You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

982 lines
32KB

  1. /*
  2. * WMA compatible decoder
  3. * Copyright (c) 2002 The FFmpeg Project
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * WMA compatible decoder.
  24. * This decoder handles Microsoft Windows Media Audio data, versions 1 & 2.
  25. * WMA v1 is identified by audio format 0x160 in Microsoft media files
  26. * (ASF/AVI/WAV). WMA v2 is identified by audio format 0x161.
  27. *
  28. * To use this decoder, a calling application must supply the extra data
  29. * bytes provided with the WMA data. These are the extra, codec-specific
  30. * bytes at the end of a WAVEFORMATEX data structure. Transmit these bytes
  31. * to the decoder using the extradata[_size] fields in AVCodecContext. There
  32. * should be 4 extra bytes for v1 data and 6 extra bytes for v2 data.
  33. */
  34. #include "avcodec.h"
  35. #include "wma.h"
  36. #undef NDEBUG
  37. #include <assert.h>
  38. #define EXPVLCBITS 8
  39. #define EXPMAX ((19+EXPVLCBITS-1)/EXPVLCBITS)
  40. #define HGAINVLCBITS 9
  41. #define HGAINMAX ((13+HGAINVLCBITS-1)/HGAINVLCBITS)
  42. static void wma_lsp_to_curve_init(WMACodecContext *s, int frame_len);
  43. #ifdef TRACE
  44. static void dump_shorts(WMACodecContext *s, const char *name, const short *tab, int n)
  45. {
  46. int i;
  47. tprintf(s->avctx, "%s[%d]:\n", name, n);
  48. for(i=0;i<n;i++) {
  49. if ((i & 7) == 0)
  50. tprintf(s->avctx, "%4d: ", i);
  51. tprintf(s->avctx, " %5d.0", tab[i]);
  52. if ((i & 7) == 7)
  53. tprintf(s->avctx, "\n");
  54. }
  55. }
  56. static void dump_floats(WMACodecContext *s, const char *name, int prec, const float *tab, int n)
  57. {
  58. int i;
  59. tprintf(s->avctx, "%s[%d]:\n", name, n);
  60. for(i=0;i<n;i++) {
  61. if ((i & 7) == 0)
  62. tprintf(s->avctx, "%4d: ", i);
  63. tprintf(s->avctx, " %8.*f", prec, tab[i]);
  64. if ((i & 7) == 7)
  65. tprintf(s->avctx, "\n");
  66. }
  67. if ((i & 7) != 0)
  68. tprintf(s->avctx, "\n");
  69. }
  70. #endif
  71. static int wma_decode_init(AVCodecContext * avctx)
  72. {
  73. WMACodecContext *s = avctx->priv_data;
  74. int i, flags2;
  75. uint8_t *extradata;
  76. s->avctx = avctx;
  77. /* extract flag infos */
  78. flags2 = 0;
  79. extradata = avctx->extradata;
  80. if (avctx->codec->id == CODEC_ID_WMAV1 && avctx->extradata_size >= 4) {
  81. flags2 = AV_RL16(extradata+2);
  82. } else if (avctx->codec->id == CODEC_ID_WMAV2 && avctx->extradata_size >= 6) {
  83. flags2 = AV_RL16(extradata+4);
  84. }
  85. // for(i=0; i<avctx->extradata_size; i++)
  86. // av_log(NULL, AV_LOG_ERROR, "%02X ", extradata[i]);
  87. s->use_exp_vlc = flags2 & 0x0001;
  88. s->use_bit_reservoir = flags2 & 0x0002;
  89. s->use_variable_block_len = flags2 & 0x0004;
  90. if(avctx->codec->id == CODEC_ID_WMAV2 && avctx->extradata_size >= 8){
  91. if(AV_RL16(extradata+4)==0xd && s->use_variable_block_len){
  92. av_log(avctx, AV_LOG_WARNING, "Disabling use_variable_block_len, if this fails contact the ffmpeg developers and send us the file\n");
  93. s->use_variable_block_len= 0; // this fixes issue1503
  94. }
  95. }
  96. if(avctx->channels > MAX_CHANNELS){
  97. av_log(avctx, AV_LOG_ERROR, "Invalid number of channels (%d)\n", avctx->channels);
  98. return -1;
  99. }
  100. if(ff_wma_init(avctx, flags2)<0)
  101. return -1;
  102. /* init MDCT */
  103. for(i = 0; i < s->nb_block_sizes; i++)
  104. ff_mdct_init(&s->mdct_ctx[i], s->frame_len_bits - i + 1, 1, 1.0);
  105. if (s->use_noise_coding) {
  106. init_vlc(&s->hgain_vlc, HGAINVLCBITS, sizeof(ff_wma_hgain_huffbits),
  107. ff_wma_hgain_huffbits, 1, 1,
  108. ff_wma_hgain_huffcodes, 2, 2, 0);
  109. }
  110. if (s->use_exp_vlc) {
  111. init_vlc(&s->exp_vlc, EXPVLCBITS, sizeof(ff_aac_scalefactor_bits), //FIXME move out of context
  112. ff_aac_scalefactor_bits, 1, 1,
  113. ff_aac_scalefactor_code, 4, 4, 0);
  114. } else {
  115. wma_lsp_to_curve_init(s, s->frame_len);
  116. }
  117. avctx->sample_fmt = AV_SAMPLE_FMT_S16;
  118. avcodec_get_frame_defaults(&s->frame);
  119. avctx->coded_frame = &s->frame;
  120. return 0;
  121. }
  122. /**
  123. * compute x^-0.25 with an exponent and mantissa table. We use linear
  124. * interpolation to reduce the mantissa table size at a small speed
  125. * expense (linear interpolation approximately doubles the number of
  126. * bits of precision).
