. @item softskip
  1209. @item spp
  1210. @item swapuv
  1211. @item telecine
  1212. @item tile
  1213. @item tinterlace
  1214. @item unsharp
  1215. @item uspp
  1216. @item yuvcsp
  1217. @item yvu9
  1218. @end table
  1219. The parameter syntax and behavior for the listed filters are the same
  1220. of the corresponding MPlayer filters. For detailed instructions check
  1221. the "VIDEO FILTERS" section in the MPlayer manual.
  1222. Some examples follow:
  1223. @example
  1224. # remove a logo by interpolating the surrounding pixels
  1225. mp=delogo=200:200:80:20:1
  1226. # adjust gamma, brightness, contrast
  1227. mp=eq2=1.0:2:0.5
  1228. # tweak hue and saturation
  1229. mp=hue=100:-10
  1230. @end example
  1231. See also mplayer(1), @url{http://www.mplayerhq.hu/}.
  1232. @section negate
  1233. Negate input video.
  1234. This filter accepts an integer in input, if non-zero it negates the
  1235. alpha component (if available). The default value in input is 0.
  1236. @section noformat
  1237. Force libavfilter not to use any of the specified pixel formats for the
  1238. input to the next filter.
  1239. The filter accepts a list of pixel format names, separated by ":",
  1240. for example "yuv420p:monow:rgb24".
  1241. Some examples follow:
  1242. @example
  1243. # force libavfilter to use a format different from "yuv420p" for the
  1244. # input to the vflip filter
  1245. noformat=yuv420p,vflip
  1246. # convert the input video to any of the formats not contained in the list
  1247. noformat=yuv420p:yuv444p:yuv410p
  1248. @end example
  1249. @section null
  1250. Pass the video source unchanged to the output.
  1251. @section ocv
  1252. Apply video transform using libopencv.
  1253. To enable this filter install libopencv library and headers and
  1254. configure FFmpeg with --enable-libopencv.
  1255. The filter takes the parameters: @var{filter_name}@{:=@}@var{filter_params}.
  1256. @var{filter_name} is the name of the libopencv filter to apply.
  1257. @var{filter_params} specifies the parameters to pass to the libopencv
  1258. filter. If not specified the default values are assumed.
  1259. Refer to the official libopencv documentation for more precise
  1260. information:
  1261. @url{http://opencv.willowgarage.com/documentation/c/image_filtering.html}
  1262. Follows the list of supported libopencv filters.
  1263. @anchor{dilate}
  1264. @subsection dilate
  1265. Dilate an image by using a specific structuring element.
  1266. This filter corresponds to the libopencv function @code{cvDilate}.
  1267. It accepts the parameters: @var{struct_el}:@var{nb_iterations}.
  1268. @var{struct_el} represents a structuring element, and has the syntax:
  1269. @var{cols}x@var{rows}+@var{anchor_x}x@var{anchor_y}/@var{shape}
  1270. @var{cols} and @var{rows} represent the number of columns and rows of
  1271. the structuring element, @var{anchor_x} and @var{anchor_y} the anchor
  1272. point, and @var{shape} the shape for the structuring element, and
  1273. can be one of the values "rect", "cross", "ellipse", "custom".
  1274. If the value for @var{shape} is "custom", it must be followed by a
  1275. string of the form "=@var{filename}". The file with name
  1276. @var{filename} is assumed to represent a binary image, with each
  1277. printable character corresponding to a bright pixel. When a custom
  1278. @var{shape} is used, @var{cols} and @var{rows} are ignored, the number
  1279. or columns and rows of the read file are assumed instead.
  1280. The default value for @var{struct_el} is "3x3+0x0/rect".
  1281. @var{nb_iterations} specifies the number of times the transform is
  1282. applied to the image, and defaults to 1.
  1283. Follow some example:
  1284. @example
  1285. # use the default values
  1286. ocv=dilate
  1287. # dilate using a structuring element with a 5x5 cross, iterate two times
  1288. ocv=dilate=5x5+2x2/cross:2
  1289. # read the shape from the file diamond.shape, iterate two times
  1290. # the file diamond.shape may contain a pattern of characters like this:
  1291. # *
  1292. # ***
  1293. # *****
  1294. # ***
  1295. # *
  1296. # the specified cols and rows are ignored (but not the anchor point coordinates)
  1297. ocv=0x0+2x2/custom=diamond.shape:2
  1298. @end example
  1299. @subsection erode
  1300. Erode an image by using a specific structuring element.
  1301. This filter corresponds to the libopencv function @code{cvErode}.
  1302. The filter accepts the parameters: @var{struct_el}:@var{nb_iterations},
  1303. with the same syntax and semantics as the @ref{dilate} filter.
  1304. @subsection smooth
  1305. Smooth the input video.
  1306. The filter takes the following parameters:
  1307. @var{type}:@var{param1}:@var{param2}:@var{param3}:@var{param4}.
  1308. @var{type} is the type of smooth filter to apply, and can be one of
  1309. the following values: "blur", "blur_no_scale", "median", "gaussian",
  1310. "bilateral". The default value is "gaussian".
  1311. @var{param1}, @var{param2}, @var{param3}, and @var{param4} are
  1312. parameters whose meanings depend on smooth type. @var{param1} and
  1313. @var{param2} accept integer positive values or 0, @var{param3} and
  1314. @var{param4} accept float values.
  1315. The default value for @var{param1} is 3, the default value for the
  1316. other parameters is 0.
  1317. These parameters correspond to the parameters assigned to the
  1318. libopencv function @code{cvSmooth}.
  1319. @anchor{overlay}
  1320. @section overlay
  1321. Overlay one video on top of another.
  1322. It takes two inputs and one output, the first input is the "main"
  1323. video on which the second input is overlayed.
  1324. It accepts the parameters: @var{x}:@var{y}[:@var{options}].
  1325. @var{x} is the x coordinate of the overlayed video on the main video,
  1326. @var{y} is the y coordinate. @var{x} and @var{y} are expressions containing
  1327. the following parameters:
  1328. @table @option
  1329. @item main_w, main_h
  1330. main input width and height
  1331. @item W, H
  1332. same as @var{main_w} and @var{main_h}
  1333. @item overlay_w, overlay_h
  1334. overlay input width and height
  1335. @item w, h
  1336. same as @var{overlay_w} and @var{overlay_h}
  1337. @end table
  1338. @var{options} is an optional list of @var{key}=@var{value} pairs,
  1339. separated by ":".
