You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

909 lines
27KB

  1. /*
  2. * Flash Screen Video Version 2 encoder
  3. * Copyright (C) 2009 Joshua Warner
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * Flash Screen Video Version 2 encoder
  24. * @author Joshua Warner
  25. */
  26. /* Differences from version 1 stream:
  27. * NOTE: Currently, the only player that supports version 2 streams is Adobe Flash Player itself.
  28. * * Supports sending only a range of scanlines in a block,
  29. * indicating a difference from the corresponding block in the last keyframe.
  30. * * Supports initializing the zlib dictionary with data from the corresponding
  31. * block in the last keyframe, to improve compression.
  32. * * Supports a hybrid 15-bit rgb / 7-bit palette color space.
  33. */
  34. /* TODO:
  35. * Don't keep Block structures for both current frame and keyframe.
  36. * Make better heuristics for deciding stream parameters (optimum_* functions). Currently these return constants.
  37. * Figure out how to encode palette information in the stream, choose an optimum palette at each keyframe.
  38. * Figure out how the zlibPrimeCompressCurrent flag works, implement support.
  39. * Find other sample files (that weren't generated here), develop a decoder.
  40. */
  41. #include <stdio.h>
  42. #include <stdlib.h>
  43. #include <zlib.h>
  44. #include "libavutil/imgutils.h"
  45. #include "avcodec.h"
  46. #include "internal.h"
  47. #include "put_bits.h"
  48. #include "bytestream.h"
  49. #define HAS_IFRAME_IMAGE 0x02
  50. #define HAS_PALLET_INFO 0x01
  51. #define COLORSPACE_BGR 0x00
  52. #define COLORSPACE_15_7 0x10
  53. #define HAS_DIFF_BLOCKS 0x04
  54. #define ZLIB_PRIME_COMPRESS_CURRENT 0x02
  55. #define ZLIB_PRIME_COMPRESS_PREVIOUS 0x01
  56. // Disables experimental "smart" parameter-choosing code, as well as the statistics that it depends on.
  57. // At the moment, the "smart" code is a great example of how the parameters *shouldn't* be chosen.
  58. #define FLASHSV2_DUMB
  59. typedef struct Block {
  60. uint8_t *enc;
  61. uint8_t *sl_begin, *sl_end;
  62. int enc_size;
  63. uint8_t *data;
  64. unsigned long data_size;
  65. uint8_t start, len;
  66. uint8_t dirty;
  67. uint8_t col, row, width, height;
  68. uint8_t flags;
  69. } Block;
  70. typedef struct Palette {
  71. unsigned colors[128];
  72. uint8_t index[1 << 15];
  73. } Palette;
  74. typedef struct FlashSV2Context {
  75. AVCodecContext *avctx;
  76. uint8_t *current_frame;
  77. uint8_t *key_frame;
  78. AVFrame frame;
  79. uint8_t *encbuffer;
  80. uint8_t *keybuffer;
  81. uint8_t *databuffer;
  82. Block *frame_blocks;
  83. Block *key_blocks;
  84. int frame_size;
  85. int blocks_size;
  86. int use15_7, dist, comp;
  87. int rows, cols;
  88. int last_key_frame;
  89. int image_width, image_height;
  90. int block_width, block_height;
  91. uint8_t flags;
  92. uint8_t use_custom_palette;
  93. uint8_t palette_type; ///< 0=>default, 1=>custom - changed when palette regenerated.
  94. Palette palette;
  95. #ifndef FLASHSV2_DUMB
  96. double tot_blocks; ///< blocks encoded since last keyframe
  97. double diff_blocks; ///< blocks that were different since last keyframe
  98. double tot_lines; ///< total scanlines in image since last keyframe
  99. double diff_lines; ///< scanlines that were different since last keyframe
  100. double raw_size; ///< size of raw frames since last keyframe
  101. double comp_size; ///< size of compressed data since last keyframe
  102. double uncomp_size; ///< size of uncompressed data since last keyframe
  103. double total_bits; ///< total bits written to stream so far
  104. #endif
  105. } FlashSV2Context;
  106. static av_cold void cleanup(FlashSV2Context * s)
  107. {
  108. av_freep(&s->encbuffer);
  109. av_freep(&s->keybuffer);
  110. av_freep(&s->databuffer);
  111. av_freep(&s->current_frame);
  112. av_freep(&s->key_frame);
  113. av_freep(&s->frame_blocks);
  114. av_freep(&s->key_blocks);
  115. }
  116. static void init_blocks(FlashSV2Context * s, Block * blocks,
  117. uint8_t * encbuf, uint8_t * databuf)
  118. {
  119. int row, col;
  120. Block *b;
  121. for (col = 0; col < s->cols; col++) {
  122. for (row = 0; row < s->rows; row++) {
  123. b = blocks + (col + row * s->cols);
  124. b->width = (col < s->cols - 1) ?