  127. */
  128. static inline float pow_m1_4(WMACodecContext *s, float x)
  129. {
  130. union {
  131. float f;
  132. unsigned int v;
  133. } u, t;
  134. unsigned int e, m;
  135. float a, b;
  136. u.f = x;
  137. e = u.v >> 23;
  138. m = (u.v >> (23 - LSP_POW_BITS)) & ((1 << LSP_POW_BITS) - 1);
  139. /* build interpolation scale: 1 <= t < 2. */
  140. t.v = ((u.v << LSP_POW_BITS) & ((1 << 23) - 1)) | (127 << 23);
  141. a = s->lsp_pow_m_table1[m];
  142. b = s->lsp_pow_m_table2[m];
  143. return s->lsp_pow_e_table[e] * (a + b * t.f);
  144. }
  145. static void wma_lsp_to_curve_init(WMACodecContext *s, int frame_len)
  146. {
  147. float wdel, a, b;
  148. int i, e, m;
  149. wdel = M_PI / frame_len;
  150. for(i=0;i<frame_len;i++)
  151. s->lsp_cos_table[i] = 2.0f * cos(wdel * i);
  152. /* tables for x^-0.25 computation */
  153. for(i=0;i<256;i++) {
  154. e = i - 126;
  155. s->lsp_pow_e_table[i] = pow(2.0, e * -0.25);
  156. }
  157. /* NOTE: these two tables are needed to avoid two operations in
  158. pow_m1_4 */
  159. b = 1.0;
  160. for(i=(1 << LSP_POW_BITS) - 1;i>=0;i--) {
  161. m = (1 << LSP_POW_BITS) + i;
  162. a = (float)m * (0.5 / (1 << LSP_POW_BITS));
  163. a = pow(a, -0.25);
  164. s->lsp_pow_m_table1[i] = 2 * a - b;
  165. s->lsp_pow_m_table2[i] = b - a;
  166. b = a;
  167. }
  168. }
  169. /**
  170. * NOTE: We use the same code as Vorbis here
  171. * @todo optimize it further with SSE/3Dnow
  172. */
  173. static void wma_lsp_to_curve(WMACodecContext *s,
  174. float *out, float *val_max_ptr,
  175. int n, float *lsp)
  176. {
  177. int i, j;
  178. float p, q, w, v, val_max;
  179. val_max = 0;
  180. for(i=0;i<n;i++) {
  181. p = 0.5f;
  182. q = 0.5f;
  183. w = s->lsp_cos_table[i];
  184. for(j=1;j<NB_LSP_COEFS;j+=2){
  185. q *= w - lsp[j - 1];
  186. p *= w - lsp[j];
  187. }
  188. p *= p * (2.0f - w);
  189. q *= q * (2.0f + w);
  190. v = p + q;
  191. v = pow_m1_4(s, v);
  192. if (v > val_max)
  193. val_max = v;
  194. out[i] = v;
  195. }
  196. *val_max_ptr = val_max;
  197. }
  198. /**
  199. * decode exponents coded with LSP coefficients (same idea as Vorbis)
  200. */
  201. static void decode_exp_lsp(WMACodecContext *s, int ch)
  202. {
  203. float lsp_coefs[NB_LSP_COEFS];
  204. int val, i;
  205. for(i = 0; i < NB_LSP_COEFS; i++) {
  206. if (i == 0 || i >= 8)
  207. val = get_bits(&s->gb, 3);
  208. else
  209. val = get_bits(&s->gb, 4);
  210. lsp_coefs[i] = ff_wma_lsp_codebook[i][val];
  211. }
  212. wma_lsp_to_curve(s, s->exponents[ch], &s->max_exponent[ch],
  213. s->block_len, lsp_coefs);
  214. }
  215. /** pow(10, i / 16.0) for i in -60..95 */
  216. static const float pow_tab[] = {
  217. 1.7782794100389e-04, 2.0535250264571e-04,
  218. 2.3713737056617e-04, 2.7384196342644e-04,
  219. 3.1622776601684e-04, 3.6517412725484e-04,
  220. 4.2169650342858e-04, 4.8696752516586e-04,
  221. 5.6234132519035e-04, 6.4938163157621e-04,
  222. 7.4989420933246e-04, 8.6596432336006e-04,
  223. 1.0000000000000e-03, 1.1547819846895e-03,
  224. 1.3335214321633e-03, 1.5399265260595e-03,
  225. 1.7782794100389e-03, 2.0535250264571e-03,
  226. 2.3713737056617e-03, 2.7384196342644e-03,
  227. 3.1622776601684e-03, 3.6517412725484e-03,
  228. 4.2169650342858e-03, 4.8696752516586e-03,
