You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1308 lines
46KB

  1. /*
  2. * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
  3. * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * H.264 / AVC / MPEG4 part10 codec.
  24. * @author Michael Niedermayer <michaelni@gmx.at>
  25. */
  26. #ifndef AVCODEC_H264_H
  27. #define AVCODEC_H264_H
  28. #include "libavutil/intreadwrite.h"
  29. #include "dsputil.h"
  30. #include "cabac.h"
  31. #include "mpegvideo.h"
  32. #include "h264dsp.h"
  33. #include "h264pred.h"
  34. #include "rectangle.h"
  35. #define interlaced_dct interlaced_dct_is_a_bad_name
  36. #define mb_intra mb_intra_is_not_initialized_see_mb_type
  37. #define LUMA_DC_BLOCK_INDEX 24
  38. #define CHROMA_DC_BLOCK_INDEX 25
  39. #define CHROMA_DC_COEFF_TOKEN_VLC_BITS 8
  40. #define COEFF_TOKEN_VLC_BITS 8
  41. #define TOTAL_ZEROS_VLC_BITS 9
  42. #define CHROMA_DC_TOTAL_ZEROS_VLC_BITS 3
  43. #define RUN_VLC_BITS 3
  44. #define RUN7_VLC_BITS 6
  45. #define MAX_SPS_COUNT 32
  46. #define MAX_PPS_COUNT 256
  47. #define MAX_MMCO_COUNT 66
  48. #define MAX_DELAYED_PIC_COUNT 16
  49. /* Compiling in interlaced support reduces the speed
  50. * of progressive decoding by about 2%. */
  51. #define ALLOW_INTERLACE
  52. #define ALLOW_NOCHROMA
  53. #define FMO 0
  54. /**
  55. * The maximum number of slices supported by the decoder.
  56. * must be a power of 2
  57. */
  58. #define MAX_SLICES 16
  59. #ifdef ALLOW_INTERLACE
  60. #define MB_MBAFF h->mb_mbaff
  61. #define MB_FIELD h->mb_field_decoding_flag
  62. #define FRAME_MBAFF h->mb_aff_frame
  63. #define FIELD_PICTURE (s->picture_structure != PICT_FRAME)
  64. #else
  65. #define MB_MBAFF 0
  66. #define MB_FIELD 0
  67. #define FRAME_MBAFF 0
  68. #define FIELD_PICTURE 0
  69. #undef IS_INTERLACED
  70. #define IS_INTERLACED(mb_type) 0
  71. #endif
  72. #define FIELD_OR_MBAFF_PICTURE (FRAME_MBAFF || FIELD_PICTURE)
  73. #ifdef ALLOW_NOCHROMA
  74. #define CHROMA h->sps.chroma_format_idc
  75. #else
  76. #define CHROMA 1
  77. #endif
  78. #ifndef CABAC
  79. #define CABAC h->pps.cabac
  80. #endif
  81. #define EXTENDED_SAR 255
  82. #define MB_TYPE_REF0 MB_TYPE_ACPRED //dirty but it fits in 16 bit
  83. #define MB_TYPE_8x8DCT 0x01000000
  84. #define IS_REF0(a) ((a) & MB_TYPE_REF0)
  85. #define IS_8x8DCT(a) ((a) & MB_TYPE_8x8DCT)
  86. /**
  87. * Value of Picture.reference when Picture is not a reference picture, but
  88. * is held for delayed output.
  89. */
  90. #define DELAYED_PIC_REF 4
  91. /* NAL unit types */
  92. enum {
  93. NAL_SLICE=1,
  94. NAL_DPA,
  95. NAL_DPB,
  96. NAL_DPC,
  97. NAL_IDR_SLICE,
  98. NAL_SEI,
  99. NAL_SPS,
  100. NAL_PPS,
  101. NAL_AUD,
  102. NAL_END_SEQUENCE,
  103. NAL_END_STREAM,
  104. NAL_FILLER_DATA,
  105. NAL_SPS_EXT,
  106. NAL_AUXILIARY_SLICE=19
  107. };
  108. /**
  109. * SEI message types
  110. */
  111. typedef enum {
  112. SEI_BUFFERING_PERIOD = 0, ///< buffering period (H.264, D.1.1)
  113. SEI_TYPE_PIC_TIMING = 1, ///< picture timing
  114. SEI_TYPE_USER_DATA_UNREGISTERED = 5, ///< unregistered user data
  115. SEI_TYPE_RECOVERY_POINT = 6 ///< recovery point (frame # to decoder sync)
  116. } SEI_Type;
  117. /**
  118. * pic_struct in picture timing SEI message
  119. */
  120. typedef enum {
  121. SEI_PIC_STRUCT_FRAME = 0, ///< 0: %frame
  122. SEI_PIC_STRUCT_TOP_FIELD = 1, ///< 1: top field
  123. SEI_PIC_STRUCT_BOTTOM_FIELD = 2, ///< 2: bottom field
  124. SEI_PIC_STRUCT_TOP_BOTTOM = 3, ///< 3: top field, bottom field, in that order
  125. SEI_PIC_STRUCT_BOTTOM_TOP = 4, ///< 4: bottom field, top field, in that order
  126. SEI_PIC_STRUCT_TOP_BOTTOM_TOP = 5, ///< 5: top field, bottom field, top field repeated, in that order
  127. SEI_PIC_STRUCT_BOTTOM_TOP_BOTTOM = 6, ///< 6: bottom field, top field, bottom field repeated, in that order
  128. SEI_PIC_STRUCT_FRAME_DOUBLING = 7, ///< 7: %frame doubling
  129. SEI_PIC_STRUCT_FRAME_TRIPLING = 8 ///< 8: %frame tripling
  130. } SEI_PicStructType;
  131. /**
  132. * Sequence parameter set
  133. */
  134. typedef struct SPS{
  135. int profile_idc;
  136. int level_idc;
  137. int chroma_format_idc;
  138. int transform_bypass; ///< qpprime_y_zero_transform_bypass_flag
  139. int log2_max_frame_num; ///< log2_max_frame_num_minus4 + 4
  140. int poc_type; ///< pic_order_cnt_type
  141. int log2_max_poc_lsb; ///< log2_max_pic_order_cnt_lsb_minus4
  142. int delta_pic_order_always_zero_flag;
  143. int offset_for_non_ref_pic;
  144. int offset_for_top_to_bottom_field;
  145. int poc_cycle_length; ///< num_ref_frames_in_pic_order_cnt_cycle
  146. int ref_frame_count; ///< num_ref_frames
  147. int gaps_in_frame_num_allowed_flag;
  148. int mb_width; ///< pic_width_in_mbs_minus1 + 1
  149. int mb_height; ///< pic_height_in_map_units_minus1 + 1
  150. int frame_mbs_only_flag;
  151. int mb_aff; ///<mb_adaptive_frame_field_flag
  152. int direct_8x8_inference_flag;
  153. int crop; ///< frame_cropping_flag
  154. unsigned int crop_left; ///< frame_cropping_rect_left_offset
  155. unsigned int crop_right; ///< frame_cropping_rect_right_offset
  156. unsigned int crop_top; ///< frame_cropping_rect_top_offset
  157. unsigned int crop_bottom; ///< frame_cropping_rect_bottom_offset
  158. int vui_parameters_present_flag;
  159. AVRational sar;
  160. int video_signal_type_present_flag;
  161. int full_range;
  162. int colour_description_present_flag;
  163. enum AVColorPrimaries color_primaries;
  164. enum AVColorTransferCharacteristic color_trc;
  165. enum AVColorSpace colorspace;
  166. int timing_info_present_flag;
  167. uint32_t num_units_in_tick;
  168. uint32_t time_scale;
  169. int fixed_frame_rate_flag;
  170. short offset_for_ref_frame[256]; //FIXME dyn aloc?