  125. s->block_width :
  126. s->image_width - col * s->block_width;
  127. b->height = (row < s->rows - 1) ?
  128. s->block_height :
  129. s->image_height - row * s->block_height;
  130. b->row = row;
  131. b->col = col;
  132. b->enc = encbuf;
  133. b->data = databuf;
  134. encbuf += b->width * b->height * 3;
  135. databuf += !databuf ? 0 : b->width * b->height * 6;
  136. }
  137. }
  138. }
  139. static void reset_stats(FlashSV2Context * s)
  140. {
  141. #ifndef FLASHSV2_DUMB
  142. s->diff_blocks = 0.1;
  143. s->tot_blocks = 1;
  144. s->diff_lines = 0.1;
  145. s->tot_lines = 1;
  146. s->raw_size = s->comp_size = s->uncomp_size = 10;
  147. #endif
  148. }
  149. static av_cold int flashsv2_encode_init(AVCodecContext * avctx)
  150. {
  151. FlashSV2Context *s = avctx->priv_data;
  152. s->avctx = avctx;
  153. s->comp = avctx->compression_level;
  154. if (s->comp == -1)
  155. s->comp = 9;
  156. if (s->comp < 0 || s->comp > 9) {
  157. av_log(avctx, AV_LOG_ERROR,
  158. "Compression level should be 0-9, not %d\n", s->comp);
  159. return -1;
  160. }
  161. if ((avctx->width > 4095) || (avctx->height > 4095)) {
  162. av_log(avctx, AV_LOG_ERROR,
  163. "Input dimensions too large, input must be max 4096x4096 !\n");
  164. return -1;
  165. }
  166. if (av_image_check_size(avctx->width, avctx->height, 0, avctx) < 0)
  167. return -1;
  168. s->last_key_frame = 0;
  169. s->image_width = avctx->width;
  170. s->image_height = avctx->height;
  171. s->block_width = (s->image_width / 12) & ~15;
  172. s->block_height = (s->image_height / 12) & ~15;
  173. s->rows = (s->image_height + s->block_height - 1) / s->block_height;
  174. s->cols = (s->image_width + s->block_width - 1) / s->block_width;
  175. s->frame_size = s->image_width * s->image_height * 3;
  176. s->blocks_size = s->rows * s->cols * sizeof(Block);
  177. s->encbuffer = av_mallocz(s->frame_size);
  178. s->keybuffer = av_mallocz(s->frame_size);
  179. s->databuffer = av_mallocz(s->frame_size * 6);
  180. s->current_frame = av_mallocz(s->frame_size);
  181. s->key_frame = av_mallocz(s->frame_size);
  182. s->frame_blocks = av_mallocz(s->blocks_size);
  183. s->key_blocks = av_mallocz(s->blocks_size);
  184. init_blocks(s, s->frame_blocks, s->encbuffer, s->databuffer);
  185. init_blocks(s, s->key_blocks, s->keybuffer, 0);
  186. reset_stats(s);
  187. #ifndef FLASHSV2_DUMB
  188. s->total_bits = 1;
  189. #endif
  190. s->use_custom_palette = 0;
  191. s->palette_type = -1; // so that the palette will be generated in reconfigure_at_keyframe
  192. if (!s->encbuffer || !s->keybuffer || !s->databuffer
  193. || !s->current_frame || !s->key_frame || !s->key_blocks
  194. || !s->frame_blocks) {
  195. av_log(avctx, AV_LOG_ERROR, "Memory allocation failed.\n");
  196. cleanup(s);
  197. return -1;
  198. }
  199. return 0;
  200. }
  201. static int new_key_frame(FlashSV2Context * s)
  202. {
  203. int i;
  204. memcpy(s->key_blocks, s->frame_blocks, s->blocks_size);
  205. memcpy(s->key_frame, s->current_frame, s->frame_size);
  206. for (i = 0; i < s->rows * s->cols; i++) {
  207. s->key_blocks[i].enc += (s->keybuffer - s->encbuffer);
  208. s->key_blocks[i].sl_begin = 0;
  209. s->key_blocks[i].sl_end = 0;
  210. s->key_blocks[i].data = 0;
  211. }
  212. FFSWAP(uint8_t * , s->keybuffer, s->encbuffer);
  213. return 0;
  214. }
  215. static int write_palette(FlashSV2Context * s, uint8_t * buf, int buf_size)
  216. {
  217. //this isn't implemented yet! Default palette only!
