You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2681 lines
101KB

  1. /*
  2. * DCA compatible decoder
  3. * Copyright (C) 2004 Gildas Bazin
  4. * Copyright (C) 2004 Benjamin Zores
  5. * Copyright (C) 2006 Benjamin Larsson
  6. * Copyright (C) 2007 Konstantin Shishkov
  7. *
  8. * This file is part of FFmpeg.
  9. *
  10. * FFmpeg is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU Lesser General Public
  12. * License as published by the Free Software Foundation; either
  13. * version 2.1 of the License, or (at your option) any later version.
  14. *
  15. * FFmpeg is distributed in the hope that it will be useful,
  16. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  18. * Lesser General Public License for more details.
  19. *
  20. * You should have received a copy of the GNU Lesser General Public
  21. * License along with FFmpeg; if not, write to the Free Software
  22. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  23. */
  24. #include <math.h>
  25. #include <stddef.h>
  26. #include <stdio.h>
  27. #include "libavutil/channel_layout.h"
  28. #include "libavutil/common.h"
  29. #include "libavutil/float_dsp.h"
  30. #include "libavutil/internal.h"
  31. #include "libavutil/intreadwrite.h"
  32. #include "libavutil/mathematics.h"
  33. #include "libavutil/opt.h"
  34. #include "libavutil/samplefmt.h"
  35. #include "avcodec.h"
  36. #include "fft.h"
  37. #include "get_bits.h"
  38. #include "dcadata.h"
  39. #include "dcahuff.h"
  40. #include "dca.h"
  41. #include "mathops.h"
  42. #include "synth_filter.h"
  43. #include "dcadsp.h"
  44. #include "fmtconvert.h"
  45. #include "internal.h"
  46. #if ARCH_ARM
  47. # include "arm/dca.h"
  48. #endif
  49. //#define TRACE
  50. #define DCA_PRIM_CHANNELS_MAX (7)
  51. #define DCA_ABITS_MAX (32) /* Should be 28 */
  52. #define DCA_SUBSUBFRAMES_MAX (4)
  53. #define DCA_SUBFRAMES_MAX (16)
  54. #define DCA_BLOCKS_MAX (16)
  55. #define DCA_LFE_MAX (3)
  56. #define DCA_CHSETS_MAX (4)
  57. #define DCA_CHSET_CHANS_MAX (8)
  58. enum DCAMode {
  59. DCA_MONO = 0,
  60. DCA_CHANNEL,
  61. DCA_STEREO,
  62. DCA_STEREO_SUMDIFF,
  63. DCA_STEREO_TOTAL,
  64. DCA_3F,
  65. DCA_2F1R,
  66. DCA_3F1R,
  67. DCA_2F2R,
  68. DCA_3F2R,
  69. DCA_4F2R
  70. };
  71. /* these are unconfirmed but should be mostly correct */
  72. enum DCAExSSSpeakerMask {
  73. DCA_EXSS_FRONT_CENTER = 0x0001,
  74. DCA_EXSS_FRONT_LEFT_RIGHT = 0x0002,
  75. DCA_EXSS_SIDE_REAR_LEFT_RIGHT = 0x0004,
  76. DCA_EXSS_LFE = 0x0008,
  77. DCA_EXSS_REAR_CENTER = 0x0010,
  78. DCA_EXSS_FRONT_HIGH_LEFT_RIGHT = 0x0020,
  79. DCA_EXSS_REAR_LEFT_RIGHT = 0x0040,
  80. DCA_EXSS_FRONT_HIGH_CENTER = 0x0080,
  81. DCA_EXSS_OVERHEAD = 0x0100,
  82. DCA_EXSS_CENTER_LEFT_RIGHT = 0x0200,
  83. DCA_EXSS_WIDE_LEFT_RIGHT = 0x0400,
  84. DCA_EXSS_SIDE_LEFT_RIGHT = 0x0800,
  85. DCA_EXSS_LFE2 = 0x1000,
  86. DCA_EXSS_SIDE_HIGH_LEFT_RIGHT = 0x2000,
  87. DCA_EXSS_REAR_HIGH_CENTER = 0x4000,
  88. DCA_EXSS_REAR_HIGH_LEFT_RIGHT = 0x8000,
  89. };
  90. enum DCAXxchSpeakerMask {
  91. DCA_XXCH_FRONT_CENTER = 0x0000001,
  92. DCA_XXCH_FRONT_LEFT = 0x0000002,
  93. DCA_XXCH_FRONT_RIGHT = 0x0000004,
  94. DCA_XXCH_SIDE_REAR_LEFT = 0x0000008,
  95. DCA_XXCH_SIDE_REAR_RIGHT = 0x0000010,
  96. DCA_XXCH_LFE1 = 0x0000020,
  97. DCA_XXCH_REAR_CENTER = 0x0000040,
  98. DCA_XXCH_SURROUND_REAR_LEFT = 0x0000080,
  99. DCA_XXCH_SURROUND_REAR_RIGHT = 0x0000100,
  100. DCA_XXCH_SIDE_SURROUND_LEFT = 0x0000200,
  101. DCA_XXCH_SIDE_SURROUND_RIGHT = 0x0000400,
  102. DCA_XXCH_FRONT_CENTER_LEFT = 0x0000800,
  103. DCA_XXCH_FRONT_CENTER_RIGHT = 0x0001000,
  104. DCA_XXCH_FRONT_HIGH_LEFT = 0x0002000,
  105. DCA_XXCH_FRONT_HIGH_CENTER = 0x0004000,
  106. DCA_XXCH_FRONT_HIGH_RIGHT = 0x0008000,
  107. DCA_XXCH_LFE2 = 0x0010000,
  108. DCA_XXCH_SIDE_FRONT_LEFT = 0x0020000,
  109. DCA_XXCH_SIDE_FRONT_RIGHT = 0x0040000,
  110. DCA_XXCH_OVERHEAD = 0x0080000,
  111. DCA_XXCH_SIDE_HIGH_LEFT = 0x0100000,
  112. DCA_XXCH_SIDE_HIGH_RIGHT = 0x0200000,
  113. DCA_XXCH_REAR_HIGH_CENTER = 0x0400000,
  114. DCA_XXCH_REAR_HIGH_LEFT = 0x0800000,
  115. DCA_XXCH_REAR_HIGH_RIGHT = 0x1000000,
  116. DCA_XXCH_REAR_LOW_CENTER = 0x2000000,
  117. DCA_XXCH_REAR_LOW_LEFT = 0x4000000,
  118. DCA_XXCH_REAR_LOW_RIGHT = 0x8000000,
  119. };
  120. static const uint32_t map_xxch_to_native[28] = {
  121. AV_CH_FRONT_CENTER,
  122. AV_CH_FRONT_LEFT,
  123. AV_CH_FRONT_RIGHT,
  124. AV_CH_SIDE_LEFT,
  125. AV_CH_SIDE_RIGHT,
  126. AV_CH_LOW_FREQUENCY,
  127. AV_CH_BACK_CENTER,
  128. AV_CH_BACK_LEFT,
  129. AV_CH_BACK_RIGHT,
  130. AV_CH_SIDE_LEFT, /* side surround left -- dup sur side L */
  131. AV_CH_SIDE_RIGHT, /* side surround right -- dup sur side R */
  132. AV_CH_FRONT_LEFT_OF_CENTER,
  133. AV_CH_FRONT_RIGHT_OF_CENTER,
  134. AV_CH_TOP_FRONT_LEFT,
  135. AV_CH_TOP_FRONT_CENTER,
  136. AV_CH_TOP_FRONT_RIGHT,
  137. AV_CH_LOW_FREQUENCY, /* lfe2 -- duplicate lfe1 position */
  138. AV_CH_FRONT_LEFT_OF_CENTER, /* side front left -- dup front cntr L */
  139. AV_CH_FRONT_RIGHT_OF_CENTER,/* side front right -- dup front cntr R */
  140. AV_CH_TOP_CENTER, /* overhead */
  141. AV_CH_TOP_FRONT_LEFT, /* side high left -- dup */
  142. AV_CH_TOP_FRONT_RIGHT, /* side high right -- dup */
  143. AV_CH_TOP_BACK_CENTER,
  144. AV_CH_TOP_BACK_LEFT,
  145. AV_CH_TOP_BACK_RIGHT,
  146. AV_CH_BACK_CENTER, /* rear low center -- dup */
  147. AV_CH_BACK_LEFT, /* rear low left -- dup */
  148. AV_CH_BACK_RIGHT /* read low right -- dup */
  149. };
  150. enum DCAExtensionMask {
  151. DCA_EXT_CORE = 0x001, ///< core in core substream
  152. DCA_EXT_XXCH = 0x002, ///< XXCh channels extension in core substream
  153. DCA_EXT_X96 = 0x004, ///< 96/24 extension in core substream
  154. DCA_EXT_XCH = 0x008, ///< XCh channel extension in core substream
  155. DCA_EXT_EXSS_CORE = 0x010, ///< core in ExSS (extension substream)
  156. DCA_EXT_EXSS_XBR = 0x020, ///< extended bitrate extension in ExSS
  157. DCA_EXT_EXSS_XXCH = 0x040, ///< XXCh channels extension in ExSS
  158. DCA_EXT_EXSS_X96 = 0x080, ///< 96/24 extension in ExSS
  159. DCA_EXT_EXSS_LBR = 0x100, ///< low bitrate component in ExSS
  160. DCA_EXT_EXSS_XLL = 0x200, ///< lossless extension in ExSS
  161. };
  162. /* -1 are reserved or unknown */
  163. static const int dca_ext_audio_descr_mask[] = {
  164. DCA_EXT_XCH,
  165. -1,
  166. DCA_EXT_X96,
  167. DCA_EXT_XCH | DCA_EXT_X96,
  168. -1,
  169. -1,
  170. DCA_EXT_XXCH,
  171. -1,
  172. };
  173. /* extensions that reside in core substream */
  174. #define DCA_CORE_EXTS (DCA_EXT_XCH | DCA_EXT_XXCH | DCA_EXT_X96)
  175. /* Tables for mapping dts channel configurations to libavcodec multichannel api.
  176. * Some compromises have been made for special configurations. Most configurations
  177. * are never used so complete accuracy is not needed.
  178. *
  179. * L = left, R = right, C = center, S = surround, F = front, R = rear, T = total, OV = overhead.
  180. * S -> side, when both rear and back are configured move one of them to the side channel
  181. * OV -> center back
  182. * All 2 channel configurations -> AV_CH_LAYOUT_STEREO
  183. */
  184. static const uint64_t dca_core_channel_layout[] = {
  185. AV_CH_FRONT_CENTER, ///< 1, A
  186. AV_CH_LAYOUT_STEREO, ///< 2, A + B (dual mono)
  187. AV_CH_LAYOUT_STEREO, ///< 2, L + R (stereo)
  188. AV_CH_LAYOUT_STEREO, ///< 2, (L + R) + (L - R) (sum-difference)
  189. AV_CH_LAYOUT_STEREO, ///< 2, LT + RT (left and right total)
  190. AV_CH_LAYOUT_STEREO | AV_CH_FRONT_CENTER, ///< 3, C + L + R
  191. AV_CH_LAYOUT_STEREO | AV_CH_BACK_CENTER, ///< 3, L + R + S
  192. AV_CH_LAYOUT_STEREO | AV_CH_FRONT_CENTER | AV_CH_BACK_CENTER, ///< 4, C + L + R + S
  193. AV_CH_LAYOUT_STEREO | AV_CH_SIDE_LEFT | AV_CH_SIDE_RIGHT, ///< 4, L + R + SL + SR
  194. AV_CH_LAYOUT_STEREO | AV_CH_FRONT_CENTER | AV_CH_SIDE_LEFT |
  195. AV_CH_SIDE_RIGHT, ///< 5, C + L + R + SL + SR
  196. AV_CH_LAYOUT_STEREO | AV_CH_SIDE_LEFT | AV_CH_SIDE_RIGHT |
  197. AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_FRONT_RIGHT_OF_CENTER, ///< 6, CL + CR + L + R + SL + SR
  198. AV_CH_LAYOUT_STEREO | AV_CH_BACK_LEFT | AV_CH_BACK_RIGHT |
  199. AV_CH_FRONT_CENTER | AV_CH_BACK_CENTER, ///< 6, C + L + R + LR + RR + OV
  200. AV_CH_FRONT_CENTER | AV_CH_FRONT_RIGHT_OF_CENTER |
  201. AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_BACK_CENTER |
  202. AV_CH_BACK_LEFT | AV_CH_BACK_RIGHT, ///< 6, CF + CR + LF + RF + LR + RR
  203. AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_FRONT_CENTER |
  204. AV_CH_FRONT_RIGHT_OF_CENTER | AV_CH_LAYOUT_STEREO |
  205. AV_CH_SIDE_LEFT | AV_CH_SIDE_RIGHT, ///< 7, CL + C + CR + L + R + SL + SR
  206. AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_FRONT_RIGHT_OF_CENTER |
  207. AV_CH_LAYOUT_STEREO | AV_CH_SIDE_LEFT | AV_CH_SIDE_RIGHT |
  208. AV_CH_BACK_LEFT | AV_CH_BACK_RIGHT, ///< 8, CL + CR + L + R + SL1 + SL2 + SR1 + SR2
  209. AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_FRONT_CENTER |
  210. AV_CH_FRONT_RIGHT_OF_CENTER | AV_CH_LAYOUT_STEREO |
  211. AV_CH_SIDE_LEFT | AV_CH_BACK_CENTER | AV_CH_SIDE_RIGHT, ///< 8, CL + C + CR + L + R + SL + S + SR
  212. };
  213. static const int8_t dca_lfe_index[] = {
  214. 1, 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 1, 3, 2, 3
  215. };
  216. static const int8_t dca_channel_reorder_lfe[][9] = {
  217. { 0, -1, -1, -1, -1, -1, -1, -1, -1},
  218. { 0, 1, -1, -1, -1, -1, -1, -1, -1},
  219. { 0, 1, -1, -1, -1, -1, -1, -1, -1},
  220. { 0, 1, -1, -1, -1, -1, -1, -1, -1},
  221. { 0, 1, -1, -1, -1, -1, -1, -1, -1},
  222. { 2, 0, 1, -1, -1, -1, -1, -1, -1},
  223. { 0, 1, 3, -1, -1, -1, -1, -1, -1},
  224. { 2, 0, 1, 4, -1, -1, -1, -1, -1},
  225. { 0, 1, 3, 4, -1, -1, -1, -1, -1},
  226. { 2, 0, 1, 4, 5, -1, -1, -1, -1},
  227. { 3, 4, 0, 1, 5, 6, -1, -1, -1},
  228. { 2, 0, 1, 4, 5, 6, -1, -1, -1},
  229. { 0, 6, 4, 5, 2, 3, -1, -1, -1},
  230. { 4, 2, 5, 0, 1, 6, 7, -1, -1},
  231. { 5, 6, 0, 1, 7, 3, 8, 4, -1},
  232. { 4, 2, 5, 0, 1, 6, 8, 7, -1},
  233. };
  234. static const int8_t dca_channel_reorder_lfe_xch[][9] = {
  235. { 0, 2, -1, -1, -1, -1, -1, -1, -1},
  236. { 0, 1, 3, -1, -1, -1, -1, -1, -1},
  237. { 0, 1, 3, -1, -1, -1, -1, -1, -1},
  238. { 0, 1, 3, -1, -1, -1, -1, -1, -1},
  239. { 0, 1, 3, -1, -1, -1, -1, -1, -1},
  240. { 2, 0, 1, 4, -1, -1, -1, -1, -1},
  241. { 0, 1, 3, 4, -1, -1, -1, -1, -1},
  242. { 2, 0, 1, 4, 5, -1, -1, -1, -1},
  243. { 0, 1, 4, 5, 3, -1, -1, -1, -1},
  244. { 2, 0, 1, 5, 6, 4, -1, -1, -1},
  245. { 3, 4, 0, 1, 6, 7, 5, -1, -1},
  246. { 2, 0, 1, 4, 5, 6, 7, -1, -1},
  247. { 0, 6, 4, 5, 2, 3, 7, -1, -1},
  248. { 4, 2, 5, 0, 1, 7, 8, 6, -1},
  249. { 5, 6, 0, 1, 8, 3, 9, 4, 7},
  250. { 4, 2, 5, 0, 1, 6, 9, 8, 7},
  251. };
  252. static const int8_t dca_channel_reorder_nolfe[][9] = {
  253. { 0, -1, -1, -1, -1, -1, -1, -1, -1},
  254. { 0, 1, -1, -1, -1, -1, -1, -1, -1},
  255. { 0, 1, -1, -1, -1, -1, -1, -1, -1},
  256. { 0, 1, -1, -1, -1, -1, -1, -1, -1},
  257. { 0, 1, -1, -1, -1, -1, -1, -1, -1},
  258. { 2, 0, 1, -1, -1, -1, -1, -1, -1},
  259. { 0, 1, 2, -1, -1, -1, -1, -1, -1},