  171. int bitstream_restriction_flag;
  172. int num_reorder_frames;
  173. int scaling_matrix_present;
  174. uint8_t scaling_matrix4[6][16];
  175. uint8_t scaling_matrix8[2][64];
  176. int nal_hrd_parameters_present_flag;
  177. int vcl_hrd_parameters_present_flag;
  178. int pic_struct_present_flag;
  179. int time_offset_length;
  180. int cpb_cnt; ///< See H.264 E.1.2
  181. int initial_cpb_removal_delay_length; ///< initial_cpb_removal_delay_length_minus1 +1
  182. int cpb_removal_delay_length; ///< cpb_removal_delay_length_minus1 + 1
  183. int dpb_output_delay_length; ///< dpb_output_delay_length_minus1 + 1
  184. int bit_depth_luma; ///< bit_depth_luma_minus8 + 8
  185. int bit_depth_chroma; ///< bit_depth_chroma_minus8 + 8
  186. int residual_color_transform_flag; ///< residual_colour_transform_flag
  187. }SPS;
  188. /**
  189. * Picture parameter set
  190. */
  191. typedef struct PPS{
  192. unsigned int sps_id;
  193. int cabac; ///< entropy_coding_mode_flag
  194. int pic_order_present; ///< pic_order_present_flag
  195. int slice_group_count; ///< num_slice_groups_minus1 + 1
  196. int mb_slice_group_map_type;
  197. unsigned int ref_count[2]; ///< num_ref_idx_l0/1_active_minus1 + 1
  198. int weighted_pred; ///< weighted_pred_flag
  199. int weighted_bipred_idc;
  200. int init_qp; ///< pic_init_qp_minus26 + 26
  201. int init_qs; ///< pic_init_qs_minus26 + 26
  202. int chroma_qp_index_offset[2];
  203. int deblocking_filter_parameters_present; ///< deblocking_filter_parameters_present_flag
  204. int constrained_intra_pred; ///< constrained_intra_pred_flag
  205. int redundant_pic_cnt_present; ///< redundant_pic_cnt_present_flag
  206. int transform_8x8_mode; ///< transform_8x8_mode_flag
  207. uint8_t scaling_matrix4[6][16];
  208. uint8_t scaling_matrix8[2][64];
  209. uint8_t chroma_qp_table[2][64]; ///< pre-scaled (with chroma_qp_index_offset) version of qp_table
  210. int chroma_qp_diff;
  211. }PPS;
  212. /**
  213. * Memory management control operation opcode.
  214. */
  215. typedef enum MMCOOpcode{
  216. MMCO_END=0,
  217. MMCO_SHORT2UNUSED,
  218. MMCO_LONG2UNUSED,
  219. MMCO_SHORT2LONG,
  220. MMCO_SET_MAX_LONG,
  221. MMCO_RESET,
  222. MMCO_LONG,
  223. } MMCOOpcode;
  224. /**
  225. * Memory management control operation.
  226. */
  227. typedef struct MMCO{
  228. MMCOOpcode opcode;
  229. int short_pic_num; ///< pic_num without wrapping (pic_num & max_pic_num)
  230. int long_arg; ///< index, pic_num, or num long refs depending on opcode
  231. } MMCO;
  232. /**
  233. * H264Context
  234. */
  235. typedef struct H264Context{
  236. MpegEncContext s;
  237. H264DSPContext h264dsp;
  238. int chroma_qp[2]; //QPc
  239. int qp_thresh; ///< QP threshold to skip loopfilter
  240. int prev_mb_skipped;
  241. int next_mb_skipped;
  242. //prediction stuff
  243. int chroma_pred_mode;
  244. int intra16x16_pred_mode;
  245. int topleft_mb_xy;
  246. int top_mb_xy;
  247. int topright_mb_xy;
  248. int left_mb_xy[2];
  249. int topleft_type;
  250. int top_type;
  251. int topright_type;
  252. int left_type[2];
  253. const uint8_t * left_block;
  254. int topleft_partition;
  255. int8_t intra4x4_pred_mode_cache[5*8];
  256. int8_t (*intra4x4_pred_mode);
  257. H264PredContext hpc;
  258. unsigned int topleft_samples_available;
  259. unsigned int top_samples_available;
  260. unsigned int topright_samples_available;
  261. unsigned int left_samples_available;
  262. uint8_t (*top_borders[2])[16+2*8];
  263. /**
  264. * non zero coeff count cache.
  265. * is 64 if not available.
  266. */
  267. DECLARE_ALIGNED(8, uint8_t, non_zero_count_cache)[6*8];
  268. /*
  269. .UU.YYYY
  270. .UU.YYYY
  271. .vv.YYYY
  272. .VV.YYYY
  273. */
  274. uint8_t (*non_zero_count)[32];
  275. /**
  276. * Motion vector cache.
  277. */
  278. DECLARE_ALIGNED(16, int16_t, mv_cache)[2][5*8][2];
  279. DECLARE_ALIGNED(8, int8_t, ref_cache)[2][5*8];
  280. #define LIST_NOT_USED -1 //FIXME rename?
  281. #define PART_NOT_AVAILABLE -2
  282. /**
  283. * is 1 if the specific list MV&references are set to 0,0,-2.
  284. */
  285. int mv_cache_clean[2];
  286. /**
  287. * number of neighbors (top and/or left) that used 8x8 dct
  288. */
  289. int neighbor_transform_size;
  290. /**
  291. * block_offset[ 0..23] for frame macroblocks
  292. * block_offset[24..47] for field macroblocks
  293. */
  294. int block_offset[2*(16+8)];
  295. uint32_t *mb2b_xy; //FIXME are these 4 a good idea?
  296. uint32_t *mb2br_xy;
  297. int b_stride; //FIXME use s->b4_stride
  298. int mb_linesize; ///< may be equal to s->linesize or s->linesize*2, for mbaff
  299. int mb_uvlinesize;
  300. int emu_edge_width;
  301. int emu_edge_height;
  302. SPS sps; ///< current sps
  303. /**
  304. * current pps
  305. */
  306. PPS pps; //FIXME move to Picture perhaps? (->no) do we need that?
  307. uint32_t dequant4_buffer[6][52][16]; //FIXME should these be moved down?