  1340. The description of the accepted options follows.
  1341. @table @option
  1342. @item rgb
  1343. If set to 1, force the filter to accept inputs in the RGB
  1344. color space. Default value is 0.
  1345. @end table
  1346. Be aware that frames are taken from each input video in timestamp
  1347. order, hence, if their initial timestamps differ, it is a a good idea
  1348. to pass the two inputs through a @var{setpts=PTS-STARTPTS} filter to
  1349. have them begin in the same zero timestamp, as it does the example for
  1350. the @var{movie} filter.
  1351. Follow some examples:
  1352. @example
  1353. # draw the overlay at 10 pixels from the bottom right
  1354. # corner of the main video.
  1355. overlay=main_w-overlay_w-10:main_h-overlay_h-10
  1356. # insert a transparent PNG logo in the bottom left corner of the input
  1357. movie=logo.png [logo];
  1358. [in][logo] overlay=10:main_h-overlay_h-10 [out]
  1359. # insert 2 different transparent PNG logos (second logo on bottom
  1360. # right corner):
  1361. movie=logo1.png [logo1];
  1362. movie=logo2.png [logo2];
  1363. [in][logo1] overlay=10:H-h-10 [in+logo1];
  1364. [in+logo1][logo2] overlay=W-w-10:H-h-10 [out]
  1365. # add a transparent color layer on top of the main video,
  1366. # WxH specifies the size of the main input to the overlay filter
  1367. color=red@.3:WxH [over]; [in][over] overlay [out]
  1368. @end example
  1369. You can chain together more overlays but the efficiency of such
  1370. approach is yet to be tested.
  1371. @section pad
  1372. Add paddings to the input image, and places the original input at the
  1373. given coordinates @var{x}, @var{y}.
  1374. It accepts the following parameters:
  1375. @var{width}:@var{height}:@var{x}:@var{y}:@var{color}.
  1376. The parameters @var{width}, @var{height}, @var{x}, and @var{y} are
  1377. expressions containing the following constants:
  1378. @table @option
  1379. @item in_w, in_h
  1380. the input video width and height
  1381. @item iw, ih
  1382. same as @var{in_w} and @var{in_h}
  1383. @item out_w, out_h
  1384. the output width and height, that is the size of the padded area as
  1385. specified by the @var{width} and @var{height} expressions
  1386. @item ow, oh
  1387. same as @var{out_w} and @var{out_h}
  1388. @item x, y
  1389. x and y offsets as specified by the @var{x} and @var{y}
  1390. expressions, or NAN if not yet specified
  1391. @item a
  1392. same as @var{iw} / @var{ih}
  1393. @item sar
  1394. input sample aspect ratio
  1395. @item dar
  1396. input display aspect ratio, it is the same as (@var{iw} / @var{ih}) * @var{sar}
  1397. @item hsub, vsub
  1398. horizontal and vertical chroma subsample values. For example for the
  1399. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  1400. @end table
  1401. Follows the description of the accepted parameters.
  1402. @table @option
  1403. @item width, height
  1404. Specify the size of the output image with the paddings added. If the
  1405. value for @var{width} or @var{height} is 0, the corresponding input size
  1406. is used for the output.
  1407. The @var{width} expression can reference the value set by the
  1408. @var{height} expression, and vice versa.
  1409. The default value of @var{width} and @var{height} is 0.
  1410. @item x, y
  1411. Specify the offsets where to place the input image in the padded area
  1412. with respect to the top/left border of the output image.
  1413. The @var{x} expression can reference the value set by the @var{y}
  1414. expression, and vice versa.
  1415. The default value of @var{x} and @var{y} is 0.
  1416. @item color
  1417. Specify the color of the padded area, it can be the name of a color
  1418. (case insensitive match) or a 0xRRGGBB[AA] sequence.
  1419. The default value of @var{color} is "black".
  1420. @end table
  1421. Some examples follow:
  1422. @example
  1423. # Add paddings with color "violet" to the input video. Output video
  1424. # size is 640x480, the top-left corner of the input video is placed at
  1425. # column 0, row 40.
  1426. pad=640:480:0:40:violet
  1427. # pad the input to get an output with dimensions increased bt 3/2,
  1428. # and put the input video at the center of the padded area
  1429. pad="3/2*iw:3/2*ih:(ow-iw)/2:(oh-ih)/2"
  1430. # pad the input to get a squared output with size equal to the maximum
  1431. # value between the input width and height, and put the input video at
  1432. # the center of the padded area
  1433. pad="max(iw\,ih):ow:(ow-iw)/2:(oh-ih)/2"
  1434. # pad the input to get a final w/h ratio of 16:9
  1435. pad="ih*16/9:ih:(ow-iw)/2:(oh-ih)/2"
  1436. # for anamorphic video, in order to set the output display aspect ratio,
  1437. # it is necessary to use sar in the expression, according to the relation:
  1438. # (ih * X / ih) * sar = output_dar
  1439. # X = output_dar / sar
  1440. pad="ih*16/9/sar:ih:(ow-iw)/2:(oh-ih)/2"
  1441. # double output size and put the input video in the bottom-right
  1442. # corner of the output padded area
  1443. pad="2*iw:2*ih:ow-iw:oh-ih"
  1444. @end example
  1445. @section pixdesctest
  1446. Pixel format descriptor test filter, mainly useful for internal
  1447. testing. The output video should be equal to the input video.
  1448. For example:
  1449. @example
  1450. format=monow, pixdesctest
  1451. @end example
  1452. can be used to test the monowhite pixel format descriptor definition.