  260. { 2, 0, 1, 3, -1, -1, -1, -1, -1},
  261. { 0, 1, 2, 3, -1, -1, -1, -1, -1},
  262. { 2, 0, 1, 3, 4, -1, -1, -1, -1},
  263. { 2, 3, 0, 1, 4, 5, -1, -1, -1},
  264. { 2, 0, 1, 3, 4, 5, -1, -1, -1},
  265. { 0, 5, 3, 4, 1, 2, -1, -1, -1},
  266. { 3, 2, 4, 0, 1, 5, 6, -1, -1},
  267. { 4, 5, 0, 1, 6, 2, 7, 3, -1},
  268. { 3, 2, 4, 0, 1, 5, 7, 6, -1},
  269. };
  270. static const int8_t dca_channel_reorder_nolfe_xch[][9] = {
  271. { 0, 1, -1, -1, -1, -1, -1, -1, -1},
  272. { 0, 1, 2, -1, -1, -1, -1, -1, -1},
  273. { 0, 1, 2, -1, -1, -1, -1, -1, -1},
  274. { 0, 1, 2, -1, -1, -1, -1, -1, -1},
  275. { 0, 1, 2, -1, -1, -1, -1, -1, -1},
  276. { 2, 0, 1, 3, -1, -1, -1, -1, -1},
  277. { 0, 1, 2, 3, -1, -1, -1, -1, -1},
  278. { 2, 0, 1, 3, 4, -1, -1, -1, -1},
  279. { 0, 1, 3, 4, 2, -1, -1, -1, -1},
  280. { 2, 0, 1, 4, 5, 3, -1, -1, -1},
  281. { 2, 3, 0, 1, 5, 6, 4, -1, -1},
  282. { 2, 0, 1, 3, 4, 5, 6, -1, -1},
  283. { 0, 5, 3, 4, 1, 2, 6, -1, -1},
  284. { 3, 2, 4, 0, 1, 6, 7, 5, -1},
  285. { 4, 5, 0, 1, 7, 2, 8, 3, 6},
  286. { 3, 2, 4, 0, 1, 5, 8, 7, 6},
  287. };
  288. #define DCA_DOLBY 101 /* FIXME */
  289. #define DCA_CHANNEL_BITS 6
  290. #define DCA_CHANNEL_MASK 0x3F
  291. #define DCA_LFE 0x80
  292. #define HEADER_SIZE 14
  293. #define DCA_MAX_FRAME_SIZE 16384
  294. #define DCA_MAX_EXSS_HEADER_SIZE 4096
  295. #define DCA_BUFFER_PADDING_SIZE 1024
  296. #define DCA_NSYNCAUX 0x9A1105A0
  297. /** Bit allocation */
  298. typedef struct {
  299. int offset; ///< code values offset
  300. int maxbits[8]; ///< max bits in VLC
  301. int wrap; ///< wrap for get_vlc2()
  302. VLC vlc[8]; ///< actual codes
  303. } BitAlloc;
  304. static BitAlloc dca_bitalloc_index; ///< indexes for samples VLC select
  305. static BitAlloc dca_tmode; ///< transition mode VLCs
  306. static BitAlloc dca_scalefactor; ///< scalefactor VLCs
  307. static BitAlloc dca_smpl_bitalloc[11]; ///< samples VLCs
  308. static av_always_inline int get_bitalloc(GetBitContext *gb, BitAlloc *ba,
  309. int idx)
  310. {
  311. return get_vlc2(gb, ba->vlc[idx].table, ba->vlc[idx].bits, ba->wrap) +
  312. ba->offset;
  313. }
  314. typedef struct {
  315. const AVClass *class; ///< class for AVOptions
  316. AVCodecContext *avctx;
  317. /* Frame header */
  318. int frame_type; ///< type of the current frame
  319. int samples_deficit; ///< deficit sample count
  320. int crc_present; ///< crc is present in the bitstream
  321. int sample_blocks; ///< number of PCM sample blocks
  322. int frame_size; ///< primary frame byte size
  323. int amode; ///< audio channels arrangement
  324. int sample_rate; ///< audio sampling rate
  325. int bit_rate; ///< transmission bit rate
  326. int bit_rate_index; ///< transmission bit rate index
  327. int dynrange; ///< embedded dynamic range flag
  328. int timestamp; ///< embedded time stamp flag
  329. int aux_data; ///< auxiliary data flag
  330. int hdcd; ///< source material is mastered in HDCD
  331. int ext_descr; ///< extension audio descriptor flag
  332. int ext_coding; ///< extended coding flag
  333. int aspf; ///< audio sync word insertion flag
  334. int lfe; ///< low frequency effects flag
  335. int predictor_history; ///< predictor history flag
  336. int header_crc; ///< header crc check bytes
  337. int multirate_inter; ///< multirate interpolator switch
  338. int version; ///< encoder software revision
  339. int copy_history; ///< copy history
  340. int source_pcm_res; ///< source pcm resolution
  341. int front_sum; ///< front sum/difference flag
  342. int surround_sum; ///< surround sum/difference flag
  343. int dialog_norm; ///< dialog normalisation parameter
  344. /* Primary audio coding header */
  345. int subframes; ///< number of subframes
  346. int total_channels; ///< number of channels including extensions
  347. int prim_channels; ///< number of primary audio channels
  348. int subband_activity[DCA_PRIM_CHANNELS_MAX]; ///< subband activity count
  349. int vq_start_subband[DCA_PRIM_CHANNELS_MAX]; ///< high frequency vq start subband
  350. int joint_intensity[DCA_PRIM_CHANNELS_MAX]; ///< joint intensity coding index
  351. int transient_huffman[DCA_PRIM_CHANNELS_MAX]; ///< transient mode code book
  352. int scalefactor_huffman[DCA_PRIM_CHANNELS_MAX]; ///< scale factor code book
  353. int bitalloc_huffman[DCA_PRIM_CHANNELS_MAX]; ///< bit allocation quantizer select
  354. int quant_index_huffman[DCA_PRIM_CHANNELS_MAX][DCA_ABITS_MAX]; ///< quantization index codebook select
  355. float scalefactor_adj[DCA_PRIM_CHANNELS_MAX][DCA_ABITS_MAX]; ///< scale factor adjustment
  356. /* Primary audio coding side information */
  357. int subsubframes[DCA_SUBFRAMES_MAX]; ///< number of subsubframes
  358. int partial_samples[DCA_SUBFRAMES_MAX]; ///< partial subsubframe samples count
  359. int prediction_mode[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< prediction mode (ADPCM used or not)
  360. int prediction_vq[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< prediction VQ coefs
  361. int bitalloc[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< bit allocation index
  362. int transition_mode[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< transition mode (transients)
  363. int32_t scale_factor[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS][2];///< scale factors (2 if transient)
  364. int joint_huff[DCA_PRIM_CHANNELS_MAX]; ///< joint subband scale factors codebook
  365. int joint_scale_factor[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< joint subband scale factors
  366. float downmix_coef[DCA_PRIM_CHANNELS_MAX + 1][2]; ///< stereo downmix coefficients
  367. int dynrange_coef; ///< dynamic range coefficient
  368. /* Core substream's embedded downmix coefficients (cf. ETSI TS 102 114 V1.4.1)
  369. * Input: primary audio channels (incl. LFE if present)
  370. * Output: downmix audio channels (up to 4, no LFE) */
  371. uint8_t core_downmix; ///< embedded downmix coefficients available
  372. uint8_t core_downmix_amode; ///< audio channel arrangement of embedded downmix
  373. uint16_t core_downmix_codes[DCA_PRIM_CHANNELS_MAX + 1][4]; ///< embedded downmix coefficients (9-bit codes)
  374. int32_t high_freq_vq[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< VQ encoded high frequency subbands
  375. float lfe_data[2 * DCA_LFE_MAX * (DCA_BLOCKS_MAX + 4)]; ///< Low frequency effect data
  376. int lfe_scale_factor;
  377. /* Subband samples history (for ADPCM) */
  378. DECLARE_ALIGNED(16, float, subband_samples_hist)[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS][4];
  379. DECLARE_ALIGNED(32, float, subband_fir_hist)[DCA_PRIM_CHANNELS_MAX][512];
  380. DECLARE_ALIGNED(32, float, subband_fir_noidea)[DCA_PRIM_CHANNELS_MAX][32];
  381. int hist_index[DCA_PRIM_CHANNELS_MAX];
  382. DECLARE_ALIGNED(32, float, raXin)[32];
  383. int output; ///< type of output
  384. DECLARE_ALIGNED(32, float, subband_samples)[DCA_BLOCKS_MAX][DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS][8];
  385. float *samples_chanptr[DCA_PRIM_CHANNELS_MAX + 1];
  386. float *extra_channels[DCA_PRIM_CHANNELS_MAX + 1];
  387. uint8_t *extra_channels_buffer;
  388. unsigned int extra_channels_buffer_size;
  389. uint8_t dca_buffer[DCA_MAX_FRAME_SIZE + DCA_MAX_EXSS_HEADER_SIZE + DCA_BUFFER_PADDING_SIZE];
  390. int dca_buffer_size; ///< how much data is in the dca_buffer
  391. const int8_t *channel_order_tab; ///< channel reordering table, lfe and non lfe
  392. GetBitContext gb;
  393. /* Current position in DCA frame */
  394. int current_subframe;
  395. int current_subsubframe;
  396. int core_ext_mask; ///< present extensions in the core substream
  397. /* XCh extension information */
  398. int xch_present; ///< XCh extension present and valid
  399. int xch_base_channel; ///< index of first (only) channel containing XCH data
  400. int xch_disable; ///< whether the XCh extension should be decoded or not
  401. /* XXCH extension information */
  402. int xxch_chset;
  403. int xxch_nbits_spk_mask;
  404. uint32_t xxch_core_spkmask;
  405. uint32_t xxch_spk_masks[4]; /* speaker masks, last element is core mask */
  406. int xxch_chset_nch[4];
  407. float xxch_dmix_sf[DCA_CHSETS_MAX];
  408. uint32_t xxch_dmix_embedded; /* lower layer has mix pre-embedded, per chset */
  409. float xxch_dmix_coeff[DCA_PRIM_CHANNELS_MAX][32]; /* worst case sizing */
  410. int8_t xxch_order_tab[32];
  411. int8_t lfe_index;
  412. /* ExSS header parser */
  413. int static_fields; ///< static fields present
  414. int mix_metadata; ///< mixing metadata present
  415. int num_mix_configs; ///< number of mix out configurations
  416. int mix_config_num_ch[4]; ///< number of channels in each mix out configuration
  417. int profile;
  418. int debug_flag; ///< used for suppressing repeated error messages output
  419. AVFloatDSPContext fdsp;
  420. FFTContext imdct;
  421. SynthFilterContext synth;
  422. DCADSPContext dcadsp;
  423. FmtConvertContext fmt_conv;
  424. } DCAContext;
  425. static float dca_dmix_code(unsigned code);
  426. static const uint16_t dca_vlc_offs[] = {
  427. 0, 512, 640, 768, 1282, 1794, 2436, 3080, 3770, 4454, 5364,
  428. 5372, 5380, 5388, 5392, 5396, 5412, 5420, 5428, 5460, 5492, 5508,
  429. 5572, 5604, 5668, 5796, 5860, 5892, 6412, 6668, 6796, 7308, 7564,
  430. 7820, 8076, 8620, 9132, 9388, 9910, 10166, 10680, 11196, 11726, 12240,
  431. 12752, 13298, 13810, 14326, 14840, 15500, 16022, 16540, 17158, 17678, 18264,
  432. 18796, 19352, 19926, 20468, 21472, 22398, 23014, 23622,
  433. };
  434. static av_cold void dca_init_vlcs(void)
  435. {
  436. static int vlcs_initialized = 0;
  437. int i, j, c = 14;
  438. static VLC_TYPE dca_table[23622][2];
  439. if (vlcs_initialized)
  440. return;
  441. dca_bitalloc_index.offset = 1;
  442. dca_bitalloc_index.wrap = 2;
  443. for (i = 0; i < 5; i++) {
  444. dca_bitalloc_index.vlc[i].table = &dca_table[dca_vlc_offs[i]];
  445. dca_bitalloc_index.vlc[i].table_allocated = dca_vlc_offs[i + 1] - dca_vlc_offs[i];
  446. init_vlc(&dca_bitalloc_index.vlc[i], bitalloc_12_vlc_bits[i], 12,
  447. bitalloc_12_bits[i], 1, 1,
  448. bitalloc_12_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
  449. }
  450. dca_scalefactor.offset = -64;
  451. dca_scalefactor.wrap = 2;
  452. for (i = 0; i < 5; i++) {
  453. dca_scalefactor.vlc[i].table = &dca_table[dca_vlc_offs[i + 5]];
  454. dca_scalefactor.vlc[i].table_allocated = dca_vlc_offs[i + 6] - dca_vlc_offs[i + 5];
  455. init_vlc(&dca_scalefactor.vlc[i], SCALES_VLC_BITS, 129,
  456. scales_bits[i], 1, 1,
  457. scales_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
  458. }
  459. dca_tmode.offset = 0;
  460. dca_tmode.wrap = 1;
  461. for (i = 0; i < 4; i++) {
  462. dca_tmode.vlc[i].table = &dca_table[dca_vlc_offs[i + 10]];
  463. dca_tmode.vlc[i].table_allocated = dca_vlc_offs[i + 11] - dca_vlc_offs[i + 10];
  464. init_vlc(&dca_tmode.vlc[i], tmode_vlc_bits[i], 4,
  465. tmode_bits[i], 1, 1,
  466. tmode_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
  467. }
  468. for (i = 0; i < 10; i++)
  469. for (j = 0; j < 7; j++) {