  308. uint32_t dequant8_buffer[2][52][64];
  309. uint32_t (*dequant4_coeff[6])[16];
  310. uint32_t (*dequant8_coeff[2])[64];
  311. int slice_num;
  312. uint16_t *slice_table; ///< slice_table_base + 2*mb_stride + 1
  313. int slice_type;
  314. int slice_type_nos; ///< S free slice type (SI/SP are remapped to I/P)
  315. int slice_type_fixed;
  316. //interlacing specific flags
  317. int mb_aff_frame;
  318. int mb_field_decoding_flag;
  319. int mb_mbaff; ///< mb_aff_frame && mb_field_decoding_flag
  320. DECLARE_ALIGNED(8, uint16_t, sub_mb_type)[4];
  321. //Weighted pred stuff
  322. int use_weight;
  323. int use_weight_chroma;
  324. int luma_log2_weight_denom;
  325. int chroma_log2_weight_denom;
  326. //The following 2 can be changed to int8_t but that causes 10cpu cycles speedloss
  327. int luma_weight[48][2][2];
  328. int chroma_weight[48][2][2][2];
  329. int implicit_weight[48][48][2];
  330. int direct_spatial_mv_pred;
  331. int col_parity;
  332. int col_fieldoff;
  333. int dist_scale_factor[16];
  334. int dist_scale_factor_field[2][32];
  335. int map_col_to_list0[2][16+32];
  336. int map_col_to_list0_field[2][2][16+32];
  337. /**
  338. * num_ref_idx_l0/1_active_minus1 + 1
  339. */
  340. unsigned int ref_count[2]; ///< counts frames or fields, depending on current mb mode
  341. unsigned int list_count;
  342. uint8_t *list_counts; ///< Array of list_count per MB specifying the slice type
  343. Picture ref_list[2][48]; /**< 0..15: frame refs, 16..47: mbaff field refs.
  344. Reordered version of default_ref_list
  345. according to picture reordering in slice header */
  346. int ref2frm[MAX_SLICES][2][64]; ///< reference to frame number lists, used in the loop filter, the first 2 are for -2,-1
  347. //data partitioning
  348. GetBitContext intra_gb;
  349. GetBitContext inter_gb;
  350. GetBitContext *intra_gb_ptr;
  351. GetBitContext *inter_gb_ptr;
  352. DECLARE_ALIGNED(16, DCTELEM, mb)[16*24];
  353. DECLARE_ALIGNED(16, DCTELEM, mb_luma_dc)[16];
  354. DCTELEM mb_padding[256]; ///< as mb is addressed by scantable[i] and scantable is uint8_t we can either check that i is not too large or ensure that there is some unused stuff after mb
  355. /**
  356. * Cabac
  357. */
  358. CABACContext cabac;
  359. uint8_t cabac_state[460];
  360. /* 0x100 -> non null luma_dc, 0x80/0x40 -> non null chroma_dc (cb/cr), 0x?0 -> chroma_cbp(0,1,2), 0x0? luma_cbp */
  361. uint16_t *cbp_table;
  362. int cbp;
  363. int top_cbp;
  364. int left_cbp;
  365. /* chroma_pred_mode for i4x4 or i16x16, else 0 */
  366. uint8_t *chroma_pred_mode_table;
  367. int last_qscale_diff;
  368. uint8_t (*mvd_table[2])[2];
  369. DECLARE_ALIGNED(16, uint8_t, mvd_cache)[2][5*8][2];
  370. uint8_t *direct_table;
  371. uint8_t direct_cache[5*8];
  372. uint8_t zigzag_scan[16];
  373. uint8_t zigzag_scan8x8[64];
  374. uint8_t zigzag_scan8x8_cavlc[64];
  375. uint8_t field_scan[16];
  376. uint8_t field_scan8x8[64];
  377. uint8_t field_scan8x8_cavlc[64];
  378. const uint8_t *zigzag_scan_q0;
  379. const uint8_t *zigzag_scan8x8_q0;
  380. const uint8_t *zigzag_scan8x8_cavlc_q0;
  381. const uint8_t *field_scan_q0;
  382. const uint8_t *field_scan8x8_q0;
  383. const uint8_t *field_scan8x8_cavlc_q0;
  384. int x264_build;
  385. int mb_xy;
  386. int is_complex;
  387. //deblock
  388. int deblocking_filter; ///< disable_deblocking_filter_idc with 1<->0
  389. int slice_alpha_c0_offset;
  390. int slice_beta_offset;
  391. //=============================================================
  392. //Things below are not used in the MB or more inner code
  393. int nal_ref_idc;
  394. int nal_unit_type;
  395. uint8_t *rbsp_buffer[2];
  396. unsigned int rbsp_buffer_size[2];
  397. /**
  398. * Used to parse AVC variant of h264
  399. */
  400. int is_avc; ///< this flag is != 0 if codec is avc1
  401. int nal_length_size; ///< Number of bytes used for nal length (1, 2 or 4)
  402. int got_first; ///< this flag is != 0 if we've parsed a frame
  403. SPS *sps_buffers[MAX_SPS_COUNT];
  404. PPS *pps_buffers[MAX_PPS_COUNT];
  405. int dequant_coeff_pps; ///< reinit tables when pps changes
  406. uint16_t *slice_table_base;
  407. //POC stuff
  408. int poc_lsb;
  409. int poc_msb;
  410. int delta_poc_bottom;
  411. int delta_poc[2];
  412. int frame_num;
  413. int prev_poc_msb; ///< poc_msb of the last reference pic for POC type 0
  414. int prev_poc_lsb; ///< poc_lsb of the last reference pic for POC type 0
  415. int frame_num_offset; ///< for POC type 2
  416. int prev_frame_num_offset; ///< for POC type 2
  417. int prev_frame_num; ///< frame_num of the last pic for POC type 1/2
  418. /**
  419. * frame_num for frames or 2*frame_num+1 for field pics.
  420. */
  421. int curr_pic_num;
  422. /**
  423. * max_frame_num or 2*max_frame_num for field pics.
  424. */
  425. int max_pic_num;
  426. int redundant_pic_count;
  427. Picture *short_ref[32];
  428. Picture *long_ref[32];
  429. Picture default_ref_list[2][32]; ///< base reference list for all slices of a coded picture
  430. Picture *delayed_pic[MAX_DELAYED_PIC_COUNT+2]; //FIXME size?
  431. int outputed_poc;
  432. /**
  433. * memory management control operations buffer.
  434. */
  435. MMCO mmco[MAX_MMCO_COUNT];
  436. int mmco_index;
  437. int long_ref_count; ///< number of actual long term references
  438. int short_ref_count; ///< number of actual short term references
  439. int cabac_init_idc;
  440. /**
  441. * @defgroup multithreading Members for slice based multithreading
  442. * @{
  443. */
  444. struct H264Context *thread_context[MAX_THREADS];
  445. /**
  446. * current slice number, used to initalize slice_num of each thread/context
  447. */
  448. int current_slice;
  449. /**
  450. * Max number of threads / contexts.
  451. * This is equal to AVCodecContext.thread_count unless
  452. * multithreaded decoding is impossible, in which case it is
  453. * reduced to 1.
  454. */
  455. int max_contexts;
  456. /**
  457. * 1 if the single thread fallback warning has already been
  458. * displayed, 0 otherwise.
  459. */
  460. int single_decode_warning;
  461. int last_slice_type;
  462. /** @} */
  463. /**
  464. * pic_struct in picture timing SEI message
  465. */
  466. SEI_PicStructType sei_pic_struct;
  467. /**
  468. * Complement sei_pic_struct
  469. * SEI_PIC_STRUCT_TOP_BOTTOM and SEI_PIC_STRUCT_BOTTOM_TOP indicate interlaced frames.
  470. * However, soft telecined frames may have these values.
  471. * This is used in an attempt to flag soft telecine progressive.
  472. */
  473. int prev_interlaced_frame;
  474. /**
  475. * Bit set of clock types for fields/frames in picture timing SEI message.
  476. * For each found ct_type, appropriate bit is set (e.g., bit 1 for
  477. * interlaced).
  478. */
  479. int sei_ct_type;
  480. /**
  481. * dpb_output_delay in picture timing SEI message, see H.264 C.2.2
  482. */
  483. int sei_dpb_output_delay;
  484. /**
  485. * cpb_removal_delay in picture timing SEI message, see H.264 C.1.2
  486. */
  487. int sei_cpb_removal_delay;
  488. /**
  489. * recovery_frame_cnt from SEI message
  490. *
  491. * Set to -1 if no recovery point SEI message found or to number of frames
  492. * before playback synchronizes. Frames having recovery point are key
  493. * frames.