  229. 5.6234132519035e-03, 6.4938163157621e-03,
  230. 7.4989420933246e-03, 8.6596432336006e-03,
  231. 1.0000000000000e-02, 1.1547819846895e-02,
  232. 1.3335214321633e-02, 1.5399265260595e-02,
  233. 1.7782794100389e-02, 2.0535250264571e-02,
  234. 2.3713737056617e-02, 2.7384196342644e-02,
  235. 3.1622776601684e-02, 3.6517412725484e-02,
  236. 4.2169650342858e-02, 4.8696752516586e-02,
  237. 5.6234132519035e-02, 6.4938163157621e-02,
  238. 7.4989420933246e-02, 8.6596432336007e-02,
  239. 1.0000000000000e-01, 1.1547819846895e-01,
  240. 1.3335214321633e-01, 1.5399265260595e-01,
  241. 1.7782794100389e-01, 2.0535250264571e-01,
  242. 2.3713737056617e-01, 2.7384196342644e-01,
  243. 3.1622776601684e-01, 3.6517412725484e-01,
  244. 4.2169650342858e-01, 4.8696752516586e-01,
  245. 5.6234132519035e-01, 6.4938163157621e-01,
  246. 7.4989420933246e-01, 8.6596432336007e-01,
  247. 1.0000000000000e+00, 1.1547819846895e+00,
  248. 1.3335214321633e+00, 1.5399265260595e+00,
  249. 1.7782794100389e+00, 2.0535250264571e+00,
  250. 2.3713737056617e+00, 2.7384196342644e+00,
  251. 3.1622776601684e+00, 3.6517412725484e+00,
  252. 4.2169650342858e+00, 4.8696752516586e+00,
  253. 5.6234132519035e+00, 6.4938163157621e+00,
  254. 7.4989420933246e+00, 8.6596432336007e+00,
  255. 1.0000000000000e+01, 1.1547819846895e+01,
  256. 1.3335214321633e+01, 1.5399265260595e+01,
  257. 1.7782794100389e+01, 2.0535250264571e+01,
  258. 2.3713737056617e+01, 2.7384196342644e+01,
  259. 3.1622776601684e+01, 3.6517412725484e+01,
  260. 4.2169650342858e+01, 4.8696752516586e+01,
  261. 5.6234132519035e+01, 6.4938163157621e+01,
  262. 7.4989420933246e+01, 8.6596432336007e+01,
  263. 1.0000000000000e+02, 1.1547819846895e+02,
  264. 1.3335214321633e+02, 1.5399265260595e+02,
  265. 1.7782794100389e+02, 2.0535250264571e+02,
  266. 2.3713737056617e+02, 2.7384196342644e+02,
  267. 3.1622776601684e+02, 3.6517412725484e+02,
  268. 4.2169650342858e+02, 4.8696752516586e+02,
  269. 5.6234132519035e+02, 6.4938163157621e+02,
  270. 7.4989420933246e+02, 8.6596432336007e+02,
  271. 1.0000000000000e+03, 1.1547819846895e+03,
  272. 1.3335214321633e+03, 1.5399265260595e+03,
  273. 1.7782794100389e+03, 2.0535250264571e+03,
  274. 2.3713737056617e+03, 2.7384196342644e+03,
  275. 3.1622776601684e+03, 3.6517412725484e+03,
  276. 4.2169650342858e+03, 4.8696752516586e+03,
  277. 5.6234132519035e+03, 6.4938163157621e+03,
  278. 7.4989420933246e+03, 8.6596432336007e+03,
  279. 1.0000000000000e+04, 1.1547819846895e+04,
  280. 1.3335214321633e+04, 1.5399265260595e+04,
  281. 1.7782794100389e+04, 2.0535250264571e+04,
  282. 2.3713737056617e+04, 2.7384196342644e+04,
  283. 3.1622776601684e+04, 3.6517412725484e+04,
  284. 4.2169650342858e+04, 4.8696752516586e+04,
  285. 5.6234132519035e+04, 6.4938163157621e+04,
  286. 7.4989420933246e+04, 8.6596432336007e+04,
  287. 1.0000000000000e+05, 1.1547819846895e+05,
  288. 1.3335214321633e+05, 1.5399265260595e+05,
  289. 1.7782794100389e+05, 2.0535250264571e+05,
  290. 2.3713737056617e+05, 2.7384196342644e+05,
  291. 3.1622776601684e+05, 3.6517412725484e+05,
  292. 4.2169650342858e+05, 4.8696752516586e+05,
  293. 5.6234132519035e+05, 6.4938163157621e+05,
  294. 7.4989420933246e+05, 8.6596432336007e+05,
  295. };
  296. /**
  297. * decode exponents coded with VLC codes
  298. */