  1453. @section scale
  1454. Scale the input video to @var{width}:@var{height}[:@var{interl}=@{1|-1@}] and/or convert the image format.
  1455. The parameters @var{width} and @var{height} are expressions containing
  1456. the following constants:
  1457. @table @option
  1458. @item in_w, in_h
  1459. the input width and height
  1460. @item iw, ih
  1461. same as @var{in_w} and @var{in_h}
  1462. @item out_w, out_h
  1463. the output (cropped) width and height
  1464. @item ow, oh
  1465. same as @var{out_w} and @var{out_h}
  1466. @item a
  1467. same as @var{iw} / @var{ih}
  1468. @item sar
  1469. input sample aspect ratio
  1470. @item dar
  1471. input display aspect ratio, it is the same as (@var{iw} / @var{ih}) * @var{sar}
  1472. @item sar
  1473. input sample aspect ratio
  1474. @item hsub, vsub
  1475. horizontal and vertical chroma subsample values. For example for the
  1476. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  1477. @end table
  1478. If the input image format is different from the format requested by
  1479. the next filter, the scale filter will convert the input to the
  1480. requested format.
  1481. If the value for @var{width} or @var{height} is 0, the respective input
  1482. size is used for the output.
  1483. If the value for @var{width} or @var{height} is -1, the scale filter will
  1484. use, for the respective output size, a value that maintains the aspect
  1485. ratio of the input image.
  1486. The default value of @var{width} and @var{height} is 0.
  1487. Valid values for the optional parameter @var{interl} are:
  1488. @table @option
  1489. @item 1
  1490. force interlaced aware scaling
  1491. @item -1
  1492. select interlaced aware scaling depending on whether the source frames
  1493. are flagged as interlaced or not
  1494. @end table
  1495. Some examples follow:
  1496. @example
  1497. # scale the input video to a size of 200x100.
  1498. scale=200:100
  1499. # scale the input to 2x
  1500. scale=2*iw:2*ih
  1501. # the above is the same as
  1502. scale=2*in_w:2*in_h
  1503. # scale the input to half size
  1504. scale=iw/2:ih/2
  1505. # increase the width, and set the height to the same size
  1506. scale=3/2*iw:ow
  1507. # seek for Greek harmony
  1508. scale=iw:1/PHI*iw
  1509. scale=ih*PHI:ih
  1510. # increase the height, and set the width to 3/2 of the height
  1511. scale=3/2*oh:3/5*ih
  1512. # increase the size, but make the size a multiple of the chroma
  1513. scale="trunc(3/2*iw/hsub)*hsub:trunc(3/2*ih/vsub)*vsub"
  1514. # increase the width to a maximum of 500 pixels, keep the same input aspect ratio
  1515. scale='min(500\, iw*3/2):-1'
  1516. @end example
  1517. @section select
  1518. Select frames to pass in output.
  1519. It accepts in input an expression, which is evaluated for each input
  1520. frame. If the expression is evaluated to a non-zero value, the frame
  1521. is selected and passed to the output, otherwise it is discarded.
  1522. The expression can contain the following constants:
  1523. @table @option
  1524. @item n
  1525. the sequential number of the filtered frame, starting from 0
  1526. @item selected_n
  1527. the sequential number of the selected frame, starting from 0
  1528. @item prev_selected_n
  1529. the sequential number of the last selected frame, NAN if undefined
  1530. @item TB
  1531. timebase of the input timestamps
  1532. @item pts
  1533. the PTS (Presentation TimeStamp) of the filtered video frame,
  1534. expressed in @var{TB} units, NAN if undefined
  1535. @item t
  1536. the PTS (Presentation TimeStamp) of the filtered video frame,
  1537. expressed in seconds, NAN if undefined
  1538. @item prev_pts
  1539. the PTS of the previously filtered video frame, NAN if undefined
  1540. @item prev_selected_pts
  1541. the PTS of the last previously filtered video frame, NAN if undefined
  1542. @item prev_selected_t
  1543. the PTS of the last previously selected video frame, NAN if undefined
  1544. @item start_pts
  1545. the PTS of the first video frame in the video, NAN if undefined
  1546. @item start_t
  1547. the time of the first video frame in the video, NAN if undefined
  1548. @item pict_type
  1549. the type of the filtered frame, can assume one of the following
  1550. values:
  1551. @table @option
  1552. @item I
  1553. @item P
  1554. @item B
  1555. @item S
  1556. @item SI
  1557. @item SP
  1558. @item BI
  1559. @end table
  1560. @item interlace_type
  1561. the frame interlace type, can assume one of the following values:
  1562. @table @option
  1563. @item PROGRESSIVE
  1564. the frame is progressive (not interlaced)
  1565. @item TOPFIRST
  1566. the frame is top-field-first
  1567. @item BOTTOMFIRST
  1568. the frame is bottom-field-first
  1569. @end table
  1570. @item key
  1571. 1 if the filtered frame is a key-frame, 0 otherwise
  1572. @item pos
  1573. the position in the file of the filtered frame, -1 if the information
  1574. is not available (e.g. for synthetic video)
  1575. @end table
  1576. The default value of the select expression is "1".
  1577. Some examples follow:
  1578. @example
  1579. # select all frames in input
  1580. select
  1581. # the above is the same as:
  1582. select=1
  1583. # skip all frames:
  1584. select=0
  1585. # select only I-frames
  1586. select='eq(pict_type\,I)'
  1587. # select one frame every 100
  1588. select='not(mod(n\,100))'
  1589. # select only frames contained in the 10-20 time interval
  1590. select='gte(t\,10)*lte(t\,20)'
  1591. # select only I frames contained in the 10-20 time interval
  1592. select='gte(t\,10)*lte(t\,20)*eq(pict_type\,I)'
  1593. # select frames with a minimum distance of 10 seconds
  1594. select='isnan(prev_selected_t)+gte(t-prev_selected_t\,10)'
  1595. @end example
  1596. @anchor{setdar}
  1597. @section setdar
  1598. Set the Display Aspect Ratio for the filter output video.
  1599. This is done by changing the specified Sample (aka Pixel) Aspect
  1600. Ratio, according to the following equation:
  1601. @math{DAR = HORIZONTAL_RESOLUTION / VERTICAL_RESOLUTION * SAR}
  1602. Keep in mind that this filter does not modify the pixel dimensions of
  1603. the video frame. Also the display aspect ratio set by this filter may
  1604. be changed by later filters in the filterchain, e.g. in case of
  1605. scaling or if another "setdar" or a "setsar" filter is applied.
  1606. The filter accepts a parameter string which represents the wanted
  1607. display aspect ratio.