  494. */
  495. int sei_recovery_frame_cnt;
  496. int luma_weight_flag[2]; ///< 7.4.3.2 luma_weight_lX_flag
  497. int chroma_weight_flag[2]; ///< 7.4.3.2 chroma_weight_lX_flag
  498. // Timestamp stuff
  499. int sei_buffering_period_present; ///< Buffering period SEI flag
  500. int initial_cpb_removal_delay[32]; ///< Initial timestamps for CPBs
  501. //SVQ3 specific fields
  502. int halfpel_flag;
  503. int thirdpel_flag;
  504. int unknown_svq3_flag;
  505. int next_slice_index;
  506. uint32_t svq3_watermark_key;
  507. }H264Context;
  508. extern const uint8_t ff_h264_chroma_qp[52];
  509. /**
  510. * Decode SEI
  511. */
  512. int ff_h264_decode_sei(H264Context *h);
  513. /**
  514. * Decode SPS
  515. */
  516. int ff_h264_decode_seq_parameter_set(H264Context *h);
  517. /**
  518. * Decode PPS
  519. */
  520. int ff_h264_decode_picture_parameter_set(H264Context *h, int bit_length);
  521. /**
  522. * Decode a network abstraction layer unit.
  523. * @param consumed is the number of bytes used as input
  524. * @param length is the length of the array
  525. * @param dst_length is the number of decoded bytes FIXME here or a decode rbsp tailing?
  526. * @return decoded bytes, might be src+1 if no escapes
  527. */
  528. const uint8_t *ff_h264_decode_nal(H264Context *h, const uint8_t *src, int *dst_length, int *consumed, int length);
  529. /**
  530. * Free any data that may have been allocated in the H264 context like SPS, PPS etc.
  531. */
  532. av_cold void ff_h264_free_context(H264Context *h);
  533. /**
  534. * Reconstruct bitstream slice_type.
  535. */
  536. int ff_h264_get_slice_type(const H264Context *h);
  537. /**
  538. * Allocate tables.
  539. * needs width/height
  540. */
  541. int ff_h264_alloc_tables(H264Context *h);
  542. /**
  543. * Fill the default_ref_list.
  544. */
  545. int ff_h264_fill_default_ref_list(H264Context *h);
  546. int ff_h264_decode_ref_pic_list_reordering(H264Context *h);
  547. void ff_h264_fill_mbaff_ref_list(H264Context *h);
  548. void ff_h264_remove_all_refs(H264Context *h);
  549. /**
  550. * Execute the reference picture marking (memory management control operations).
  551. */
  552. int ff_h264_execute_ref_pic_marking(H264Context *h, MMCO *mmco, int mmco_count);
  553. int ff_h264_decode_ref_pic_marking(H264Context *h, GetBitContext *gb);
  554. void ff_generate_sliding_window_mmcos(H264Context *h);
  555. /**
  556. * Check if the top & left blocks are available if needed & change the dc mode so it only uses the available blocks.
  557. */
  558. int ff_h264_check_intra4x4_pred_mode(H264Context *h);
  559. /**
  560. * Check if the top & left blocks are available if needed & change the dc mode so it only uses the available blocks.
  561. */
  562. int ff_h264_check_intra_pred_mode(H264Context *h, int mode);
  563. void ff_h264_write_back_intra_pred_mode(H264Context *h);
  564. void ff_h264_hl_decode_mb(H264Context *h);
  565. int ff_h264_frame_start(H264Context *h);
  566. int ff_h264_decode_extradata(H264Context *h);
  567. av_cold int ff_h264_decode_init(AVCodecContext *avctx);
  568. av_cold int ff_h264_decode_end(AVCodecContext *avctx);
  569. av_cold void ff_h264_decode_init_vlc(void);
  570. /**
  571. * Decode a macroblock
  572. * @return 0 if OK, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed
  573. */
  574. int ff_h264_decode_mb_cavlc(H264Context *h);
  575. /**
  576. * Decode a CABAC coded macroblock
  577. * @return 0 if OK, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed
  578. */
  579. int ff_h264_decode_mb_cabac(H264Context *h);
  580. void ff_h264_init_cabac_states(H264Context *h);
  581. void ff_h264_direct_dist_scale_factor(H264Context * const h);
  582. void ff_h264_direct_ref_list_init(H264Context * const h);
  583. void ff_h264_pred_direct_motion(H264Context * const h, int *mb_type);
  584. void ff_h264_filter_mb_fast( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
  585. void ff_h264_filter_mb( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
  586. /**
  587. * Reset SEI values at the beginning of the frame.
  588. *
  589. * @param h H.264 context.
  590. */
  591. void ff_h264_reset_sei(H264Context *h);
  592. /*
  593. o-o o-o
  594. / / /
  595. o-o o-o
  596. ,---'
  597. o-o o-o
  598. / / /
  599. o-o o-o
  600. */
  601. /* Scan8 organization:
  602. * 0 1 2 3 4 5 6 7
  603. * 0 u u y y y y y
  604. * 1 u U U y Y Y Y Y
  605. * 2 u U U y Y Y Y Y
  606. * 3 v v y Y Y Y Y
  607. * 4 v V V y Y Y Y Y
  608. * 5 v V V DYDUDV
  609. * DY/DU/DV are for luma/chroma DC.
  610. */
  611. //This table must be here because scan8[constant] must be known at compiletime
  612. static const uint8_t scan8[16 + 2*4 + 3]={
  613. 4+1*8, 5+1*8, 4+2*8, 5+2*8,
  614. 6+1*8, 7+1*8, 6+2*8, 7+2*8,
  615. 4+3*8, 5+3*8, 4+4*8, 5+4*8,
  616. 6+3*8, 7+3*8, 6+4*8, 7+4*8,
  617. 1+1*8, 2+1*8,
  618. 1+2*8, 2+2*8,
  619. 1+4*8, 2+4*8,
  620. 1+5*8, 2+5*8,
  621. 4+5*8, 5+5*8, 6+5*8
  622. };
  623. static av_always_inline uint32_t pack16to32(int a, int b){
  624. #if HAVE_BIGENDIAN
  625. return (b&0xFFFF) + (a<<16);
  626. #else
  627. return (a&0xFFFF) + (b<<16);
  628. #endif
  629. }
  630. static av_always_inline uint16_t pack8to16(int a, int b){
  631. #if HAVE_BIGENDIAN
  632. return (b&0xFF) + (a<<8);
  633. #else
  634. return (a&0xFF) + (b<<8);
  635. #endif
  636. }
  637. /**
  638. * gets the chroma qp.
