You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

3429 lines
117KB

  1. /*
  2. * Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
  3. *
  4. * This file is part of FFmpeg.
  5. *
  6. * FFmpeg is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * FFmpeg is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with FFmpeg; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. *
  20. * the C code (not assembly, mmx, ...) of this file can be used
  21. * under the LGPL license too
  22. */
  23. /*
  24. supported Input formats: YV12, I420/IYUV, YUY2, UYVY, BGR32, BGR32_1, BGR24, BGR16, BGR15, RGB32, RGB32_1, RGB24, Y8/Y800, YVU9/IF09, PAL8
  25. supported output formats: YV12, I420/IYUV, YUY2, UYVY, {BGR,RGB}{1,4,8,15,16,24,32}, Y8/Y800, YVU9/IF09
  26. {BGR,RGB}{1,4,8,15,16} support dithering
  27. unscaled special converters (YV12=I420=IYUV, Y800=Y8)
  28. YV12 -> {BGR,RGB}{1,4,8,15,16,24,32}
  29. x -> x
  30. YUV9 -> YV12
  31. YUV9/YV12 -> Y800
  32. Y800 -> YUV9/YV12
  33. BGR24 -> BGR32 & RGB24 -> RGB32
  34. BGR32 -> BGR24 & RGB32 -> RGB24
  35. BGR15 -> BGR16
  36. */
  37. /*
  38. tested special converters (most are tested actually, but I did not write it down ...)
  39. YV12 -> BGR16
  40. YV12 -> YV12
  41. BGR15 -> BGR16
  42. BGR16 -> BGR16
  43. YVU9 -> YV12
  44. untested special converters
  45. YV12/I420 -> BGR15/BGR24/BGR32 (it is the yuv2rgb stuff, so it should be OK)
  46. YV12/I420 -> YV12/I420
  47. YUY2/BGR15/BGR24/BGR32/RGB24/RGB32 -> same format
  48. BGR24 -> BGR32 & RGB24 -> RGB32
  49. BGR32 -> BGR24 & RGB32 -> RGB24
  50. BGR24 -> YV12
  51. */
  52. #define _SVID_SOURCE //needed for MAP_ANONYMOUS
  53. #include <inttypes.h>
  54. #include <string.h>
  55. #include <math.h>
  56. #include <stdio.h>
  57. #include <unistd.h>
  58. #include "config.h"
  59. #include <assert.h>
  60. #if HAVE_SYS_MMAN_H
  61. #include <sys/mman.h>
  62. #if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
  63. #define MAP_ANONYMOUS MAP_ANON
  64. #endif
  65. #endif
  66. #if HAVE_VIRTUALALLOC
  67. #define WIN32_LEAN_AND_MEAN
  68. #include <windows.h>
  69. #endif
  70. #include "swscale.h"
  71. #include "swscale_internal.h"
  72. #include "rgb2rgb.h"
  73. #include "libavutil/x86_cpu.h"
  74. #include "libavutil/bswap.h"
  75. unsigned swscale_version(void)
  76. {
  77. return LIBSWSCALE_VERSION_INT;
  78. }
  79. #undef MOVNTQ
  80. #undef PAVGB
  81. //#undef HAVE_MMX2
  82. //#define HAVE_AMD3DNOW
  83. //#undef HAVE_MMX
  84. //#undef ARCH_X86
  85. //#define WORDS_BIGENDIAN
  86. #define DITHER1XBPP
  87. #define FAST_BGR2YV12 // use 7 bit coefficients instead of 15 bit
  88. #define RET 0xC3 //near return opcode for x86
  89. #ifdef M_PI
  90. #define PI M_PI
  91. #else
  92. #define PI 3.14159265358979323846
  93. #endif
  94. #define isSupportedIn(x) ( \
  95. (x)==PIX_FMT_YUV420P \
  96. || (x)==PIX_FMT_YUVA420P \
  97. || (x)==PIX_FMT_YUYV422 \
  98. || (x)==PIX_FMT_UYVY422 \
  99. || (x)==PIX_FMT_RGB32 \
  100. || (x)==PIX_FMT_RGB32_1 \
  101. || (x)==PIX_FMT_BGR24 \
  102. || (x)==PIX_FMT_BGR565 \
  103. || (x)==PIX_FMT_BGR555 \
  104. || (x)==PIX_FMT_BGR32 \
  105. || (x)==PIX_FMT_BGR32_1 \
  106. || (x)==PIX_FMT_RGB24 \
  107. || (x)==PIX_FMT_RGB565 \
  108. || (x)==PIX_FMT_RGB555 \
  109. || (x)==PIX_FMT_GRAY8 \
  110. || (x)==PIX_FMT_YUV410P \
  111. || (x)==PIX_FMT_YUV440P \
  112. || (x)==PIX_FMT_GRAY16BE \
  113. || (x)==PIX_FMT_GRAY16LE \
  114. || (x)==PIX_FMT_YUV444P \
  115. || (x)==PIX_FMT_YUV422P \
  116. || (x)==PIX_FMT_YUV411P \
  117. || (x)==PIX_FMT_PAL8 \
  118. || (x)==PIX_FMT_BGR8 \
  119. || (x)==PIX_FMT_RGB8 \
  120. || (x)==PIX_FMT_BGR4_BYTE \
  121. || (x)==PIX_FMT_RGB4_BYTE \
  122. || (x)==PIX_FMT_YUV440P \
  123. || (x)==PIX_FMT_MONOWHITE \
  124. || (x)==PIX_FMT_MONOBLACK \
  125. || (x)==PIX_FMT_YUV420PLE \
  126. || (x)==PIX_FMT_YUV422PLE \
  127. || (x)==PIX_FMT_YUV444PLE \
  128. || (x)==PIX_FMT_YUV420PBE \
  129. || (x)==PIX_FMT_YUV422PBE \
  130. || (x)==PIX_FMT_YUV444PBE \
  131. )
  132. #define isSupportedOut(x) ( \
  133. (x)==PIX_FMT_YUV420P \
  134. || (x)==PIX_FMT_YUVA420P \
  135. || (x)==PIX_FMT_YUYV422 \
  136. || (x)==PIX_FMT_UYVY422 \
  137. || (x)==PIX_FMT_YUV444P \
  138. || (x)==PIX_FMT_YUV422P \
  139. || (x)==PIX_FMT_YUV411P \
  140. || isRGB(x) \
  141. || isBGR(x) \
  142. || (x)==PIX_FMT_NV12 \
  143. || (x)==PIX_FMT_NV21 \
  144. || (x)==PIX_FMT_GRAY16BE \
  145. || (x)==PIX_FMT_GRAY16LE \
  146. || (x)==PIX_FMT_GRAY8 \
  147. || (x)==PIX_FMT_YUV410P \
  148. || (x)==PIX_FMT_YUV440P \
  149. || (x)==PIX_FMT_YUV420PLE \
  150. || (x)==PIX_FMT_YUV422PLE \
  151. || (x)==PIX_FMT_YUV444PLE \
  152. || (x)==PIX_FMT_YUV420PBE \
  153. || (x)==PIX_FMT_YUV422PBE \
  154. || (x)==PIX_FMT_YUV444PBE \
  155. )
  156. #define isPacked(x) ( \
  157. (x)==PIX_FMT_PAL8 \
  158. || (x)==PIX_FMT_YUYV422 \
  159. || (x)==PIX_FMT_UYVY422 \
  160. || isRGB(x) \
  161. || isBGR(x) \
  162. )
  163. #define usePal(x) ( \
  164. (x)==PIX_FMT_PAL8 \
  165. || (x)==PIX_FMT_BGR4_BYTE \
  166. || (x)==PIX_FMT_RGB4_BYTE \
  167. || (x)==PIX_FMT_BGR8 \
  168. || (x)==PIX_FMT_RGB8 \
  169. )
  170. #define RGB2YUV_SHIFT 15
  171. #define BY ( (int)(0.114*219/255*(1<<RGB2YUV_SHIFT)+0.5))
  172. #define BV (-(int)(0.081*224/255*(1<<RGB2YUV_SHIFT)+0.5))
  173. #define BU ( (int)(0.500*224/255*(1<<RGB2YUV_SHIFT)+0.5))
  174. #define GY ( (int)(0.587*219/255*(1<<RGB2YUV_SHIFT)+0.5))
  175. #define GV (-(int)(0.419*224/255*(1<<RGB2YUV_SHIFT)+0.5))
  176. #define GU (-(int)(0.331*224/255*(1<<RGB2YUV_SHIFT)+0.5))
  177. #define RY ( (int)(0.299*219/255*(1<<RGB2YUV_SHIFT)+0.5))
  178. #define RV ( (int)(0.500*224/255*(1<<RGB2YUV_SHIFT)+0.5))
  179. #define RU (-(int)(0.169*224/255*(1<<RGB2YUV_SHIFT)+0.5))
  180. extern const int32_t ff_yuv2rgb_coeffs[8][4];
  181. static const double rgb2yuv_table[8][9]={
  182. {0.7152, 0.0722, 0.2126, -0.386, 0.5, -0.115, -0.454, -0.046, 0.5},
  183. {0.7152, 0.0722, 0.2126, -0.386, 0.5, -0.115, -0.454, -0.046, 0.5},
  184. {0.587 , 0.114 , 0.299 , -0.331, 0.5, -0.169, -0.419, -0.081, 0.5},
  185. {0.587 , 0.114 , 0.299 , -0.331, 0.5, -0.169, -0.419, -0.081, 0.5},
  186. {0.59 , 0.11 , 0.30 , -0.331, 0.5, -0.169, -0.421, -0.079, 0.5}, //FCC