  1608. The parameter can be a floating point number string, or an expression
  1609. of the form @var{num}:@var{den}, where @var{num} and @var{den} are the
  1610. numerator and denominator of the aspect ratio.
  1611. If the parameter is not specified, it is assumed the value "0:1".
  1612. For example to change the display aspect ratio to 16:9, specify:
  1613. @example
  1614. setdar=16:9
  1615. # the above is equivalent to
  1616. setdar=1.77777
  1617. @end example
  1618. See also the @ref{setsar} filter documentation.
  1619. @section setpts
  1620. Change the PTS (presentation timestamp) of the input video frames.
  1621. Accept in input an expression evaluated through the eval API, which
  1622. can contain the following constants:
  1623. @table @option
  1624. @item PTS
  1625. the presentation timestamp in input
  1626. @item N
  1627. the count of the input frame, starting from 0.
  1628. @item STARTPTS
  1629. the PTS of the first video frame
  1630. @item INTERLACED
  1631. tell if the current frame is interlaced
  1632. @item POS
  1633. original position in the file of the frame, or undefined if undefined
  1634. for the current frame
  1635. @item PREV_INPTS
  1636. previous input PTS
  1637. @item PREV_OUTPTS
  1638. previous output PTS
  1639. @end table
  1640. Some examples follow:
  1641. @example
  1642. # start counting PTS from zero
  1643. setpts=PTS-STARTPTS
  1644. # fast motion
  1645. setpts=0.5*PTS
  1646. # slow motion
  1647. setpts=2.0*PTS
  1648. # fixed rate 25 fps
  1649. setpts=N/(25*TB)
  1650. # fixed rate 25 fps with some jitter
  1651. setpts='1/(25*TB) * (N + 0.05 * sin(N*2*PI/25))'
  1652. @end example
  1653. @anchor{setsar}
  1654. @section setsar
  1655. Set the Sample (aka Pixel) Aspect Ratio for the filter output video.
  1656. Note that as a consequence of the application of this filter, the
  1657. output display aspect ratio will change according to the following
  1658. equation:
  1659. @math{DAR = HORIZONTAL_RESOLUTION / VERTICAL_RESOLUTION * SAR}
  1660. Keep in mind that the sample aspect ratio set by this filter may be
  1661. changed by later filters in the filterchain, e.g. if another "setsar"
  1662. or a "setdar" filter is applied.
  1663. The filter accepts a parameter string which represents the wanted
  1664. sample aspect ratio.
  1665. The parameter can be a floating point number string, or an expression
  1666. of the form @var{num}:@var{den}, where @var{num} and @var{den} are the
  1667. numerator and denominator of the aspect ratio.
  1668. If the parameter is not specified, it is assumed the value "0:1".
  1669. For example to change the sample aspect ratio to 10:11, specify:
  1670. @example
  1671. setsar=10:11
  1672. @end example
  1673. @section settb
  1674. Set the timebase to use for the output frames timestamps.
  1675. It is mainly useful for testing timebase configuration.
  1676. It accepts in input an arithmetic expression representing a rational.
  1677. The expression can contain the constants "AVTB" (the
  1678. default timebase), and "intb" (the input timebase).
  1679. The default value for the input is "intb".
  1680. Follow some examples.
  1681. @example
  1682. # set the timebase to 1/25
  1683. settb=1/25
  1684. # set the timebase to 1/10
  1685. settb=0.1
  1686. #set the timebase to 1001/1000
  1687. settb=1+0.001
  1688. #set the timebase to 2*intb
  1689. settb=2*intb
  1690. #set the default timebase value
  1691. settb=AVTB
  1692. @end example
  1693. @section showinfo
  1694. Show a line containing various information for each input video frame.
  1695. The input video is not modified.
  1696. The shown line contains a sequence of key/value pairs of the form
  1697. @var{key}:@var{value}.
  1698. A description of each shown parameter follows:
  1699. @table @option
  1700. @item n
  1701. sequential number of the input frame, starting from 0
  1702. @item pts
  1703. Presentation TimeStamp of the input frame, expressed as a number of
  1704. time base units. The time base unit depends on the filter input pad.
  1705. @item pts_time
  1706. Presentation TimeStamp of the input frame, expressed as a number of
  1707. seconds
  1708. @item pos
  1709. position of the frame in the input stream, -1 if this information in
  1710. unavailable and/or meaningless (for example in case of synthetic video)
  1711. @item fmt
  1712. pixel format name
  1713. @item sar
  1714. sample aspect ratio of the input frame, expressed in the form
  1715. @var{num}/@var{den}
  1716. @item s
  1717. size of the input frame, expressed in the form
  1718. @var{width}x@var{height}
  1719. @item i
  1720. interlaced mode ("P" for "progressive", "T" for top field first, "B"
  1721. for bottom field first)
  1722. @item iskey
  1723. 1 if the frame is a key frame, 0 otherwise
  1724. @item type
  1725. picture type of the input frame ("I" for an I-frame, "P" for a
  1726. P-frame, "B" for a B-frame, "?" for unknown type).
  1727. Check also the documentation of the @code{AVPictureType} enum and of
  1728. the @code{av_get_picture_type_char} function defined in
  1729. @file{libavutil/avutil.h}.
  1730. @item checksum
  1731. Adler-32 checksum (printed in hexadecimal) of all the planes of the input frame
  1732. @item plane_checksum
  1733. Adler-32 checksum (printed in hexadecimal) of each plane of the input frame,
  1734. expressed in the form "[@var{c0} @var{c1} @var{c2} @var{c3}]"
  1735. @end table
  1736. @section slicify
  1737. Pass the images of input video on to next video filter as multiple
  1738. slices.
  1739. @example
  1740. ffmpeg -i in.avi -vf "slicify=32" out.avi
  1741. @end example
  1742. The filter accepts the slice height as parameter. If the parameter is
  1743. not specified it will use the default value of 16.
  1744. Adding this in the beginning of filter chains should make filtering
  1745. faster due to better use of the memory cache.
  1746. @section split
  1747. Pass on the input video to two outputs. Both outputs are identical to
  1748. the input video.
  1749. For example:
  1750. @example
  1751. [in] split [splitout1][splitout2];
  1752. [splitout1] crop=100:100:0:0 [cropout];
  1753. [splitout2] pad=200:200:100:100 [padout];
  1754. @end example
  1755. will create two separate outputs from the same input, one cropped and
  1756. one padded.