  299. static int decode_exp_vlc(WMACodecContext *s, int ch)
  300. {
  301. int last_exp, n, code;
  302. const uint16_t *ptr;
  303. float v, max_scale;
  304. uint32_t *q, *q_end, iv;
  305. const float *ptab = pow_tab + 60;
  306. const uint32_t *iptab = (const uint32_t*)ptab;
  307. ptr = s->exponent_bands[s->frame_len_bits - s->block_len_bits];
  308. q = (uint32_t *)s->exponents[ch];
  309. q_end = q + s->block_len;
  310. max_scale = 0;
  311. if (s->version == 1) {
  312. last_exp = get_bits(&s->gb, 5) + 10;
  313. v = ptab[last_exp];
  314. iv = iptab[last_exp];
  315. max_scale = v;
  316. n = *ptr++;
  317. switch (n & 3) do {
  318. case 0: *q++ = iv;
  319. case 3: *q++ = iv;
  320. case 2: *q++ = iv;
  321. case 1: *q++ = iv;
  322. } while ((n -= 4) > 0);
  323. }else
  324. last_exp = 36;
  325. while (q < q_end) {
  326. code = get_vlc2(&s->gb, s->exp_vlc.table, EXPVLCBITS, EXPMAX);
  327. if (code < 0){
  328. av_log(s->avctx, AV_LOG_ERROR, "Exponent vlc invalid\n");
  329. return -1;
  330. }
  331. /* NOTE: this offset is the same as MPEG4 AAC ! */
  332. last_exp += code - 60;
  333. if ((unsigned)last_exp + 60 >= FF_ARRAY_ELEMS(pow_tab)) {
  334. av_log(s->avctx, AV_LOG_ERROR, "Exponent out of range: %d\n",
  335. last_exp);
  336. return -1;
  337. }
  338. v = ptab[last_exp];
  339. iv = iptab[last_exp];
  340. if (v > max_scale)
  341. max_scale = v;
  342. n = *ptr++;
  343. switch (n & 3) do {
  344. case 0: *q++ = iv;
  345. case 3: *q++ = iv;
  346. case 2: *q++ = iv;
  347. case 1: *q++ = iv;
  348. } while ((n -= 4) > 0);
  349. }
  350. s->max_exponent[ch] = max_scale;
  351. return 0;
  352. }
  353. /**
  354. * Apply MDCT window and add into output.
  355. *
  356. * We ensure that when the windows overlap their squared sum
  357. * is always 1 (MDCT reconstruction rule).
  358. */
  359. static void wma_window(WMACodecContext *s, float *out)
  360. {
  361. float *in = s->output;
  362. int block_len, bsize, n;
  363. /* left part */
  364. if (s->block_len_bits <= s->prev_block_len_bits) {
  365. block_len = s->block_len;
  366. bsize = s->frame_len_bits - s->block_len_bits;
  367. s->dsp.vector_fmul_add(out, in, s->windows[bsize],
  368. out, block_len);
  369. } else {
  370. block_len = 1 << s->prev_block_len_bits;
  371. n = (s->block_len - block_len) / 2;
  372. bsize = s->frame_len_bits - s->prev_block_len_bits;
  373. s->dsp.vector_fmul_add(out+n, in+n, s->windows[bsize],
  374. out+n, block_len);
  375. memcpy(out+n+block_len, in+n+block_len, n*sizeof(float));
  376. }
  377. out += s->block_len;
  378. in += s->block_len;
  379. /* right part */
  380. if (s->block_len_bits <= s->next_block_len_bits) {
  381. block_len = s->block_len;
  382. bsize = s->frame_len_bits - s->block_len_bits;
  383. s->dsp.vector_fmul_reverse(out, in, s->windows[bsize], block_len);
  384. } else {
  385. block_len = 1 << s->next_block_len_bits;
  386. n = (s->block_len - block_len) / 2;
  387. bsize = s->frame_len_bits - s->next_block_len_bits;
  388. memcpy(out, in, n*sizeof(float));
  389. s->dsp.vector_fmul_reverse(out+n, in+n, s->windows[bsize], block_len);
  390. memset(out+n+block_len, 0, n*sizeof(float));
  391. }
  392. }
  393. /**
  394. * @return 0 if OK. 1 if last block of frame. return -1 if
  395. * unrecorrable error.