  187. {0.587 , 0.114 , 0.299 , -0.331, 0.5, -0.169, -0.419, -0.081, 0.5},
  188. {0.587 , 0.114 , 0.299 , -0.331, 0.5, -0.169, -0.419, -0.081, 0.5}, //SMPTE 170M
  189. {0.701 , 0.087 , 0.212 , -0.384, 0.5 -0.116, -0.445, -0.055, 0.5}, //SMPTE 240M
  190. };
  191. /*
  192. NOTES
  193. Special versions: fast Y 1:1 scaling (no interpolation in y direction)
  194. TODO
  195. more intelligent misalignment avoidance for the horizontal scaler
  196. write special vertical cubic upscale version
  197. optimize C code (YV12 / minmax)
  198. add support for packed pixel YUV input & output
  199. add support for Y8 output
  200. optimize BGR24 & BGR32
  201. add BGR4 output support
  202. write special BGR->BGR scaler
  203. */
  204. #if ARCH_X86 && CONFIG_GPL
  205. DECLARE_ASM_CONST(8, uint64_t, bF8)= 0xF8F8F8F8F8F8F8F8LL;
  206. DECLARE_ASM_CONST(8, uint64_t, bFC)= 0xFCFCFCFCFCFCFCFCLL;
  207. DECLARE_ASM_CONST(8, uint64_t, w10)= 0x0010001000100010LL;
  208. DECLARE_ASM_CONST(8, uint64_t, w02)= 0x0002000200020002LL;
  209. DECLARE_ASM_CONST(8, uint64_t, bm00001111)=0x00000000FFFFFFFFLL;
  210. DECLARE_ASM_CONST(8, uint64_t, bm00000111)=0x0000000000FFFFFFLL;
  211. DECLARE_ASM_CONST(8, uint64_t, bm11111000)=0xFFFFFFFFFF000000LL;
  212. DECLARE_ASM_CONST(8, uint64_t, bm01010101)=0x00FF00FF00FF00FFLL;
  213. const DECLARE_ALIGNED(8, uint64_t, ff_dither4[2]) = {
  214. 0x0103010301030103LL,
  215. 0x0200020002000200LL,};
  216. const DECLARE_ALIGNED(8, uint64_t, ff_dither8[2]) = {
  217. 0x0602060206020602LL,
  218. 0x0004000400040004LL,};
  219. DECLARE_ASM_CONST(8, uint64_t, b16Mask)= 0x001F001F001F001FLL;
  220. DECLARE_ASM_CONST(8, uint64_t, g16Mask)= 0x07E007E007E007E0LL;
  221. DECLARE_ASM_CONST(8, uint64_t, r16Mask)= 0xF800F800F800F800LL;
  222. DECLARE_ASM_CONST(8, uint64_t, b15Mask)= 0x001F001F001F001FLL;
  223. DECLARE_ASM_CONST(8, uint64_t, g15Mask)= 0x03E003E003E003E0LL;
  224. DECLARE_ASM_CONST(8, uint64_t, r15Mask)= 0x7C007C007C007C00LL;
  225. DECLARE_ALIGNED(8, const uint64_t, ff_M24A) = 0x00FF0000FF0000FFLL;
  226. DECLARE_ALIGNED(8, const uint64_t, ff_M24B) = 0xFF0000FF0000FF00LL;
  227. DECLARE_ALIGNED(8, const uint64_t, ff_M24C) = 0x0000FF0000FF0000LL;
  228. #ifdef FAST_BGR2YV12
  229. DECLARE_ALIGNED(8, const uint64_t, ff_bgr2YCoeff) = 0x000000210041000DULL;
  230. DECLARE_ALIGNED(8, const uint64_t, ff_bgr2UCoeff) = 0x0000FFEEFFDC0038ULL;
  231. DECLARE_ALIGNED(8, const uint64_t, ff_bgr2VCoeff) = 0x00000038FFD2FFF8ULL;
  232. #else
  233. DECLARE_ALIGNED(8, const uint64_t, ff_bgr2YCoeff) = 0x000020E540830C8BULL;
  234. DECLARE_ALIGNED(8, const uint64_t, ff_bgr2UCoeff) = 0x0000ED0FDAC23831ULL;
  235. DECLARE_ALIGNED(8, const uint64_t, ff_bgr2VCoeff) = 0x00003831D0E6F6EAULL;
  236. #endif /* FAST_BGR2YV12 */
  237. DECLARE_ALIGNED(8, const uint64_t, ff_bgr2YOffset) = 0x1010101010101010ULL;
  238. DECLARE_ALIGNED(8, const uint64_t, ff_bgr2UVOffset) = 0x8080808080808080ULL;
  239. DECLARE_ALIGNED(8, const uint64_t, ff_w1111) = 0x0001000100010001ULL;
  240. DECLARE_ASM_CONST(8, uint64_t, ff_bgr24toY1Coeff) = 0x0C88000040870C88ULL;
  241. DECLARE_ASM_CONST(8, uint64_t, ff_bgr24toY2Coeff) = 0x20DE4087000020DEULL;
  242. DECLARE_ASM_CONST(8, uint64_t, ff_rgb24toY1Coeff) = 0x20DE0000408720DEULL;
  243. DECLARE_ASM_CONST(8, uint64_t, ff_rgb24toY2Coeff) = 0x0C88408700000C88ULL;
  244. DECLARE_ASM_CONST(8, uint64_t, ff_bgr24toYOffset) = 0x0008400000084000ULL;
  245. DECLARE_ASM_CONST(8, uint64_t, ff_bgr24toUV[2][4]) = {
  246. {0x38380000DAC83838ULL, 0xECFFDAC80000ECFFULL, 0xF6E40000D0E3F6E4ULL, 0x3838D0E300003838ULL},
  247. {0xECFF0000DAC8ECFFULL, 0x3838DAC800003838ULL, 0x38380000D0E33838ULL, 0xF6E4D0E30000F6E4ULL},
  248. };
  249. DECLARE_ASM_CONST(8, uint64_t, ff_bgr24toUVOffset)= 0x0040400000404000ULL;
  250. #endif /* ARCH_X86 && CONFIG_GPL */
  251. // clipping helper table for C implementations:
  252. static unsigned char clip_table[768];
  253. static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b);
  254. static const uint8_t __attribute__((aligned(8))) dither_2x2_4[2][8]={
  255. { 1, 3, 1, 3, 1, 3, 1, 3, },
  256. { 2, 0, 2, 0, 2, 0, 2, 0, },
  257. };
  258. static const uint8_t __attribute__((aligned(8))) dither_2x2_8[2][8]={
  259. { 6, 2, 6, 2, 6, 2, 6, 2, },
  260. { 0, 4, 0, 4, 0, 4, 0, 4, },
  261. };
  262. const uint8_t __attribute__((aligned(8))) dither_8x8_32[8][8]={
  263. { 17, 9, 23, 15, 16, 8, 22, 14, },
  264. { 5, 29, 3, 27, 4, 28, 2, 26, },
  265. { 21, 13, 19, 11, 20, 12, 18, 10, },
  266. { 0, 24, 6, 30, 1, 25, 7, 31, },
  267. { 16, 8, 22, 14, 17, 9, 23, 15, },
  268. { 4, 28, 2, 26, 5, 29, 3, 27, },
  269. { 20, 12, 18, 10, 21, 13, 19, 11, },
  270. { 1, 25, 7, 31, 0, 24, 6, 30, },
  271. };
  272. #if 0
  273. const uint8_t __attribute__((aligned(8))) dither_8x8_64[8][8]={
  274. { 0, 48, 12, 60, 3, 51, 15, 63, },
  275. { 32, 16, 44, 28, 35, 19, 47, 31, },
  276. { 8, 56, 4, 52, 11, 59, 7, 55, },
  277. { 40, 24, 36, 20, 43, 27, 39, 23, },
  278. { 2, 50, 14, 62, 1, 49, 13, 61, },
  279. { 34, 18, 46, 30, 33, 17, 45, 29, },
  280. { 10, 58, 6, 54, 9, 57, 5, 53, },
  281. { 42, 26, 38, 22, 41, 25, 37, 21, },
  282. };
  283. #endif
  284. const uint8_t __attribute__((aligned(8))) dither_8x8_73[8][8]={
  285. { 0, 55, 14, 68, 3, 58, 17, 72, },
  286. { 37, 18, 50, 32, 40, 22, 54, 35, },
  287. { 9, 64, 5, 59, 13, 67, 8, 63, },
  288. { 46, 27, 41, 23, 49, 31, 44, 26, },
  289. { 2, 57, 16, 71, 1, 56, 15, 70, },
  290. { 39, 21, 52, 34, 38, 19, 51, 33, },
  291. { 11, 66, 7, 62, 10, 65, 6, 60, },
  292. { 48, 30, 43, 25, 47, 29, 42, 24, },
  293. };
  294. #if 0
  295. const uint8_t __attribute__((aligned(8))) dither_8x8_128[8][8]={
  296. { 68, 36, 92, 60, 66, 34, 90, 58, },
  297. { 20, 116, 12, 108, 18, 114, 10, 106, },
  298. { 84, 52, 76, 44, 82, 50, 74, 42, },
  299. { 0, 96, 24, 120, 6, 102, 30, 126, },
  300. { 64, 32, 88, 56, 70, 38, 94, 62, },
  301. { 16, 112, 8, 104, 22, 118, 14, 110, },
  302. { 80, 48, 72, 40, 86, 54, 78, 46, },
  303. { 4, 100, 28, 124, 2, 98, 26, 122, },
  304. };
  305. #endif
  306. #if 1
  307. const uint8_t __attribute__((aligned(8))) dither_8x8_220[8][8]={
  308. {117, 62, 158, 103, 113, 58, 155, 100, },
  309. { 34, 199, 21, 186, 31, 196, 17, 182, },