  470. if (!bitalloc_codes[i][j])
  471. break;
  472. dca_smpl_bitalloc[i + 1].offset = bitalloc_offsets[i];
  473. dca_smpl_bitalloc[i + 1].wrap = 1 + (j > 4);
  474. dca_smpl_bitalloc[i + 1].vlc[j].table = &dca_table[dca_vlc_offs[c]];
  475. dca_smpl_bitalloc[i + 1].vlc[j].table_allocated = dca_vlc_offs[c + 1] - dca_vlc_offs[c];
  476. init_vlc(&dca_smpl_bitalloc[i + 1].vlc[j], bitalloc_maxbits[i][j],
  477. bitalloc_sizes[i],
  478. bitalloc_bits[i][j], 1, 1,
  479. bitalloc_codes[i][j], 2, 2, INIT_VLC_USE_NEW_STATIC);
  480. c++;
  481. }
  482. vlcs_initialized = 1;
  483. }
  484. static inline void get_array(GetBitContext *gb, int *dst, int len, int bits)
  485. {
  486. while (len--)
  487. *dst++ = get_bits(gb, bits);
  488. }
  489. static inline int dca_xxch2index(DCAContext *s, int xxch_ch)
  490. {
  491. int i, base, mask;
  492. /* locate channel set containing the channel */
  493. for (i = -1, base = 0, mask = (s->xxch_core_spkmask & ~DCA_XXCH_LFE1);
  494. i <= s->xxch_chset && !(mask & xxch_ch); mask = s->xxch_spk_masks[++i])
  495. base += av_popcount(mask);
  496. return base + av_popcount(mask & (xxch_ch - 1));
  497. }
  498. static int dca_parse_audio_coding_header(DCAContext *s, int base_channel,
  499. int xxch)
  500. {
  501. int i, j;
  502. static const float adj_table[4] = { 1.0, 1.1250, 1.2500, 1.4375 };
  503. static const int bitlen[11] = { 0, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3 };
  504. static const int thr[11] = { 0, 1, 3, 3, 3, 3, 7, 7, 7, 7, 7 };
  505. int hdr_pos = 0, hdr_size = 0;
  506. float scale_factor;
  507. int this_chans, acc_mask;
  508. int embedded_downmix;
  509. int nchans, mask[8];
  510. int coeff, ichan;
  511. /* xxch has arbitrary sized audio coding headers */
  512. if (xxch) {
  513. hdr_pos = get_bits_count(&s->gb);
  514. hdr_size = get_bits(&s->gb, 7) + 1;
  515. }
  516. nchans = get_bits(&s->gb, 3) + 1;
  517. s->total_channels = nchans + base_channel;
  518. s->prim_channels = s->total_channels;
  519. /* obtain speaker layout mask & downmix coefficients for XXCH */
  520. if (xxch) {
  521. acc_mask = s->xxch_core_spkmask;
  522. this_chans = get_bits(&s->gb, s->xxch_nbits_spk_mask - 6) << 6;
  523. s->xxch_spk_masks[s->xxch_chset] = this_chans;
  524. s->xxch_chset_nch[s->xxch_chset] = nchans;
  525. for (i = 0; i <= s->xxch_chset; i++)
  526. acc_mask |= s->xxch_spk_masks[i];
  527. /* check for downmixing information */
  528. if (get_bits1(&s->gb)) {
  529. embedded_downmix = get_bits1(&s->gb);
  530. coeff = get_bits(&s->gb, 6);
  531. if (coeff<1 || coeff>61) {
  532. av_log(s->avctx, AV_LOG_ERROR, "6bit coeff %d is out of range\n", coeff);
  533. return AVERROR_INVALIDDATA;
  534. }
  535. scale_factor = -1.0f / dca_dmix_code((coeff<<2)-3);
  536. s->xxch_dmix_sf[s->xxch_chset] = scale_factor;
  537. for (i = base_channel; i < s->prim_channels; i++) {
  538. mask[i] = get_bits(&s->gb, s->xxch_nbits_spk_mask);
  539. }
  540. for (j = base_channel; j < s->prim_channels; j++) {
  541. memset(s->xxch_dmix_coeff[j], 0, sizeof(s->xxch_dmix_coeff[0]));
  542. s->xxch_dmix_embedded |= (embedded_downmix << j);
  543. for (i = 0; i < s->xxch_nbits_spk_mask; i++) {
  544. if (mask[j] & (1 << i)) {
  545. if ((1 << i) == DCA_XXCH_LFE1) {
  546. av_log(s->avctx, AV_LOG_WARNING,
  547. "DCA-XXCH: dmix to LFE1 not supported.\n");
  548. continue;
  549. }
  550. coeff = get_bits(&s->gb, 7);
  551. ichan = dca_xxch2index(s, 1 << i);
  552. if ((coeff&63)<1 || (coeff&63)>61) {
  553. av_log(s->avctx, AV_LOG_ERROR, "7bit coeff %d is out of range\n", coeff);
  554. return AVERROR_INVALIDDATA;
  555. }
  556. s->xxch_dmix_coeff[j][ichan] = dca_dmix_code((coeff<<2)-3);
  557. }
  558. }
  559. }
  560. }
  561. }
  562. if (s->prim_channels > DCA_PRIM_CHANNELS_MAX)
  563. s->prim_channels = DCA_PRIM_CHANNELS_MAX;
  564. for (i = base_channel; i < s->prim_channels; i++) {
  565. s->subband_activity[i] = get_bits(&s->gb, 5) + 2;
  566. if (s->subband_activity[i] > DCA_SUBBANDS)
  567. s->subband_activity[i] = DCA_SUBBANDS;
  568. }
  569. for (i = base_channel; i < s->prim_channels; i++) {
  570. s->vq_start_subband[i] = get_bits(&s->gb, 5) + 1;
  571. if (s->vq_start_subband[i] > DCA_SUBBANDS)
  572. s->vq_start_subband[i] = DCA_SUBBANDS;
  573. }
  574. get_array(&s->gb, s->joint_intensity + base_channel, s->prim_channels - base_channel, 3);
  575. get_array(&s->gb, s->transient_huffman + base_channel, s->prim_channels - base_channel, 2);
  576. get_array(&s->gb, s->scalefactor_huffman + base_channel, s->prim_channels - base_channel, 3);
  577. get_array(&s->gb, s->bitalloc_huffman + base_channel, s->prim_channels - base_channel, 3);
  578. /* Get codebooks quantization indexes */
  579. if (!base_channel)
  580. memset(s->quant_index_huffman, 0, sizeof(s->quant_index_huffman));
  581. for (j = 1; j < 11; j++)
  582. for (i = base_channel; i < s->prim_channels; i++)
  583. s->quant_index_huffman[i][j] = get_bits(&s->gb, bitlen[j]);
  584. /* Get scale factor adjustment */
  585. for (j = 0; j < 11; j++)
  586. for (i = base_channel; i < s->prim_channels; i++)
  587. s->scalefactor_adj[i][j] = 1;
  588. for (j = 1; j < 11; j++)
  589. for (i = base_channel; i < s->prim_channels; i++)
  590. if (s->quant_index_huffman[i][j] < thr[j])
  591. s->scalefactor_adj[i][j] = adj_table[get_bits(&s->gb, 2)];
  592. if (!xxch) {
  593. if (s->crc_present) {
  594. /* Audio header CRC check */
  595. get_bits(&s->gb, 16);
  596. }
  597. } else {
  598. /* Skip to the end of the header, also ignore CRC if present */
  599. i = get_bits_count(&s->gb);
  600. if (hdr_pos + 8 * hdr_size > i)
  601. skip_bits_long(&s->gb, hdr_pos + 8 * hdr_size - i);
  602. }
  603. s->current_subframe = 0;
  604. s->current_subsubframe = 0;
  605. #ifdef TRACE
  606. av_log(s->avctx, AV_LOG_DEBUG, "subframes: %i\n", s->subframes);
  607. av_log(s->avctx, AV_LOG_DEBUG, "prim channels: %i\n", s->prim_channels);
  608. for (i = base_channel; i < s->prim_channels; i++) {
  609. av_log(s->avctx, AV_LOG_DEBUG, "subband activity: %i\n",
  610. s->subband_activity[i]);
  611. av_log(s->avctx, AV_LOG_DEBUG, "vq start subband: %i\n",
  612. s->vq_start_subband[i]);
  613. av_log(s->avctx, AV_LOG_DEBUG, "joint intensity: %i\n",
  614. s->joint_intensity[i]);
  615. av_log(s->avctx, AV_LOG_DEBUG, "transient mode codebook: %i\n",
  616. s->transient_huffman[i]);
  617. av_log(s->avctx, AV_LOG_DEBUG, "scale factor codebook: %i\n",
  618. s->scalefactor_huffman[i]);
  619. av_log(s->avctx, AV_LOG_DEBUG, "bit allocation quantizer: %i\n",
  620. s->bitalloc_huffman[i]);
  621. av_log(s->avctx, AV_LOG_DEBUG, "quant index huff:");
  622. for (j = 0; j < 11; j++)
  623. av_log(s->avctx, AV_LOG_DEBUG, " %i", s->quant_index_huffman[i][j]);
  624. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  625. av_log(s->avctx, AV_LOG_DEBUG, "scalefac adj:");
  626. for (j = 0; j < 11; j++)
  627. av_log(s->avctx, AV_LOG_DEBUG, " %1.3f", s->scalefactor_adj[i][j]);
  628. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  629. }
  630. #endif
  631. return 0;
  632. }
  633. static int dca_parse_frame_header(DCAContext *s)
  634. {
  635. init_get_bits(&s->gb, s->dca_buffer, s->dca_buffer_size * 8);
  636. /* Sync code */
  637. skip_bits_long(&s->gb, 32);
  638. /* Frame header */
  639. s->frame_type = get_bits(&s->gb, 1);
  640. s->samples_deficit = get_bits(&s->gb, 5) + 1;
  641. s->crc_present = get_bits(&s->gb, 1);
  642. s->sample_blocks = get_bits(&s->gb, 7) + 1;
  643. s->frame_size = get_bits(&s->gb, 14) + 1;
  644. if (s->frame_size < 95)
  645. return AVERROR_INVALIDDATA;
  646. s->amode = get_bits(&s->gb, 6);
  647. s->sample_rate = avpriv_dca_sample_rates[get_bits(&s->gb, 4)];
  648. if (!s->sample_rate)
  649. return AVERROR_INVALIDDATA;
  650. s->bit_rate_index = get_bits(&s->gb, 5);
  651. s->bit_rate = dca_bit_rates[s->bit_rate_index];
  652. if (!s->bit_rate)
  653. return AVERROR_INVALIDDATA;
  654. skip_bits1(&s->gb); // always 0 (reserved, cf. ETSI TS 102 114 V1.4.1)
  655. s->dynrange = get_bits(&s->gb, 1);
  656. s->timestamp = get_bits(&s->gb, 1);
  657. s->aux_data = get_bits(&s->gb, 1);
  658. s->hdcd = get_bits(&s->gb, 1);
  659. s->ext_descr = get_bits(&s->gb, 3);
  660. s->ext_coding = get_bits(&s->gb, 1);
  661. s->aspf = get_bits(&s->gb, 1);
  662. s->lfe = get_bits(&s->gb, 2);
  663. s->predictor_history = get_bits(&s->gb, 1);
  664. if (s->lfe > 2) {
  665. s->lfe = 0;
  666. av_log(s->avctx, AV_LOG_ERROR, "Invalid LFE value: %d\n", s->lfe);
  667. return AVERROR_INVALIDDATA;
  668. }
  669. /* TODO: check CRC */
  670. if (s->crc_present)
  671. s->header_crc = get_bits(&s->gb, 16);
  672. s->multirate_inter = get_bits(&s->gb, 1);
  673. s->version = get_bits(&s->gb, 4);
  674. s->copy_history = get_bits(&s->gb, 2);
  675. s->source_pcm_res = get_bits(&s->gb, 3);
  676. s->front_sum = get_bits(&s->gb, 1);
  677. s->surround_sum = get_bits(&s->gb, 1);
  678. s->dialog_norm = get_bits(&s->gb, 4);
  679. /* FIXME: channels mixing levels */
  680. s->output = s->amode;
  681. if (s->lfe)
  682. s->output |= DCA_LFE;
  683. #ifdef TRACE
  684. av_log(s->avctx, AV_LOG_DEBUG, "frame type: %i\n", s->frame_type);
  685. av_log(s->avctx, AV_LOG_DEBUG, "samples deficit: %i\n", s->samples_deficit);
  686. av_log(s->avctx, AV_LOG_DEBUG, "crc present: %i\n", s->crc_present);
  687. av_log(s->avctx, AV_LOG_DEBUG, "sample blocks: %i (%i samples)\n",
  688. s->sample_blocks, s->sample_blocks * 32);
  689. av_log(s->avctx, AV_LOG_DEBUG, "frame size: %i bytes\n", s->frame_size);
  690. av_log(s->avctx, AV_LOG_DEBUG, "amode: %i (%i channels)\n",
  691. s->amode, dca_channels[s->amode]);
  692. av_log(s->avctx, AV_LOG_DEBUG, "sample rate: %i Hz\n",
  693. s->sample_rate);
  694. av_log(s->avctx, AV_LOG_DEBUG, "bit rate: %i bits/s\n",
  695. s->bit_rate);
  696. av_log(s->avctx, AV_LOG_DEBUG, "dynrange: %i\n", s->dynrange);
  697. av_log(s->avctx, AV_LOG_DEBUG, "timestamp: %i\n", s->timestamp);
  698. av_log(s->avctx, AV_LOG_DEBUG, "aux_data: %i\n", s->aux_data);
  699. av_log(s->avctx, AV_LOG_DEBUG, "hdcd: %i\n", s->hdcd);
  700. av_log(s->avctx, AV_LOG_DEBUG, "ext descr: %i\n", s->ext_descr);
  701. av_log(s->avctx, AV_LOG_DEBUG, "ext coding: %i\n", s->ext_coding);
  702. av_log(s->avctx, AV_LOG_DEBUG, "aspf: %i\n", s->aspf);
  703. av_log(s->avctx, AV_LOG_DEBUG, "lfe: %i\n", s->lfe);
  704. av_log(s->avctx, AV_LOG_DEBUG, "predictor history: %i\n",
  705. s->predictor_history);
  706. av_log(s->avctx, AV_LOG_DEBUG, "header crc: %i\n", s->header_crc);
  707. av_log(s->avctx, AV_LOG_DEBUG, "multirate inter: %i\n",
  708. s->multirate_inter);
  709. av_log(s->avctx, AV_LOG_DEBUG, "version number: %i\n", s->version);
  710. av_log(s->avctx, AV_LOG_DEBUG, "copy history: %i\n", s->copy_history);
  711. av_log(s->avctx, AV_LOG_DEBUG,
  712. "source pcm resolution: %i (%i bits/sample)\n",
  713. s->source_pcm_res, dca_bits_per_sample[s->source_pcm_res]);
  714. av_log(s->avctx, AV_LOG_DEBUG, "front sum: %i\n", s->front_sum);
  715. av_log(s->avctx, AV_LOG_DEBUG, "surround sum: %i\n", s->surround_sum);