  396. */
  397. static int wma_decode_block(WMACodecContext *s)
  398. {
  399. int n, v, a, ch, bsize;
  400. int coef_nb_bits, total_gain;
  401. int nb_coefs[MAX_CHANNELS];
  402. float mdct_norm;
  403. FFTContext *mdct;
  404. #ifdef TRACE
  405. tprintf(s->avctx, "***decode_block: %d:%d\n", s->frame_count - 1, s->block_num);
  406. #endif
  407. /* compute current block length */
  408. if (s->use_variable_block_len) {
  409. n = av_log2(s->nb_block_sizes - 1) + 1;
  410. if (s->reset_block_lengths) {
  411. s->reset_block_lengths = 0;
  412. v = get_bits(&s->gb, n);
  413. if (v >= s->nb_block_sizes){
  414. av_log(s->avctx, AV_LOG_ERROR, "prev_block_len_bits %d out of range\n", s->frame_len_bits - v);
  415. return -1;
  416. }
  417. s->prev_block_len_bits = s->frame_len_bits - v;
  418. v = get_bits(&s->gb, n);
  419. if (v >= s->nb_block_sizes){
  420. av_log(s->avctx, AV_LOG_ERROR, "block_len_bits %d out of range\n", s->frame_len_bits - v);
  421. return -1;
  422. }
  423. s->block_len_bits = s->frame_len_bits - v;
  424. } else {
  425. /* update block lengths */
  426. s->prev_block_len_bits = s->block_len_bits;
  427. s->block_len_bits = s->next_block_len_bits;
  428. }
  429. v = get_bits(&s->gb, n);
  430. if (v >= s->nb_block_sizes){
  431. av_log(s->avctx, AV_LOG_ERROR, "next_block_len_bits %d out of range\n", s->frame_len_bits - v);
  432. return -1;
  433. }
  434. s->next_block_len_bits = s->frame_len_bits - v;
  435. } else {
  436. /* fixed block len */
  437. s->next_block_len_bits = s->frame_len_bits;
  438. s->prev_block_len_bits = s->frame_len_bits;
  439. s->block_len_bits = s->frame_len_bits;
  440. }
  441. if (s->frame_len_bits - s->block_len_bits >= s->nb_block_sizes){
  442. av_log(s->avctx, AV_LOG_ERROR, "block_len_bits not initialized to a valid value\n");
  443. return -1;
  444. }
  445. /* now check if the block length is coherent with the frame length */
  446. s->block_len = 1 << s->block_len_bits;
  447. if ((s->block_pos + s->block_len) > s->frame_len){
  448. av_log(s->avctx, AV_LOG_ERROR, "frame_len overflow\n");
  449. return -1;
  450. }
  451. if (s->nb_channels == 2) {
  452. s->ms_stereo = get_bits1(&s->gb);
  453. }
  454. v = 0;
  455. for(ch = 0; ch < s->nb_channels; ch++) {
  456. a = get_bits1(&s->gb);
  457. s->channel_coded[ch] = a;
  458. v |= a;
  459. }
  460. bsize = s->frame_len_bits - s->block_len_bits;
  461. /* if no channel coded, no need to go further */
  462. /* XXX: fix potential framing problems */
  463. if (!v)
  464. goto next;
  465. /* read total gain and extract corresponding number of bits for
  466. coef escape coding */
  467. total_gain = 1;
  468. for(;;) {
  469. a = get_bits(&s->gb, 7);
  470. total_gain += a;
  471. if (a != 127)
  472. break;
  473. }
  474. coef_nb_bits= ff_wma_total_gain_to_bits(total_gain);
  475. /* compute number of coefficients */
  476. n = s->coefs_end[bsize] - s->coefs_start;
  477. for(ch = 0; ch < s->nb_channels; ch++)
  478. nb_coefs[ch] = n;
  479. /* complex coding */
  480. if (s->use_noise_coding) {
  481. for(ch = 0; ch < s->nb_channels; ch++) {
  482. if (s->channel_coded[ch]) {
  483. int i, n, a;
  484. n = s->exponent_high_sizes[bsize];
  485. for(i=0;i<n;i++) {
  486. a = get_bits1(&s->gb);
  487. s->high_band_coded[ch][i] = a;
  488. /* if noise coding, the coefficients are not transmitted */
  489. if (a)
  490. nb_coefs[ch] -= s->exponent_high_bands[bsize][i];
  491. }
  492. }
  493. }
  494. for(ch = 0; ch < s->nb_channels; ch++) {
  495. if (s->channel_coded[ch]) {
  496. int i, n, val, code;
  497. n = s->exponent_high_sizes[bsize];
  498. val = (int)0x80000000;
  499. for(i=0;i<n;i++) {
  500. if (s->high_band_coded[ch][i]) {
  501. if (val == (int)0x80000000) {
  502. val = get_bits(&s->gb, 7) - 19;
  503. } else {
  504. code = get_vlc2(&s->gb, s->hgain_vlc.table, HGAINVLCBITS, HGAINMAX);
  505. if (code < 0){
  506. av_log(s->avctx, AV_LOG_ERROR, "hgain vlc invalid\n");
  507. return -1;
  508. }
  509. val += code - 18;
  510. }
  511. s->high_band_values[ch][i] = val;
  512. }
  513. }
  514. }
  515. }
  516. }
  517. /* exponents can be reused in short blocks. */