  310. {144, 89, 131, 76, 141, 86, 127, 72, },
  311. { 0, 165, 41, 206, 10, 175, 52, 217, },
  312. {110, 55, 151, 96, 120, 65, 162, 107, },
  313. { 28, 193, 14, 179, 38, 203, 24, 189, },
  314. {138, 83, 124, 69, 148, 93, 134, 79, },
  315. { 7, 172, 48, 213, 3, 168, 45, 210, },
  316. };
  317. #elif 1
  318. // tries to correct a gamma of 1.5
  319. const uint8_t __attribute__((aligned(8))) dither_8x8_220[8][8]={
  320. { 0, 143, 18, 200, 2, 156, 25, 215, },
  321. { 78, 28, 125, 64, 89, 36, 138, 74, },
  322. { 10, 180, 3, 161, 16, 195, 8, 175, },
  323. {109, 51, 93, 38, 121, 60, 105, 47, },
  324. { 1, 152, 23, 210, 0, 147, 20, 205, },
  325. { 85, 33, 134, 71, 81, 30, 130, 67, },
  326. { 14, 190, 6, 171, 12, 185, 5, 166, },
  327. {117, 57, 101, 44, 113, 54, 97, 41, },
  328. };
  329. #elif 1
  330. // tries to correct a gamma of 2.0
  331. const uint8_t __attribute__((aligned(8))) dither_8x8_220[8][8]={
  332. { 0, 124, 8, 193, 0, 140, 12, 213, },
  333. { 55, 14, 104, 42, 66, 19, 119, 52, },
  334. { 3, 168, 1, 145, 6, 187, 3, 162, },
  335. { 86, 31, 70, 21, 99, 39, 82, 28, },
  336. { 0, 134, 11, 206, 0, 129, 9, 200, },
  337. { 62, 17, 114, 48, 58, 16, 109, 45, },
  338. { 5, 181, 2, 157, 4, 175, 1, 151, },
  339. { 95, 36, 78, 26, 90, 34, 74, 24, },
  340. };
  341. #else
  342. // tries to correct a gamma of 2.5
  343. const uint8_t __attribute__((aligned(8))) dither_8x8_220[8][8]={
  344. { 0, 107, 3, 187, 0, 125, 6, 212, },
  345. { 39, 7, 86, 28, 49, 11, 102, 36, },
  346. { 1, 158, 0, 131, 3, 180, 1, 151, },
  347. { 68, 19, 52, 12, 81, 25, 64, 17, },
  348. { 0, 119, 5, 203, 0, 113, 4, 195, },
  349. { 45, 9, 96, 33, 42, 8, 91, 30, },
  350. { 2, 172, 1, 144, 2, 165, 0, 137, },
  351. { 77, 23, 60, 15, 72, 21, 56, 14, },
  352. };
  353. #endif
  354. const char *sws_format_name(enum PixelFormat format)
  355. {
  356. switch (format) {
  357. case PIX_FMT_YUV420P:
  358. return "yuv420p";
  359. case PIX_FMT_YUVA420P:
  360. return "yuva420p";
  361. case PIX_FMT_YUYV422:
  362. return "yuyv422";
  363. case PIX_FMT_RGB24:
  364. return "rgb24";
  365. case PIX_FMT_BGR24:
  366. return "bgr24";
  367. case PIX_FMT_YUV422P:
  368. return "yuv422p";
  369. case PIX_FMT_YUV444P:
  370. return "yuv444p";
  371. case PIX_FMT_RGB32:
  372. return "rgb32";
  373. case PIX_FMT_YUV410P:
  374. return "yuv410p";
  375. case PIX_FMT_YUV411P:
  376. return "yuv411p";
  377. case PIX_FMT_RGB565:
  378. return "rgb565";
  379. case PIX_FMT_RGB555:
  380. return "rgb555";
  381. case PIX_FMT_GRAY16BE:
  382. return "gray16be";
  383. case PIX_FMT_GRAY16LE:
  384. return "gray16le";
  385. case PIX_FMT_GRAY8:
  386. return "gray8";
  387. case PIX_FMT_MONOWHITE:
  388. return "mono white";
  389. case PIX_FMT_MONOBLACK:
  390. return "mono black";
  391. case PIX_FMT_PAL8:
  392. return "Palette";
  393. case PIX_FMT_YUVJ420P:
  394. return "yuvj420p";
  395. case PIX_FMT_YUVJ422P:
  396. return "yuvj422p";
  397. case PIX_FMT_YUVJ444P:
  398. return "yuvj444p";
  399. case PIX_FMT_XVMC_MPEG2_MC:
  400. return "xvmc_mpeg2_mc";
  401. case PIX_FMT_XVMC_MPEG2_IDCT:
  402. return "xvmc_mpeg2_idct";
  403. case PIX_FMT_UYVY422:
  404. return "uyvy422";
  405. case PIX_FMT_UYYVYY411:
  406. return "uyyvyy411";
  407. case PIX_FMT_RGB32_1:
  408. return "rgb32x";
  409. case PIX_FMT_BGR32_1:
  410. return "bgr32x";
  411. case PIX_FMT_BGR32:
  412. return "bgr32";
  413. case PIX_FMT_BGR565:
  414. return "bgr565";
  415. case PIX_FMT_BGR555:
  416. return "bgr555";
  417. case PIX_FMT_BGR8:
  418. return "bgr8";
  419. case PIX_FMT_BGR4:
  420. return "bgr4";
  421. case PIX_FMT_BGR4_BYTE:
  422. return "bgr4 byte";
  423. case PIX_FMT_RGB8:
  424. return "rgb8";
  425. case PIX_FMT_RGB4:
  426. return "rgb4";
  427. case PIX_FMT_RGB4_BYTE:
  428. return "rgb4 byte";
  429. case PIX_FMT_NV12:
  430. return "nv12";
  431. case PIX_FMT_NV21:
  432. return "nv21";
  433. case PIX_FMT_YUV440P:
  434. return "yuv440p";
  435. case PIX_FMT_VDPAU_H264:
  436. return "vdpau_h264";
  437. case PIX_FMT_VDPAU_MPEG1:
  438. return "vdpau_mpeg1";
  439. case PIX_FMT_VDPAU_MPEG2:
  440. return "vdpau_mpeg2";
  441. case PIX_FMT_VDPAU_WMV3:
  442. return "vdpau_wmv3";
  443. case PIX_FMT_VDPAU_VC1:
  444. return "vdpau_vc1";
  445. case PIX_FMT_YUV420PLE:
  446. return "yuv420ple";
  447. case PIX_FMT_YUV422PLE:
  448. return "yuv422ple";
  449. case PIX_FMT_YUV444PLE:
  450. return "yuv444ple";
  451. case PIX_FMT_YUV420PBE:
  452. return "yuv420pbe";
  453. case PIX_FMT_YUV422PBE:
  454. return "yuv422pbe";
  455. case PIX_FMT_YUV444PBE:
  456. return "yuv444pbe";
  457. default:
  458. return "Unknown format";
  459. }
  460. }
  461. static inline void yuv2yuvXinC(const int16_t *lumFilter, const int16_t **lumSrc, int lumFilterSize,
  462. const int16_t *chrFilter, const int16_t **chrSrc, int chrFilterSize,
  463. const int16_t **alpSrc, uint8_t *dest, uint8_t *uDest, uint8_t *vDest, uint8_t *aDest, int dstW, int chrDstW)
  464. {
  465. //FIXME Optimize (just quickly written not optimized..)
  466. int i;
  467. for (i=0; i<dstW; i++)
  468. {
  469. int val=1<<18;
  470. int j;
  471. for (j=0; j<lumFilterSize; j++)
  472. val += lumSrc[j][i] * lumFilter[j];
  473. dest[i]= av_clip_uint8(val>>19);
  474. }
  475. if (uDest)
  476. for (i=0; i<chrDstW; i++)
  477. {
  478. int u=1<<18;
  479. int v=1<<18;
  480. int j;
  481. for (j=0; j<chrFilterSize; j++)
  482. {
  483. u += chrSrc[j][i] * chrFilter[j];
  484. v += chrSrc[j][i + VOFW] * chrFilter[j];
  485. }
  486. uDest[i]= av_clip_uint8(u>>19);
  487. vDest[i]= av_clip_uint8(v>>19);
  488. }
  489. if (CONFIG_SWSCALE_ALPHA && aDest)
  490. for (i=0; i<dstW; i++){
  491. int val=1<<18;
  492. int j;
  493. for (j=0; j<lumFilterSize; j++)
  494. val += alpSrc[j][i] * lumFilter[j];
  495. aDest[i]= av_clip_uint8(val>>19);
  496. }
  497. }
  498. static inline void yuv2nv12XinC(const int16_t *lumFilter, const int16_t **lumSrc, int lumFilterSize,
  499. const int16_t *chrFilter, const int16_t **chrSrc, int chrFilterSize,
  500. uint8_t *dest, uint8_t *uDest, int dstW, int chrDstW, int dstFormat)
  501. {
  502. //FIXME Optimize (just quickly written not optimized..)