  716. av_log(s->avctx, AV_LOG_DEBUG, "dialog norm: %i\n", s->dialog_norm);
  717. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  718. #endif
  719. /* Primary audio coding header */
  720. s->subframes = get_bits(&s->gb, 4) + 1;
  721. return dca_parse_audio_coding_header(s, 0, 0);
  722. }
  723. static inline int get_scale(GetBitContext *gb, int level, int value, int log2range)
  724. {
  725. if (level < 5) {
  726. /* huffman encoded */
  727. value += get_bitalloc(gb, &dca_scalefactor, level);
  728. value = av_clip(value, 0, (1 << log2range) - 1);
  729. } else if (level < 8) {
  730. if (level + 1 > log2range) {
  731. skip_bits(gb, level + 1 - log2range);
  732. value = get_bits(gb, log2range);
  733. } else {
  734. value = get_bits(gb, level + 1);
  735. }
  736. }
  737. return value;
  738. }
  739. static int dca_subframe_header(DCAContext *s, int base_channel, int block_index)
  740. {
  741. /* Primary audio coding side information */
  742. int j, k;
  743. if (get_bits_left(&s->gb) < 0)
  744. return AVERROR_INVALIDDATA;
  745. if (!base_channel) {
  746. s->subsubframes[s->current_subframe] = get_bits(&s->gb, 2) + 1;
  747. s->partial_samples[s->current_subframe] = get_bits(&s->gb, 3);
  748. }
  749. for (j = base_channel; j < s->prim_channels; j++) {
  750. for (k = 0; k < s->subband_activity[j]; k++)
  751. s->prediction_mode[j][k] = get_bits(&s->gb, 1);
  752. }
  753. /* Get prediction codebook */
  754. for (j = base_channel; j < s->prim_channels; j++) {
  755. for (k = 0; k < s->subband_activity[j]; k++) {
  756. if (s->prediction_mode[j][k] > 0) {
  757. /* (Prediction coefficient VQ address) */
  758. s->prediction_vq[j][k] = get_bits(&s->gb, 12);
  759. }
  760. }
  761. }
  762. /* Bit allocation index */
  763. for (j = base_channel; j < s->prim_channels; j++) {
  764. for (k = 0; k < s->vq_start_subband[j]; k++) {
  765. if (s->bitalloc_huffman[j] == 6)
  766. s->bitalloc[j][k] = get_bits(&s->gb, 5);
  767. else if (s->bitalloc_huffman[j] == 5)
  768. s->bitalloc[j][k] = get_bits(&s->gb, 4);
  769. else if (s->bitalloc_huffman[j] == 7) {
  770. av_log(s->avctx, AV_LOG_ERROR,
  771. "Invalid bit allocation index\n");
  772. return AVERROR_INVALIDDATA;
  773. } else {
  774. s->bitalloc[j][k] =
  775. get_bitalloc(&s->gb, &dca_bitalloc_index, s->bitalloc_huffman[j]);
  776. }
  777. if (s->bitalloc[j][k] > 26) {
  778. av_dlog(s->avctx, "bitalloc index [%i][%i] too big (%i)\n",
  779. j, k, s->bitalloc[j][k]);
  780. return AVERROR_INVALIDDATA;
  781. }
  782. }
  783. }
  784. /* Transition mode */
  785. for (j = base_channel; j < s->prim_channels; j++) {
  786. for (k = 0; k < s->subband_activity[j]; k++) {
  787. s->transition_mode[j][k] = 0;
  788. if (s->subsubframes[s->current_subframe] > 1 &&
  789. k < s->vq_start_subband[j] && s->bitalloc[j][k] > 0) {
  790. s->transition_mode[j][k] =
  791. get_bitalloc(&s->gb, &dca_tmode, s->transient_huffman[j]);
  792. }
  793. }
  794. }
  795. if (get_bits_left(&s->gb) < 0)
  796. return AVERROR_INVALIDDATA;
  797. for (j = base_channel; j < s->prim_channels; j++) {
  798. const uint32_t *scale_table;
  799. int scale_sum, log_size;
  800. memset(s->scale_factor[j], 0,
  801. s->subband_activity[j] * sizeof(s->scale_factor[0][0][0]) * 2);
  802. if (s->scalefactor_huffman[j] == 6) {
  803. scale_table = scale_factor_quant7;
  804. log_size = 7;
  805. } else {
  806. scale_table = scale_factor_quant6;
  807. log_size = 6;
  808. }
  809. /* When huffman coded, only the difference is encoded */
  810. scale_sum = 0;
  811. for (k = 0; k < s->subband_activity[j]; k++) {
  812. if (k >= s->vq_start_subband[j] || s->bitalloc[j][k] > 0) {
  813. scale_sum = get_scale(&s->gb, s->scalefactor_huffman[j], scale_sum, log_size);
  814. s->scale_factor[j][k][0] = scale_table[scale_sum];
  815. }
  816. if (k < s->vq_start_subband[j] && s->transition_mode[j][k]) {
  817. /* Get second scale factor */
  818. scale_sum = get_scale(&s->gb, s->scalefactor_huffman[j], scale_sum, log_size);
  819. s->scale_factor[j][k][1] = scale_table[scale_sum];
  820. }
  821. }
  822. }
  823. /* Joint subband scale factor codebook select */
  824. for (j = base_channel; j < s->prim_channels; j++) {
  825. /* Transmitted only if joint subband coding enabled */
  826. if (s->joint_intensity[j] > 0)
  827. s->joint_huff[j] = get_bits(&s->gb, 3);
  828. }
  829. if (get_bits_left(&s->gb) < 0)
  830. return AVERROR_INVALIDDATA;
  831. /* Scale factors for joint subband coding */
  832. for (j = base_channel; j < s->prim_channels; j++) {
  833. int source_channel;
  834. /* Transmitted only if joint subband coding enabled */
  835. if (s->joint_intensity[j] > 0) {
  836. int scale = 0;
  837. source_channel = s->joint_intensity[j] - 1;
  838. /* When huffman coded, only the difference is encoded
  839. * (is this valid as well for joint scales ???) */
  840. for (k = s->subband_activity[j]; k < s->subband_activity[source_channel]; k++) {
  841. scale = get_scale(&s->gb, s->joint_huff[j], 64 /* bias */, 7);
  842. s->joint_scale_factor[j][k] = scale; /*joint_scale_table[scale]; */
  843. }
  844. if (!(s->debug_flag & 0x02)) {
  845. av_log(s->avctx, AV_LOG_DEBUG,
  846. "Joint stereo coding not supported\n");
  847. s->debug_flag |= 0x02;
  848. }
  849. }
  850. }
  851. /* Dynamic range coefficient */
  852. if (!base_channel && s->dynrange)
  853. s->dynrange_coef = get_bits(&s->gb, 8);
  854. /* Side information CRC check word */
  855. if (s->crc_present) {
  856. get_bits(&s->gb, 16);
  857. }
  858. /*
  859. * Primary audio data arrays
  860. */
  861. /* VQ encoded high frequency subbands */
  862. for (j = base_channel; j < s->prim_channels; j++)
  863. for (k = s->vq_start_subband[j]; k < s->subband_activity[j]; k++)
  864. /* 1 vector -> 32 samples */
  865. s->high_freq_vq[j][k] = get_bits(&s->gb, 10);
  866. /* Low frequency effect data */
  867. if (!base_channel && s->lfe) {
  868. int quant7;
  869. /* LFE samples */
  870. int lfe_samples = 2 * s->lfe * (4 + block_index);
  871. int lfe_end_sample = 2 * s->lfe * (4 + block_index + s->subsubframes[s->current_subframe]);
  872. float lfe_scale;
  873. for (j = lfe_samples; j < lfe_end_sample; j++) {
  874. /* Signed 8 bits int */
  875. s->lfe_data[j] = get_sbits(&s->gb, 8);
  876. }
  877. /* Scale factor index */
  878. quant7 = get_bits(&s->gb, 8);
  879. if (quant7 > 127) {
  880. avpriv_request_sample(s->avctx, "LFEScaleIndex larger than 127");
  881. return AVERROR_INVALIDDATA;
  882. }
  883. s->lfe_scale_factor = scale_factor_quant7[quant7];
  884. /* Quantization step size * scale factor */
  885. lfe_scale = 0.035 * s->lfe_scale_factor;
  886. for (j = lfe_samples; j < lfe_end_sample; j++)
  887. s->lfe_data[j] *= lfe_scale;
  888. }
  889. #ifdef TRACE
  890. av_log(s->avctx, AV_LOG_DEBUG, "subsubframes: %i\n",
  891. s->subsubframes[s->current_subframe]);
  892. av_log(s->avctx, AV_LOG_DEBUG, "partial samples: %i\n",
  893. s->partial_samples[s->current_subframe]);
  894. for (j = base_channel; j < s->prim_channels; j++) {
  895. av_log(s->avctx, AV_LOG_DEBUG, "prediction mode:");
  896. for (k = 0; k < s->subband_activity[j]; k++)
  897. av_log(s->avctx, AV_LOG_DEBUG, " %i", s->prediction_mode[j][k]);
  898. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  899. }
  900. for (j = base_channel; j < s->prim_channels; j++) {
  901. for (k = 0; k < s->subband_activity[j]; k++)
  902. av_log(s->avctx, AV_LOG_DEBUG,
  903. "prediction coefs: %f, %f, %f, %f\n",
  904. (float) adpcm_vb[s->prediction_vq[j][k]][0] / 8192,
  905. (float) adpcm_vb[s->prediction_vq[j][k]][1] / 8192,
  906. (float) adpcm_vb[s->prediction_vq[j][k]][2] / 8192,
  907. (float) adpcm_vb[s->prediction_vq[j][k]][3] / 8192);
  908. }
  909. for (j = base_channel; j < s->prim_channels; j++) {
  910. av_log(s->avctx, AV_LOG_DEBUG, "bitalloc index: ");
  911. for (k = 0; k < s->vq_start_subband[j]; k++)
  912. av_log(s->avctx, AV_LOG_DEBUG, "%2.2i ", s->bitalloc[j][k]);
  913. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  914. }
  915. for (j = base_channel; j < s->prim_channels; j++) {
  916. av_log(s->avctx, AV_LOG_DEBUG, "Transition mode:");
  917. for (k = 0; k < s->subband_activity[j]; k++)
  918. av_log(s->avctx, AV_LOG_DEBUG, " %i", s->transition_mode[j][k]);
  919. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  920. }
  921. for (j = base_channel; j < s->prim_channels; j++) {
  922. av_log(s->avctx, AV_LOG_DEBUG, "Scale factor:");
  923. for (k = 0; k < s->subband_activity[j]; k++) {
  924. if (k >= s->vq_start_subband[j] || s->bitalloc[j][k] > 0)
  925. av_log(s->avctx, AV_LOG_DEBUG, " %i", s->scale_factor[j][k][0]);
  926. if (k < s->vq_start_subband[j] && s->transition_mode[j][k])
  927. av_log(s->avctx, AV_LOG_DEBUG, " %i(t)", s->scale_factor[j][k][1]);
  928. }
  929. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  930. }
  931. for (j = base_channel; j < s->prim_channels; j++) {
  932. if (s->joint_intensity[j] > 0) {
  933. int source_channel = s->joint_intensity[j] - 1;
  934. av_log(s->avctx, AV_LOG_DEBUG, "Joint scale factor index:\n");
  935. for (k = s->subband_activity[j]; k < s->subband_activity[source_channel]; k++)
  936. av_log(s->avctx, AV_LOG_DEBUG, " %i", s->joint_scale_factor[j][k]);
  937. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  938. }
  939. }
  940. for (j = base_channel; j < s->prim_channels; j++)
  941. for (k = s->vq_start_subband[j]; k < s->subband_activity[j]; k++)
  942. av_log(s->avctx, AV_LOG_DEBUG, "VQ index: %i\n", s->high_freq_vq[j][k]);
  943. if (!base_channel && s->lfe) {
  944. int lfe_samples = 2 * s->lfe * (4 + block_index);
  945. int lfe_end_sample = 2 * s->lfe * (4 + block_index + s->subsubframes[s->current_subframe]);
  946. av_log(s->avctx, AV_LOG_DEBUG, "LFE samples:\n");
  947. for (j = lfe_samples; j < lfe_end_sample; j++)
  948. av_log(s->avctx, AV_LOG_DEBUG, " %f", s->lfe_data[j]);
  949. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  950. }
  951. #endif
  952. return 0;
  953. }
  954. static void qmf_32_subbands(DCAContext *s, int chans,
  955. float samples_in[32][8], float *samples_out,
  956. float scale)
  957. {
  958. const float *prCoeff;
  959. int sb_act = s->subband_activity[chans];
  960. scale *= sqrt(1 / 8.0);
  961. /* Select filter */
  962. if (!s->multirate_inter) /* Non-perfect reconstruction */
  963. prCoeff = fir_32bands_nonperfect;
  964. else /* Perfect reconstruction */
  965. prCoeff = fir_32bands_perfect;
  966. s->dcadsp.qmf_32_subbands(samples_in, sb_act, &s->synth, &s->imdct,
  967. s->subband_fir_hist[chans],
  968. &s->hist_index[chans],
  969. s->subband_fir_noidea[chans], prCoeff,
  970. samples_out, s->raXin, scale);
  971. }
  972. static void lfe_interpolation_fir(DCAContext *s, int decimation_select,
  973. int num_deci_sample, float *samples_in,
  974. float *samples_out)
  975. {
  976. /* samples_in: An array holding decimated samples.
  977. * Samples in current subframe starts from samples_in[0],
  978. * while samples_in[-1], samples_in[-2], ..., stores samples
  979. * from last subframe as history.