  518. if ((s->block_len_bits == s->frame_len_bits) ||
  519. get_bits1(&s->gb)) {
  520. for(ch = 0; ch < s->nb_channels; ch++) {
  521. if (s->channel_coded[ch]) {
  522. if (s->use_exp_vlc) {
  523. if (decode_exp_vlc(s, ch) < 0)
  524. return -1;
  525. } else {
  526. decode_exp_lsp(s, ch);
  527. }
  528. s->exponents_bsize[ch] = bsize;
  529. }
  530. }
  531. }
  532. /* parse spectral coefficients : just RLE encoding */
  533. for(ch = 0; ch < s->nb_channels; ch++) {
  534. if (s->channel_coded[ch]) {
  535. int tindex;
  536. WMACoef* ptr = &s->coefs1[ch][0];
  537. /* special VLC tables are used for ms stereo because
  538. there is potentially less energy there */
  539. tindex = (ch == 1 && s->ms_stereo);
  540. memset(ptr, 0, s->block_len * sizeof(WMACoef));
  541. ff_wma_run_level_decode(s->avctx, &s->gb, &s->coef_vlc[tindex],
  542. s->level_table[tindex], s->run_table[tindex],
  543. 0, ptr, 0, nb_coefs[ch],
  544. s->block_len, s->frame_len_bits, coef_nb_bits);
  545. }
  546. if (s->version == 1 && s->nb_channels >= 2) {
  547. align_get_bits(&s->gb);
  548. }
  549. }
  550. /* normalize */
  551. {
  552. int n4 = s->block_len / 2;
  553. mdct_norm = 1.0 / (float)n4;
  554. if (s->version == 1) {
  555. mdct_norm *= sqrt(n4);
  556. }
  557. }
  558. /* finally compute the MDCT coefficients */
  559. for(ch = 0; ch < s->nb_channels; ch++) {
  560. if (s->channel_coded[ch]) {
  561. WMACoef *coefs1;
  562. float *coefs, *exponents, mult, mult1, noise;
  563. int i, j, n, n1, last_high_band, esize;
  564. float exp_power[HIGH_BAND_MAX_SIZE];
  565. coefs1 = s->coefs1[ch];
  566. exponents = s->exponents[ch];
  567. esize = s->exponents_bsize[ch];
  568. mult = pow(10, total_gain * 0.05) / s->max_exponent[ch];
  569. mult *= mdct_norm;
  570. coefs = s->coefs[ch];
  571. if (s->use_noise_coding) {
  572. mult1 = mult;
  573. /* very low freqs : noise */
  574. for(i = 0;i < s->coefs_start; i++) {
  575. *coefs++ = s->noise_table[s->noise_index] *
  576. exponents[i<<bsize>>esize] * mult1;
  577. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  578. }
  579. n1 = s->exponent_high_sizes[bsize];
  580. /* compute power of high bands */
  581. exponents = s->exponents[ch] +
  582. (s->high_band_start[bsize]<<bsize>>esize);
  583. last_high_band = 0; /* avoid warning */
  584. for(j=0;j<n1;j++) {
  585. n = s->exponent_high_bands[s->frame_len_bits -
  586. s->block_len_bits][j];
  587. if (s->high_band_coded[ch][j]) {
  588. float e2, v;
  589. e2 = 0;
  590. for(i = 0;i < n; i++) {
  591. v = exponents[i<<bsize>>esize];
  592. e2 += v * v;
  593. }
  594. exp_power[j] = e2 / n;
  595. last_high_band = j;
  596. tprintf(s->avctx, "%d: power=%f (%d)\n", j, exp_power[j], n);
  597. }
  598. exponents += n<<bsize>>esize;
  599. }
  600. /* main freqs and high freqs */
  601. exponents = s->exponents[ch] + (s->coefs_start<<bsize>>esize);
  602. for(j=-1;j<n1;j++) {
  603. if (j < 0) {
  604. n = s->high_band_start[bsize] -
  605. s->coefs_start;
  606. } else {
  607. n = s->exponent_high_bands[s->frame_len_bits -
  608. s->block_len_bits][j];
  609. }
  610. if (j >= 0 && s->high_band_coded[ch][j]) {
  611. /* use noise with specified power */
  612. mult1 = sqrt(exp_power[j] / exp_power[last_high_band]);
  613. /* XXX: use a table */
  614. mult1 = mult1 * pow(10, s->high_band_values[ch][j] * 0.05);
  615. mult1 = mult1 / (s->max_exponent[ch] * s->noise_mult);
  616. mult1 *= mdct_norm;
  617. for(i = 0;i < n; i++) {
  618. noise = s->noise_table[s->noise_index];
  619. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  620. *coefs++ = noise *
  621. exponents[i<<bsize>>esize] * mult1;
  622. }
  623. exponents += n<<bsize>>esize;
  624. } else {
  625. /* coded values + small noise */
  626. for(i = 0;i < n; i++) {
  627. noise = s->noise_table[s->noise_index];
  628. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  629. *coefs++ = ((*coefs1++) + noise) *
  630. exponents[i<<bsize>>esize] * mult;
  631. }
  632. exponents += n<<bsize>>esize;
  633. }
  634. }
  635. /* very high freqs : noise */
  636. n = s->block_len - s->coefs_end[bsize];
  637. mult1 = mult * exponents[((-1<<bsize))>>esize];