  1757. @section transpose
  1758. Transpose rows with columns in the input video and optionally flip it.
  1759. It accepts a parameter representing an integer, which can assume the
  1760. values:
  1761. @table @samp
  1762. @item 0
  1763. Rotate by 90 degrees counterclockwise and vertically flip (default), that is:
  1764. @example
  1765. L.R L.l
  1766. . . -> . .
  1767. l.r R.r
  1768. @end example
  1769. @item 1
  1770. Rotate by 90 degrees clockwise, that is:
  1771. @example
  1772. L.R l.L
  1773. . . -> . .
  1774. l.r r.R
  1775. @end example
  1776. @item 2
  1777. Rotate by 90 degrees counterclockwise, that is:
  1778. @example
  1779. L.R R.r
  1780. . . -> . .
  1781. l.r L.l
  1782. @end example
  1783. @item 3
  1784. Rotate by 90 degrees clockwise and vertically flip, that is:
  1785. @example
  1786. L.R r.R
  1787. . . -> . .
  1788. l.r l.L
  1789. @end example
  1790. @end table
  1791. @section unsharp
  1792. Sharpen or blur the input video.
  1793. It accepts the following parameters:
  1794. @var{luma_msize_x}:@var{luma_msize_y}:@var{luma_amount}:@var{chroma_msize_x}:@var{chroma_msize_y}:@var{chroma_amount}
  1795. Negative values for the amount will blur the input video, while positive
  1796. values will sharpen. All parameters are optional and default to the
  1797. equivalent of the string '5:5:1.0:5:5:0.0'.
  1798. @table @option
  1799. @item luma_msize_x
  1800. Set the luma matrix horizontal size. It can be an integer between 3
  1801. and 13, default value is 5.
  1802. @item luma_msize_y
  1803. Set the luma matrix vertical size. It can be an integer between 3
  1804. and 13, default value is 5.
  1805. @item luma_amount
  1806. Set the luma effect strength. It can be a float number between -2.0
  1807. and 5.0, default value is 1.0.
  1808. @item chroma_msize_x
  1809. Set the chroma matrix horizontal size. It can be an integer between 3
  1810. and 13, default value is 5.
  1811. @item chroma_msize_y
  1812. Set the chroma matrix vertical size. It can be an integer between 3
  1813. and 13, default value is 5.
  1814. @item chroma_amount
  1815. Set the chroma effect strength. It can be a float number between -2.0
  1816. and 5.0, default value is 0.0.
  1817. @end table
  1818. @example
  1819. # Strong luma sharpen effect parameters
  1820. unsharp=7:7:2.5
  1821. # Strong blur of both luma and chroma parameters
  1822. unsharp=7:7:-2:7:7:-2
  1823. # Use the default values with @command{ffmpeg}
  1824. ffmpeg -i in.avi -vf "unsharp" out.mp4
  1825. @end example
  1826. @section vflip
  1827. Flip the input video vertically.
  1828. @example
  1829. ffmpeg -i in.avi -vf "vflip" out.avi
  1830. @end example
  1831. @section yadif
  1832. Deinterlace the input video ("yadif" means "yet another deinterlacing
  1833. filter").
  1834. It accepts the optional parameters: @var{mode}:@var{parity}:@var{auto}.
  1835. @var{mode} specifies the interlacing mode to adopt, accepts one of the
  1836. following values:
  1837. @table @option
  1838. @item 0
  1839. output 1 frame for each frame
  1840. @item 1
  1841. output 1 frame for each field
  1842. @item 2
  1843. like 0 but skips spatial interlacing check
  1844. @item 3
  1845. like 1 but skips spatial interlacing check
  1846. @end table
  1847. Default value is 0.
  1848. @var{parity} specifies the picture field parity assumed for the input
  1849. interlaced video, accepts one of the following values:
  1850. @table @option
  1851. @item 0
  1852. assume top field first
  1853. @item 1
  1854. assume bottom field first
  1855. @item -1
  1856. enable automatic detection
  1857. @end table
  1858. Default value is -1.
  1859. If interlacing is unknown or decoder does not export this information,
  1860. top field first will be assumed.
  1861. @var{auto} specifies if deinterlacer should trust the interlaced flag
  1862. and only deinterlace frames marked as interlaced
  1863. @table @option
  1864. @item 0
  1865. deinterlace all frames
  1866. @item 1
  1867. only deinterlace frames marked as interlaced
  1868. @end table
  1869. Default value is 0.
  1870. @c man end VIDEO FILTERS
  1871. @chapter Video Sources
  1872. @c man begin VIDEO SOURCES
  1873. Below is a description of the currently available video sources.
  1874. @section buffer
  1875. Buffer video frames, and make them available to the filter chain.
  1876. This source is mainly intended for a programmatic use, in particular
  1877. through the interface defined in @file{libavfilter/vsrc_buffer.h}.
  1878. It accepts the following parameters:
  1879. @var{width}:@var{height}:@var{pix_fmt_string}:@var{timebase_num}:@var{timebase_den}:@var{sample_aspect_ratio_num}:@var{sample_aspect_ratio.den}:@var{scale_params}
  1880. All the parameters but @var{scale_params} need to be explicitly
  1881. defined.
  1882. Follows the list of the accepted parameters.
  1883. @table @option
  1884. @item width, height
  1885. Specify the width and height of the buffered video frames.
  1886. @item pix_fmt_string
  1887. A string representing the pixel format of the buffered video frames.
  1888. It may be a number corresponding to a pixel format, or a pixel format
  1889. name.
  1890. @item timebase_num, timebase_den
  1891. Specify numerator and denomitor of the timebase assumed by the
  1892. timestamps of the buffered frames.
  1893. @item sample_aspect_ratio.num, sample_aspect_ratio.den
  1894. Specify numerator and denominator of the sample aspect ratio assumed
  1895. by the video frames.
  1896. @item scale_params
  1897. Specify the optional parameters to be used for the scale filter which
  1898. is automatically inserted when an input change is detected in the
  1899. input size or format.