  980. *
  981. * samples_out: An array holding interpolated samples
  982. */
  983. int idx;
  984. const float *prCoeff;
  985. int deciindex;
  986. /* Select decimation filter */
  987. if (decimation_select == 1) {
  988. idx = 1;
  989. prCoeff = lfe_fir_128;
  990. } else {
  991. idx = 0;
  992. prCoeff = lfe_fir_64;
  993. }
  994. /* Interpolation */
  995. for (deciindex = 0; deciindex < num_deci_sample; deciindex++) {
  996. s->dcadsp.lfe_fir[idx](samples_out, samples_in, prCoeff);
  997. samples_in++;
  998. samples_out += 2 * 32 * (1 + idx);
  999. }
  1000. }
  1001. /* downmixing routines */
  1002. #define MIX_REAR1(samples, s1, rs, coef) \
  1003. samples[0][i] += samples[s1][i] * coef[rs][0]; \
  1004. samples[1][i] += samples[s1][i] * coef[rs][1];
  1005. #define MIX_REAR2(samples, s1, s2, rs, coef) \
  1006. samples[0][i] += samples[s1][i] * coef[rs][0] + samples[s2][i] * coef[rs + 1][0]; \
  1007. samples[1][i] += samples[s1][i] * coef[rs][1] + samples[s2][i] * coef[rs + 1][1];
  1008. #define MIX_FRONT3(samples, coef) \
  1009. t = samples[c][i]; \
  1010. u = samples[l][i]; \
  1011. v = samples[r][i]; \
  1012. samples[0][i] = t * coef[0][0] + u * coef[1][0] + v * coef[2][0]; \
  1013. samples[1][i] = t * coef[0][1] + u * coef[1][1] + v * coef[2][1];
  1014. #define DOWNMIX_TO_STEREO(op1, op2) \
  1015. for (i = 0; i < 256; i++) { \
  1016. op1 \
  1017. op2 \
  1018. }
  1019. static void dca_downmix(float **samples, int srcfmt, int lfe_present,
  1020. float coef[DCA_PRIM_CHANNELS_MAX + 1][2],
  1021. const int8_t *channel_mapping)
  1022. {
  1023. int c, l, r, sl, sr, s;
  1024. int i;
  1025. float t, u, v;
  1026. switch (srcfmt) {
  1027. case DCA_MONO:
  1028. case DCA_4F2R:
  1029. av_log(NULL, AV_LOG_ERROR, "Not implemented!\n");
  1030. break;
  1031. case DCA_CHANNEL:
  1032. case DCA_STEREO:
  1033. case DCA_STEREO_TOTAL:
  1034. case DCA_STEREO_SUMDIFF:
  1035. break;
  1036. case DCA_3F:
  1037. c = channel_mapping[0];
  1038. l = channel_mapping[1];
  1039. r = channel_mapping[2];
  1040. DOWNMIX_TO_STEREO(MIX_FRONT3(samples, coef), );
  1041. break;
  1042. case DCA_2F1R:
  1043. s = channel_mapping[2];
  1044. DOWNMIX_TO_STEREO(MIX_REAR1(samples, s, 2, coef), );
  1045. break;
  1046. case DCA_3F1R:
  1047. c = channel_mapping[0];
  1048. l = channel_mapping[1];
  1049. r = channel_mapping[2];
  1050. s = channel_mapping[3];
  1051. DOWNMIX_TO_STEREO(MIX_FRONT3(samples, coef),
  1052. MIX_REAR1(samples, s, 3, coef));
  1053. break;
  1054. case DCA_2F2R:
  1055. sl = channel_mapping[2];
  1056. sr = channel_mapping[3];
  1057. DOWNMIX_TO_STEREO(MIX_REAR2(samples, sl, sr, 2, coef), );
  1058. break;
  1059. case DCA_3F2R:
  1060. c = channel_mapping[0];
  1061. l = channel_mapping[1];
  1062. r = channel_mapping[2];
  1063. sl = channel_mapping[3];
  1064. sr = channel_mapping[4];
  1065. DOWNMIX_TO_STEREO(MIX_FRONT3(samples, coef),
  1066. MIX_REAR2(samples, sl, sr, 3, coef));
  1067. break;
  1068. }
  1069. if (lfe_present) {
  1070. int lf_buf = dca_lfe_index[srcfmt];
  1071. int lf_idx = dca_channels [srcfmt];
  1072. for (i = 0; i < 256; i++) {
  1073. samples[0][i] += samples[lf_buf][i] * coef[lf_idx][0];
  1074. samples[1][i] += samples[lf_buf][i] * coef[lf_idx][1];
  1075. }
  1076. }
  1077. }
  1078. #ifndef decode_blockcodes
  1079. /* Very compact version of the block code decoder that does not use table
  1080. * look-up but is slightly slower */
  1081. static int decode_blockcode(int code, int levels, int32_t *values)
  1082. {
  1083. int i;
  1084. int offset = (levels - 1) >> 1;
  1085. for (i = 0; i < 4; i++) {
  1086. int div = FASTDIV(code, levels);
  1087. values[i] = code - offset - div * levels;
  1088. code = div;
  1089. }
  1090. return code;
  1091. }
  1092. static int decode_blockcodes(int code1, int code2, int levels, int32_t *values)
  1093. {
  1094. return decode_blockcode(code1, levels, values) |
  1095. decode_blockcode(code2, levels, values + 4);
  1096. }
  1097. #endif
  1098. static const uint8_t abits_sizes[7] = { 7, 10, 12, 13, 15, 17, 19 };
  1099. static const uint8_t abits_levels[7] = { 3, 5, 7, 9, 13, 17, 25 };
  1100. static int dca_subsubframe(DCAContext *s, int base_channel, int block_index)
  1101. {
  1102. int k, l;
  1103. int subsubframe = s->current_subsubframe;
  1104. const float *quant_step_table;
  1105. /* FIXME */
  1106. float (*subband_samples)[DCA_SUBBANDS][8] = s->subband_samples[block_index];
  1107. LOCAL_ALIGNED_16(int32_t, block, [8 * DCA_SUBBANDS]);
  1108. /*
  1109. * Audio data
  1110. */
  1111. /* Select quantization step size table */
  1112. if (s->bit_rate_index == 0x1f)
  1113. quant_step_table = lossless_quant_d;
  1114. else
  1115. quant_step_table = lossy_quant_d;
  1116. for (k = base_channel; k < s->prim_channels; k++) {
  1117. float rscale[DCA_SUBBANDS];
  1118. if (get_bits_left(&s->gb) < 0)
  1119. return AVERROR_INVALIDDATA;
  1120. for (l = 0; l < s->vq_start_subband[k]; l++) {
  1121. int m;
  1122. /* Select the mid-tread linear quantizer */
  1123. int abits = s->bitalloc[k][l];
  1124. float quant_step_size = quant_step_table[abits];
  1125. /*
  1126. * Determine quantization index code book and its type
  1127. */
  1128. /* Select quantization index code book */
  1129. int sel = s->quant_index_huffman[k][abits];
  1130. /*
  1131. * Extract bits from the bit stream
  1132. */
  1133. if (!abits) {
  1134. rscale[l] = 0;
  1135. memset(block + 8 * l, 0, 8 * sizeof(block[0]));
  1136. } else {
  1137. /* Deal with transients */
  1138. int sfi = s->transition_mode[k][l] && subsubframe >= s->transition_mode[k][l];
  1139. rscale[l] = quant_step_size * s->scale_factor[k][l][sfi] *
  1140. s->scalefactor_adj[k][sel];
  1141. if (abits >= 11 || !dca_smpl_bitalloc[abits].vlc[sel].table) {
  1142. if (abits <= 7) {
  1143. /* Block code */
  1144. int block_code1, block_code2, size, levels, err;
  1145. size = abits_sizes[abits - 1];
  1146. levels = abits_levels[abits - 1];
  1147. block_code1 = get_bits(&s->gb, size);
  1148. block_code2 = get_bits(&s->gb, size);
  1149. err = decode_blockcodes(block_code1, block_code2,
  1150. levels, block + 8 * l);
  1151. if (err) {
  1152. av_log(s->avctx, AV_LOG_ERROR,
  1153. "ERROR: block code look-up failed\n");
  1154. return AVERROR_INVALIDDATA;
  1155. }
  1156. } else {
  1157. /* no coding */
  1158. for (m = 0; m < 8; m++)
  1159. block[8 * l + m] = get_sbits(&s->gb, abits - 3);
  1160. }
  1161. } else {
  1162. /* Huffman coded */
  1163. for (m = 0; m < 8; m++)
  1164. block[8 * l + m] = get_bitalloc(&s->gb,
  1165. &dca_smpl_bitalloc[abits], sel);
  1166. }
  1167. }
  1168. }
  1169. s->fmt_conv.int32_to_float_fmul_array8(&s->fmt_conv, subband_samples[k][0],
  1170. block, rscale, 8 * s->vq_start_subband[k]);
  1171. for (l = 0; l < s->vq_start_subband[k]; l++) {
  1172. int m;
  1173. /*
  1174. * Inverse ADPCM if in prediction mode
  1175. */
  1176. if (s->prediction_mode[k][l]) {
  1177. int n;
  1178. if (s->predictor_history)
  1179. subband_samples[k][l][0] += (adpcm_vb[s->prediction_vq[k][l]][0] *
  1180. s->subband_samples_hist[k][l][3] +
  1181. adpcm_vb[s->prediction_vq[k][l]][1] *
  1182. s->subband_samples_hist[k][l][2] +
  1183. adpcm_vb[s->prediction_vq[k][l]][2] *
  1184. s->subband_samples_hist[k][l][1] +
  1185. adpcm_vb[s->prediction_vq[k][l]][3] *
  1186. s->subband_samples_hist[k][l][0]) *
  1187. (1.0f / 8192);
  1188. for (m = 1; m < 8; m++) {
  1189. float sum = adpcm_vb[s->prediction_vq[k][l]][0] *
  1190. subband_samples[k][l][m - 1];
  1191. for (n = 2; n <= 4; n++)
  1192. if (m >= n)
  1193. sum += adpcm_vb[s->prediction_vq[k][l]][n - 1] *
  1194. subband_samples[k][l][m - n];
  1195. else if (s->predictor_history)
  1196. sum += adpcm_vb[s->prediction_vq[k][l]][n - 1] *
  1197. s->subband_samples_hist[k][l][m - n + 4];
  1198. subband_samples[k][l][m] += sum * (1.0f / 8192);
  1199. }
  1200. }
  1201. }
  1202. /*
  1203. * Decode VQ encoded high frequencies
  1204. */
  1205. if (s->subband_activity[k] > s->vq_start_subband[k]) {
  1206. if (!(s->debug_flag & 0x01)) {
  1207. av_log(s->avctx, AV_LOG_DEBUG,
  1208. "Stream with high frequencies VQ coding\n");
  1209. s->debug_flag |= 0x01;
  1210. }
  1211. s->dcadsp.decode_hf(subband_samples[k], s->high_freq_vq[k],
  1212. high_freq_vq, subsubframe * 8,
  1213. s->scale_factor[k], s->vq_start_subband[k],
  1214. s->subband_activity[k]);
  1215. }
  1216. }
  1217. /* Check for DSYNC after subsubframe */
  1218. if (s->aspf || subsubframe == s->subsubframes[s->current_subframe] - 1) {
  1219. if (0xFFFF == get_bits(&s->gb, 16)) { /* 0xFFFF */
  1220. #ifdef TRACE
  1221. av_log(s->avctx, AV_LOG_DEBUG, "Got subframe DSYNC\n");
  1222. #endif
  1223. } else {
  1224. av_log(s->avctx, AV_LOG_ERROR, "Didn't get subframe DSYNC\n");
  1225. return AVERROR_INVALIDDATA;
  1226. }
  1227. }
  1228. /* Backup predictor history for adpcm */
  1229. for (k = base_channel; k < s->prim_channels; k++)
  1230. for (l = 0; l < s->vq_start_subband[k]; l++)
  1231. AV_COPY128(s->subband_samples_hist[k][l], &subband_samples[k][l][4]);
  1232. return 0;
  1233. }
  1234. static int dca_filter_channels(DCAContext *s, int block_index)
  1235. {
  1236. float (*subband_samples)[DCA_SUBBANDS][8] = s->subband_samples[block_index];
  1237. int k;
  1238. /* 32 subbands QMF */
  1239. for (k = 0; k < s->prim_channels; k++) {
  1240. /* static float pcm_to_double[8] = { 32768.0, 32768.0, 524288.0, 524288.0,
  1241. 0, 8388608.0, 8388608.0 };*/
  1242. if (s->channel_order_tab[k] >= 0)
  1243. qmf_32_subbands(s, k, subband_samples[k],
  1244. s->samples_chanptr[s->channel_order_tab[k]],
  1245. M_SQRT1_2 / 32768.0 /* pcm_to_double[s->source_pcm_res] */);
  1246. }
  1247. /* Generate LFE samples for this subsubframe FIXME!!! */
  1248. if (s->lfe) {
  1249. lfe_interpolation_fir(s, s->lfe, 2 * s->lfe,
  1250. s->lfe_data + 2 * s->lfe * (block_index + 4),
  1251. s->samples_chanptr[s->lfe_index]);
  1252. /* Outputs 20bits pcm samples */
  1253. }
  1254. /* Downmixing to Stereo */
  1255. if (s->prim_channels + !!s->lfe > 2 &&
  1256. s->avctx->request_channel_layout == AV_CH_LAYOUT_STEREO) {
  1257. dca_downmix(s->samples_chanptr, s->amode, !!s->lfe, s->downmix_coef,
  1258. s->channel_order_tab);
  1259. }
  1260. return 0;
  1261. }
  1262. static int dca_subframe_footer(DCAContext *s, int base_channel)
  1263. {
  1264. int in, out, aux_data_count, aux_data_end, reserved;
  1265. uint32_t nsyncaux;
  1266. /*
  1267. * Unpack optional information
  1268. */
  1269. /* presumably optional information only appears in the core? */
  1270. if (!base_channel) {
  1271. if (s->timestamp)
  1272. skip_bits_long(&s->gb, 32);
  1273. if (s->aux_data) {
  1274. aux_data_count = get_bits(&s->gb, 6);
  1275. // align (32-bit)
  1276. skip_bits_long(&s->gb, (-get_bits_count(&s->gb)) & 31);
  1277. aux_data_end = 8 * aux_data_count + get_bits_count(&s->gb);
  1278. if ((nsyncaux = get_bits_long(&s->gb, 32)) != DCA_NSYNCAUX) {
  1279. av_log(s->avctx, AV_LOG_ERROR, "nSYNCAUX mismatch %#"PRIx32"\n",
  1280. nsyncaux);
  1281. return AVERROR_INVALIDDATA;
  1282. }
  1283. if (get_bits1(&s->gb)) { // bAUXTimeStampFlag
  1284. avpriv_request_sample(s->avctx,
  1285. "Auxiliary Decode Time Stamp Flag");
  1286. // align (4-bit)
  1287. skip_bits(&s->gb, (-get_bits_count(&s->gb)) & 4);
  1288. // 44 bits: nMSByte (8), nMarker (4), nLSByte (28), nMarker (4)
  1289. skip_bits_long(&s->gb, 44);
  1290. }
  1291. if ((s->core_downmix = get_bits1(&s->gb))) {
  1292. int am = get_bits(&s->gb, 3);
  1293. switch (am) {
  1294. case 0:
  1295. s->core_downmix_amode = DCA_MONO;
  1296. break;
  1297. case 1:
  1298. s->core_downmix_amode = DCA_STEREO;
  1299. break;
  1300. case 2:
  1301. s->core_downmix_amode = DCA_STEREO_TOTAL;
  1302. break;
  1303. case 3:
  1304. s->core_downmix_amode = DCA_3F;
  1305. break;
  1306. case 4:
  1307. s->core_downmix_amode = DCA_2F1R;
  1308. break;
  1309. case 5:
  1310. s->core_downmix_amode = DCA_2F2R;
  1311. break;
  1312. case 6:
  1313. s->core_downmix_amode = DCA_3F1R;
  1314. break;
  1315. default:
  1316. av_log(s->avctx, AV_LOG_ERROR,
  1317. "Invalid mode %d for embedded downmix coefficients\n",
  1318. am);
  1319. return AVERROR_INVALIDDATA;
  1320. }
  1321. for (out = 0; out < dca_channels[s->core_downmix_amode]; out++) {
  1322. for (in = 0; in < s->prim_channels + !!s->lfe; in++) {
  1323. uint16_t tmp = get_bits(&s->gb, 9);
  1324. if ((tmp & 0xFF) > 241) {
  1325. av_log(s->avctx, AV_LOG_ERROR,
  1326. "Invalid downmix coefficient code %"PRIu16"\n",
  1327. tmp);
  1328. return AVERROR_INVALIDDATA;
  1329. }
  1330. s->core_downmix_codes[in][out] = tmp;
  1331. }
  1332. }
  1333. }
  1334. align_get_bits(&s->gb); // byte align
  1335. skip_bits(&s->gb, 16); // nAUXCRC16
  1336. // additional data (reserved, cf. ETSI TS 102 114 V1.4.1)
  1337. if ((reserved = (aux_data_end - get_bits_count(&s->gb))) < 0) {
  1338. av_log(s->avctx, AV_LOG_ERROR,
  1339. "Overread auxiliary data by %d bits\n", -reserved);
  1340. return AVERROR_INVALIDDATA;
  1341. } else if (reserved) {
  1342. avpriv_request_sample(s->avctx,
  1343. "Core auxiliary data reserved content");
  1344. skip_bits_long(&s->gb, reserved);
  1345. }
  1346. }
  1347. if (s->crc_present && s->dynrange)
  1348. get_bits(&s->gb, 16);
  1349. }
  1350. return 0;
  1351. }
  1352. /**
  1353. * Decode a dca frame block
  1354. *
  1355. * @param s pointer to the DCAContext
  1356. */
  1357. static int dca_decode_block(DCAContext *s, int base_channel, int block_index)
  1358. {
  1359. int ret;
  1360. /* Sanity check */
  1361. if (s->current_subframe >= s->subframes) {
  1362. av_log(s->avctx, AV_LOG_DEBUG, "check failed: %i>%i",