  639. */
  640. static inline int get_chroma_qp(H264Context *h, int t, int qscale){
  641. return h->pps.chroma_qp_table[t][qscale];
  642. }
  643. static inline void pred_pskip_motion(H264Context * const h, int * const mx, int * const my);
  644. static void fill_decode_neighbors(H264Context *h, int mb_type){
  645. MpegEncContext * const s = &h->s;
  646. const int mb_xy= h->mb_xy;
  647. int topleft_xy, top_xy, topright_xy, left_xy[2];
  648. static const uint8_t left_block_options[4][16]={
  649. {0,1,2,3,7,10,8,11,7+0*8, 7+1*8, 7+2*8, 7+3*8, 2+0*8, 2+3*8, 2+1*8, 2+2*8},
  650. {2,2,3,3,8,11,8,11,7+2*8, 7+2*8, 7+3*8, 7+3*8, 2+1*8, 2+2*8, 2+1*8, 2+2*8},
  651. {0,0,1,1,7,10,7,10,7+0*8, 7+0*8, 7+1*8, 7+1*8, 2+0*8, 2+3*8, 2+0*8, 2+3*8},
  652. {0,2,0,2,7,10,7,10,7+0*8, 7+2*8, 7+0*8, 7+2*8, 2+0*8, 2+3*8, 2+0*8, 2+3*8}
  653. };
  654. h->topleft_partition= -1;
  655. top_xy = mb_xy - (s->mb_stride << MB_FIELD);
  656. /* Wow, what a mess, why didn't they simplify the interlacing & intra
  657. * stuff, I can't imagine that these complex rules are worth it. */
  658. topleft_xy = top_xy - 1;
  659. topright_xy= top_xy + 1;
  660. left_xy[1] = left_xy[0] = mb_xy-1;
  661. h->left_block = left_block_options[0];
  662. if(FRAME_MBAFF){
  663. const int left_mb_field_flag = IS_INTERLACED(s->current_picture.mb_type[mb_xy-1]);
  664. const int curr_mb_field_flag = IS_INTERLACED(mb_type);
  665. if(s->mb_y&1){
  666. if (left_mb_field_flag != curr_mb_field_flag) {
  667. left_xy[1] = left_xy[0] = mb_xy - s->mb_stride - 1;
  668. if (curr_mb_field_flag) {
  669. left_xy[1] += s->mb_stride;
  670. h->left_block = left_block_options[3];
  671. } else {
  672. topleft_xy += s->mb_stride;
  673. // take top left mv from the middle of the mb, as opposed to all other modes which use the bottom right partition
  674. h->topleft_partition = 0;
  675. h->left_block = left_block_options[1];
  676. }
  677. }
  678. }else{
  679. if(curr_mb_field_flag){
  680. topleft_xy += s->mb_stride & (((s->current_picture.mb_type[top_xy - 1]>>7)&1)-1);
  681. topright_xy += s->mb_stride & (((s->current_picture.mb_type[top_xy + 1]>>7)&1)-1);
  682. top_xy += s->mb_stride & (((s->current_picture.mb_type[top_xy ]>>7)&1)-1);
  683. }
  684. if (left_mb_field_flag != curr_mb_field_flag) {
  685. if (curr_mb_field_flag) {
  686. left_xy[1] += s->mb_stride;
  687. h->left_block = left_block_options[3];
  688. } else {
  689. h->left_block = left_block_options[2];
  690. }
  691. }
  692. }
  693. }
  694. h->topleft_mb_xy = topleft_xy;
  695. h->top_mb_xy = top_xy;
  696. h->topright_mb_xy= topright_xy;
  697. h->left_mb_xy[0] = left_xy[0];
  698. h->left_mb_xy[1] = left_xy[1];
  699. //FIXME do we need all in the context?
  700. h->topleft_type = s->current_picture.mb_type[topleft_xy] ;
  701. h->top_type = s->current_picture.mb_type[top_xy] ;
  702. h->topright_type= s->current_picture.mb_type[topright_xy];
  703. h->left_type[0] = s->current_picture.mb_type[left_xy[0]] ;
  704. h->left_type[1] = s->current_picture.mb_type[left_xy[1]] ;
  705. if(FMO){
  706. if(h->slice_table[topleft_xy ] != h->slice_num) h->topleft_type = 0;
  707. if(h->slice_table[top_xy ] != h->slice_num) h->top_type = 0;
  708. if(h->slice_table[left_xy[0] ] != h->slice_num) h->left_type[0] = h->left_type[1] = 0;
  709. }else{
  710. if(h->slice_table[topleft_xy ] != h->slice_num){
  711. h->topleft_type = 0;
  712. if(h->slice_table[top_xy ] != h->slice_num) h->top_type = 0;
  713. if(h->slice_table[left_xy[0] ] != h->slice_num) h->left_type[0] = h->left_type[1] = 0;
  714. }
  715. }
  716. if(h->slice_table[topright_xy] != h->slice_num) h->topright_type= 0;
  717. }
  718. static void fill_decode_caches(H264Context *h, int mb_type){
  719. MpegEncContext * const s = &h->s;
  720. int topleft_xy, top_xy, topright_xy, left_xy[2];
  721. int topleft_type, top_type, topright_type, left_type[2];
  722. const uint8_t * left_block= h->left_block;
  723. int i;
  724. topleft_xy = h->topleft_mb_xy ;
  725. top_xy = h->top_mb_xy ;
  726. topright_xy = h->topright_mb_xy;
  727. left_xy[0] = h->left_mb_xy[0] ;
  728. left_xy[1] = h->left_mb_xy[1] ;
  729. topleft_type = h->topleft_type ;
  730. top_type = h->top_type ;
  731. topright_type= h->topright_type ;
  732. left_type[0] = h->left_type[0] ;
  733. left_type[1] = h->left_type[1] ;
  734. if(!IS_SKIP(mb_type)){
  735. if(IS_INTRA(mb_type)){
  736. int type_mask= h->pps.constrained_intra_pred ? IS_INTRA(-1) : -1;
  737. h->topleft_samples_available=
  738. h->top_samples_available=
  739. h->left_samples_available= 0xFFFF;
  740. h->topright_samples_available= 0xEEEA;
  741. if(!(top_type & type_mask)){
  742. h->topleft_samples_available= 0xB3FF;
  743. h->top_samples_available= 0x33FF;
  744. h->topright_samples_available= 0x26EA;
  745. }
  746. if(IS_INTERLACED(mb_type) != IS_INTERLACED(left_type[0])){
  747. if(IS_INTERLACED(mb_type)){
  748. if(!(left_type[0] & type_mask)){
  749. h->topleft_samples_available&= 0xDFFF;
  750. h->left_samples_available&= 0x5FFF;
  751. }
  752. if(!(left_type[1] & type_mask)){
  753. h->topleft_samples_available&= 0xFF5F;
  754. h->left_samples_available&= 0xFF5F;
  755. }
  756. }else{
  757. int left_typei = s->current_picture.mb_type[left_xy[0] + s->mb_stride];
  758. assert(left_xy[0] == left_xy[1]);
  759. if(!((left_typei & type_mask) && (left_type[0] & type_mask))){
  760. h->topleft_samples_available&= 0xDF5F;
  761. h->left_samples_available&= 0x5F5F;
  762. }
  763. }
  764. }else{
  765. if(!(left_type[0] & type_mask)){
  766. h->topleft_samples_available&= 0xDF5F;
  767. h->left_samples_available&= 0x5F5F;
  768. }
  769. }
  770. if(!(topleft_type & type_mask))
  771. h->topleft_samples_available&= 0x7FFF;
  772. if(!(topright_type & type_mask))
  773. h->topright_samples_available&= 0xFBFF;
  774. if(IS_INTRA4x4(mb_type)){
  775. if(IS_INTRA4x4(top_type)){
  776. AV_COPY32(h->intra4x4_pred_mode_cache+4+8*0, h->intra4x4_pred_mode + h->mb2br_xy[top_xy]);
  777. }else{
  778. h->intra4x4_pred_mode_cache[4+8*0]=
  779. h->intra4x4_pred_mode_cache[5+8*0]=
  780. h->intra4x4_pred_mode_cache[6+8*0]=
  781. h->intra4x4_pred_mode_cache[7+8*0]= 2 - 3*!(top_type & type_mask);
  782. }
  783. for(i=0; i<2; i++){
  784. if(IS_INTRA4x4(left_type[i])){
  785. int8_t *mode= h->intra4x4_pred_mode + h->mb2br_xy[left_xy[i]];
  786. h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]= mode[6-left_block[0+2*i]];
  787. h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= mode[6-left_block[1+2*i]];
  788. }else{
  789. h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]=
  790. h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= 2 - 3*!(left_type[i] & type_mask);
  791. }
  792. }
  793. }
  794. }
  795. /*
  796. 0 . T T. T T T T
  797. 1 L . .L . . . .