  218. return -1;
  219. }
  220. static int write_header(FlashSV2Context * s, uint8_t * buf, int buf_size)
  221. {
  222. PutBitContext pb;
  223. int buf_pos, len;
  224. if (buf_size < 5)
  225. return -1;
  226. init_put_bits(&pb, buf, buf_size * 8);
  227. put_bits(&pb, 4, (s->block_width >> 4) - 1);
  228. put_bits(&pb, 12, s->image_width);
  229. put_bits(&pb, 4, (s->block_height >> 4) - 1);
  230. put_bits(&pb, 12, s->image_height);
  231. flush_put_bits(&pb);
  232. buf_pos = 4;
  233. buf[buf_pos++] = s->flags;
  234. if (s->flags & HAS_PALLET_INFO) {
  235. len = write_palette(s, buf + buf_pos, buf_size - buf_pos);
  236. if (len < 0)
  237. return -1;
  238. buf_pos += len;
  239. }
  240. return buf_pos;
  241. }
  242. static int write_block(Block * b, uint8_t * buf, int buf_size)
  243. {
  244. int buf_pos = 0;
  245. unsigned block_size = b->data_size;
  246. if (b->flags & HAS_DIFF_BLOCKS)
  247. block_size += 2;
  248. if (b->flags & ZLIB_PRIME_COMPRESS_CURRENT)
  249. block_size += 2;
  250. if (block_size > 0)
  251. block_size += 1;
  252. if (buf_size < block_size + 2)
  253. return -1;
  254. buf[buf_pos++] = block_size >> 8;
  255. buf[buf_pos++] = block_size;
  256. if (block_size == 0)
  257. return buf_pos;
  258. buf[buf_pos++] = b->flags;
  259. if (b->flags & HAS_DIFF_BLOCKS) {
  260. buf[buf_pos++] = (b->start);
  261. buf[buf_pos++] = (b->len);
  262. }
  263. if (b->flags & ZLIB_PRIME_COMPRESS_CURRENT) {
  264. //This feature of the format is poorly understood, and as of now, unused.
  265. buf[buf_pos++] = (b->col);
  266. buf[buf_pos++] = (b->row);
  267. }
  268. memcpy(buf + buf_pos, b->data, b->data_size);
  269. buf_pos += b->data_size;
  270. return buf_pos;
  271. }
  272. static int encode_zlib(Block * b, uint8_t * buf, unsigned long *buf_size, int comp)
  273. {
  274. int res = compress2(buf, buf_size, b->sl_begin, b->sl_end - b->sl_begin, comp);
  275. return res == Z_OK ? 0 : -1;
  276. }
  277. static int encode_zlibprime(Block * b, Block * prime, uint8_t * buf,
  278. int *buf_size, int comp)
  279. {
  280. z_stream s;
  281. int res;
  282. s.zalloc = NULL;
  283. s.zfree = NULL;
  284. s.opaque = NULL;
  285. res = deflateInit(&s, comp);
  286. if (res < 0)
  287. return -1;
  288. s.next_in = prime->enc;
  289. s.avail_in = prime->enc_size;
  290. while (s.avail_in > 0) {
  291. s.next_out = buf;
  292. s.avail_out = *buf_size;
  293. res = deflate(&s, Z_SYNC_FLUSH);
  294. if (res < 0)
  295. return -1;
  296. }
  297. s.next_in = b->sl_begin;
  298. s.avail_in = b->sl_end - b->sl_begin;
  299. s.next_out = buf;
  300. s.avail_out = *buf_size;
  301. res = deflate(&s, Z_FINISH);
  302. deflateEnd(&s);
  303. *buf_size -= s.avail_out;
  304. if (res != Z_STREAM_END)
  305. return -1;
  306. return 0;
  307. }
  308. static int encode_bgr(Block * b, const uint8_t * src, int stride)
  309. {
  310. int i;
  311. uint8_t *ptr = b->enc;
  312. for (i = 0; i < b->start; i++)
  313. memcpy(ptr + i * b->width * 3, src + i * stride, b->width * 3);
  314. b->sl_begin = ptr + i * b->width * 3;
  315. for (; i < b->start + b->len; i++)
  316. memcpy(ptr + i * b->width * 3, src + i * stride, b->width * 3);
  317. b->sl_end = ptr + i * b->width * 3;
  318. for (; i < b->height; i++)
  319. memcpy(ptr + i * b->width * 3, src + i * stride, b->width * 3);
  320. b->enc_size = ptr + i * b->width * 3 - b->enc;