  503. int i;
  504. for (i=0; i<dstW; i++)
  505. {
  506. int val=1<<18;
  507. int j;
  508. for (j=0; j<lumFilterSize; j++)
  509. val += lumSrc[j][i] * lumFilter[j];
  510. dest[i]= av_clip_uint8(val>>19);
  511. }
  512. if (!uDest)
  513. return;
  514. if (dstFormat == PIX_FMT_NV12)
  515. for (i=0; i<chrDstW; i++)
  516. {
  517. int u=1<<18;
  518. int v=1<<18;
  519. int j;
  520. for (j=0; j<chrFilterSize; j++)
  521. {
  522. u += chrSrc[j][i] * chrFilter[j];
  523. v += chrSrc[j][i + VOFW] * chrFilter[j];
  524. }
  525. uDest[2*i]= av_clip_uint8(u>>19);
  526. uDest[2*i+1]= av_clip_uint8(v>>19);
  527. }
  528. else
  529. for (i=0; i<chrDstW; i++)
  530. {
  531. int u=1<<18;
  532. int v=1<<18;
  533. int j;
  534. for (j=0; j<chrFilterSize; j++)
  535. {
  536. u += chrSrc[j][i] * chrFilter[j];
  537. v += chrSrc[j][i + VOFW] * chrFilter[j];
  538. }
  539. uDest[2*i]= av_clip_uint8(v>>19);
  540. uDest[2*i+1]= av_clip_uint8(u>>19);
  541. }
  542. }
  543. #define YSCALE_YUV_2_PACKEDX_NOCLIP_C(type,alpha) \
  544. for (i=0; i<(dstW>>1); i++){\
  545. int j;\
  546. int Y1 = 1<<18;\
  547. int Y2 = 1<<18;\
  548. int U = 1<<18;\
  549. int V = 1<<18;\
  550. int av_unused A1, A2;\
  551. type av_unused *r, *b, *g;\
  552. const int i2= 2*i;\
  553. \
  554. for (j=0; j<lumFilterSize; j++)\
  555. {\
  556. Y1 += lumSrc[j][i2] * lumFilter[j];\
  557. Y2 += lumSrc[j][i2+1] * lumFilter[j];\
  558. }\
  559. for (j=0; j<chrFilterSize; j++)\
  560. {\
  561. U += chrSrc[j][i] * chrFilter[j];\
  562. V += chrSrc[j][i+VOFW] * chrFilter[j];\
  563. }\
  564. Y1>>=19;\
  565. Y2>>=19;\
  566. U >>=19;\
  567. V >>=19;\
  568. if (alpha){\
  569. A1 = 1<<18;\
  570. A2 = 1<<18;\
  571. for (j=0; j<lumFilterSize; j++){\
  572. A1 += alpSrc[j][i2 ] * lumFilter[j];\
  573. A2 += alpSrc[j][i2+1] * lumFilter[j];\
  574. }\
  575. A1>>=19;\
  576. A2>>=19;\
  577. }\
  578. #define YSCALE_YUV_2_PACKEDX_C(type,alpha) \
  579. YSCALE_YUV_2_PACKEDX_NOCLIP_C(type,alpha)\
  580. if ((Y1|Y2|U|V)&256)\
  581. {\
  582. if (Y1>255) Y1=255; \
  583. else if (Y1<0)Y1=0; \
  584. if (Y2>255) Y2=255; \
  585. else if (Y2<0)Y2=0; \
  586. if (U>255) U=255; \
  587. else if (U<0) U=0; \
  588. if (V>255) V=255; \
  589. else if (V<0) V=0; \
  590. }\
  591. if (alpha && ((A1|A2)&256)){\
  592. A1=av_clip_uint8(A1);\
  593. A2=av_clip_uint8(A2);\
  594. }
  595. #define YSCALE_YUV_2_PACKEDX_FULL_C(rnd,alpha) \
  596. for (i=0; i<dstW; i++){\
  597. int j;\
  598. int Y = 0;\
  599. int U = -128<<19;\
  600. int V = -128<<19;\
  601. int av_unused A;\
  602. int R,G,B;\
  603. \
  604. for (j=0; j<lumFilterSize; j++){\
  605. Y += lumSrc[j][i ] * lumFilter[j];\
  606. }\
  607. for (j=0; j<chrFilterSize; j++){\
  608. U += chrSrc[j][i ] * chrFilter[j];\
  609. V += chrSrc[j][i+VOFW] * chrFilter[j];\
  610. }\
  611. Y >>=10;\
  612. U >>=10;\
  613. V >>=10;\
  614. if (alpha){\
  615. A = rnd;\
  616. for (j=0; j<lumFilterSize; j++)\
  617. A += alpSrc[j][i ] * lumFilter[j];\
  618. A >>=19;\
  619. if (A&256)\
  620. A = av_clip_uint8(A);\
  621. }\
  622. #define YSCALE_YUV_2_RGBX_FULL_C(rnd,alpha) \
  623. YSCALE_YUV_2_PACKEDX_FULL_C(rnd>>3,alpha)\
  624. Y-= c->yuv2rgb_y_offset;\
  625. Y*= c->yuv2rgb_y_coeff;\
  626. Y+= rnd;\
  627. R= Y + V*c->yuv2rgb_v2r_coeff;\
  628. G= Y + V*c->yuv2rgb_v2g_coeff + U*c->yuv2rgb_u2g_coeff;\
  629. B= Y + U*c->yuv2rgb_u2b_coeff;\
  630. if ((R|G|B)&(0xC0000000)){\
  631. if (R>=(256<<22)) R=(256<<22)-1; \
  632. else if (R<0)R=0; \
  633. if (G>=(256<<22)) G=(256<<22)-1; \
  634. else if (G<0)G=0; \
  635. if (B>=(256<<22)) B=(256<<22)-1; \
  636. else if (B<0)B=0; \
  637. }\
  638. #define YSCALE_YUV_2_GRAY16_C \
  639. for (i=0; i<(dstW>>1); i++){\
  640. int j;\
  641. int Y1 = 1<<18;\
  642. int Y2 = 1<<18;\
  643. int U = 1<<18;\
  644. int V = 1<<18;\
  645. \
  646. const int i2= 2*i;\
  647. \
  648. for (j=0; j<lumFilterSize; j++)\
  649. {\
  650. Y1 += lumSrc[j][i2] * lumFilter[j];\
  651. Y2 += lumSrc[j][i2+1] * lumFilter[j];\
  652. }\
  653. Y1>>=11;\
  654. Y2>>=11;\
  655. if ((Y1|Y2|U|V)&65536)\
  656. {\
  657. if (Y1>65535) Y1=65535; \
  658. else if (Y1<0)Y1=0; \
  659. if (Y2>65535) Y2=65535; \
  660. else if (Y2<0)Y2=0; \
  661. }
  662. #define YSCALE_YUV_2_RGBX_C(type,alpha) \
  663. YSCALE_YUV_2_PACKEDX_C(type,alpha) /* FIXME fix tables so that clipping is not needed and then use _NOCLIP*/\
  664. r = (type *)c->table_rV[V]; \
  665. g = (type *)(c->table_gU[U] + c->table_gV[V]); \
  666. b = (type *)c->table_bU[U]; \
  667. #define YSCALE_YUV_2_PACKED2_C(type,alpha) \
  668. for (i=0; i<(dstW>>1); i++){ \
  669. const int i2= 2*i; \
  670. int Y1= (buf0[i2 ]*yalpha1+buf1[i2 ]*yalpha)>>19; \
  671. int Y2= (buf0[i2+1]*yalpha1+buf1[i2+1]*yalpha)>>19; \
  672. int U= (uvbuf0[i ]*uvalpha1+uvbuf1[i ]*uvalpha)>>19; \
  673. int V= (uvbuf0[i+VOFW]*uvalpha1+uvbuf1[i+VOFW]*uvalpha)>>19; \
  674. type av_unused *r, *b, *g; \
  675. int av_unused A1, A2; \
  676. if (alpha){\
  677. A1= (abuf0[i2 ]*yalpha1+abuf1[i2 ]*yalpha)>>19; \
  678. A2= (abuf0[i2+1]*yalpha1+abuf1[i2+1]*yalpha)>>19; \
  679. }\
  680. #define YSCALE_YUV_2_GRAY16_2_C \
  681. for (i=0; i<(dstW>>1); i++){ \
  682. const int i2= 2*i; \
  683. int Y1= (buf0[i2 ]*yalpha1+buf1[i2 ]*yalpha)>>11; \
  684. int Y2= (buf0[i2+1]*yalpha1+buf1[i2+1]*yalpha)>>11; \
  685. #define YSCALE_YUV_2_RGB2_C(type,alpha) \
  686. YSCALE_YUV_2_PACKED2_C(type,alpha)\
  687. r = (type *)c->table_rV[V];\
  688. g = (type *)(c->table_gU[U] + c->table_gV[V]);\
  689. b = (type *)c->table_bU[U];\
  690. #define YSCALE_YUV_2_PACKED1_C(type,alpha) \
  691. for (i=0; i<(dstW>>1); i++){\
  692. const int i2= 2*i;\
  693. int Y1= buf0[i2 ]>>7;\
  694. int Y2= buf0[i2+1]>>7;\
  695. int U= (uvbuf1[i ])>>7;\
  696. int V= (uvbuf1[i+VOFW])>>7;\
  697. type av_unused *r, *b, *g;\
  698. int av_unused A1, A2;\
  699. if (alpha){\
  700. A1= abuf0[i2 ]>>7;\
  701. A2= abuf0[i2+1]>>7;\
  702. }\
  703. #define YSCALE_YUV_2_GRAY16_1_C \
  704. for (i=0; i<(dstW>>1); i++){\
  705. const int i2= 2*i;\
  706. int Y1= buf0[i2 ]<<1;\
  707. int Y2= buf0[i2+1]<<1;\
  708. #define YSCALE_YUV_2_RGB1_C(type,alpha) \
  709. YSCALE_YUV_2_PACKED1_C(type,alpha)\
  710. r = (type *)c->table_rV[V];\
  711. g = (type *)(c->table_gU[U] + c->table_gV[V]);\
  712. b = (type *)c->table_bU[U];\
  713. #define YSCALE_YUV_2_PACKED1B_C(type,alpha) \
  714. for (i=0; i<(dstW>>1); i++){\
  715. const int i2= 2*i;\
  716. int Y1= buf0[i2 ]>>7;\
  717. int Y2= buf0[i2+1]>>7;\
  718. int U= (uvbuf0[i ] + uvbuf1[i ])>>8;\
  719. int V= (uvbuf0[i+VOFW] + uvbuf1[i+VOFW])>>8;\
  720. type av_unused *r, *b, *g;\
  721. int av_unused A1, A2;\
  722. if (alpha){\
  723. A1= abuf0[i2 ]>>7;\
  724. A2= abuf0[i2+1]>>7;\
  725. }\
  726. #define YSCALE_YUV_2_RGB1B_C(type,alpha) \
  727. YSCALE_YUV_2_PACKED1B_C(type,alpha)\
  728. r = (type *)c->table_rV[V];\
  729. g = (type *)(c->table_gU[U] + c->table_gV[V]);\
  730. b = (type *)c->table_bU[U];\
  731. #define YSCALE_YUV_2_MONO2_C \
  732. const uint8_t * const d128=dither_8x8_220[y&7];\
  733. uint8_t *g= c->table_gU[128] + c->table_gV[128];\
  734. for (i=0; i<dstW-7; i+=8){\
  735. int acc;\