  798. 2 L . .L . . . .
  799. 3 . T TL . . . .
  800. 4 L . .L . . . .
  801. 5 L . .. . . . .
  802. */
  803. //FIXME constraint_intra_pred & partitioning & nnz (let us hope this is just a typo in the spec)
  804. if(top_type){
  805. AV_COPY32(&h->non_zero_count_cache[4+8*0], &h->non_zero_count[top_xy][4+3*8]);
  806. h->non_zero_count_cache[1+8*0]= h->non_zero_count[top_xy][1+1*8];
  807. h->non_zero_count_cache[2+8*0]= h->non_zero_count[top_xy][2+1*8];
  808. h->non_zero_count_cache[1+8*3]= h->non_zero_count[top_xy][1+2*8];
  809. h->non_zero_count_cache[2+8*3]= h->non_zero_count[top_xy][2+2*8];
  810. }else {
  811. h->non_zero_count_cache[1+8*0]=
  812. h->non_zero_count_cache[2+8*0]=
  813. h->non_zero_count_cache[1+8*3]=
  814. h->non_zero_count_cache[2+8*3]=
  815. AV_WN32A(&h->non_zero_count_cache[4+8*0], CABAC && !IS_INTRA(mb_type) ? 0 : 0x40404040);
  816. }
  817. for (i=0; i<2; i++) {
  818. if(left_type[i]){
  819. h->non_zero_count_cache[3+8*1 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[8+0+2*i]];
  820. h->non_zero_count_cache[3+8*2 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[8+1+2*i]];
  821. h->non_zero_count_cache[0+8*1 + 8*i]= h->non_zero_count[left_xy[i]][left_block[8+4+2*i]];
  822. h->non_zero_count_cache[0+8*4 + 8*i]= h->non_zero_count[left_xy[i]][left_block[8+5+2*i]];
  823. }else{
  824. h->non_zero_count_cache[3+8*1 + 2*8*i]=
  825. h->non_zero_count_cache[3+8*2 + 2*8*i]=
  826. h->non_zero_count_cache[0+8*1 + 8*i]=
  827. h->non_zero_count_cache[0+8*4 + 8*i]= CABAC && !IS_INTRA(mb_type) ? 0 : 64;
  828. }
  829. }
  830. if( CABAC ) {
  831. // top_cbp
  832. if(top_type) {
  833. h->top_cbp = h->cbp_table[top_xy];
  834. } else {
  835. h->top_cbp = IS_INTRA(mb_type) ? 0x1CF : 0x00F;
  836. }
  837. // left_cbp
  838. if (left_type[0]) {
  839. h->left_cbp = (h->cbp_table[left_xy[0]] & 0x1f0)
  840. | ((h->cbp_table[left_xy[0]]>>(left_block[0]&(~1)))&2)
  841. | (((h->cbp_table[left_xy[1]]>>(left_block[2]&(~1)))&2) << 2);
  842. } else {
  843. h->left_cbp = IS_INTRA(mb_type) ? 0x1CF : 0x00F;
  844. }
  845. }
  846. }
  847. #if 1
  848. if(IS_INTER(mb_type) || (IS_DIRECT(mb_type) && h->direct_spatial_mv_pred)){
  849. int list;
  850. for(list=0; list<h->list_count; list++){
  851. if(!USES_LIST(mb_type, list)){
  852. /*if(!h->mv_cache_clean[list]){
  853. memset(h->mv_cache [list], 0, 8*5*2*sizeof(int16_t)); //FIXME clean only input? clean at all?
  854. memset(h->ref_cache[list], PART_NOT_AVAILABLE, 8*5*sizeof(int8_t));
  855. h->mv_cache_clean[list]= 1;
  856. }*/
  857. continue;
  858. }
  859. assert(!(IS_DIRECT(mb_type) && !h->direct_spatial_mv_pred));
  860. h->mv_cache_clean[list]= 0;
  861. if(USES_LIST(top_type, list)){
  862. const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
  863. AV_COPY128(h->mv_cache[list][scan8[0] + 0 - 1*8], s->current_picture.motion_val[list][b_xy + 0]);
  864. h->ref_cache[list][scan8[0] + 0 - 1*8]=
  865. h->ref_cache[list][scan8[0] + 1 - 1*8]= s->current_picture.ref_index[list][4*top_xy + 2];
  866. h->ref_cache[list][scan8[0] + 2 - 1*8]=
  867. h->ref_cache[list][scan8[0] + 3 - 1*8]= s->current_picture.ref_index[list][4*top_xy + 3];
  868. }else{
  869. AV_ZERO128(h->mv_cache[list][scan8[0] + 0 - 1*8]);
  870. AV_WN32A(&h->ref_cache[list][scan8[0] + 0 - 1*8], ((top_type ? LIST_NOT_USED : PART_NOT_AVAILABLE)&0xFF)*0x01010101);
  871. }
  872. if(mb_type & (MB_TYPE_16x8|MB_TYPE_8x8)){
  873. for(i=0; i<2; i++){
  874. int cache_idx = scan8[0] - 1 + i*2*8;
  875. if(USES_LIST(left_type[i], list)){
  876. const int b_xy= h->mb2b_xy[left_xy[i]] + 3;
  877. const int b8_xy= 4*left_xy[i] + 1;
  878. AV_COPY32(h->mv_cache[list][cache_idx ], s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[0+i*2]]);
  879. AV_COPY32(h->mv_cache[list][cache_idx+8], s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[1+i*2]]);
  880. h->ref_cache[list][cache_idx ]= s->current_picture.ref_index[list][b8_xy + (left_block[0+i*2]&~1)];
  881. h->ref_cache[list][cache_idx+8]= s->current_picture.ref_index[list][b8_xy + (left_block[1+i*2]&~1)];
  882. }else{
  883. AV_ZERO32(h->mv_cache [list][cache_idx ]);
  884. AV_ZERO32(h->mv_cache [list][cache_idx+8]);
  885. h->ref_cache[list][cache_idx ]=
  886. h->ref_cache[list][cache_idx+8]= (left_type[i]) ? LIST_NOT_USED : PART_NOT_AVAILABLE;
  887. }
  888. }
  889. }else{
  890. if(USES_LIST(left_type[0], list)){
  891. const int b_xy= h->mb2b_xy[left_xy[0]] + 3;
  892. const int b8_xy= 4*left_xy[0] + 1;
  893. AV_COPY32(h->mv_cache[list][scan8[0] - 1], s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[0]]);
  894. h->ref_cache[list][scan8[0] - 1]= s->current_picture.ref_index[list][b8_xy + (left_block[0]&~1)];
  895. }else{
  896. AV_ZERO32(h->mv_cache [list][scan8[0] - 1]);
  897. h->ref_cache[list][scan8[0] - 1]= left_type[0] ? LIST_NOT_USED : PART_NOT_AVAILABLE;
  898. }
  899. }
  900. if(USES_LIST(topright_type, list)){
  901. const int b_xy= h->mb2b_xy[topright_xy] + 3*h->b_stride;
  902. AV_COPY32(h->mv_cache[list][scan8[0] + 4 - 1*8], s->current_picture.motion_val[list][b_xy]);