  1900. @end table
  1901. For example:
  1902. @example
  1903. buffer=320:240:yuv410p:1:24:1:1
  1904. @end example
  1905. will instruct the source to accept video frames with size 320x240 and
  1906. with format "yuv410p", assuming 1/24 as the timestamps timebase and
  1907. square pixels (1:1 sample aspect ratio).
  1908. Since the pixel format with name "yuv410p" corresponds to the number 6
  1909. (check the enum PixelFormat definition in @file{libavutil/pixfmt.h}),
  1910. this example corresponds to:
  1911. @example
  1912. buffer=320:240:6:1:24:1:1
  1913. @end example
  1914. @section cellauto
  1915. Create a pattern generated by an elementary cellular automaton.
  1916. The initial state of the cellular automaton can be defined through the
  1917. @option{filename}, and @option{pattern} options. If such options are
  1918. not specified an initial state is created randomly.
  1919. At each new frame a new row in the video is filled with the result of
  1920. the cellular automaton next generation. The behavior when the whole
  1921. frame is filled is defined by the @option{scroll} option.
  1922. This source accepts a list of options in the form of
  1923. @var{key}=@var{value} pairs separated by ":". A description of the
  1924. accepted options follows.
  1925. @table @option
  1926. @item filename, f
  1927. Read the initial cellular automaton state, i.e. the starting row, from
  1928. the specified file.
  1929. In the file, each non-whitespace character is considered an alive
  1930. cell, a newline will terminate the row, and further characters in the
  1931. file will be ignored.
  1932. @item pattern, p
  1933. Read the initial cellular automaton state, i.e. the starting row, from
  1934. the specified string.
  1935. Each non-whitespace character in the string is considered an alive
  1936. cell, a newline will terminate the row, and further characters in the
  1937. string will be ignored.
  1938. @item rate, r
  1939. Set the video rate, that is the number of frames generated per second.
  1940. Default is 25.
  1941. @item random_fill_ratio, ratio
  1942. Set the random fill ratio for the initial cellular automaton row. It
  1943. is a floating point number value ranging from 0 to 1, defaults to
  1944. 1/PHI.
  1945. This option is ignored when a file or a pattern is specified.
  1946. @item random_seed, seed
  1947. Set the seed for filling randomly the initial row, must be an integer
  1948. included between 0 and UINT32_MAX. If not specified, or if explicitly
  1949. set to -1, the filter will try to use a good random seed on a best
  1950. effort basis.
  1951. @item rule
  1952. Set the cellular automaton rule, it is a number ranging from 0 to 255.
  1953. Default value is 110.
  1954. @item size, s
  1955. Set the size of the output video.
  1956. If @option{filename} or @option{pattern} is specified, the size is set
  1957. by default to the width of the specified initial state row, and the
  1958. height is set to @var{width} * PHI.
  1959. If @option{size} is set, it must contain the width of the specified
  1960. pattern string, and the specified pattern will be centered in the
  1961. larger row.
  1962. If a filename or a pattern string is not specified, the size value
  1963. defaults to "320x518" (used for a randomly generated initial state).
  1964. @item scroll
  1965. If set to 1, scroll the output upward when all the rows in the output
  1966. have been already filled. If set to 0, the new generated row will be
  1967. written over the top row just after the bottom row is filled.
  1968. Defaults to 1.
  1969. @item start_full, full
  1970. If set to 1, completely fill the output with generated rows before
  1971. outputting the first frame.
  1972. This is the default behavior, for disabling set the value to 0.
  1973. @item stitch
  1974. If set to 1, stitch the left and right row edges together.
  1975. This is the default behavior, for disabling set the value to 0.
  1976. @end table
  1977. @subsection Examples
  1978. @itemize
  1979. @item
  1980. Read the initial state from @file{pattern}, and specify an output of
  1981. size 200x400.
  1982. @example
  1983. cellauto=f=pattern:s=200x400
  1984. @end example
  1985. @item
  1986. Generate a random initial row with a width of 200 cells, with a fill
  1987. ratio of 2/3:
  1988. @example
  1989. cellauto=ratio=2/3:s=200x200
  1990. @end example
  1991. @item
  1992. Create a pattern generated by rule 18 starting by a single alive cell
  1993. centered on an initial row with width 100:
  1994. @example
  1995. cellauto=p=@@:s=100x400:full=0:rule=18
  1996. @end example
  1997. @item
  1998. Specify a more elaborated initial pattern:
  1999. @example
  2000. cellauto=p='@@@@ @@ @@@@':s=100x400:full=0:rule=18
  2001. @end example
  2002. @end itemize
  2003. @section color
  2004. Provide an uniformly colored input.
  2005. It accepts the following parameters:
  2006. @var{color}:@var{frame_size}:@var{frame_rate}
  2007. Follows the description of the accepted parameters.
  2008. @table @option
  2009. @item color
  2010. Specify the color of the source. It can be the name of a color (case
  2011. insensitive match) or a 0xRRGGBB[AA] sequence, possibly followed by an
  2012. alpha specifier. The default value is "black".
  2013. @item frame_size
  2014. Specify the size of the sourced video, it may be a string of the form
  2015. @var{width}x@var{height}, or the name of a size abbreviation. The
  2016. default value is "320x240".
  2017. @item frame_rate
  2018. Specify the frame rate of the sourced video, as the number of frames
  2019. generated per second. It has to be a string in the format
  2020. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float
  2021. number or a valid video frame rate abbreviation. The default value is
  2022. "25".
  2023. @end table
  2024. For example the following graph description will generate a red source
  2025. with an opacity of 0.2, with size "qcif" and a frame rate of 10
  2026. frames per second, which will be overlayed over the source connected
  2027. to the pad with identifier "in".
  2028. @example
  2029. "color=red@@0.2:qcif:10 [color]; [in][color] overlay [out]"
  2030. @end example
  2031. @section movie
  2032. Read a video stream from a movie container.
  2033. It accepts the syntax: @var{movie_name}[:@var{options}] where
  2034. @var{movie_name} is the name of the resource to read (not necessarily
  2035. a file but also a device or a stream accessed through some protocol),
  2036. and @var{options} is an optional sequence of @var{key}=@var{value}
  2037. pairs, separated by ":".