  321. return b->enc_size;
  322. }
  323. static inline unsigned pixel_color15(const uint8_t * src)
  324. {
  325. return (src[0] >> 3) | ((src[1] & 0xf8) << 2) | ((src[2] & 0xf8) << 7);
  326. }
  327. static inline unsigned int chroma_diff(unsigned int c1, unsigned int c2)
  328. {
  329. unsigned int t1 = (c1 & 0x000000ff) + ((c1 & 0x0000ff00) >> 8) + ((c1 & 0x00ff0000) >> 16);
  330. unsigned int t2 = (c2 & 0x000000ff) + ((c2 & 0x0000ff00) >> 8) + ((c2 & 0x00ff0000) >> 16);
  331. return abs(t1 - t2) + abs((c1 & 0x000000ff) - (c2 & 0x000000ff)) +
  332. abs(((c1 & 0x0000ff00) >> 8) - ((c2 & 0x0000ff00) >> 8)) +
  333. abs(((c1 & 0x00ff0000) >> 16) - ((c2 & 0x00ff0000) >> 16));
  334. }
  335. static inline int pixel_color7_fast(Palette * palette, unsigned c15)
  336. {
  337. return palette->index[c15];
  338. }
  339. static int pixel_color7_slow(Palette * palette, unsigned color)
  340. {
  341. int i, min = 0x7fffffff;
  342. int minc = -1;
  343. for (i = 0; i < 128; i++) {
  344. int c1 = palette->colors[i];
  345. int diff = chroma_diff(c1, color);
  346. if (diff < min) {
  347. min = diff;
  348. minc = i;
  349. }
  350. }
  351. return minc;
  352. }
  353. static inline unsigned pixel_bgr(const uint8_t * src)
  354. {
  355. return (src[0]) | (src[1] << 8) | (src[2] << 16);
  356. }
  357. static int write_pixel_15_7(Palette * palette, uint8_t * dest, const uint8_t * src,
  358. int dist)
  359. {
  360. unsigned c15 = pixel_color15(src);
  361. unsigned color = pixel_bgr(src);
  362. int d15 = chroma_diff(color, color & 0x00f8f8f8);
  363. int c7 = pixel_color7_fast(palette, c15);
  364. int d7 = chroma_diff(color, palette->colors[c7]);
  365. if (dist + d15 >= d7) {
  366. dest[0] = c7;
  367. return 1;
  368. } else {
  369. dest[0] = 0x80 | (c15 >> 8);
  370. dest[1] = c15 & 0xff;
  371. return 2;
  372. }
  373. }
  374. static int update_palette_index(Palette * palette)
  375. {
  376. int r, g, b;
  377. unsigned int bgr, c15, index;
  378. for (r = 4; r < 256; r += 8) {
  379. for (g = 4; g < 256; g += 8) {
  380. for (b = 4; b < 256; b += 8) {
  381. bgr = b | (g << 8) | (r << 16);
  382. c15 = (b >> 3) | ((g & 0xf8) << 2) | ((r & 0xf8) << 7);
  383. index = pixel_color7_slow(palette, bgr);
  384. palette->index[c15] = index;
  385. }
  386. }
  387. }
  388. return 0;
  389. }
  390. static const unsigned int default_screen_video_v2_palette[128] = {
  391. 0x00000000, 0x00333333, 0x00666666, 0x00999999, 0x00CCCCCC, 0x00FFFFFF,
  392. 0x00330000, 0x00660000, 0x00990000, 0x00CC0000, 0x00FF0000, 0x00003300,
  393. 0x00006600, 0x00009900, 0x0000CC00, 0x0000FF00, 0x00000033, 0x00000066,
  394. 0x00000099, 0x000000CC, 0x000000FF, 0x00333300, 0x00666600, 0x00999900,
  395. 0x00CCCC00, 0x00FFFF00, 0x00003333, 0x00006666, 0x00009999, 0x0000CCCC,
  396. 0x0000FFFF, 0x00330033, 0x00660066, 0x00990099, 0x00CC00CC, 0x00FF00FF,
  397. 0x00FFFF33, 0x00FFFF66, 0x00FFFF99, 0x00FFFFCC, 0x00FF33FF, 0x00FF66FF,
  398. 0x00FF99FF, 0x00FFCCFF, 0x0033FFFF, 0x0066FFFF, 0x0099FFFF, 0x00CCFFFF,
  399. 0x00CCCC33, 0x00CCCC66, 0x00CCCC99, 0x00CCCCFF, 0x00CC33CC, 0x00CC66CC,
  400. 0x00CC99CC, 0x00CCFFCC, 0x0033CCCC, 0x0066CCCC, 0x0099CCCC, 0x00FFCCCC,
  401. 0x00999933, 0x00999966, 0x009999CC, 0x009999FF, 0x00993399, 0x00996699,
  402. 0x0099CC99, 0x0099FF99, 0x00339999, 0x00669999, 0x00CC9999, 0x00FF9999,