  736. acc = g[((buf0[i ]*yalpha1+buf1[i ]*yalpha)>>19) + d128[0]];\
  737. acc+= acc + g[((buf0[i+1]*yalpha1+buf1[i+1]*yalpha)>>19) + d128[1]];\
  738. acc+= acc + g[((buf0[i+2]*yalpha1+buf1[i+2]*yalpha)>>19) + d128[2]];\
  739. acc+= acc + g[((buf0[i+3]*yalpha1+buf1[i+3]*yalpha)>>19) + d128[3]];\
  740. acc+= acc + g[((buf0[i+4]*yalpha1+buf1[i+4]*yalpha)>>19) + d128[4]];\
  741. acc+= acc + g[((buf0[i+5]*yalpha1+buf1[i+5]*yalpha)>>19) + d128[5]];\
  742. acc+= acc + g[((buf0[i+6]*yalpha1+buf1[i+6]*yalpha)>>19) + d128[6]];\
  743. acc+= acc + g[((buf0[i+7]*yalpha1+buf1[i+7]*yalpha)>>19) + d128[7]];\
  744. ((uint8_t*)dest)[0]= c->dstFormat == PIX_FMT_MONOBLACK ? acc : ~acc;\
  745. dest++;\
  746. }\
  747. #define YSCALE_YUV_2_MONOX_C \
  748. const uint8_t * const d128=dither_8x8_220[y&7];\
  749. uint8_t *g= c->table_gU[128] + c->table_gV[128];\
  750. int acc=0;\
  751. for (i=0; i<dstW-1; i+=2){\
  752. int j;\
  753. int Y1=1<<18;\
  754. int Y2=1<<18;\
  755. \
  756. for (j=0; j<lumFilterSize; j++)\
  757. {\
  758. Y1 += lumSrc[j][i] * lumFilter[j];\
  759. Y2 += lumSrc[j][i+1] * lumFilter[j];\
  760. }\
  761. Y1>>=19;\
  762. Y2>>=19;\
  763. if ((Y1|Y2)&256)\
  764. {\
  765. if (Y1>255) Y1=255;\
  766. else if (Y1<0)Y1=0;\
  767. if (Y2>255) Y2=255;\
  768. else if (Y2<0)Y2=0;\
  769. }\
  770. acc+= acc + g[Y1+d128[(i+0)&7]];\
  771. acc+= acc + g[Y2+d128[(i+1)&7]];\
  772. if ((i&7)==6){\
  773. ((uint8_t*)dest)[0]= c->dstFormat == PIX_FMT_MONOBLACK ? acc : ~acc;\
  774. dest++;\
  775. }\
  776. }
  777. #define YSCALE_YUV_2_ANYRGB_C(func, func2, func_g16, func_monoblack)\
  778. switch(c->dstFormat)\
  779. {\
  780. case PIX_FMT_RGBA:\
  781. case PIX_FMT_BGRA:\
  782. if (CONFIG_SMALL){\
  783. int needAlpha = CONFIG_SWSCALE_ALPHA && c->alpPixBuf;\
  784. func(uint32_t,needAlpha)\
  785. ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1] + (needAlpha ? (A1<<24) : 0);\
  786. ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2] + (needAlpha ? (A2<<24) : 0);\
  787. }\
  788. }else{\
  789. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf){\
  790. func(uint32_t,1)\
  791. ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1] + (A1<<24);\
  792. ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2] + (A2<<24);\
  793. }\
  794. }else{\
  795. func(uint32_t,0)\
  796. ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1];\
  797. ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2];\
  798. }\
  799. }\
  800. }\
  801. break;\
  802. case PIX_FMT_ARGB:\
  803. case PIX_FMT_ABGR:\
  804. if (CONFIG_SMALL){\
  805. int needAlpha = CONFIG_SWSCALE_ALPHA && c->alpPixBuf;\
  806. func(uint32_t,needAlpha)\
  807. ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1] + (needAlpha ? A1 : 0);\
  808. ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2] + (needAlpha ? A2 : 0);\
  809. }\
  810. }else{\
  811. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf){\
  812. func(uint32_t,1)\
  813. ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1] + A1;\
  814. ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2] + A2;\
  815. }\
  816. }else{\
  817. func(uint32_t,0)\
  818. ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1];\
  819. ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2];\
  820. }\
  821. }\
  822. } \
  823. break;\
  824. case PIX_FMT_RGB24:\
  825. func(uint8_t,0)\
  826. ((uint8_t*)dest)[0]= r[Y1];\
  827. ((uint8_t*)dest)[1]= g[Y1];\
  828. ((uint8_t*)dest)[2]= b[Y1];\
  829. ((uint8_t*)dest)[3]= r[Y2];\
  830. ((uint8_t*)dest)[4]= g[Y2];\
  831. ((uint8_t*)dest)[5]= b[Y2];\
  832. dest+=6;\
  833. }\
  834. break;\
  835. case PIX_FMT_BGR24:\
  836. func(uint8_t,0)\
  837. ((uint8_t*)dest)[0]= b[Y1];\
  838. ((uint8_t*)dest)[1]= g[Y1];\
  839. ((uint8_t*)dest)[2]= r[Y1];\
  840. ((uint8_t*)dest)[3]= b[Y2];\
  841. ((uint8_t*)dest)[4]= g[Y2];\
  842. ((uint8_t*)dest)[5]= r[Y2];\
  843. dest+=6;\
  844. }\
  845. break;\
  846. case PIX_FMT_RGB565:\
  847. case PIX_FMT_BGR565:\
  848. {\
  849. const int dr1= dither_2x2_8[y&1 ][0];\
  850. const int dg1= dither_2x2_4[y&1 ][0];\
  851. const int db1= dither_2x2_8[(y&1)^1][0];\
  852. const int dr2= dither_2x2_8[y&1 ][1];\
  853. const int dg2= dither_2x2_4[y&1 ][1];\
  854. const int db2= dither_2x2_8[(y&1)^1][1];\
  855. func(uint16_t,0)\
  856. ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];\
  857. ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];\
  858. }\
  859. }\
  860. break;\
  861. case PIX_FMT_RGB555:\
  862. case PIX_FMT_BGR555:\
  863. {\
  864. const int dr1= dither_2x2_8[y&1 ][0];\
  865. const int dg1= dither_2x2_8[y&1 ][1];\
  866. const int db1= dither_2x2_8[(y&1)^1][0];\
  867. const int dr2= dither_2x2_8[y&1 ][1];\
  868. const int dg2= dither_2x2_8[y&1 ][0];\
  869. const int db2= dither_2x2_8[(y&1)^1][1];\
  870. func(uint16_t,0)\
  871. ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];\
  872. ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];\
  873. }\
  874. }\
  875. break;\
  876. case PIX_FMT_RGB8:\
  877. case PIX_FMT_BGR8:\
  878. {\
  879. const uint8_t * const d64= dither_8x8_73[y&7];\
  880. const uint8_t * const d32= dither_8x8_32[y&7];\
  881. func(uint8_t,0)\
  882. ((uint8_t*)dest)[i2+0]= r[Y1+d32[(i2+0)&7]] + g[Y1+d32[(i2+0)&7]] + b[Y1+d64[(i2+0)&7]];\
  883. ((uint8_t*)dest)[i2+1]= r[Y2+d32[(i2+1)&7]] + g[Y2+d32[(i2+1)&7]] + b[Y2+d64[(i2+1)&7]];\
  884. }\
  885. }\
  886. break;\
  887. case PIX_FMT_RGB4:\
  888. case PIX_FMT_BGR4:\
  889. {\
  890. const uint8_t * const d64= dither_8x8_73 [y&7];\
  891. const uint8_t * const d128=dither_8x8_220[y&7];\
  892. func(uint8_t,0)\
  893. ((uint8_t*)dest)[i]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]]\
  894. + ((r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]])<<4);\
  895. }\
  896. }\
  897. break;\
  898. case PIX_FMT_RGB4_BYTE:\
  899. case PIX_FMT_BGR4_BYTE:\
  900. {\
  901. const uint8_t * const d64= dither_8x8_73 [y&7];\
  902. const uint8_t * const d128=dither_8x8_220[y&7];\
  903. func(uint8_t,0)\
  904. ((uint8_t*)dest)[i2+0]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]];\
  905. ((uint8_t*)dest)[i2+1]= r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]];\
  906. }\
  907. }\
  908. break;\
  909. case PIX_FMT_MONOBLACK:\
  910. case PIX_FMT_MONOWHITE:\
  911. {\
  912. func_monoblack\
  913. }\
  914. break;\
  915. case PIX_FMT_YUYV422:\
  916. func2\
  917. ((uint8_t*)dest)[2*i2+0]= Y1;\
  918. ((uint8_t*)dest)[2*i2+1]= U;\
  919. ((uint8_t*)dest)[2*i2+2]= Y2;\
  920. ((uint8_t*)dest)[2*i2+3]= V;\
  921. } \
  922. break;\
  923. case PIX_FMT_UYVY422:\
  924. func2\
  925. ((uint8_t*)dest)[2*i2+0]= U;\
  926. ((uint8_t*)dest)[2*i2+1]= Y1;\
  927. ((uint8_t*)dest)[2*i2+2]= V;\
  928. ((uint8_t*)dest)[2*i2+3]= Y2;\
  929. } \
  930. break;\
  931. case PIX_FMT_GRAY16BE:\
  932. func_g16\
  933. ((uint8_t*)dest)[2*i2+0]= Y1>>8;\
  934. ((uint8_t*)dest)[2*i2+1]= Y1;\
  935. ((uint8_t*)dest)[2*i2+2]= Y2>>8;\
  936. ((uint8_t*)dest)[2*i2+3]= Y2;\
  937. } \
  938. break;\
  939. case PIX_FMT_GRAY16LE:\
  940. func_g16\
  941. ((uint8_t*)dest)[2*i2+0]= Y1;\
  942. ((uint8_t*)dest)[2*i2+1]= Y1>>8;\
  943. ((uint8_t*)dest)[2*i2+2]= Y2;\
  944. ((uint8_t*)dest)[2*i2+3]= Y2>>8;\