  638. for(i = 0; i < n; i++) {
  639. *coefs++ = s->noise_table[s->noise_index] * mult1;
  640. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  641. }
  642. } else {
  643. /* XXX: optimize more */
  644. for(i = 0;i < s->coefs_start; i++)
  645. *coefs++ = 0.0;
  646. n = nb_coefs[ch];
  647. for(i = 0;i < n; i++) {
  648. *coefs++ = coefs1[i] * exponents[i<<bsize>>esize] * mult;
  649. }
  650. n = s->block_len - s->coefs_end[bsize];
  651. for(i = 0;i < n; i++)
  652. *coefs++ = 0.0;
  653. }
  654. }
  655. }
  656. #ifdef TRACE
  657. for(ch = 0; ch < s->nb_channels; ch++) {
  658. if (s->channel_coded[ch]) {
  659. dump_floats(s, "exponents", 3, s->exponents[ch], s->block_len);
  660. dump_floats(s, "coefs", 1, s->coefs[ch], s->block_len);
  661. }
  662. }
  663. #endif
  664. if (s->ms_stereo && s->channel_coded[1]) {
  665. /* nominal case for ms stereo: we do it before mdct */
  666. /* no need to optimize this case because it should almost
  667. never happen */
  668. if (!s->channel_coded[0]) {
  669. tprintf(s->avctx, "rare ms-stereo case happened\n");
  670. memset(s->coefs[0], 0, sizeof(float) * s->block_len);
  671. s->channel_coded[0] = 1;
  672. }
  673. s->dsp.butterflies_float(s->coefs[0], s->coefs[1], s->block_len);
  674. }
  675. next:
  676. mdct = &s->mdct_ctx[bsize];
  677. for(ch = 0; ch < s->nb_channels; ch++) {
  678. int n4, index;
  679. n4 = s->block_len / 2;
  680. if(s->channel_coded[ch]){
  681. mdct->imdct_calc(mdct, s->output, s->coefs[ch]);
  682. }else if(!(s->ms_stereo && ch==1))
  683. memset(s->output, 0, sizeof(s->output));
  684. /* multiply by the window and add in the frame */
  685. index = (s->frame_len / 2) + s->block_pos - n4;
  686. wma_window(s, &s->frame_out[ch][index]);
  687. }
  688. /* update block number */
  689. s->block_num++;
  690. s->block_pos += s->block_len;
  691. if (s->block_pos >= s->frame_len)
  692. return 1;
  693. else
  694. return 0;
  695. }
  696. /* decode a frame of frame_len samples */
  697. static int wma_decode_frame(WMACodecContext *s, int16_t *samples)
  698. {
  699. int ret, n, ch, incr;
  700. const float *output[MAX_CHANNELS];
  701. #ifdef TRACE
  702. tprintf(s->avctx, "***decode_frame: %d size=%d\n", s->frame_count++, s->frame_len);
  703. #endif
  704. /* read each block */
  705. s->block_num = 0;
  706. s->block_pos = 0;
  707. for(;;) {
  708. ret = wma_decode_block(s);
  709. if (ret < 0)
  710. return -1;
  711. if (ret)
  712. break;
  713. }
  714. /* convert frame to integer */
  715. n = s->frame_len;
  716. incr = s->nb_channels;
  717. for (ch = 0; ch < MAX_CHANNELS; ch++)
  718. output[ch] = s->frame_out[ch];
  719. s->fmt_conv.float_to_int16_interleave(samples, output, n, incr);
  720. for (ch = 0; ch < incr; ch++) {
  721. /* prepare for next block */
  722. memmove(&s->frame_out[ch][0], &s->frame_out[ch][n], n * sizeof(float));
  723. }
  724. #ifdef TRACE
  725. dump_shorts(s, "samples", samples, n * s->nb_channels);
  726. #endif
  727. return 0;
  728. }
  729. static int wma_decode_superframe(AVCodecContext *avctx, void *data,
  730. int *got_frame_ptr, AVPacket *avpkt)
  731. {
  732. const uint8_t *buf = avpkt->data;
  733. int buf_size = avpkt->size;
  734. WMACodecContext *s = avctx->priv_data;
  735. int nb_frames, bit_offset, i, pos, len, ret;
  736. uint8_t *q;
  737. int16_t *samples;
  738. tprintf(avctx, "***decode_superframe:\n");
  739. if(buf_size==0){
  740. s->last_superframe_len = 0;
  741. return 0;
  742. }
  743. if (buf_size < s->block_align) {
  744. av_log(avctx, AV_LOG_ERROR,
  745. "Input packet size too small (%d < %d)\n",
  746. buf_size, s->block_align);
  747. return AVERROR_INVALIDDATA;
  748. }
  749. if(s->block_align)
  750. buf_size = s->block_align;
  751. init_get_bits(&s->gb, buf, buf_size*8);
  752. if (s->use_bit_reservoir) {
  753. /* read super frame header */
  754. skip_bits(&s->gb, 4); /* super frame index */
  755. nb_frames = get_bits(&s->gb, 4) - (s->last_superframe_len <= 0);
  756. } else {
  757. nb_frames = 1;
  758. }
  759. /* get output buffer */
  760. s->frame.nb_samples = nb_frames * s->frame_len;