  403. 0x00666633, 0x00666699, 0x006666CC, 0x006666FF, 0x00663366, 0x00669966,
  404. 0x0066CC66, 0x0066FF66, 0x00336666, 0x00996666, 0x00CC6666, 0x00FF6666,
  405. 0x00333366, 0x00333399, 0x003333CC, 0x003333FF, 0x00336633, 0x00339933,
  406. 0x0033CC33, 0x0033FF33, 0x00663333, 0x00993333, 0x00CC3333, 0x00FF3333,
  407. 0x00003366, 0x00336600, 0x00660033, 0x00006633, 0x00330066, 0x00663300,
  408. 0x00336699, 0x00669933, 0x00993366, 0x00339966, 0x00663399, 0x00996633,
  409. 0x006699CC, 0x0099CC66, 0x00CC6699, 0x0066CC99, 0x009966CC, 0x00CC9966,
  410. 0x0099CCFF, 0x00CCFF99, 0x00FF99CC, 0x0099FFCC, 0x00CC99FF, 0x00FFCC99,
  411. 0x00111111, 0x00222222, 0x00444444, 0x00555555, 0x00AAAAAA, 0x00BBBBBB,
  412. 0x00DDDDDD, 0x00EEEEEE
  413. };
  414. static int generate_default_palette(Palette * palette)
  415. {
  416. memcpy(palette->colors, default_screen_video_v2_palette,
  417. sizeof(default_screen_video_v2_palette));
  418. return update_palette_index(palette);
  419. }
  420. static int generate_optimum_palette(Palette * palette, const uint8_t * image,
  421. int width, int height, int stride)
  422. {
  423. //this isn't implemented yet! Default palette only!
  424. return -1;
  425. }
  426. static inline int encode_15_7_sl(Palette * palette, uint8_t * dest,
  427. const uint8_t * src, int width, int dist)
  428. {
  429. int len = 0, x;
  430. for (x = 0; x < width; x++) {
  431. len += write_pixel_15_7(palette, dest + len, src + 3 * x, dist);
  432. }
  433. return len;
  434. }
  435. static int encode_15_7(Palette * palette, Block * b, const uint8_t * src,
  436. int stride, int dist)
  437. {
  438. int i;
  439. uint8_t *ptr = b->enc;
  440. for (i = 0; i < b->start; i++)
  441. ptr += encode_15_7_sl(palette, ptr, src + i * stride, b->width, dist);
  442. b->sl_begin = ptr;
  443. for (; i < b->start + b->len; i++)
  444. ptr += encode_15_7_sl(palette, ptr, src + i * stride, b->width, dist);
  445. b->sl_end = ptr;
  446. for (; i < b->height; i++)
  447. ptr += encode_15_7_sl(palette, ptr, src + i * stride, b->width, dist);
  448. b->enc_size = ptr - b->enc;
  449. return b->enc_size;
  450. }
  451. static int encode_block(Palette * palette, Block * b, Block * prev,
  452. const uint8_t * src, int stride, int comp, int dist,
  453. int keyframe)
  454. {
  455. unsigned buf_size = b->width * b->height * 6;
  456. uint8_t buf[buf_size];
  457. int res;
  458. if (b->flags & COLORSPACE_15_7) {
  459. encode_15_7(palette, b, src, stride, dist);
  460. } else {
  461. encode_bgr(b, src, stride);
  462. }
  463. if (b->len > 0) {
  464. b->data_size = buf_size;
  465. res = encode_zlib(b, b->data, &b->data_size, comp);
  466. if (res)
  467. return res;
  468. if (!keyframe) {
  469. res = encode_zlibprime(b, prev, buf, &buf_size, comp);
  470. if (res)
  471. return res;
  472. if (buf_size < b->data_size) {
  473. b->data_size = buf_size;
  474. memcpy(b->data, buf, buf_size);
  475. b->flags |= ZLIB_PRIME_COMPRESS_PREVIOUS;
  476. }
  477. }
  478. } else {
  479. b->data_size = 0;
  480. }
  481. return 0;
  482. }
  483. static int compare_sl(FlashSV2Context * s, Block * b, const uint8_t * src,
  484. uint8_t * frame, uint8_t * key, int y, int keyframe)
  485. {
  486. if (memcmp(src, frame, b->width * 3) != 0) {
  487. b->dirty = 1;
  488. memcpy(frame, src, b->width * 3);
  489. #ifndef FLASHSV2_DUMB
  490. s->diff_lines++;
  491. #endif
  492. }