  2038. The description of the accepted options follows.
  2039. @table @option
  2040. @item format_name, f
  2041. Specifies the format assumed for the movie to read, and can be either
  2042. the name of a container or an input device. If not specified the
  2043. format is guessed from @var{movie_name} or by probing.
  2044. @item seek_point, sp
  2045. Specifies the seek point in seconds, the frames will be output
  2046. starting from this seek point, the parameter is evaluated with
  2047. @code{av_strtod} so the numerical value may be suffixed by an IS
  2048. postfix. Default value is "0".
  2049. @item stream_index, si
  2050. Specifies the index of the video stream to read. If the value is -1,
  2051. the best suited video stream will be automatically selected. Default
  2052. value is "-1".
  2053. @end table
  2054. This filter allows to overlay a second video on top of main input of
  2055. a filtergraph as shown in this graph:
  2056. @example
  2057. input -----------> deltapts0 --> overlay --> output
  2058. ^
  2059. |
  2060. movie --> scale--> deltapts1 -------+
  2061. @end example
  2062. Some examples follow:
  2063. @example
  2064. # skip 3.2 seconds from the start of the avi file in.avi, and overlay it
  2065. # on top of the input labelled as "in".
  2066. movie=in.avi:seek_point=3.2, scale=180:-1, setpts=PTS-STARTPTS [movie];
  2067. [in] setpts=PTS-STARTPTS, [movie] overlay=16:16 [out]
  2068. # read from a video4linux2 device, and overlay it on top of the input
  2069. # labelled as "in"
  2070. movie=/dev/video0:f=video4linux2, scale=180:-1, setpts=PTS-STARTPTS [movie];
  2071. [in] setpts=PTS-STARTPTS, [movie] overlay=16:16 [out]
  2072. @end example
  2073. @section mptestsrc
  2074. Generate various test patterns, as generated by the MPlayer test filter.
  2075. The size of the generated video is fixed, and is 256x256.
  2076. This source is useful in particular for testing encoding features.
  2077. This source accepts an optional sequence of @var{key}=@var{value} pairs,
  2078. separated by ":". The description of the accepted options follows.
  2079. @table @option
  2080. @item rate, r
  2081. Specify the frame rate of the sourced video, as the number of frames
  2082. generated per second. It has to be a string in the format
  2083. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float
  2084. number or a valid video frame rate abbreviation. The default value is
  2085. "25".
  2086. @item duration, d
  2087. Set the video duration of the sourced video. The accepted syntax is:
  2088. @example
  2089. [-]HH[:MM[:SS[.m...]]]
  2090. [-]S+[.m...]
  2091. @end example
  2092. See also the function @code{av_parse_time()}.
  2093. If not specified, or the expressed duration is negative, the video is
  2094. supposed to be generated forever.
  2095. @item test, t
  2096. Set the number or the name of the test to perform. Supported tests are:
  2097. @table @option
  2098. @item dc_luma
  2099. @item dc_chroma
  2100. @item freq_luma
  2101. @item freq_chroma
  2102. @item amp_luma
  2103. @item amp_chroma
  2104. @item cbp
  2105. @item mv
  2106. @item ring1
  2107. @item ring2
  2108. @item all
  2109. @end table
  2110. Default value is "all", which will cycle through the list of all tests.
  2111. @end table
  2112. For example the following:
  2113. @example
  2114. testsrc=t=dc_luma
  2115. @end example
  2116. will generate a "dc_luma" test pattern.
  2117. @section frei0r_src
  2118. Provide a frei0r source.
  2119. To enable compilation of this filter you need to install the frei0r
  2120. header and configure FFmpeg with --enable-frei0r.
  2121. The source supports the syntax:
  2122. @example
  2123. @var{size}:@var{rate}:@var{src_name}[@{=|:@}@var{param1}:@var{param2}:...:@var{paramN}]
  2124. @end example
  2125. @var{size} is the size of the video to generate, may be a string of the
  2126. form @var{width}x@var{height} or a frame size abbreviation.
  2127. @var{rate} is the rate of the video to generate, may be a string of
  2128. the form @var{num}/@var{den} or a frame rate abbreviation.
  2129. @var{src_name} is the name to the frei0r source to load. For more
  2130. information regarding frei0r and how to set the parameters read the
  2131. section @ref{frei0r} in the description of the video filters.
  2132. Some examples follow:
  2133. @example
  2134. # generate a frei0r partik0l source with size 200x200 and frame rate 10
  2135. # which is overlayed on the overlay filter main input
  2136. frei0r_src=200x200:10:partik0l=1234 [overlay]; [in][overlay] overlay
  2137. @end example
  2138. @section life
  2139. Generate a life pattern.
  2140. This source is based on a generalization of John Conway's life game.
  2141. The sourced input represents a life grid, each pixel represents a cell
  2142. which can be in one of two possible states, alive or dead. Every cell
  2143. interacts with its eight neighbours, which are the cells that are
  2144. horizontally, vertically, or diagonally adjacent.
  2145. At each interaction the grid evolves according to the adopted rule,
  2146. which specifies the number of neighbor alive cells which will make a
  2147. cell stay alive or born. The @option{rule} option allows to specify
  2148. the rule to adopt.
  2149. This source accepts a list of options in the form of
  2150. @var{key}=@var{value} pairs separated by ":". A description of the
  2151. accepted options follows.
  2152. @table @option
  2153. @item filename, f
  2154. Set the file from which to read the initial grid state. In the file,
  2155. each non-whitespace character is considered an alive cell, and newline
  2156. is used to delimit the end of each row.
  2157. If this option is not specified, the initial grid is generated
  2158. randomly.
  2159. @item rate, r
  2160. Set the video rate, that is the number of frames generated per second.
  2161. Default is 25.
  2162. @item random_fill_ratio, ratio
  2163. Set the random fill ratio for the initial random grid. It is a
  2164. floating point number value ranging from 0 to 1, defaults to 1/PHI.
  2165. It is ignored when a file is specified.
  2166. @item random_seed, seed
  2167. Set the seed for filling the initial random grid, must be an integer
  2168. included between 0 and UINT32_MAX. If not specified, or if explicitly
  2169. set to -1, the filter will try to use a good random seed on a best
  2170. effort basis.