  761. if ((ret = avctx->get_buffer(avctx, &s->frame)) < 0) {
  762. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  763. return ret;
  764. }
  765. samples = (int16_t *)s->frame.data[0];
  766. if (s->use_bit_reservoir) {
  767. bit_offset = get_bits(&s->gb, s->byte_offset_bits + 3);
  768. if (bit_offset > get_bits_left(&s->gb)) {
  769. av_log(avctx, AV_LOG_ERROR,
  770. "Invalid last frame bit offset %d > buf size %d (%d)\n",
  771. bit_offset, get_bits_left(&s->gb), buf_size);
  772. goto fail;
  773. }
  774. if (s->last_superframe_len > 0) {
  775. // printf("skip=%d\n", s->last_bitoffset);
  776. /* add bit_offset bits to last frame */
  777. if ((s->last_superframe_len + ((bit_offset + 7) >> 3)) >
  778. MAX_CODED_SUPERFRAME_SIZE)
  779. goto fail;
  780. q = s->last_superframe + s->last_superframe_len;
  781. len = bit_offset;
  782. while (len > 7) {
  783. *q++ = (get_bits)(&s->gb, 8);
  784. len -= 8;
  785. }
  786. if (len > 0) {
  787. *q++ = (get_bits)(&s->gb, len) << (8 - len);
  788. }
  789. memset(q, 0, FF_INPUT_BUFFER_PADDING_SIZE);
  790. /* XXX: bit_offset bits into last frame */
  791. init_get_bits(&s->gb, s->last_superframe, s->last_superframe_len * 8 + bit_offset);
  792. /* skip unused bits */
  793. if (s->last_bitoffset > 0)
  794. skip_bits(&s->gb, s->last_bitoffset);
  795. /* this frame is stored in the last superframe and in the
  796. current one */
  797. if (wma_decode_frame(s, samples) < 0)
  798. goto fail;
  799. samples += s->nb_channels * s->frame_len;
  800. nb_frames--;
  801. }
  802. /* read each frame starting from bit_offset */
  803. pos = bit_offset + 4 + 4 + s->byte_offset_bits + 3;
  804. if (pos >= MAX_CODED_SUPERFRAME_SIZE * 8 || pos > buf_size * 8)
  805. return AVERROR_INVALIDDATA;
  806. init_get_bits(&s->gb, buf + (pos >> 3), (buf_size - (pos >> 3))*8);
  807. len = pos & 7;
  808. if (len > 0)
  809. skip_bits(&s->gb, len);
  810. s->reset_block_lengths = 1;
  811. for(i=0;i<nb_frames;i++) {
  812. if (wma_decode_frame(s, samples) < 0)
  813. goto fail;
  814. samples += s->nb_channels * s->frame_len;
  815. }
  816. /* we copy the end of the frame in the last frame buffer */
  817. pos = get_bits_count(&s->gb) + ((bit_offset + 4 + 4 + s->byte_offset_bits + 3) & ~7);
  818. s->last_bitoffset = pos & 7;
  819. pos >>= 3;
  820. len = buf_size - pos;
  821. if (len > MAX_CODED_SUPERFRAME_SIZE || len < 0) {
  822. av_log(s->avctx, AV_LOG_ERROR, "len %d invalid\n", len);
  823. goto fail;
  824. }
  825. s->last_superframe_len = len;
  826. memcpy(s->last_superframe, buf + pos, len);
  827. } else {
  828. /* single frame decode */
  829. if (wma_decode_frame(s, samples) < 0)
  830. goto fail;
  831. samples += s->nb_channels * s->frame_len;
  832. }
  833. //av_log(NULL, AV_LOG_ERROR, "%d %d %d %d outbytes:%d eaten:%d\n", s->frame_len_bits, s->block_len_bits, s->frame_len, s->block_len, (int8_t *)samples - (int8_t *)data, s->block_align);
  834. *got_frame_ptr = 1;
  835. *(AVFrame *)data = s->frame;
  836. return buf_size;
  837. fail:
  838. /* when error, we reset the bit reservoir */
  839. s->last_superframe_len = 0;
  840. return -1;
  841. }
  842. static av_cold void flush(AVCodecContext *avctx)
  843. {
  844. WMACodecContext *s = avctx->priv_data;
  845. s->last_bitoffset=
  846. s->last_superframe_len= 0;
  847. }
  848. AVCodec ff_wmav1_decoder = {
  849. .name = "wmav1",
  850. .type = AVMEDIA_TYPE_AUDIO,
  851. .id = CODEC_ID_WMAV1,
  852. .priv_data_size = sizeof(WMACodecContext),
  853. .init = wma_decode_init,
  854. .close = ff_wma_end,
  855. .decode = wma_decode_superframe,
  856. .flush = flush,
  857. .capabilities = CODEC_CAP_DR1,
  858. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Audio 1"),
  859. };
  860. AVCodec ff_wmav2_decoder = {
  861. .name = "wmav2",
  862. .type = AVMEDIA_TYPE_AUDIO,
  863. .id = CODEC_ID_WMAV2,
  864. .priv_data_size = sizeof(WMACodecContext),
  865. .init = wma_decode_init,
  866. .close = ff_wma_end,
  867. .decode = wma_decode_superframe,
  868. .flush = flush,
  869. .capabilities = CODEC_CAP_DR1,
  870. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Audio 2"),
  871. };