  493. if (memcmp(src, key, b->width * 3) != 0) {
  494. if (b->len == 0)
  495. b->start = y;
  496. b->len = y + 1 - b->start;
  497. }
  498. return 0;
  499. }
  500. static int mark_all_blocks(FlashSV2Context * s, const uint8_t * src, int stride,
  501. int keyframe)
  502. {
  503. int sl, rsl, col, pos, possl;
  504. Block *b;
  505. for (sl = s->image_height - 1; sl >= 0; sl--) {
  506. for (col = 0; col < s->cols; col++) {
  507. rsl = s->image_height - sl - 1;
  508. b = s->frame_blocks + col + rsl / s->block_height * s->cols;
  509. possl = stride * sl + col * s->block_width * 3;
  510. pos = s->image_width * rsl * 3 + col * s->block_width * 3;
  511. compare_sl(s, b, src + possl, s->current_frame + pos,
  512. s->key_frame + pos, rsl % s->block_height, keyframe);
  513. }
  514. }
  515. #ifndef FLASHSV2_DUMB
  516. s->tot_lines += s->image_height * s->cols;
  517. #endif
  518. return 0;
  519. }
  520. static int encode_all_blocks(FlashSV2Context * s, int keyframe)
  521. {
  522. int row, col, res;
  523. uint8_t *data;
  524. Block *b, *prev;
  525. for (row = 0; row < s->rows; row++) {
  526. for (col = 0; col < s->cols; col++) {
  527. b = s->frame_blocks + (row * s->cols + col);
  528. prev = s->key_blocks + (row * s->cols + col);
  529. if (keyframe) {
  530. b->start = 0;
  531. b->len = b->height;
  532. b->flags = s->use15_7 ? COLORSPACE_15_7 : 0;
  533. } else if (!b->dirty) {
  534. b->start = 0;
  535. b->len = 0;
  536. b->data_size = 0;
  537. b->flags = s->use15_7 ? COLORSPACE_15_7 : 0;
  538. continue;
  539. } else {
  540. b->flags = s->use15_7 ? COLORSPACE_15_7 | HAS_DIFF_BLOCKS : HAS_DIFF_BLOCKS;
  541. }
  542. data = s->current_frame + s->image_width * 3 * s->block_height * row + s->block_width * col * 3;
  543. res = encode_block(&s->palette, b, prev, data, s->image_width * 3, s->comp, s->dist, keyframe);
  544. #ifndef FLASHSV2_DUMB
  545. if (b->dirty)
  546. s->diff_blocks++;
  547. s->comp_size += b->data_size;
  548. s->uncomp_size += b->enc_size;
  549. #endif
  550. if (res)
  551. return res;
  552. }
  553. }
  554. #ifndef FLASHSV2_DUMB
  555. s->raw_size += s->image_width * s->image_height * 3;
  556. s->tot_blocks += s->rows * s->cols;
  557. #endif
  558. return 0;
  559. }
  560. static int write_all_blocks(FlashSV2Context * s, uint8_t * buf,
  561. int buf_size)
  562. {
  563. int row, col, buf_pos = 0, len;
  564. Block *b;
  565. for (row = 0; row < s->rows; row++) {
  566. for (col = 0; col < s->cols; col++) {
  567. b = s->frame_blocks + row * s->cols + col;
  568. len = write_block(b, buf + buf_pos, buf_size - buf_pos);
  569. b->start = b->len = b->dirty = 0;
  570. if (len < 0)
  571. return len;
  572. buf_pos += len;
  573. }
  574. }
  575. return buf_pos;
  576. }
  577. static int write_bitstream(FlashSV2Context * s, const uint8_t * src, int stride,
  578. uint8_t * buf, int buf_size, int keyframe)
  579. {
  580. int buf_pos, res;
  581. res = mark_all_blocks(s, src, stride, keyframe);
  582. if (res)
  583. return res;
  584. res = encode_all_blocks(s, keyframe);
  585. if (res)
  586. return res;
  587. res = write_header(s, buf, buf_size);
  588. if (res < 0) {
  589. return res;
  590. } else {
  591. buf_pos = res;
  592. }
  593. res = write_all_blocks(s, buf + buf_pos, buf_size - buf_pos);
  594. if (res < 0)
  595. return res;
  596. buf_pos += res;
  597. #ifndef FLASHSV2_DUMB