  945. } \
  946. break;\
  947. }\
  948. static inline void yuv2packedXinC(SwsContext *c, const int16_t *lumFilter, const int16_t **lumSrc, int lumFilterSize,
  949. const int16_t *chrFilter, const int16_t **chrSrc, int chrFilterSize,
  950. const int16_t **alpSrc, uint8_t *dest, int dstW, int y)
  951. {
  952. int i;
  953. YSCALE_YUV_2_ANYRGB_C(YSCALE_YUV_2_RGBX_C, YSCALE_YUV_2_PACKEDX_C(void,0), YSCALE_YUV_2_GRAY16_C, YSCALE_YUV_2_MONOX_C)
  954. }
  955. static inline void yuv2rgbXinC_full(SwsContext *c, const int16_t *lumFilter, const int16_t **lumSrc, int lumFilterSize,
  956. const int16_t *chrFilter, const int16_t **chrSrc, int chrFilterSize,
  957. const int16_t **alpSrc, uint8_t *dest, int dstW, int y)
  958. {
  959. int i;
  960. int step= fmt_depth(c->dstFormat)/8;
  961. int aidx= 3;
  962. switch(c->dstFormat){
  963. case PIX_FMT_ARGB:
  964. dest++;
  965. aidx= 0;
  966. case PIX_FMT_RGB24:
  967. aidx--;
  968. case PIX_FMT_RGBA:
  969. if (CONFIG_SMALL){
  970. int needAlpha = CONFIG_SWSCALE_ALPHA && c->alpPixBuf;
  971. YSCALE_YUV_2_RGBX_FULL_C(1<<21, needAlpha)
  972. dest[aidx]= needAlpha ? A : 255;
  973. dest[0]= R>>22;
  974. dest[1]= G>>22;
  975. dest[2]= B>>22;
  976. dest+= step;
  977. }
  978. }else{
  979. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf){
  980. YSCALE_YUV_2_RGBX_FULL_C(1<<21, 1)
  981. dest[aidx]= A;
  982. dest[0]= R>>22;
  983. dest[1]= G>>22;
  984. dest[2]= B>>22;
  985. dest+= step;
  986. }
  987. }else{
  988. YSCALE_YUV_2_RGBX_FULL_C(1<<21, 0)
  989. dest[aidx]= 255;
  990. dest[0]= R>>22;
  991. dest[1]= G>>22;
  992. dest[2]= B>>22;
  993. dest+= step;
  994. }
  995. }
  996. }
  997. break;
  998. case PIX_FMT_ABGR:
  999. dest++;
  1000. aidx= 0;
  1001. case PIX_FMT_BGR24:
  1002. aidx--;
  1003. case PIX_FMT_BGRA:
  1004. if (CONFIG_SMALL){
  1005. int needAlpha = CONFIG_SWSCALE_ALPHA && c->alpPixBuf;
  1006. YSCALE_YUV_2_RGBX_FULL_C(1<<21, needAlpha)
  1007. dest[aidx]= needAlpha ? A : 255;
  1008. dest[0]= B>>22;
  1009. dest[1]= G>>22;
  1010. dest[2]= R>>22;
  1011. dest+= step;
  1012. }
  1013. }else{
  1014. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf){
  1015. YSCALE_YUV_2_RGBX_FULL_C(1<<21, 1)
  1016. dest[aidx]= A;
  1017. dest[0]= B>>22;
  1018. dest[1]= G>>22;
  1019. dest[2]= R>>22;
  1020. dest+= step;
  1021. }
  1022. }else{
  1023. YSCALE_YUV_2_RGBX_FULL_C(1<<21, 0)
  1024. dest[aidx]= 255;
  1025. dest[0]= B>>22;
  1026. dest[1]= G>>22;
  1027. dest[2]= R>>22;
  1028. dest+= step;
  1029. }
  1030. }
  1031. }
  1032. break;
  1033. default:
  1034. assert(0);
  1035. }
  1036. }
  1037. static void fillPlane(uint8_t* plane, int stride, int width, int height, int y, uint8_t val){
  1038. int i;
  1039. uint8_t *ptr = plane + stride*y;
  1040. for (i=0; i<height; i++){
  1041. memset(ptr, val, width);
  1042. ptr += stride;
  1043. }
  1044. }
  1045. //Note: we have C, MMX, MMX2, 3DNOW versions, there is no 3DNOW+MMX2 one
  1046. //Plain C versions
  1047. #if !HAVE_MMX || CONFIG_RUNTIME_CPUDETECT || !CONFIG_GPL
  1048. #define COMPILE_C
  1049. #endif
  1050. #if ARCH_PPC
  1051. #if (HAVE_ALTIVEC || CONFIG_RUNTIME_CPUDETECT) && CONFIG_GPL
  1052. #undef COMPILE_C
  1053. #define COMPILE_ALTIVEC
  1054. #endif
  1055. #endif //ARCH_PPC
  1056. #if ARCH_X86
  1057. #if ((HAVE_MMX && !HAVE_AMD3DNOW && !HAVE_MMX2) || CONFIG_RUNTIME_CPUDETECT) && CONFIG_GPL
  1058. #define COMPILE_MMX
  1059. #endif
  1060. #if (HAVE_MMX2 || CONFIG_RUNTIME_CPUDETECT) && CONFIG_GPL
  1061. #define COMPILE_MMX2
  1062. #endif
  1063. #if ((HAVE_AMD3DNOW && !HAVE_MMX2) || CONFIG_RUNTIME_CPUDETECT) && CONFIG_GPL
  1064. #define COMPILE_3DNOW
  1065. #endif
  1066. #endif //ARCH_X86
  1067. #undef HAVE_MMX
  1068. #undef HAVE_MMX2
  1069. #undef HAVE_AMD3DNOW
  1070. #undef HAVE_ALTIVEC
  1071. #define HAVE_MMX 0
  1072. #define HAVE_MMX2 0
  1073. #define HAVE_AMD3DNOW 0
  1074. #define HAVE_ALTIVEC 0
  1075. #ifdef COMPILE_C
  1076. #define RENAME(a) a ## _C
  1077. #include "swscale_template.c"
  1078. #endif
  1079. #ifdef COMPILE_ALTIVEC
  1080. #undef RENAME
  1081. #undef HAVE_ALTIVEC
  1082. #define HAVE_ALTIVEC 1
  1083. #define RENAME(a) a ## _altivec
  1084. #include "swscale_template.c"
  1085. #endif
  1086. #if ARCH_X86
  1087. //MMX versions
  1088. #ifdef COMPILE_MMX
  1089. #undef RENAME
  1090. #undef HAVE_MMX
  1091. #undef HAVE_MMX2
  1092. #undef HAVE_AMD3DNOW
  1093. #define HAVE_MMX 1
  1094. #define HAVE_MMX2 0
  1095. #define HAVE_AMD3DNOW 0
  1096. #define RENAME(a) a ## _MMX
  1097. #include "swscale_template.c"
  1098. #endif
  1099. //MMX2 versions
  1100. #ifdef COMPILE_MMX2
  1101. #undef RENAME
  1102. #undef HAVE_MMX
  1103. #undef HAVE_MMX2
  1104. #undef HAVE_AMD3DNOW
  1105. #define HAVE_MMX 1
  1106. #define HAVE_MMX2 1
  1107. #define HAVE_AMD3DNOW 0
  1108. #define RENAME(a) a ## _MMX2
  1109. #include "swscale_template.c"
  1110. #endif
  1111. //3DNOW versions
  1112. #ifdef COMPILE_3DNOW
  1113. #undef RENAME
  1114. #undef HAVE_MMX
  1115. #undef HAVE_MMX2
  1116. #undef HAVE_AMD3DNOW
  1117. #define HAVE_MMX 1
  1118. #define HAVE_MMX2 0
  1119. #define HAVE_AMD3DNOW 1
  1120. #define RENAME(a) a ## _3DNow
  1121. #include "swscale_template.c"
  1122. #endif
  1123. #endif //ARCH_X86
  1124. // minor note: the HAVE_xyz are messed up after this line so don't use them
  1125. static double getSplineCoeff(double a, double b, double c, double d, double dist)
  1126. {
  1127. // printf("%f %f %f %f %f\n", a,b,c,d,dist);
  1128. if (dist<=1.0) return ((d*dist + c)*dist + b)*dist +a;
  1129. else return getSplineCoeff( 0.0,
  1130. b+ 2.0*c + 3.0*d,
  1131. c + 3.0*d,
  1132. -b- 3.0*c - 6.0*d,
  1133. dist-1.0);
  1134. }
  1135. static inline int initFilter(int16_t **outFilter, int16_t **filterPos, int *outFilterSize, int xInc,
  1136. int srcW, int dstW, int filterAlign, int one, int flags,
  1137. SwsVector *srcFilter, SwsVector *dstFilter, double param[2])
  1138. {
  1139. int i;
  1140. int filterSize;
  1141. int filter2Size;
  1142. int minFilterSize;
  1143. int64_t *filter=NULL;
  1144. int64_t *filter2=NULL;
  1145. const int64_t fone= 1LL<<54;
  1146. int ret= -1;
  1147. #if ARCH_X86
  1148. if (flags & SWS_CPU_CAPS_MMX)
  1149. __asm__ volatile("emms\n\t"::: "memory"); //FIXME this should not be required but it IS (even for non-MMX versions)
  1150. #endif
  1151. // NOTE: the +1 is for the MMX scaler which reads over the end
  1152. *filterPos = av_malloc((dstW+1)*sizeof(int16_t));
  1153. if (FFABS(xInc - 0x10000) <10) // unscaled
  1154. {
  1155. int i;
  1156. filterSize= 1;
  1157. filter= av_mallocz(dstW*sizeof(*filter)*filterSize);
  1158. for (i=0; i<dstW; i++)
  1159. {
  1160. filter[i*filterSize]= fone;
  1161. (*filterPos)[i]=i;
  1162. }
  1163. }
  1164. else if (flags&SWS_POINT) // lame looking point sampling mode
  1165. {
  1166. int i;
  1167. int xDstInSrc;
  1168. filterSize= 1;
  1169. filter= av_malloc(dstW*sizeof(*filter)*filterSize);
  1170. xDstInSrc= xInc/2 - 0x8000;
  1171. for (i=0; i<dstW; i++)
  1172. {
  1173. int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
  1174. (*filterPos)[i]= xx;
  1175. filter[i]= fone;