  1363. s->current_subframe, s->subframes);
  1364. return AVERROR_INVALIDDATA;
  1365. }
  1366. if (!s->current_subsubframe) {
  1367. #ifdef TRACE
  1368. av_log(s->avctx, AV_LOG_DEBUG, "DSYNC dca_subframe_header\n");
  1369. #endif
  1370. /* Read subframe header */
  1371. if ((ret = dca_subframe_header(s, base_channel, block_index)))
  1372. return ret;
  1373. }
  1374. /* Read subsubframe */
  1375. #ifdef TRACE
  1376. av_log(s->avctx, AV_LOG_DEBUG, "DSYNC dca_subsubframe\n");
  1377. #endif
  1378. if ((ret = dca_subsubframe(s, base_channel, block_index)))
  1379. return ret;
  1380. /* Update state */
  1381. s->current_subsubframe++;
  1382. if (s->current_subsubframe >= s->subsubframes[s->current_subframe]) {
  1383. s->current_subsubframe = 0;
  1384. s->current_subframe++;
  1385. }
  1386. if (s->current_subframe >= s->subframes) {
  1387. #ifdef TRACE
  1388. av_log(s->avctx, AV_LOG_DEBUG, "DSYNC dca_subframe_footer\n");
  1389. #endif
  1390. /* Read subframe footer */
  1391. if ((ret = dca_subframe_footer(s, base_channel)))
  1392. return ret;
  1393. }
  1394. return 0;
  1395. }
  1396. /**
  1397. * Return the number of channels in an ExSS speaker mask (HD)
  1398. */
  1399. static int dca_exss_mask2count(int mask)
  1400. {
  1401. /* count bits that mean speaker pairs twice */
  1402. return av_popcount(mask) +
  1403. av_popcount(mask & (DCA_EXSS_CENTER_LEFT_RIGHT |
  1404. DCA_EXSS_FRONT_LEFT_RIGHT |
  1405. DCA_EXSS_FRONT_HIGH_LEFT_RIGHT |
  1406. DCA_EXSS_WIDE_LEFT_RIGHT |
  1407. DCA_EXSS_SIDE_LEFT_RIGHT |
  1408. DCA_EXSS_SIDE_HIGH_LEFT_RIGHT |
  1409. DCA_EXSS_SIDE_REAR_LEFT_RIGHT |
  1410. DCA_EXSS_REAR_LEFT_RIGHT |
  1411. DCA_EXSS_REAR_HIGH_LEFT_RIGHT));
  1412. }
  1413. /**
  1414. * Skip mixing coefficients of a single mix out configuration (HD)
  1415. */
  1416. static void dca_exss_skip_mix_coeffs(GetBitContext *gb, int channels, int out_ch)
  1417. {
  1418. int i;
  1419. for (i = 0; i < channels; i++) {
  1420. int mix_map_mask = get_bits(gb, out_ch);
  1421. int num_coeffs = av_popcount(mix_map_mask);
  1422. skip_bits_long(gb, num_coeffs * 6);
  1423. }
  1424. }
  1425. /**
  1426. * Parse extension substream asset header (HD)
  1427. */
  1428. static int dca_exss_parse_asset_header(DCAContext *s)
  1429. {
  1430. int header_pos = get_bits_count(&s->gb);
  1431. int header_size;
  1432. int channels = 0;
  1433. int embedded_stereo = 0;
  1434. int embedded_6ch = 0;
  1435. int drc_code_present;
  1436. int av_uninit(extensions_mask);
  1437. int i, j;
  1438. if (get_bits_left(&s->gb) < 16)
  1439. return -1;
  1440. /* We will parse just enough to get to the extensions bitmask with which
  1441. * we can set the profile value. */
  1442. header_size = get_bits(&s->gb, 9) + 1;
  1443. skip_bits(&s->gb, 3); // asset index
  1444. if (s->static_fields) {
  1445. if (get_bits1(&s->gb))
  1446. skip_bits(&s->gb, 4); // asset type descriptor
  1447. if (get_bits1(&s->gb))
  1448. skip_bits_long(&s->gb, 24); // language descriptor
  1449. if (get_bits1(&s->gb)) {
  1450. /* How can one fit 1024 bytes of text here if the maximum value
  1451. * for the asset header size field above was 512 bytes? */
  1452. int text_length = get_bits(&s->gb, 10) + 1;
  1453. if (get_bits_left(&s->gb) < text_length * 8)
  1454. return -1;
  1455. skip_bits_long(&s->gb, text_length * 8); // info text
  1456. }
  1457. skip_bits(&s->gb, 5); // bit resolution - 1
  1458. skip_bits(&s->gb, 4); // max sample rate code
  1459. channels = get_bits(&s->gb, 8) + 1;
  1460. if (get_bits1(&s->gb)) { // 1-to-1 channels to speakers
  1461. int spkr_remap_sets;
  1462. int spkr_mask_size = 16;
  1463. int num_spkrs[7];
  1464. if (channels > 2)
  1465. embedded_stereo = get_bits1(&s->gb);
  1466. if (channels > 6)
  1467. embedded_6ch = get_bits1(&s->gb);
  1468. if (get_bits1(&s->gb)) {
  1469. spkr_mask_size = (get_bits(&s->gb, 2) + 1) << 2;
  1470. skip_bits(&s->gb, spkr_mask_size); // spkr activity mask
  1471. }
  1472. spkr_remap_sets = get_bits(&s->gb, 3);
  1473. for (i = 0; i < spkr_remap_sets; i++) {
  1474. /* std layout mask for each remap set */
  1475. num_spkrs[i] = dca_exss_mask2count(get_bits(&s->gb, spkr_mask_size));
  1476. }
  1477. for (i = 0; i < spkr_remap_sets; i++) {
  1478. int num_dec_ch_remaps = get_bits(&s->gb, 5) + 1;
  1479. if (get_bits_left(&s->gb) < 0)
  1480. return -1;
  1481. for (j = 0; j < num_spkrs[i]; j++) {
  1482. int remap_dec_ch_mask = get_bits_long(&s->gb, num_dec_ch_remaps);
  1483. int num_dec_ch = av_popcount(remap_dec_ch_mask);
  1484. skip_bits_long(&s->gb, num_dec_ch * 5); // remap codes
  1485. }
  1486. }
  1487. } else {
  1488. skip_bits(&s->gb, 3); // representation type
  1489. }
  1490. }
  1491. drc_code_present = get_bits1(&s->gb);
  1492. if (drc_code_present)
  1493. get_bits(&s->gb, 8); // drc code
  1494. if (get_bits1(&s->gb))
  1495. skip_bits(&s->gb, 5); // dialog normalization code
  1496. if (drc_code_present && embedded_stereo)
  1497. get_bits(&s->gb, 8); // drc stereo code
  1498. if (s->mix_metadata && get_bits1(&s->gb)) {
  1499. skip_bits(&s->gb, 1); // external mix
  1500. skip_bits(&s->gb, 6); // post mix gain code
  1501. if (get_bits(&s->gb, 2) != 3) // mixer drc code
  1502. skip_bits(&s->gb, 3); // drc limit
  1503. else
  1504. skip_bits(&s->gb, 8); // custom drc code
  1505. if (get_bits1(&s->gb)) // channel specific scaling
  1506. for (i = 0; i < s->num_mix_configs; i++)
  1507. skip_bits_long(&s->gb, s->mix_config_num_ch[i] * 6); // scale codes
  1508. else
  1509. skip_bits_long(&s->gb, s->num_mix_configs * 6); // scale codes
  1510. for (i = 0; i < s->num_mix_configs; i++) {
  1511. if (get_bits_left(&s->gb) < 0)
  1512. return -1;
  1513. dca_exss_skip_mix_coeffs(&s->gb, channels, s->mix_config_num_ch[i]);
  1514. if (embedded_6ch)
  1515. dca_exss_skip_mix_coeffs(&s->gb, 6, s->mix_config_num_ch[i]);
  1516. if (embedded_stereo)
  1517. dca_exss_skip_mix_coeffs(&s->gb, 2, s->mix_config_num_ch[i]);
  1518. }
  1519. }
  1520. switch (get_bits(&s->gb, 2)) {
  1521. case 0: extensions_mask = get_bits(&s->gb, 12); break;
  1522. case 1: extensions_mask = DCA_EXT_EXSS_XLL; break;
  1523. case 2: extensions_mask = DCA_EXT_EXSS_LBR; break;
  1524. case 3: extensions_mask = 0; /* aux coding */ break;
  1525. }
  1526. /* not parsed further, we were only interested in the extensions mask */
  1527. if (get_bits_left(&s->gb) < 0)
  1528. return -1;
  1529. if (get_bits_count(&s->gb) - header_pos > header_size * 8) {
  1530. av_log(s->avctx, AV_LOG_WARNING, "Asset header size mismatch.\n");
  1531. return -1;
  1532. }
  1533. skip_bits_long(&s->gb, header_pos + header_size * 8 - get_bits_count(&s->gb));
  1534. if (extensions_mask & DCA_EXT_EXSS_XLL)
  1535. s->profile = FF_PROFILE_DTS_HD_MA;
  1536. else if (extensions_mask & (DCA_EXT_EXSS_XBR | DCA_EXT_EXSS_X96 |
  1537. DCA_EXT_EXSS_XXCH))
  1538. s->profile = FF_PROFILE_DTS_HD_HRA;
  1539. if (!(extensions_mask & DCA_EXT_CORE))
  1540. av_log(s->avctx, AV_LOG_WARNING, "DTS core detection mismatch.\n");
  1541. if ((extensions_mask & DCA_CORE_EXTS) != s->core_ext_mask)
  1542. av_log(s->avctx, AV_LOG_WARNING,
  1543. "DTS extensions detection mismatch (%d, %d)\n",
  1544. extensions_mask & DCA_CORE_EXTS, s->core_ext_mask);
  1545. return 0;
  1546. }
  1547. static int dca_xbr_parse_frame(DCAContext *s)
  1548. {
  1549. int scale_table_high[DCA_CHSET_CHANS_MAX][DCA_SUBBANDS][2];
  1550. int active_bands[DCA_CHSETS_MAX][DCA_CHSET_CHANS_MAX];
  1551. int abits_high[DCA_CHSET_CHANS_MAX][DCA_SUBBANDS];
  1552. int anctemp[DCA_CHSET_CHANS_MAX];
  1553. int chset_fsize[DCA_CHSETS_MAX];
  1554. int n_xbr_ch[DCA_CHSETS_MAX];
  1555. int hdr_size, num_chsets, xbr_tmode, hdr_pos;
  1556. int i, j, k, l, chset, chan_base;
  1557. av_log(s->avctx, AV_LOG_DEBUG, "DTS-XBR: decoding XBR extension\n");
  1558. /* get bit position of sync header */
  1559. hdr_pos = get_bits_count(&s->gb) - 32;
  1560. hdr_size = get_bits(&s->gb, 6) + 1;
  1561. num_chsets = get_bits(&s->gb, 2) + 1;
  1562. for(i = 0; i < num_chsets; i++)
  1563. chset_fsize[i] = get_bits(&s->gb, 14) + 1;
  1564. xbr_tmode = get_bits1(&s->gb);
  1565. for(i = 0; i < num_chsets; i++) {
  1566. n_xbr_ch[i] = get_bits(&s->gb, 3) + 1;
  1567. k = get_bits(&s->gb, 2) + 5;
  1568. for(j = 0; j < n_xbr_ch[i]; j++)
  1569. active_bands[i][j] = get_bits(&s->gb, k) + 1;
  1570. }
  1571. /* skip to the end of the header */
  1572. i = get_bits_count(&s->gb);
  1573. if(hdr_pos + hdr_size * 8 > i)
  1574. skip_bits_long(&s->gb, hdr_pos + hdr_size * 8 - i);
  1575. /* loop over the channel data sets */
  1576. /* only decode as many channels as we've decoded base data for */
  1577. for(chset = 0, chan_base = 0;
  1578. chset < num_chsets && chan_base + n_xbr_ch[chset] <= s->prim_channels;
  1579. chan_base += n_xbr_ch[chset++]) {
  1580. int start_posn = get_bits_count(&s->gb);
  1581. int subsubframe = 0;
  1582. int subframe = 0;
  1583. /* loop over subframes */
  1584. for (k = 0; k < (s->sample_blocks / 8); k++) {
  1585. /* parse header if we're on first subsubframe of a block */
  1586. if(subsubframe == 0) {
  1587. /* Parse subframe header */
  1588. for(i = 0; i < n_xbr_ch[chset]; i++) {
  1589. anctemp[i] = get_bits(&s->gb, 2) + 2;
  1590. }
  1591. for(i = 0; i < n_xbr_ch[chset]; i++) {
  1592. get_array(&s->gb, abits_high[i], active_bands[chset][i], anctemp[i]);
  1593. }
  1594. for(i = 0; i < n_xbr_ch[chset]; i++) {
  1595. anctemp[i] = get_bits(&s->gb, 3);
  1596. if(anctemp[i] < 1) {
  1597. av_log(s->avctx, AV_LOG_ERROR, "DTS-XBR: SYNC ERROR\n");
  1598. return AVERROR_INVALIDDATA;
  1599. }
  1600. }
  1601. /* generate scale factors */
  1602. for(i = 0; i < n_xbr_ch[chset]; i++) {
  1603. const uint32_t *scale_table;
  1604. int nbits;
  1605. if (s->scalefactor_huffman[chan_base+i] == 6) {
  1606. scale_table = scale_factor_quant7;
  1607. } else {
  1608. scale_table = scale_factor_quant6;
  1609. }
  1610. nbits = anctemp[i];
  1611. for(j = 0; j < active_bands[chset][i]; j++) {
  1612. if(abits_high[i][j] > 0) {
  1613. scale_table_high[i][j][0] =
  1614. scale_table[get_bits(&s->gb, nbits)];
  1615. if(xbr_tmode && s->transition_mode[i][j]) {
  1616. scale_table_high[i][j][1] =
  1617. scale_table[get_bits(&s->gb, nbits)];
  1618. }
  1619. }
  1620. }
  1621. }
  1622. }
  1623. /* decode audio array for this block */
  1624. for(i = 0; i < n_xbr_ch[chset]; i++) {
  1625. for(j = 0; j < active_bands[chset][i]; j++) {
  1626. const int xbr_abits = abits_high[i][j];
  1627. const float quant_step_size = lossless_quant_d[xbr_abits];
  1628. const int sfi = xbr_tmode && s->transition_mode[i][j] && subsubframe >= s->transition_mode[i][j];
  1629. const float rscale = quant_step_size * scale_table_high[i][j][sfi];
  1630. float *subband_samples = s->subband_samples[k][chan_base+i][j];
  1631. int block[8];
  1632. if(xbr_abits <= 0)
  1633. continue;
  1634. if(xbr_abits > 7) {
  1635. get_array(&s->gb, block, 8, xbr_abits - 3);
  1636. } else {
  1637. int block_code1, block_code2, size, levels, err;
  1638. size = abits_sizes[xbr_abits - 1];
  1639. levels = abits_levels[xbr_abits - 1];
  1640. block_code1 = get_bits(&s->gb, size);
  1641. block_code2 = get_bits(&s->gb, size);
  1642. err = decode_blockcodes(block_code1, block_code2,
  1643. levels, block);
  1644. if (err) {
  1645. av_log(s->avctx, AV_LOG_ERROR,
  1646. "ERROR: DTS-XBR: block code look-up failed\n");
  1647. return AVERROR_INVALIDDATA;
  1648. }
  1649. }
  1650. /* scale & sum into subband */
  1651. for(l = 0; l < 8; l++)
  1652. subband_samples[l] += (float)block[l] * rscale;
  1653. }
  1654. }
  1655. /* check DSYNC marker */
  1656. if(s->aspf || subsubframe == s->subsubframes[subframe] - 1) {
  1657. if(get_bits(&s->gb, 16) != 0xffff) {
  1658. av_log(s->avctx, AV_LOG_ERROR, "DTS-XBR: Didn't get subframe DSYNC\n");
  1659. return AVERROR_INVALIDDATA;
  1660. }
  1661. }
  1662. /* advance sub-sub-frame index */
  1663. if(++subsubframe >= s->subsubframes[subframe]) {
  1664. subsubframe = 0;
  1665. subframe++;
  1666. }
  1667. }
  1668. /* skip to next channel set */
  1669. i = get_bits_count(&s->gb);
  1670. if(start_posn + chset_fsize[chset] * 8 != i) {
  1671. j = start_posn + chset_fsize[chset] * 8 - i;
  1672. if(j < 0 || j >= 8)
  1673. av_log(s->avctx, AV_LOG_ERROR, "DTS-XBR: end of channel set,"
  1674. " skipping further than expected (%d bits)\n", j);
  1675. skip_bits_long(&s->gb, j);
  1676. }
  1677. }
  1678. return 0;
  1679. }
  1680. /* parse initial header for XXCH and dump details */
  1681. static int dca_xxch_decode_frame(DCAContext *s)
  1682. {
  1683. int hdr_size, spkmsk_bits, num_chsets, core_spk, hdr_pos;
  1684. int i, chset, base_channel, chstart, fsize[8];
  1685. /* assume header word has already been parsed */
  1686. hdr_pos = get_bits_count(&s->gb) - 32;
  1687. hdr_size = get_bits(&s->gb, 6) + 1;
  1688. /*chhdr_crc =*/ skip_bits1(&s->gb);
  1689. spkmsk_bits = get_bits(&s->gb, 5) + 1;
  1690. num_chsets = get_bits(&s->gb, 2) + 1;
  1691. for (i = 0; i < num_chsets; i++)
  1692. fsize[i] = get_bits(&s->gb, 14) + 1;
  1693. core_spk = get_bits(&s->gb, spkmsk_bits);
  1694. s->xxch_core_spkmask = core_spk;
  1695. s->xxch_nbits_spk_mask = spkmsk_bits;
  1696. s->xxch_dmix_embedded = 0;
  1697. /* skip to the end of the header */
  1698. i = get_bits_count(&s->gb);
  1699. if (hdr_pos + hdr_size * 8 > i)
  1700. skip_bits_long(&s->gb, hdr_pos + hdr_size * 8 - i);
  1701. for (chset = 0; chset < num_chsets; chset++) {
  1702. chstart = get_bits_count(&s->gb);
  1703. base_channel = s->prim_channels;
  1704. s->xxch_chset = chset;
  1705. /* XXCH and Core headers differ, see 6.4.2 "XXCH Channel Set Header" vs.