  2171. @item rule
  2172. Set the life rule.
  2173. A rule can be specified with a code of the kind "S@var{NS}/B@var{NB}",
  2174. where @var{NS} and @var{NB} are sequences of numbers in the range 0-8,
  2175. @var{NS} specifies the number of alive neighbor cells which make a
  2176. live cell stay alive, and @var{NB} the number of alive neighbor cells
  2177. which make a dead cell to become alive (i.e. to "born").
  2178. "s" and "b" can be used in place of "S" and "B", respectively.
  2179. Alternatively a rule can be specified by an 18-bits integer. The 9
  2180. high order bits are used to encode the next cell state if it is alive
  2181. for each number of neighbor alive cells, the low order bits specify
  2182. the rule for "borning" new cells. Higher order bits encode for an
  2183. higher number of neighbor cells.
  2184. For example the number 6153 = @code{(12<<9)+9} specifies a stay alive
  2185. rule of 12 and a born rule of 9, which corresponds to "S23/B03".
  2186. Default value is "S23/B3", which is the original Conway's game of life
  2187. rule, and will keep a cell alive if it has 2 or 3 neighbor alive
  2188. cells, and will born a new cell if there are three alive cells around
  2189. a dead cell.
  2190. @item size, s
  2191. Set the size of the output video.
  2192. If @option{filename} is specified, the size is set by default to the
  2193. same size of the input file. If @option{size} is set, it must contain
  2194. the size specified in the input file, and the initial grid defined in
  2195. that file is centered in the larger resulting area.
  2196. If a filename is not specified, the size value defaults to "320x240"
  2197. (used for a randomly generated initial grid).
  2198. @item stitch
  2199. If set to 1, stitch the left and right grid edges together, and the
  2200. top and bottom edges also. Defaults to 1.
  2201. @item mold
  2202. Set cell mold speed. If set, a dead cell will go from @option{death_color} to
  2203. @option{mold_color} with a step of @option{mold}. @option{mold} can have a
  2204. value from 0 to 255.
  2205. @item life_color
  2206. Set the color of living (or new born) cells.
  2207. @item death_color
  2208. Set the color of dead cells. If @option{mold} is set, this is the first color
  2209. used to represent a dead cell.
  2210. @item mold_color
  2211. Set mold color, for definitely dead and moldy cells.
  2212. @end table
  2213. @subsection Examples
  2214. @itemize
  2215. @item
  2216. Read a grid from @file{pattern}, and center it on a grid of size
  2217. 300x300 pixels:
  2218. @example
  2219. life=f=pattern:s=300x300
  2220. @end example
  2221. @item
  2222. Generate a random grid of size 200x200, with a fill ratio of 2/3:
  2223. @example
  2224. life=ratio=2/3:s=200x200
  2225. @end example
  2226. @item
  2227. Specify a custom rule for evolving a randomly generated grid:
  2228. @example
  2229. life=rule=S14/B34
  2230. @end example
  2231. @item
  2232. Full example with slow death effect (mold) using @command{ffplay}:
  2233. @example
  2234. ffplay -f lavfi life=s=300x200:mold=10:r=60:ratio=0.1:death_color=#C83232:life_color=#00ff00,scale=1200:800:flags=16
  2235. @end example
  2236. @end itemize
  2237. @section nullsrc, rgbtestsrc, testsrc
  2238. The @code{nullsrc} source returns unprocessed video frames. It is
  2239. mainly useful to be employed in analysis / debugging tools, or as the
  2240. source for filters which ignore the input data.
  2241. The @code{rgbtestsrc} source generates an RGB test pattern useful for
  2242. detecting RGB vs BGR issues. You should see a red, green and blue
  2243. stripe from top to bottom.
  2244. The @code{testsrc} source generates a test video pattern, showing a
  2245. color pattern, a scrolling gradient and a timestamp. This is mainly
  2246. intended for testing purposes.
  2247. These sources accept an optional sequence of @var{key}=@var{value} pairs,
  2248. separated by ":". The description of the accepted options follows.
  2249. @table @option
  2250. @item size, s
  2251. Specify the size of the sourced video, it may be a string of the form
  2252. @var{width}x@var{height}, or the name of a size abbreviation. The
  2253. default value is "320x240".
  2254. @item rate, r
  2255. Specify the frame rate of the sourced video, as the number of frames
  2256. generated per second. It has to be a string in the format
  2257. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float
  2258. number or a valid video frame rate abbreviation. The default value is
  2259. "25".
  2260. @item sar
  2261. Set the sample aspect ratio of the sourced video.
  2262. @item duration
  2263. Set the video duration of the sourced video. The accepted syntax is:
  2264. @example
  2265. [-]HH[:MM[:SS[.m...]]]
  2266. [-]S+[.m...]
  2267. @end example
  2268. See also the function @code{av_parse_time()}.
  2269. If not specified, or the expressed duration is negative, the video is
  2270. supposed to be generated forever.
  2271. @end table
  2272. For example the following:
  2273. @example
  2274. testsrc=duration=5.3:size=qcif:rate=10
  2275. @end example
  2276. will generate a video with a duration of 5.3 seconds, with size
  2277. 176x144 and a frame rate of 10 frames per second.
  2278. If the input content is to be ignored, @code{nullsrc} can be used. The
  2279. following command generates noise in the luminance plane by employing
  2280. the @code{mp=geq} filter:
  2281. @example
  2282. nullsrc=s=256x256, mp=geq=random(1)*255:128:128
  2283. @end example
  2284. @c man end VIDEO SOURCES
  2285. @chapter Video Sinks
  2286. @c man begin VIDEO SINKS
  2287. Below is a description of the currently available video sinks.
  2288. @section buffersink
  2289. Buffer video frames, and make them available to the end of the filter
  2290. graph.
  2291. This sink is mainly intended for a programmatic use, in particular
  2292. through the interface defined in @file{libavfilter/buffersink.h}.
  2293. It does not require a string parameter in input, but you need to
  2294. specify a pointer to a list of supported pixel formats terminated by
  2295. -1 in the opaque parameter provided to @code{avfilter_init_filter}
  2296. when initializing this sink.
  2297. @section nullsink
  2298. Null video sink, do absolutely nothing with the input video. It is
  2299. mainly useful as a template and to be employed in analysis / debugging
  2300. tools.
  2301. @c man end VIDEO SINKS