  1176. xDstInSrc+= xInc;
  1177. }
  1178. }
  1179. else if ((xInc <= (1<<16) && (flags&SWS_AREA)) || (flags&SWS_FAST_BILINEAR)) // bilinear upscale
  1180. {
  1181. int i;
  1182. int xDstInSrc;
  1183. if (flags&SWS_BICUBIC) filterSize= 4;
  1184. else if (flags&SWS_X ) filterSize= 4;
  1185. else filterSize= 2; // SWS_BILINEAR / SWS_AREA
  1186. filter= av_malloc(dstW*sizeof(*filter)*filterSize);
  1187. xDstInSrc= xInc/2 - 0x8000;
  1188. for (i=0; i<dstW; i++)
  1189. {
  1190. int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
  1191. int j;
  1192. (*filterPos)[i]= xx;
  1193. //bilinear upscale / linear interpolate / area averaging
  1194. for (j=0; j<filterSize; j++)
  1195. {
  1196. int64_t coeff= fone - FFABS((xx<<16) - xDstInSrc)*(fone>>16);
  1197. if (coeff<0) coeff=0;
  1198. filter[i*filterSize + j]= coeff;
  1199. xx++;
  1200. }
  1201. xDstInSrc+= xInc;
  1202. }
  1203. }
  1204. else
  1205. {
  1206. int xDstInSrc;
  1207. int sizeFactor;
  1208. if (flags&SWS_BICUBIC) sizeFactor= 4;
  1209. else if (flags&SWS_X) sizeFactor= 8;
  1210. else if (flags&SWS_AREA) sizeFactor= 1; //downscale only, for upscale it is bilinear
  1211. else if (flags&SWS_GAUSS) sizeFactor= 8; // infinite ;)
  1212. else if (flags&SWS_LANCZOS) sizeFactor= param[0] != SWS_PARAM_DEFAULT ? ceil(2*param[0]) : 6;
  1213. else if (flags&SWS_SINC) sizeFactor= 20; // infinite ;)
  1214. else if (flags&SWS_SPLINE) sizeFactor= 20; // infinite ;)
  1215. else if (flags&SWS_BILINEAR) sizeFactor= 2;
  1216. else {
  1217. sizeFactor= 0; //GCC warning killer
  1218. assert(0);
  1219. }
  1220. if (xInc <= 1<<16) filterSize= 1 + sizeFactor; // upscale
  1221. else filterSize= 1 + (sizeFactor*srcW + dstW - 1)/ dstW;
  1222. if (filterSize > srcW-2) filterSize=srcW-2;
  1223. filter= av_malloc(dstW*sizeof(*filter)*filterSize);
  1224. xDstInSrc= xInc - 0x10000;
  1225. for (i=0; i<dstW; i++)
  1226. {
  1227. int xx= (xDstInSrc - ((filterSize-2)<<16)) / (1<<17);
  1228. int j;
  1229. (*filterPos)[i]= xx;
  1230. for (j=0; j<filterSize; j++)
  1231. {
  1232. int64_t d= ((int64_t)FFABS((xx<<17) - xDstInSrc))<<13;
  1233. double floatd;
  1234. int64_t coeff;
  1235. if (xInc > 1<<16)
  1236. d= d*dstW/srcW;
  1237. floatd= d * (1.0/(1<<30));
  1238. if (flags & SWS_BICUBIC)
  1239. {
  1240. int64_t B= (param[0] != SWS_PARAM_DEFAULT ? param[0] : 0) * (1<<24);
  1241. int64_t C= (param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6) * (1<<24);
  1242. int64_t dd = ( d*d)>>30;
  1243. int64_t ddd= (dd*d)>>30;
  1244. if (d < 1LL<<30)
  1245. coeff = (12*(1<<24)-9*B-6*C)*ddd + (-18*(1<<24)+12*B+6*C)*dd + (6*(1<<24)-2*B)*(1<<30);
  1246. else if (d < 1LL<<31)
  1247. coeff = (-B-6*C)*ddd + (6*B+30*C)*dd + (-12*B-48*C)*d + (8*B+24*C)*(1<<30);
  1248. else
  1249. coeff=0.0;
  1250. coeff *= fone>>(30+24);
  1251. }
  1252. /* else if (flags & SWS_X)
  1253. {
  1254. double p= param ? param*0.01 : 0.3;
  1255. coeff = d ? sin(d*PI)/(d*PI) : 1.0;
  1256. coeff*= pow(2.0, - p*d*d);
  1257. }*/
  1258. else if (flags & SWS_X)
  1259. {
  1260. double A= param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
  1261. double c;
  1262. if (floatd<1.0)
  1263. c = cos(floatd*PI);
  1264. else
  1265. c=-1.0;
  1266. if (c<0.0) c= -pow(-c, A);
  1267. else c= pow( c, A);
  1268. coeff= (c*0.5 + 0.5)*fone;
  1269. }
  1270. else if (flags & SWS_AREA)
  1271. {
  1272. int64_t d2= d - (1<<29);
  1273. if (d2*xInc < -(1LL<<(29+16))) coeff= 1.0 * (1LL<<(30+16));
  1274. else if (d2*xInc < (1LL<<(29+16))) coeff= -d2*xInc + (1LL<<(29+16));
  1275. else coeff=0.0;
  1276. coeff *= fone>>(30+16);
  1277. }
  1278. else if (flags & SWS_GAUSS)
  1279. {
  1280. double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  1281. coeff = (pow(2.0, - p*floatd*floatd))*fone;
  1282. }
  1283. else if (flags & SWS_SINC)
  1284. {
  1285. coeff = (d ? sin(floatd*PI)/(floatd*PI) : 1.0)*fone;
  1286. }
  1287. else if (flags & SWS_LANCZOS)
  1288. {
  1289. double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  1290. coeff = (d ? sin(floatd*PI)*sin(floatd*PI/p)/(floatd*floatd*PI*PI/p) : 1.0)*fone;
  1291. if (floatd>p) coeff=0;
  1292. }
  1293. else if (flags & SWS_BILINEAR)
  1294. {
  1295. coeff= (1<<30) - d;
  1296. if (coeff<0) coeff=0;
  1297. coeff *= fone >> 30;
  1298. }
  1299. else if (flags & SWS_SPLINE)
  1300. {
  1301. double p=-2.196152422706632;
  1302. coeff = getSplineCoeff(1.0, 0.0, p, -p-1.0, floatd) * fone;
  1303. }
  1304. else {
  1305. coeff= 0.0; //GCC warning killer
  1306. assert(0);
  1307. }
  1308. filter[i*filterSize + j]= coeff;
  1309. xx++;
  1310. }
  1311. xDstInSrc+= 2*xInc;
  1312. }
  1313. }
  1314. /* apply src & dst Filter to filter -> filter2
  1315. av_free(filter);
  1316. */
  1317. assert(filterSize>0);
  1318. filter2Size= filterSize;
  1319. if (srcFilter) filter2Size+= srcFilter->length - 1;
  1320. if (dstFilter) filter2Size+= dstFilter->length - 1;
  1321. assert(filter2Size>0);
  1322. filter2= av_mallocz(filter2Size*dstW*sizeof(*filter2));
  1323. for (i=0; i<dstW; i++)
  1324. {
  1325. int j, k;
  1326. if(srcFilter){
  1327. for (k=0; k<srcFilter->length; k++){
  1328. for (j=0; j<filterSize; j++)
  1329. filter2[i*filter2Size + k + j] += srcFilter->coeff[k]*filter[i*filterSize + j];
  1330. }
  1331. }else{
  1332. for (j=0; j<filterSize; j++)
  1333. filter2[i*filter2Size + j]= filter[i*filterSize + j];
  1334. }
  1335. //FIXME dstFilter
  1336. (*filterPos)[i]+= (filterSize-1)/2 - (filter2Size-1)/2;
  1337. }
  1338. av_freep(&filter);
  1339. /* try to reduce the filter-size (step1 find size and shift left) */
  1340. // Assume it is near normalized (*0.5 or *2.0 is OK but * 0.001 is not).
  1341. minFilterSize= 0;
  1342. for (i=dstW-1; i>=0; i--)
  1343. {
  1344. int min= filter2Size;
  1345. int j;
  1346. int64_t cutOff=0.0;
  1347. /* get rid off near zero elements on the left by shifting left */
  1348. for (j=0; j<filter2Size; j++)
  1349. {
  1350. int k;
  1351. cutOff += FFABS(filter2[i*filter2Size]);
  1352. if (cutOff > SWS_MAX_REDUCE_CUTOFF*fone) break;
  1353. /* preserve monotonicity because the core can't handle the filter otherwise */
  1354. if (i<dstW-1 && (*filterPos)[i] >= (*filterPos)[i+1]) break;
  1355. // move filter coefficients left
  1356. for (k=1; k<filter2Size; k++)
  1357. filter2[i*filter2Size + k - 1]= filter2[i*filter2Size + k];
  1358. filter2[i*filter2Size + k - 1]= 0;
  1359. (*filterPos)[i]++;
  1360. }
  1361. cutOff=0;
  1362. /* count near zeros on the right */
  1363. for (j=filter2Size-1; j>0; j--)
  1364. {
  1365. cutOff += FFABS(filter2[i*filter2Size + j]);
  1366. if (cutOff > SWS_MAX_REDUCE_CUTOFF*fone) break;
  1367. min--;
  1368. }
  1369. if (min>minFilterSize) minFilterSize= min;
  1370. }
  1371. if (flags & SWS_CPU_CAPS_ALTIVEC) {
  1372. // we can handle the special case 4,
  1373. // so we don't want to go to the full 8
  1374. if (minFilterSize < 5)
  1375. filterAlign = 4;
  1376. // We really don't want to waste our time
  1377. // doing useless computation, so fall back on
  1378. // the scalar C code for very small filters.
  1379. // Vectorizing is worth it only if you have a
  1380. // decent-sized vector.