  1706. 5.3.2 "Primary Audio Coding Header", DTS Spec 1.3.1 */
  1707. dca_parse_audio_coding_header(s, base_channel, 1);
  1708. /* decode channel data */
  1709. for (i = 0; i < (s->sample_blocks / 8); i++) {
  1710. if (dca_decode_block(s, base_channel, i)) {
  1711. av_log(s->avctx, AV_LOG_ERROR,
  1712. "Error decoding DTS-XXCH extension\n");
  1713. continue;
  1714. }
  1715. }
  1716. /* skip to end of this section */
  1717. i = get_bits_count(&s->gb);
  1718. if (chstart + fsize[chset] * 8 > i)
  1719. skip_bits_long(&s->gb, chstart + fsize[chset] * 8 - i);
  1720. }
  1721. s->xxch_chset = num_chsets;
  1722. return 0;
  1723. }
  1724. /**
  1725. * Parse extension substream header (HD)
  1726. */
  1727. static void dca_exss_parse_header(DCAContext *s)
  1728. {
  1729. int asset_size[8];
  1730. int ss_index;
  1731. int blownup;
  1732. int num_audiop = 1;
  1733. int num_assets = 1;
  1734. int active_ss_mask[8];
  1735. int i, j;
  1736. int start_posn;
  1737. int hdrsize;
  1738. uint32_t mkr;
  1739. if (get_bits_left(&s->gb) < 52)
  1740. return;
  1741. start_posn = get_bits_count(&s->gb) - 32;
  1742. skip_bits(&s->gb, 8); // user data
  1743. ss_index = get_bits(&s->gb, 2);
  1744. blownup = get_bits1(&s->gb);
  1745. hdrsize = get_bits(&s->gb, 8 + 4 * blownup) + 1; // header_size
  1746. skip_bits(&s->gb, 16 + 4 * blownup); // hd_size
  1747. s->static_fields = get_bits1(&s->gb);
  1748. if (s->static_fields) {
  1749. skip_bits(&s->gb, 2); // reference clock code
  1750. skip_bits(&s->gb, 3); // frame duration code
  1751. if (get_bits1(&s->gb))
  1752. skip_bits_long(&s->gb, 36); // timestamp
  1753. /* a single stream can contain multiple audio assets that can be
  1754. * combined to form multiple audio presentations */
  1755. num_audiop = get_bits(&s->gb, 3) + 1;
  1756. if (num_audiop > 1) {
  1757. avpriv_request_sample(s->avctx,
  1758. "Multiple DTS-HD audio presentations");
  1759. /* ignore such streams for now */
  1760. return;
  1761. }
  1762. num_assets = get_bits(&s->gb, 3) + 1;
  1763. if (num_assets > 1) {
  1764. avpriv_request_sample(s->avctx, "Multiple DTS-HD audio assets");
  1765. /* ignore such streams for now */
  1766. return;
  1767. }
  1768. for (i = 0; i < num_audiop; i++)
  1769. active_ss_mask[i] = get_bits(&s->gb, ss_index + 1);
  1770. for (i = 0; i < num_audiop; i++)
  1771. for (j = 0; j <= ss_index; j++)
  1772. if (active_ss_mask[i] & (1 << j))
  1773. skip_bits(&s->gb, 8); // active asset mask
  1774. s->mix_metadata = get_bits1(&s->gb);
  1775. if (s->mix_metadata) {
  1776. int mix_out_mask_size;
  1777. skip_bits(&s->gb, 2); // adjustment level
  1778. mix_out_mask_size = (get_bits(&s->gb, 2) + 1) << 2;
  1779. s->num_mix_configs = get_bits(&s->gb, 2) + 1;
  1780. for (i = 0; i < s->num_mix_configs; i++) {
  1781. int mix_out_mask = get_bits(&s->gb, mix_out_mask_size);
  1782. s->mix_config_num_ch[i] = dca_exss_mask2count(mix_out_mask);
  1783. }
  1784. }
  1785. }
  1786. av_assert0(num_assets > 0); // silence a warning
  1787. for (i = 0; i < num_assets; i++)
  1788. asset_size[i] = get_bits_long(&s->gb, 16 + 4 * blownup);
  1789. for (i = 0; i < num_assets; i++) {
  1790. if (dca_exss_parse_asset_header(s))
  1791. return;
  1792. }
  1793. /* not parsed further, we were only interested in the extensions mask
  1794. * from the asset header */
  1795. j = get_bits_count(&s->gb);
  1796. if (start_posn + hdrsize * 8 > j)
  1797. skip_bits_long(&s->gb, start_posn + hdrsize * 8 - j);
  1798. for (i = 0; i < num_assets; i++) {
  1799. start_posn = get_bits_count(&s->gb);
  1800. mkr = get_bits_long(&s->gb, 32);
  1801. /* parse extensions that we know about */
  1802. if (mkr == 0x655e315e) {
  1803. dca_xbr_parse_frame(s);
  1804. } else if (mkr == 0x47004a03) {
  1805. dca_xxch_decode_frame(s);
  1806. s->core_ext_mask |= DCA_EXT_XXCH; /* xxx use for chan reordering */
  1807. } else {
  1808. av_log(s->avctx, AV_LOG_DEBUG,
  1809. "DTS-ExSS: unknown marker = 0x%08x\n", mkr);
  1810. }
  1811. /* skip to end of block */
  1812. j = get_bits_count(&s->gb);
  1813. if (start_posn + asset_size[i] * 8 > j)
  1814. skip_bits_long(&s->gb, start_posn + asset_size[i] * 8 - j);
  1815. }
  1816. }
  1817. static float dca_dmix_code(unsigned code)
  1818. {
  1819. int sign = (code >> 8) - 1;
  1820. code &= 0xff;
  1821. <<<<<<< HEAD
  1822. #define POW2_MINUS15 .000030517578125
  1823. return ((dca_dmixtable[code] ^ sign) - sign) * POW2_MINUS15;
  1824. ||||||| merged common ancestors
  1825. return ldexpf((dca_dmixtable[code] ^ sign) - sign, -15);
  1826. =======
  1827. return ((dca_dmixtable[code] ^ sign) - sign) * (1.0 / (1U << 15));
  1828. >>>>>>> f2ce63246f5c934429f9cb857a794e07624d7912
  1829. }
  1830. /**
  1831. * Main frame decoding function
  1832. * FIXME add arguments
  1833. */
  1834. static int dca_decode_frame(AVCodecContext *avctx, void *data,
  1835. int *got_frame_ptr, AVPacket *avpkt)
  1836. {
  1837. AVFrame *frame = data;
  1838. const uint8_t *buf = avpkt->data;
  1839. int buf_size = avpkt->size;
  1840. int channel_mask;
  1841. int channel_layout;
  1842. int lfe_samples;
  1843. int num_core_channels = 0;
  1844. int i, ret;
  1845. float **samples_flt;
  1846. float *src_chan;
  1847. float *dst_chan;
  1848. DCAContext *s = avctx->priv_data;
  1849. int core_ss_end;
  1850. int channels, full_channels;
  1851. float scale;
  1852. int achan;
  1853. int chset;
  1854. int mask;
  1855. int lavc;
  1856. int posn;
  1857. int j, k;
  1858. int endch;
  1859. s->xch_present = 0;
  1860. s->dca_buffer_size = ff_dca_convert_bitstream(buf, buf_size, s->dca_buffer,
  1861. DCA_MAX_FRAME_SIZE + DCA_MAX_EXSS_HEADER_SIZE);
  1862. if (s->dca_buffer_size == AVERROR_INVALIDDATA) {
  1863. av_log(avctx, AV_LOG_ERROR, "Not a valid DCA frame\n");
  1864. return AVERROR_INVALIDDATA;
  1865. }
  1866. if ((ret = dca_parse_frame_header(s)) < 0) {
  1867. //seems like the frame is corrupt, try with the next one
  1868. return ret;
  1869. }
  1870. //set AVCodec values with parsed data
  1871. avctx->sample_rate = s->sample_rate;
  1872. avctx->bit_rate = s->bit_rate;
  1873. s->profile = FF_PROFILE_DTS;
  1874. for (i = 0; i < (s->sample_blocks / 8); i++) {
  1875. if ((ret = dca_decode_block(s, 0, i))) {
  1876. av_log(avctx, AV_LOG_ERROR, "error decoding block\n");
  1877. return ret;
  1878. }
  1879. }
  1880. /* record number of core channels incase less than max channels are requested */
  1881. num_core_channels = s->prim_channels;
  1882. if (s->prim_channels + !!s->lfe > 2 &&
  1883. avctx->request_channel_layout == AV_CH_LAYOUT_STEREO) {
  1884. /* Stereo downmix coefficients
  1885. *
  1886. * The decoder can only downmix to 2-channel, so we need to ensure
  1887. * embedded downmix coefficients are actually targeting 2-channel.
  1888. */
  1889. if (s->core_downmix && (s->core_downmix_amode == DCA_STEREO ||
  1890. s->core_downmix_amode == DCA_STEREO_TOTAL)) {
  1891. for (i = 0; i < num_core_channels + !!s->lfe; i++) {
  1892. /* Range checked earlier */
  1893. s->downmix_coef[i][0] = dca_dmix_code(s->core_downmix_codes[i][0]);
  1894. s->downmix_coef[i][1] = dca_dmix_code(s->core_downmix_codes[i][1]);
  1895. }
  1896. s->output = s->core_downmix_amode;
  1897. } else {
  1898. int am = s->amode & DCA_CHANNEL_MASK;
  1899. if (am >= FF_ARRAY_ELEMS(dca_default_coeffs)) {
  1900. av_log(s->avctx, AV_LOG_ERROR,
  1901. "Invalid channel mode %d\n", am);
  1902. return AVERROR_INVALIDDATA;
  1903. }
  1904. if (num_core_channels + !!s->lfe >
  1905. FF_ARRAY_ELEMS(dca_default_coeffs[0])) {
  1906. avpriv_request_sample(s->avctx, "Downmixing %d channels",
  1907. s->prim_channels + !!s->lfe);
  1908. return AVERROR_PATCHWELCOME;
  1909. }
  1910. for (i = 0; i < num_core_channels + !!s->lfe; i++) {
  1911. s->downmix_coef[i][0] = dca_default_coeffs[am][i][0];
  1912. s->downmix_coef[i][1] = dca_default_coeffs[am][i][1];
  1913. }
  1914. }
  1915. av_dlog(s->avctx, "Stereo downmix coeffs:\n");
  1916. for (i = 0; i < num_core_channels + !!s->lfe; i++) {
  1917. av_dlog(s->avctx, "L, input channel %d = %f\n", i,
  1918. s->downmix_coef[i][0]);
  1919. av_dlog(s->avctx, "R, input channel %d = %f\n", i,
  1920. s->downmix_coef[i][1]);
  1921. }
  1922. av_dlog(s->avctx, "\n");
  1923. }
  1924. if (s->ext_coding)
  1925. s->core_ext_mask = dca_ext_audio_descr_mask[s->ext_descr];
  1926. else
  1927. s->core_ext_mask = 0;
  1928. core_ss_end = FFMIN(s->frame_size, s->dca_buffer_size) * 8;
  1929. /* only scan for extensions if ext_descr was unknown or indicated a
  1930. * supported XCh extension */
  1931. if (s->core_ext_mask < 0 || s->core_ext_mask & (DCA_EXT_XCH | DCA_EXT_XXCH)) {
  1932. /* if ext_descr was unknown, clear s->core_ext_mask so that the
  1933. * extensions scan can fill it up */
  1934. s->core_ext_mask = FFMAX(s->core_ext_mask, 0);
  1935. /* extensions start at 32-bit boundaries into bitstream */
  1936. skip_bits_long(&s->gb, (-get_bits_count(&s->gb)) & 31);
  1937. while (core_ss_end - get_bits_count(&s->gb) >= 32) {
  1938. uint32_t bits = get_bits_long(&s->gb, 32);
  1939. switch (bits) {
  1940. case 0x5a5a5a5a: {
  1941. int ext_amode, xch_fsize;
  1942. s->xch_base_channel = s->prim_channels;
  1943. /* validate sync word using XCHFSIZE field */
  1944. xch_fsize = show_bits(&s->gb, 10);
  1945. if ((s->frame_size != (get_bits_count(&s->gb) >> 3) - 4 + xch_fsize) &&
  1946. (s->frame_size != (get_bits_count(&s->gb) >> 3) - 4 + xch_fsize + 1))
  1947. continue;
  1948. /* skip length-to-end-of-frame field for the moment */
  1949. skip_bits(&s->gb, 10);
  1950. s->core_ext_mask |= DCA_EXT_XCH;
  1951. /* extension amode(number of channels in extension) should be 1 */
  1952. /* AFAIK XCh is not used for more channels */
  1953. if ((ext_amode = get_bits(&s->gb, 4)) != 1) {
  1954. av_log(avctx, AV_LOG_ERROR, "XCh extension amode %d not"
  1955. " supported!\n", ext_amode);
  1956. continue;
  1957. }
  1958. if (s->xch_base_channel < 2) {
  1959. avpriv_request_sample(avctx, "XCh with fewer than 2 base channels");
  1960. continue;
  1961. }
  1962. /* much like core primary audio coding header */
  1963. dca_parse_audio_coding_header(s, s->xch_base_channel, 0);
  1964. for (i = 0; i < (s->sample_blocks / 8); i++)
  1965. if ((ret = dca_decode_block(s, s->xch_base_channel, i))) {
  1966. av_log(avctx, AV_LOG_ERROR, "error decoding XCh extension\n");
  1967. continue;
  1968. }
  1969. s->xch_present = 1;
  1970. break;
  1971. }
  1972. case 0x47004a03:
  1973. /* XXCh: extended channels */
  1974. /* usually found either in core or HD part in DTS-HD HRA streams,
  1975. * but not in DTS-ES which contains XCh extensions instead */
  1976. s->core_ext_mask |= DCA_EXT_XXCH;
  1977. dca_xxch_decode_frame(s);
  1978. break;
  1979. case 0x1d95f262: {
  1980. int fsize96 = show_bits(&s->gb, 12) + 1;
  1981. if (s->frame_size != (get_bits_count(&s->gb) >> 3) - 4 + fsize96)
  1982. continue;
  1983. av_log(avctx, AV_LOG_DEBUG, "X96 extension found at %d bits\n",
  1984. get_bits_count(&s->gb));
  1985. skip_bits(&s->gb, 12);
  1986. av_log(avctx, AV_LOG_DEBUG, "FSIZE96 = %d bytes\n", fsize96);
  1987. av_log(avctx, AV_LOG_DEBUG, "REVNO = %d\n", get_bits(&s->gb, 4));
  1988. s->core_ext_mask |= DCA_EXT_X96;
  1989. break;
  1990. }
  1991. }
  1992. skip_bits_long(&s->gb, (-get_bits_count(&s->gb)) & 31);
  1993. }
  1994. } else {
  1995. /* no supported extensions, skip the rest of the core substream */
  1996. skip_bits_long(&s->gb, core_ss_end - get_bits_count(&s->gb));
  1997. }
  1998. if (s->core_ext_mask & DCA_EXT_X96)
  1999. s->profile = FF_PROFILE_DTS_96_24;
  2000. else if (s->core_ext_mask & (DCA_EXT_XCH | DCA_EXT_XXCH))
  2001. s->profile = FF_PROFILE_DTS_ES;
  2002. /* check for ExSS (HD part) */
  2003. if (s->dca_buffer_size - s->frame_size > 32 &&
  2004. get_bits_long(&s->gb, 32) == DCA_HD_MARKER)
  2005. dca_exss_parse_header(s);
  2006. avctx->profile = s->profile;
  2007. full_channels = channels = s->prim_channels + !!s->lfe;
  2008. /* If we have XXCH then the channel layout is managed differently */
  2009. /* note that XLL will also have another way to do things */
  2010. if (!(s->core_ext_mask & DCA_EXT_XXCH)
  2011. || (s->core_ext_mask & DCA_EXT_XXCH && avctx->request_channels > 0
  2012. && avctx->request_channels
  2013. < num_core_channels + !!s->lfe + s->xxch_chset_nch[0]))
  2014. { /* xxx should also do MA extensions */
  2015. if (s->amode < 16) {
  2016. avctx->channel_layout = dca_core_channel_layout[s->amode];
  2017. if (s->prim_channels + !!s->lfe > 2 &&
  2018. avctx->request_channel_layout == AV_CH_LAYOUT_STEREO) {
  2019. /*
  2020. * Neither the core's auxiliary data nor our default tables contain
  2021. * downmix coefficients for the additional channel coded in the XCh
  2022. * extension, so when we're doing a Stereo downmix, don't decode it.