  598. s->total_bits += ((double) buf_pos) * 8.0;
  599. #endif
  600. return buf_pos;
  601. }
  602. static void recommend_keyframe(FlashSV2Context * s, int *keyframe)
  603. {
  604. #ifndef FLASHSV2_DUMB
  605. double block_ratio, line_ratio, enc_ratio, comp_ratio, data_ratio;
  606. if (s->avctx->gop_size > 0) {
  607. block_ratio = s->diff_blocks / s->tot_blocks;
  608. line_ratio = s->diff_lines / s->tot_lines;
  609. enc_ratio = s->uncomp_size / s->raw_size;
  610. comp_ratio = s->comp_size / s->uncomp_size;
  611. data_ratio = s->comp_size / s->raw_size;
  612. if ((block_ratio >= 0.5 && line_ratio / block_ratio <= 0.5) || line_ratio >= 0.95) {
  613. *keyframe = 1;
  614. return;
  615. }
  616. }
  617. #else
  618. return;
  619. #endif
  620. }
  621. static const double block_size_fraction = 1.0 / 300;
  622. static int optimum_block_width(FlashSV2Context * s)
  623. {
  624. #ifndef FLASHSV2_DUMB
  625. double save = (1-pow(s->diff_lines/s->diff_blocks/s->block_height, 0.5)) * s->comp_size/s->tot_blocks;
  626. double width = block_size_fraction * sqrt(0.5 * save * s->rows * s->cols) * s->image_width;
  627. int pwidth = ((int) width);
  628. return FFCLIP(pwidth & ~15, 256, 16);
  629. #else
  630. return 64;
  631. #endif
  632. }
  633. static int optimum_block_height(FlashSV2Context * s)
  634. {
  635. #ifndef FLASHSV2_DUMB
  636. double save = (1-pow(s->diff_lines/s->diff_blocks/s->block_height, 0.5)) * s->comp_size/s->tot_blocks;
  637. double height = block_size_fraction * sqrt(0.5 * save * s->rows * s->cols) * s->image_height;
  638. int pheight = ((int) height);
  639. return FFCLIP(pheight & ~15, 256, 16);
  640. #else
  641. return 64;
  642. #endif
  643. }
  644. static const double use15_7_threshold = 8192;
  645. static int optimum_use15_7(FlashSV2Context * s)
  646. {
  647. #ifndef FLASHSV2_DUMB
  648. double ideal = ((double)(s->avctx->bit_rate * s->avctx->time_base.den * s->avctx->ticks_per_frame)) /
  649. ((double) s->avctx->time_base.num) * s->avctx->frame_number;
  650. if (ideal + use15_7_threshold < s->total_bits) {
  651. return 1;
  652. } else {
  653. return 0;
  654. }
  655. #else
  656. return s->avctx->global_quality == 0;
  657. #endif
  658. }
  659. static const double color15_7_factor = 100;
  660. static int optimum_dist(FlashSV2Context * s)
  661. {
  662. #ifndef FLASHSV2_DUMB
  663. double ideal =
  664. s->avctx->bit_rate * s->avctx->time_base.den *
  665. s->avctx->ticks_per_frame;
  666. int dist = pow((s->total_bits / ideal) * color15_7_factor, 3);
  667. av_log(s->avctx, AV_LOG_DEBUG, "dist: %d\n", dist);
  668. return dist;
  669. #else
  670. return 15;
  671. #endif
  672. }
  673. static int reconfigure_at_keyframe(FlashSV2Context * s, const uint8_t * image,
  674. int stride)
  675. {
  676. int update_palette = 0;
  677. int res;
  678. s->block_width = optimum_block_width(s);
  679. s->block_height = optimum_block_height(s);
  680. s->rows = (s->image_height + s->block_height - 1) / s->block_height;
  681. s->cols = (s->image_width + s->block_width - 1) / s->block_width;
  682. if (s->rows * s->cols != s->blocks_size / sizeof(Block)) {
  683. if (s->rows * s->cols > s->blocks_size / sizeof(Block)) {
  684. s->frame_blocks = av_realloc(s->frame_blocks, s->rows * s->cols * sizeof(Block));
  685. s->key_blocks = av_realloc(s->key_blocks, s->cols * s->rows * sizeof(Block));