  903. h->ref_cache[list][scan8[0] + 4 - 1*8]= s->current_picture.ref_index[list][4*topright_xy + 2];
  904. }else{
  905. AV_ZERO32(h->mv_cache [list][scan8[0] + 4 - 1*8]);
  906. h->ref_cache[list][scan8[0] + 4 - 1*8]= topright_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
  907. }
  908. if(h->ref_cache[list][scan8[0] + 4 - 1*8] < 0){
  909. if(USES_LIST(topleft_type, list)){
  910. const int b_xy = h->mb2b_xy [topleft_xy] + 3 + h->b_stride + (h->topleft_partition & 2*h->b_stride);
  911. const int b8_xy= 4*topleft_xy + 1 + (h->topleft_partition & 2);
  912. AV_COPY32(h->mv_cache[list][scan8[0] - 1 - 1*8], s->current_picture.motion_val[list][b_xy]);
  913. h->ref_cache[list][scan8[0] - 1 - 1*8]= s->current_picture.ref_index[list][b8_xy];
  914. }else{
  915. AV_ZERO32(h->mv_cache[list][scan8[0] - 1 - 1*8]);
  916. h->ref_cache[list][scan8[0] - 1 - 1*8]= topleft_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
  917. }
  918. }
  919. if((mb_type&(MB_TYPE_SKIP|MB_TYPE_DIRECT2)) && !FRAME_MBAFF)
  920. continue;
  921. if(!(mb_type&(MB_TYPE_SKIP|MB_TYPE_DIRECT2))) {
  922. h->ref_cache[list][scan8[4 ]] =
  923. h->ref_cache[list][scan8[12]] = PART_NOT_AVAILABLE;
  924. AV_ZERO32(h->mv_cache [list][scan8[4 ]]);
  925. AV_ZERO32(h->mv_cache [list][scan8[12]]);
  926. if( CABAC ) {
  927. /* XXX beurk, Load mvd */
  928. if(USES_LIST(top_type, list)){
  929. const int b_xy= h->mb2br_xy[top_xy];
  930. AV_COPY64(h->mvd_cache[list][scan8[0] + 0 - 1*8], h->mvd_table[list][b_xy + 0]);
  931. }else{
  932. AV_ZERO64(h->mvd_cache[list][scan8[0] + 0 - 1*8]);
  933. }
  934. if(USES_LIST(left_type[0], list)){
  935. const int b_xy= h->mb2br_xy[left_xy[0]] + 6;
  936. AV_COPY16(h->mvd_cache[list][scan8[0] - 1 + 0*8], h->mvd_table[list][b_xy - left_block[0]]);
  937. AV_COPY16(h->mvd_cache[list][scan8[0] - 1 + 1*8], h->mvd_table[list][b_xy - left_block[1]]);
  938. }else{
  939. AV_ZERO16(h->mvd_cache [list][scan8[0] - 1 + 0*8]);
  940. AV_ZERO16(h->mvd_cache [list][scan8[0] - 1 + 1*8]);
  941. }
  942. if(USES_LIST(left_type[1], list)){
  943. const int b_xy= h->mb2br_xy[left_xy[1]] + 6;
  944. AV_COPY16(h->mvd_cache[list][scan8[0] - 1 + 2*8], h->mvd_table[list][b_xy - left_block[2]]);
  945. AV_COPY16(h->mvd_cache[list][scan8[0] - 1 + 3*8], h->mvd_table[list][b_xy - left_block[3]]);
  946. }else{
  947. AV_ZERO16(h->mvd_cache [list][scan8[0] - 1 + 2*8]);
  948. AV_ZERO16(h->mvd_cache [list][scan8[0] - 1 + 3*8]);
  949. }
  950. AV_ZERO16(h->mvd_cache [list][scan8[4 ]]);
  951. AV_ZERO16(h->mvd_cache [list][scan8[12]]);
  952. if(h->slice_type_nos == FF_B_TYPE){
  953. fill_rectangle(&h->direct_cache[scan8[0]], 4, 4, 8, MB_TYPE_16x16>>1, 1);
  954. if(IS_DIRECT(top_type)){
  955. AV_WN32A(&h->direct_cache[scan8[0] - 1*8], 0x01010101u*(MB_TYPE_DIRECT2>>1));
  956. }else if(IS_8X8(top_type)){
  957. int b8_xy = 4*top_xy;
  958. h->direct_cache[scan8[0] + 0 - 1*8]= h->direct_table[b8_xy + 2];
  959. h->direct_cache[scan8[0] + 2 - 1*8]= h->direct_table[b8_xy + 3];
  960. }else{
  961. AV_WN32A(&h->direct_cache[scan8[0] - 1*8], 0x01010101*(MB_TYPE_16x16>>1));
  962. }
  963. if(IS_DIRECT(left_type[0]))
  964. h->direct_cache[scan8[0] - 1 + 0*8]= MB_TYPE_DIRECT2>>1;
  965. else if(IS_8X8(left_type[0]))
  966. h->direct_cache[scan8[0] - 1 + 0*8]= h->direct_table[4*left_xy[0] + 1 + (left_block[0]&~1)];
  967. else
  968. h->direct_cache[scan8[0] - 1 + 0*8]= MB_TYPE_16x16>>1;
  969. if(IS_DIRECT(left_type[1]))
  970. h->direct_cache[scan8[0] - 1 + 2*8]= MB_TYPE_DIRECT2>>1;
  971. else if(IS_8X8(left_type[1]))
  972. h->direct_cache[scan8[0] - 1 + 2*8]= h->direct_table[4*left_xy[1] + 1 + (left_block[2]&~1)];
  973. else
  974. h->direct_cache[scan8[0] - 1 + 2*8]= MB_TYPE_16x16>>1;
  975. }
  976. }
  977. }
  978. if(FRAME_MBAFF){
  979. #define MAP_MVS\
  980. MAP_F2F(scan8[0] - 1 - 1*8, topleft_type)\
  981. MAP_F2F(scan8[0] + 0 - 1*8, top_type)\
  982. MAP_F2F(scan8[0] + 1 - 1*8, top_type)\
  983. MAP_F2F(scan8[0] + 2 - 1*8, top_type)\
  984. MAP_F2F(scan8[0] + 3 - 1*8, top_type)\
  985. MAP_F2F(scan8[0] + 4 - 1*8, topright_type)\
  986. MAP_F2F(scan8[0] - 1 + 0*8, left_type[0])\
  987. MAP_F2F(scan8[0] - 1 + 1*8, left_type[0])\
  988. MAP_F2F(scan8[0] - 1 + 2*8, left_type[1])\
  989. MAP_F2F(scan8[0] - 1 + 3*8, left_type[1])
  990. if(MB_FIELD){
  991. #define MAP_F2F(idx, mb_type)\
  992. if(!IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
  993. h->ref_cache[list][idx] <<= 1;\
  994. h->mv_cache[list][idx][1] /= 2;\
  995. h->mvd_cache[list][idx][1] >>=1;\
  996. }
  997. MAP_MVS
  998. #undef MAP_F2F
  999. }else{
  1000. #define MAP_F2F(idx, mb_type)\
  1001. if(IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
  1002. h->ref_cache[list][idx] >>= 1;\
  1003. h->mv_cache[list][idx][1] <<= 1;\
  1004. h->mvd_cache[list][idx][1] <<= 1;\
  1005. }
  1006. MAP_MVS
  1007. #undef MAP_F2F
  1008. }
  1009. }
  1010. }
  1011. }
  1012. #endif
  1013. h->neighbor_transform_size= !!IS_8x8DCT(top_type) + !!IS_8x8DCT(left_type[0]);
  1014. }
  1015. /**
  1016. * gets the predicted intra4x4 prediction mode.