  2023. */
  2024. s->xch_disable = 1;
  2025. }
  2026. #if FF_API_REQUEST_CHANNELS
  2027. FF_DISABLE_DEPRECATION_WARNINGS
  2028. if (s->xch_present && !s->xch_disable &&
  2029. (!avctx->request_channels ||
  2030. avctx->request_channels > num_core_channels + !!s->lfe)) {
  2031. FF_ENABLE_DEPRECATION_WARNINGS
  2032. #else
  2033. if (s->xch_present && !s->xch_disable) {
  2034. #endif
  2035. avctx->channel_layout |= AV_CH_BACK_CENTER;
  2036. if (s->lfe) {
  2037. avctx->channel_layout |= AV_CH_LOW_FREQUENCY;
  2038. s->channel_order_tab = dca_channel_reorder_lfe_xch[s->amode];
  2039. } else {
  2040. s->channel_order_tab = dca_channel_reorder_nolfe_xch[s->amode];
  2041. }
  2042. if (s->channel_order_tab[s->xch_base_channel] < 0)
  2043. return AVERROR_INVALIDDATA;
  2044. } else {
  2045. channels = num_core_channels + !!s->lfe;
  2046. s->xch_present = 0; /* disable further xch processing */
  2047. if (s->lfe) {
  2048. avctx->channel_layout |= AV_CH_LOW_FREQUENCY;
  2049. s->channel_order_tab = dca_channel_reorder_lfe[s->amode];
  2050. } else
  2051. s->channel_order_tab = dca_channel_reorder_nolfe[s->amode];
  2052. }
  2053. if (channels > !!s->lfe &&
  2054. s->channel_order_tab[channels - 1 - !!s->lfe] < 0)
  2055. return AVERROR_INVALIDDATA;
  2056. if (av_get_channel_layout_nb_channels(avctx->channel_layout) != channels) {
  2057. av_log(avctx, AV_LOG_ERROR, "Number of channels %d mismatches layout %d\n", channels, av_get_channel_layout_nb_channels(avctx->channel_layout));
  2058. return AVERROR_INVALIDDATA;
  2059. }
  2060. if (num_core_channels + !!s->lfe > 2 &&
  2061. avctx->request_channel_layout == AV_CH_LAYOUT_STEREO) {
  2062. channels = 2;
  2063. s->output = s->prim_channels == 2 ? s->amode : DCA_STEREO;
  2064. avctx->channel_layout = AV_CH_LAYOUT_STEREO;
  2065. }
  2066. else if (avctx->request_channel_layout & AV_CH_LAYOUT_NATIVE) {
  2067. static const int8_t dca_channel_order_native[9] = { 0, 1, 2, 3, 4, 5, 6, 7, 8 };
  2068. s->channel_order_tab = dca_channel_order_native;
  2069. }
  2070. s->lfe_index = dca_lfe_index[s->amode];
  2071. } else {
  2072. av_log(avctx, AV_LOG_ERROR,
  2073. "Non standard configuration %d !\n", s->amode);
  2074. return AVERROR_INVALIDDATA;
  2075. }
  2076. s->xxch_dmix_embedded = 0;
  2077. } else {
  2078. /* we only get here if an XXCH channel set can be added to the mix */
  2079. channel_mask = s->xxch_core_spkmask;
  2080. if (avctx->request_channels > 0
  2081. && avctx->request_channels < s->prim_channels) {
  2082. channels = num_core_channels + !!s->lfe;
  2083. for (i = 0; i < s->xxch_chset && channels + s->xxch_chset_nch[i]
  2084. <= avctx->request_channels; i++) {
  2085. channels += s->xxch_chset_nch[i];
  2086. channel_mask |= s->xxch_spk_masks[i];
  2087. }
  2088. } else {
  2089. channels = s->prim_channels + !!s->lfe;
  2090. for (i = 0; i < s->xxch_chset; i++) {
  2091. channel_mask |= s->xxch_spk_masks[i];
  2092. }
  2093. }
  2094. /* Given the DTS spec'ed channel mask, generate an avcodec version */
  2095. channel_layout = 0;
  2096. for (i = 0; i < s->xxch_nbits_spk_mask; ++i) {
  2097. if (channel_mask & (1 << i)) {
  2098. channel_layout |= map_xxch_to_native[i];
  2099. }
  2100. }
  2101. /* make sure that we have managed to get equivalent dts/avcodec channel
  2102. * masks in some sense -- unfortunately some channels could overlap */
  2103. if (av_popcount(channel_mask) != av_popcount(channel_layout)) {
  2104. av_log(avctx, AV_LOG_DEBUG,
  2105. "DTS-XXCH: Inconsistent avcodec/dts channel layouts\n");
  2106. return AVERROR_INVALIDDATA;
  2107. }
  2108. avctx->channel_layout = channel_layout;
  2109. if (!(avctx->request_channel_layout & AV_CH_LAYOUT_NATIVE)) {
  2110. /* Estimate DTS --> avcodec ordering table */
  2111. for (chset = -1, j = 0; chset < s->xxch_chset; ++chset) {
  2112. mask = chset >= 0 ? s->xxch_spk_masks[chset]
  2113. : s->xxch_core_spkmask;
  2114. for (i = 0; i < s->xxch_nbits_spk_mask; i++) {
  2115. if (mask & ~(DCA_XXCH_LFE1 | DCA_XXCH_LFE2) & (1 << i)) {
  2116. lavc = map_xxch_to_native[i];
  2117. posn = av_popcount(channel_layout & (lavc - 1));
  2118. s->xxch_order_tab[j++] = posn;
  2119. }
  2120. }
  2121. }
  2122. s->lfe_index = av_popcount(channel_layout & (AV_CH_LOW_FREQUENCY-1));
  2123. } else { /* native ordering */
  2124. for (i = 0; i < channels; i++)
  2125. s->xxch_order_tab[i] = i;
  2126. s->lfe_index = channels - 1;
  2127. }
  2128. s->channel_order_tab = s->xxch_order_tab;
  2129. }
  2130. if (avctx->channels != channels) {
  2131. if (avctx->channels)
  2132. av_log(avctx, AV_LOG_INFO, "Number of channels changed in DCA decoder (%d -> %d)\n", avctx->channels, channels);
  2133. avctx->channels = channels;
  2134. }
  2135. /* get output buffer */
  2136. frame->nb_samples = 256 * (s->sample_blocks / 8);
  2137. if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
  2138. return ret;
  2139. samples_flt = (float **)frame->extended_data;
  2140. /* allocate buffer for extra channels if downmixing */
  2141. if (avctx->channels < full_channels) {
  2142. ret = av_samples_get_buffer_size(NULL, full_channels - channels,
  2143. frame->nb_samples,
  2144. avctx->sample_fmt, 0);
  2145. if (ret < 0)
  2146. return ret;
  2147. av_fast_malloc(&s->extra_channels_buffer,
  2148. &s->extra_channels_buffer_size, ret);
  2149. if (!s->extra_channels_buffer)
  2150. return AVERROR(ENOMEM);
  2151. ret = av_samples_fill_arrays((uint8_t **)s->extra_channels, NULL,
  2152. s->extra_channels_buffer,
  2153. full_channels - channels,
  2154. frame->nb_samples, avctx->sample_fmt, 0);
  2155. if (ret < 0)
  2156. return ret;
  2157. }
  2158. /* filter to get final output */
  2159. for (i = 0; i < (s->sample_blocks / 8); i++) {
  2160. int ch;
  2161. for (ch = 0; ch < channels; ch++)
  2162. s->samples_chanptr[ch] = samples_flt[ch] + i * 256;
  2163. for (; ch < full_channels; ch++)
  2164. s->samples_chanptr[ch] = s->extra_channels[ch - channels] + i * 256;
  2165. dca_filter_channels(s, i);
  2166. /* If this was marked as a DTS-ES stream we need to subtract back- */
  2167. /* channel from SL & SR to remove matrixed back-channel signal */
  2168. if ((s->source_pcm_res & 1) && s->xch_present) {
  2169. float *back_chan = s->samples_chanptr[s->channel_order_tab[s->xch_base_channel]];
  2170. float *lt_chan = s->samples_chanptr[s->channel_order_tab[s->xch_base_channel - 2]];
  2171. float *rt_chan = s->samples_chanptr[s->channel_order_tab[s->xch_base_channel - 1]];
  2172. s->fdsp.vector_fmac_scalar(lt_chan, back_chan, -M_SQRT1_2, 256);
  2173. s->fdsp.vector_fmac_scalar(rt_chan, back_chan, -M_SQRT1_2, 256);
  2174. }
  2175. /* If stream contains XXCH, we might need to undo an embedded downmix */
  2176. if (s->xxch_dmix_embedded) {
  2177. /* Loop over channel sets in turn */
  2178. ch = num_core_channels;
  2179. for (chset = 0; chset < s->xxch_chset; chset++) {
  2180. endch = ch + s->xxch_chset_nch[chset];
  2181. mask = s->xxch_dmix_embedded;
  2182. /* undo downmix */
  2183. for (j = ch; j < endch; j++) {
  2184. if (mask & (1 << j)) { /* this channel has been mixed-out */
  2185. src_chan = s->samples_chanptr[s->channel_order_tab[j]];
  2186. for (k = 0; k < endch; k++) {
  2187. achan = s->channel_order_tab[k];
  2188. scale = s->xxch_dmix_coeff[j][k];
  2189. if (scale != 0.0) {
  2190. dst_chan = s->samples_chanptr[achan];
  2191. s->fdsp.vector_fmac_scalar(dst_chan, src_chan,
  2192. -scale, 256);
  2193. }
  2194. }
  2195. }
  2196. }
  2197. /* if a downmix has been embedded then undo the pre-scaling */
  2198. if ((mask & (1 << ch)) && s->xxch_dmix_sf[chset] != 1.0f) {
  2199. scale = s->xxch_dmix_sf[chset];
  2200. for (j = 0; j < ch; j++) {
  2201. src_chan = s->samples_chanptr[s->channel_order_tab[j]];
  2202. for (k = 0; k < 256; k++)
  2203. src_chan[k] *= scale;
  2204. }
  2205. /* LFE channel is always part of core, scale if it exists */
  2206. if (s->lfe) {
  2207. src_chan = s->samples_chanptr[s->lfe_index];
  2208. for (k = 0; k < 256; k++)
  2209. src_chan[k] *= scale;
  2210. }
  2211. }
  2212. ch = endch;
  2213. }
  2214. }
  2215. }
  2216. /* update lfe history */
  2217. lfe_samples = 2 * s->lfe * (s->sample_blocks / 8);
  2218. for (i = 0; i < 2 * s->lfe * 4; i++)
  2219. s->lfe_data[i] = s->lfe_data[i + lfe_samples];
  2220. /* AVMatrixEncoding
  2221. *
  2222. * DCA_STEREO_TOTAL (Lt/Rt) is equivalent to Dolby Surround */
  2223. ret = ff_side_data_update_matrix_encoding(frame,
  2224. (s->output & ~DCA_LFE) == DCA_STEREO_TOTAL ?
  2225. AV_MATRIX_ENCODING_DOLBY : AV_MATRIX_ENCODING_NONE);
  2226. if (ret < 0)
  2227. return ret;
  2228. *got_frame_ptr = 1;
  2229. return buf_size;
  2230. }
  2231. /**
  2232. * DCA initialization
  2233. *
  2234. * @param avctx pointer to the AVCodecContext
  2235. */
  2236. static av_cold int dca_decode_init(AVCodecContext *avctx)
  2237. {
  2238. DCAContext *s = avctx->priv_data;
  2239. s->avctx = avctx;
  2240. dca_init_vlcs();
  2241. avpriv_float_dsp_init(&s->fdsp, avctx->flags & CODEC_FLAG_BITEXACT);
  2242. ff_mdct_init(&s->imdct, 6, 1, 1.0);
  2243. ff_synth_filter_init(&s->synth);
  2244. ff_dcadsp_init(&s->dcadsp);
  2245. ff_fmt_convert_init(&s->fmt_conv, avctx);
  2246. avctx->sample_fmt = AV_SAMPLE_FMT_FLTP;
  2247. /* allow downmixing to stereo */
  2248. #if FF_API_REQUEST_CHANNELS
  2249. FF_DISABLE_DEPRECATION_WARNINGS
  2250. if (avctx->request_channels == 2)
  2251. avctx->request_channel_layout = AV_CH_LAYOUT_STEREO;
  2252. FF_ENABLE_DEPRECATION_WARNINGS
  2253. #endif
  2254. if (avctx->channels > 2 &&
  2255. avctx->request_channel_layout == AV_CH_LAYOUT_STEREO)
  2256. avctx->channels = 2;
  2257. return 0;
  2258. }
  2259. static av_cold int dca_decode_end(AVCodecContext *avctx)
  2260. {
  2261. DCAContext *s = avctx->priv_data;
  2262. ff_mdct_end(&s->imdct);
  2263. av_freep(&s->extra_channels_buffer);
  2264. return 0;
  2265. }
  2266. static const AVProfile profiles[] = {
  2267. { FF_PROFILE_DTS, "DTS" },
  2268. { FF_PROFILE_DTS_ES, "DTS-ES" },
  2269. { FF_PROFILE_DTS_96_24, "DTS 96/24" },
  2270. { FF_PROFILE_DTS_HD_HRA, "DTS-HD HRA" },
  2271. { FF_PROFILE_DTS_HD_MA, "DTS-HD MA" },
  2272. { FF_PROFILE_UNKNOWN },
  2273. };
  2274. static const AVOption options[] = {
  2275. { "disable_xch", "disable decoding of the XCh extension", offsetof(DCAContext, xch_disable), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 1, AV_OPT_FLAG_DECODING_PARAM|AV_OPT_FLAG_AUDIO_PARAM },
  2276. { NULL },
  2277. };
  2278. static const AVClass dca_decoder_class = {
  2279. .class_name = "DCA decoder",
  2280. .item_name = av_default_item_name,
  2281. .option = options,
  2282. .version = LIBAVUTIL_VERSION_INT,
  2283. .category = AV_CLASS_CATEGORY_DECODER,
  2284. };
  2285. AVCodec ff_dca_decoder = {
  2286. .name = "dca",
  2287. .long_name = NULL_IF_CONFIG_SMALL("DCA (DTS Coherent Acoustics)"),
  2288. .type = AVMEDIA_TYPE_AUDIO,
  2289. .id = AV_CODEC_ID_DTS,
  2290. .priv_data_size = sizeof(DCAContext),
  2291. .init = dca_decode_init,
  2292. .decode = dca_decode_frame,
  2293. .close = dca_decode_end,
  2294. .capabilities = CODEC_CAP_CHANNEL_CONF | CODEC_CAP_DR1,
  2295. .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
  2296. AV_SAMPLE_FMT_NONE },
  2297. .profiles = NULL_IF_CONFIG_SMALL(profiles),
  2298. .priv_class = &dca_decoder_class,
  2299. };