  686. if (!s->frame_blocks || !s->key_blocks) {
  687. av_log(s->avctx, AV_LOG_ERROR, "Memory allocation failed.\n");
  688. return -1;
  689. }
  690. s->blocks_size = s->rows * s->cols * sizeof(Block);
  691. }
  692. init_blocks(s, s->frame_blocks, s->encbuffer, s->databuffer);
  693. init_blocks(s, s->key_blocks, s->keybuffer, 0);
  694. }
  695. s->use15_7 = optimum_use15_7(s);
  696. if (s->use15_7) {
  697. if ((s->use_custom_palette && s->palette_type != 1) || update_palette) {
  698. res = generate_optimum_palette(&s->palette, image, s->image_width, s->image_height, stride);
  699. if (res)
  700. return res;
  701. s->palette_type = 1;
  702. av_log(s->avctx, AV_LOG_DEBUG, "Generated optimum palette\n");
  703. } else if (!s->use_custom_palette && s->palette_type != 0) {
  704. res = generate_default_palette(&s->palette);
  705. if (res)
  706. return res;
  707. s->palette_type = 0;
  708. av_log(s->avctx, AV_LOG_DEBUG, "Generated default palette\n");
  709. }
  710. }
  711. reset_stats(s);
  712. return 0;
  713. }
  714. static int flashsv2_encode_frame(AVCodecContext *avctx, AVPacket *pkt,
  715. const AVFrame *pict, int *got_packet)
  716. {
  717. FlashSV2Context *const s = avctx->priv_data;
  718. AVFrame *const p = &s->frame;
  719. int res;
  720. int keyframe = 0;
  721. *p = *pict;
  722. if ((res = ff_alloc_packet2(avctx, pkt, s->frame_size + FF_MIN_BUFFER_SIZE)) < 0)
  723. return res;
  724. /* First frame needs to be a keyframe */
  725. if (avctx->frame_number == 0)
  726. keyframe = 1;
  727. /* Check the placement of keyframes */
  728. if (avctx->gop_size > 0) {
  729. if (avctx->frame_number >= s->last_key_frame + avctx->gop_size)
  730. keyframe = 1;
  731. }
  732. if (!keyframe
  733. && avctx->frame_number > s->last_key_frame + avctx->keyint_min) {
  734. recommend_keyframe(s, &keyframe);
  735. if (keyframe)
  736. av_log(avctx, AV_LOG_DEBUG, "Recommending key frame at frame %d\n", avctx->frame_number);
  737. }
  738. if (keyframe) {
  739. res = reconfigure_at_keyframe(s, p->data[0], p->linesize[0]);
  740. if (res)
  741. return res;
  742. }
  743. if (s->use15_7)
  744. s->dist = optimum_dist(s);
  745. res = write_bitstream(s, p->data[0], p->linesize[0], pkt->data, pkt->size, keyframe);
  746. if (keyframe) {
  747. new_key_frame(s);
  748. p->pict_type = AV_PICTURE_TYPE_I;
  749. p->key_frame = 1;
  750. s->last_key_frame = avctx->frame_number;
  751. pkt->flags |= AV_PKT_FLAG_KEY;
  752. av_log(avctx, AV_LOG_DEBUG, "Inserting key frame at frame %d\n", avctx->frame_number);
  753. } else {
  754. p->pict_type = AV_PICTURE_TYPE_P;
  755. p->key_frame = 0;
  756. }
  757. avctx->coded_frame = p;
  758. pkt->size = res;
  759. *got_packet = 1;
  760. return 0;
  761. }
  762. static av_cold int flashsv2_encode_end(AVCodecContext * avctx)
  763. {
  764. FlashSV2Context *s = avctx->priv_data;
  765. cleanup(s);
  766. return 0;
  767. }
  768. AVCodec ff_flashsv2_encoder = {
  769. .name = "flashsv2",
  770. .type = AVMEDIA_TYPE_VIDEO,
  771. .id = CODEC_ID_FLASHSV2,
  772. .priv_data_size = sizeof(FlashSV2Context),
  773. .init = flashsv2_encode_init,
  774. .encode2 = flashsv2_encode_frame,
  775. .close = flashsv2_encode_end,
  776. .pix_fmts = (enum PixelFormat[]) {PIX_FMT_BGR24, PIX_FMT_NONE},
  777. .long_name = NULL_IF_CONFIG_SMALL("Flash Screen Video Version 2"),
  778. .capabilities = CODEC_CAP_EXPERIMENTAL,
  779. };