  1017. */
  1018. static inline int pred_intra_mode(H264Context *h, int n){
  1019. const int index8= scan8[n];
  1020. const int left= h->intra4x4_pred_mode_cache[index8 - 1];
  1021. const int top = h->intra4x4_pred_mode_cache[index8 - 8];
  1022. const int min= FFMIN(left, top);
  1023. tprintf(h->s.avctx, "mode:%d %d min:%d\n", left ,top, min);
  1024. if(min<0) return DC_PRED;
  1025. else return min;
  1026. }
  1027. static inline void write_back_non_zero_count(H264Context *h){
  1028. const int mb_xy= h->mb_xy;
  1029. AV_COPY64(&h->non_zero_count[mb_xy][ 0], &h->non_zero_count_cache[0+8*1]);
  1030. AV_COPY64(&h->non_zero_count[mb_xy][ 8], &h->non_zero_count_cache[0+8*2]);
  1031. AV_COPY32(&h->non_zero_count[mb_xy][16], &h->non_zero_count_cache[0+8*5]);
  1032. AV_COPY32(&h->non_zero_count[mb_xy][20], &h->non_zero_count_cache[4+8*3]);
  1033. AV_COPY64(&h->non_zero_count[mb_xy][24], &h->non_zero_count_cache[0+8*4]);
  1034. }
  1035. static inline void write_back_motion(H264Context *h, int mb_type){
  1036. MpegEncContext * const s = &h->s;
  1037. const int b_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride; //try mb2b(8)_xy
  1038. const int b8_xy= 4*h->mb_xy;
  1039. int list;
  1040. if(!USES_LIST(mb_type, 0))
  1041. fill_rectangle(&s->current_picture.ref_index[0][b8_xy], 2, 2, 2, (uint8_t)LIST_NOT_USED, 1);
  1042. for(list=0; list<h->list_count; list++){
  1043. int y, b_stride;
  1044. int16_t (*mv_dst)[2];
  1045. int16_t (*mv_src)[2];
  1046. if(!USES_LIST(mb_type, list))
  1047. continue;
  1048. b_stride = h->b_stride;
  1049. mv_dst = &s->current_picture.motion_val[list][b_xy];
  1050. mv_src = &h->mv_cache[list][scan8[0]];
  1051. for(y=0; y<4; y++){
  1052. AV_COPY128(mv_dst + y*b_stride, mv_src + 8*y);
  1053. }
  1054. if( CABAC ) {
  1055. uint8_t (*mvd_dst)[2] = &h->mvd_table[list][FMO ? 8*h->mb_xy : h->mb2br_xy[h->mb_xy]];
  1056. uint8_t (*mvd_src)[2] = &h->mvd_cache[list][scan8[0]];
  1057. if(IS_SKIP(mb_type))
  1058. AV_ZERO128(mvd_dst);
  1059. else{
  1060. AV_COPY64(mvd_dst, mvd_src + 8*3);
  1061. AV_COPY16(mvd_dst + 3 + 3, mvd_src + 3 + 8*0);
  1062. AV_COPY16(mvd_dst + 3 + 2, mvd_src + 3 + 8*1);
  1063. AV_COPY16(mvd_dst + 3 + 1, mvd_src + 3 + 8*2);
  1064. }
  1065. }
  1066. {
  1067. int8_t *ref_index = &s->current_picture.ref_index[list][b8_xy];
  1068. ref_index[0+0*2]= h->ref_cache[list][scan8[0]];
  1069. ref_index[1+0*2]= h->ref_cache[list][scan8[4]];
  1070. ref_index[0+1*2]= h->ref_cache[list][scan8[8]];
  1071. ref_index[1+1*2]= h->ref_cache[list][scan8[12]];
  1072. }
  1073. }
  1074. if(h->slice_type_nos == FF_B_TYPE && CABAC){
  1075. if(IS_8X8(mb_type)){
  1076. uint8_t *direct_table = &h->direct_table[4*h->mb_xy];
  1077. direct_table[1] = h->sub_mb_type[1]>>1;
  1078. direct_table[2] = h->sub_mb_type[2]>>1;
  1079. direct_table[3] = h->sub_mb_type[3]>>1;
  1080. }
  1081. }
  1082. }
  1083. static inline int get_dct8x8_allowed(H264Context *h){
  1084. if(h->sps.direct_8x8_inference_flag)
  1085. return !(AV_RN64A(h->sub_mb_type) & ((MB_TYPE_16x8|MB_TYPE_8x16|MB_TYPE_8x8 )*0x0001000100010001ULL));
  1086. else
  1087. return !(AV_RN64A(h->sub_mb_type) & ((MB_TYPE_16x8|MB_TYPE_8x16|MB_TYPE_8x8|MB_TYPE_DIRECT2)*0x0001000100010001ULL));
  1088. }
  1089. /**
  1090. * decodes a P_SKIP or B_SKIP macroblock
  1091. */
  1092. static void av_unused decode_mb_skip(H264Context *h){
  1093. MpegEncContext * const s = &h->s;
  1094. const int mb_xy= h->mb_xy;
  1095. int mb_type=0;
  1096. memset(h->non_zero_count[mb_xy], 0, 32);
  1097. memset(h->non_zero_count_cache + 8, 0, 8*5); //FIXME ugly, remove pfui
  1098. if(MB_FIELD)
  1099. mb_type|= MB_TYPE_INTERLACED;
  1100. if( h->slice_type_nos == FF_B_TYPE )
  1101. {
  1102. // just for fill_caches. pred_direct_motion will set the real mb_type
  1103. mb_type|= MB_TYPE_L0L1|MB_TYPE_DIRECT2|MB_TYPE_SKIP;
  1104. if(h->direct_spatial_mv_pred){
  1105. fill_decode_neighbors(h, mb_type);
  1106. fill_decode_caches(h, mb_type); //FIXME check what is needed and what not ...
  1107. }
  1108. ff_h264_pred_direct_motion(h, &mb_type);
  1109. mb_type|= MB_TYPE_SKIP;
  1110. }
  1111. else
  1112. {
  1113. int mx, my;
  1114. mb_type|= MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P1L0|MB_TYPE_SKIP;
  1115. fill_decode_neighbors(h, mb_type);
  1116. fill_decode_caches(h, mb_type); //FIXME check what is needed and what not ...
  1117. pred_pskip_motion(h, &mx, &my);
  1118. fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, 0, 1);
  1119. fill_rectangle( h->mv_cache[0][scan8[0]], 4, 4, 8, pack16to32(mx,my), 4);
  1120. }
  1121. write_back_motion(h, mb_type);
  1122. s->current_picture.mb_type[mb_xy]= mb_type;
  1123. s->current_picture.qscale_table[mb_xy]= s->qscale;
  1124. h->slice_table[ mb_xy ]= h->slice_num;
  1125. h->prev_mb_skipped= 1;
  1126. }
  1127. #include "h264_mvpred.h" //For pred_pskip_motion()
  1128. #endif /* AVCODEC_H264_H */