  1381. if (minFilterSize < 3)
  1382. filterAlign = 1;
  1383. }
  1384. if (flags & SWS_CPU_CAPS_MMX) {
  1385. // special case for unscaled vertical filtering
  1386. if (minFilterSize == 1 && filterAlign == 2)
  1387. filterAlign= 1;
  1388. }
  1389. assert(minFilterSize > 0);
  1390. filterSize= (minFilterSize +(filterAlign-1)) & (~(filterAlign-1));
  1391. assert(filterSize > 0);
  1392. filter= av_malloc(filterSize*dstW*sizeof(*filter));
  1393. if (filterSize >= MAX_FILTER_SIZE*16/((flags&SWS_ACCURATE_RND) ? APCK_SIZE : 16) || !filter)
  1394. goto error;
  1395. *outFilterSize= filterSize;
  1396. if (flags&SWS_PRINT_INFO)
  1397. av_log(NULL, AV_LOG_VERBOSE, "SwScaler: reducing / aligning filtersize %d -> %d\n", filter2Size, filterSize);
  1398. /* try to reduce the filter-size (step2 reduce it) */
  1399. for (i=0; i<dstW; i++)
  1400. {
  1401. int j;
  1402. for (j=0; j<filterSize; j++)
  1403. {
  1404. if (j>=filter2Size) filter[i*filterSize + j]= 0;
  1405. else filter[i*filterSize + j]= filter2[i*filter2Size + j];
  1406. if((flags & SWS_BITEXACT) && j>=minFilterSize)
  1407. filter[i*filterSize + j]= 0;
  1408. }
  1409. }
  1410. //FIXME try to align filterPos if possible
  1411. //fix borders
  1412. for (i=0; i<dstW; i++)
  1413. {
  1414. int j;
  1415. if ((*filterPos)[i] < 0)
  1416. {
  1417. // move filter coefficients left to compensate for filterPos
  1418. for (j=1; j<filterSize; j++)
  1419. {
  1420. int left= FFMAX(j + (*filterPos)[i], 0);
  1421. filter[i*filterSize + left] += filter[i*filterSize + j];
  1422. filter[i*filterSize + j]=0;
  1423. }
  1424. (*filterPos)[i]= 0;
  1425. }
  1426. if ((*filterPos)[i] + filterSize > srcW)
  1427. {
  1428. int shift= (*filterPos)[i] + filterSize - srcW;
  1429. // move filter coefficients right to compensate for filterPos
  1430. for (j=filterSize-2; j>=0; j--)
  1431. {
  1432. int right= FFMIN(j + shift, filterSize-1);
  1433. filter[i*filterSize +right] += filter[i*filterSize +j];
  1434. filter[i*filterSize +j]=0;
  1435. }
  1436. (*filterPos)[i]= srcW - filterSize;
  1437. }
  1438. }
  1439. // Note the +1 is for the MMX scaler which reads over the end
  1440. /* align at 16 for AltiVec (needed by hScale_altivec_real) */
  1441. *outFilter= av_mallocz(*outFilterSize*(dstW+1)*sizeof(int16_t));
  1442. /* normalize & store in outFilter */
  1443. for (i=0; i<dstW; i++)
  1444. {
  1445. int j;
  1446. int64_t error=0;
  1447. int64_t sum=0;
  1448. for (j=0; j<filterSize; j++)
  1449. {
  1450. sum+= filter[i*filterSize + j];
  1451. }
  1452. sum= (sum + one/2)/ one;
  1453. for (j=0; j<*outFilterSize; j++)
  1454. {
  1455. int64_t v= filter[i*filterSize + j] + error;
  1456. int intV= ROUNDED_DIV(v, sum);
  1457. (*outFilter)[i*(*outFilterSize) + j]= intV;
  1458. error= v - intV*sum;
  1459. }
  1460. }
  1461. (*filterPos)[dstW]= (*filterPos)[dstW-1]; // the MMX scaler will read over the end
  1462. for (i=0; i<*outFilterSize; i++)
  1463. {
  1464. int j= dstW*(*outFilterSize);
  1465. (*outFilter)[j + i]= (*outFilter)[j + i - (*outFilterSize)];
  1466. }
  1467. ret=0;
  1468. error:
  1469. av_free(filter);
  1470. av_free(filter2);
  1471. return ret;
  1472. }
  1473. #ifdef COMPILE_MMX2
  1474. static void initMMX2HScaler(int dstW, int xInc, uint8_t *funnyCode, int16_t *filter, int32_t *filterPos, int numSplits)
  1475. {
  1476. uint8_t *fragmentA;
  1477. x86_reg imm8OfPShufW1A;
  1478. x86_reg imm8OfPShufW2A;
  1479. x86_reg fragmentLengthA;
  1480. uint8_t *fragmentB;
  1481. x86_reg imm8OfPShufW1B;
  1482. x86_reg imm8OfPShufW2B;
  1483. x86_reg fragmentLengthB;
  1484. int fragmentPos;
  1485. int xpos, i;
  1486. // create an optimized horizontal scaling routine
  1487. //code fragment
  1488. __asm__ volatile(
  1489. "jmp 9f \n\t"
  1490. // Begin
  1491. "0: \n\t"
  1492. "movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
  1493. "movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
  1494. "movd 1(%%"REG_c", %%"REG_S"), %%mm1 \n\t"
  1495. "punpcklbw %%mm7, %%mm1 \n\t"
  1496. "punpcklbw %%mm7, %%mm0 \n\t"
  1497. "pshufw $0xFF, %%mm1, %%mm1 \n\t"
  1498. "1: \n\t"
  1499. "pshufw $0xFF, %%mm0, %%mm0 \n\t"
  1500. "2: \n\t"
  1501. "psubw %%mm1, %%mm0 \n\t"
  1502. "movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
  1503. "pmullw %%mm3, %%mm0 \n\t"
  1504. "psllw $7, %%mm1 \n\t"
  1505. "paddw %%mm1, %%mm0 \n\t"
  1506. "movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
  1507. "add $8, %%"REG_a" \n\t"
  1508. // End
  1509. "9: \n\t"
  1510. // "int $3 \n\t"
  1511. "lea " LOCAL_MANGLE(0b) ", %0 \n\t"
  1512. "lea " LOCAL_MANGLE(1b) ", %1 \n\t"
  1513. "lea " LOCAL_MANGLE(2b) ", %2 \n\t"
  1514. "dec %1 \n\t"
  1515. "dec %2 \n\t"
  1516. "sub %0, %1 \n\t"
  1517. "sub %0, %2 \n\t"
  1518. "lea " LOCAL_MANGLE(9b) ", %3 \n\t"
  1519. "sub %0, %3 \n\t"
  1520. :"=r" (fragmentA), "=r" (imm8OfPShufW1A), "=r" (imm8OfPShufW2A),
  1521. "=r" (fragmentLengthA)
  1522. );
  1523. __asm__ volatile(
  1524. "jmp 9f \n\t"
  1525. // Begin
  1526. "0: \n\t"
  1527. "movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
  1528. "movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
  1529. "punpcklbw %%mm7, %%mm0 \n\t"
  1530. "pshufw $0xFF, %%mm0, %%mm1 \n\t"
  1531. "1: \n\t"
  1532. "pshufw $0xFF, %%mm0, %%mm0 \n\t"
  1533. "2: \n\t"
  1534. "psubw %%mm1, %%mm0 \n\t"
  1535. "movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
  1536. "pmullw %%mm3, %%mm0 \n\t"
  1537. "psllw $7, %%mm1 \n\t"
  1538. "paddw %%mm1, %%mm0 \n\t"
  1539. "movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
  1540. "add $8, %%"REG_a" \n\t"
  1541. // End
  1542. "9: \n\t"
  1543. // "int $3 \n\t"
  1544. "lea " LOCAL_MANGLE(0b) ", %0 \n\t"
  1545. "lea " LOCAL_MANGLE(1b) ", %1 \n\t"
  1546. "lea " LOCAL_MANGLE(2b) ", %2 \n\t"
  1547. "dec %1 \n\t"
  1548. "dec %2 \n\t"
  1549. "sub %0, %1 \n\t"
  1550. "sub %0, %2 \n\t"
  1551. "lea " LOCAL_MANGLE(9b) ", %3 \n\t"
  1552. "sub %0, %3 \n\t"
  1553. :"=r" (fragmentB), "=r" (imm8OfPShufW1B), "=r" (imm8OfPShufW2B),
  1554. "=r" (fragmentLengthB)
  1555. );
  1556. xpos= 0; //lumXInc/2 - 0x8000; // difference between pixel centers
  1557. fragmentPos=0;
  1558. for (i=0; i<dstW/numSplits; i++)
  1559. {
  1560. int xx=xpos>>16;
  1561. if ((i&3) == 0)
  1562. {
  1563. int a=0;
  1564. int b=((xpos+xInc)>>16) - xx;
  1565. int c=((xpos+xInc*2)>>16) - xx;
  1566. int d=((xpos+xInc*3)>>16) - xx;
  1567. filter[i ] = (( xpos & 0xFFFF) ^ 0xFFFF)>>9;
  1568. filter[i+1] = (((xpos+xInc ) & 0xFFFF) ^ 0xFFFF)>>9;
  1569. filter[i+2] = (((xpos+xInc*2) & 0xFFFF) ^ 0xFFFF)>>9;
  1570. filter[i+3] = (((xpos+xInc*3) & 0xFFFF) ^ 0xFFFF)>>9;
  1571. filterPos[i/2]= xx;
  1572. if (d+1<4)
  1573. {
  1574. int maxShift= 3-(d+1);
  1575. int shift=0;
  1576. memcpy(funnyCode + fragmentPos, fragmentB, fragmentLengthB);
  1577. funnyCode[fragmentPos + imm8OfPShufW1B]=
  1578. (a+1) | ((b+1)<<2) | ((c+1)<<4) | ((d+1)<<6);
  1579. funnyCode[fragmentPos + imm8OfPShufW2B]=
  1580. a | (b<<2) | (c<<4) | (d<<6);
  1581. if (i+3>=dstW) shift=maxShift; //avoid overread
  1582. else if ((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //Align
  1583. if (shift && i>=shift)
  1584. {
  1585. funnyCode[fragmentPos + imm8OfPShufW1B]+= 0x55*shift;
  1586. funnyCode[fragmentPos + imm8OfPShufW2B]+= 0x55*shift;
  1587. filterPos[i/2]-=shift;
  1588. }
  1589. fragmentPos+= fragmentLengthB;
  1590. }
  1591. else
  1592. {
  1593. int maxShift= 3-d;
  1594. int shift=0;
  1595. memcpy(funnyCode + fragmentPos, fragmentA, fragmentLengthA);
  1596. funnyCode[fragmentPos + imm8OfPShufW1A]=
  1597. funnyCode[fragmentPos + imm8OfPShufW2A]=
  1598. a | (b<<2) | (c<<4) | (d<<6);
  1599. if (i+4>=dstW) shift=maxShift; //avoid overread
  1600. else if ((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //partial align
  1601. if (shift && i>=shift)
  1602. {
  1603. funnyCode[fragmentPos + imm8OfPShufW1A]+= 0x55*shift;
  1604. funnyCode[fragmentPos + imm8OfPShufW2A]+= 0x55*shift;
  1605. filterPos[i/2]-=shift;
  1606. }
  1607. fragmentPos+= fragmentLengthA;
  1608. }
  1609. funnyCode[fragmentPos]= RET;
  1610. }
  1611. xpos+=xInc;
  1612. }
  1613. filterPos[((i/2)+1)&(~1)]= xpos>>16; // needed to jump to the next part
  1614. }
  1615. #endif /* COMPILE_MMX2 */
  1616. static void globalInit(void){
  1617. // generating tables:
  1618. int i;
  1619. for (i=0; i<768; i++){
  1620. int c= av_clip_uint8(i-256);
  1621. clip_table[i]=c;
  1622. }
  1623. }
  1624. static SwsFunc getSwsFunc(SwsContext *c)
  1625. {
  1626. int flags = c->flags;
  1627. #if CONFIG_RUNTIME_CPUDETECT && CONFIG_GPL
  1628. #if ARCH_X86
  1629. // ordered per speed fastest first
  1630. if (flags & SWS_CPU_CAPS_MMX2) {
  1631. sws_init_swScale_MMX2(c);
  1632. return swScale_MMX2;
  1633. } else if (flags & SWS_CPU_CAPS_3DNOW) {
  1634. sws_init_swScale_3DNow(c);
  1635. return swScale_3DNow;
  1636. } else if (flags & SWS_CPU_CAPS_MMX) {
  1637. sws_init_swScale_MMX(c);
  1638. return swScale_MMX;
  1639. } else {
  1640. sws_init_swScale_C(c);
  1641. return swScale_C;
  1642. }
  1643. #else
  1644. #if ARCH_PPC
  1645. if (flags & SWS_CPU_CAPS_ALTIVEC) {
  1646. sws_init_swScale_altivec(c);
  1647. return swScale_altivec;
  1648. } else {
  1649. sws_init_swScale_C(c);
  1650. return swScale_C;
  1651. }
  1652. #endif
  1653. sws_init_swScale_C(c);
  1654. return swScale_C;
  1655. #endif /* ARCH_X86 */
  1656. #else //CONFIG_RUNTIME_CPUDETECT
  1657. #if HAVE_MMX2
  1658. sws_init_swScale_MMX2(c);
  1659. return swScale_MMX2;
  1660. #elif HAVE_AMD3DNOW
  1661. sws_init_swScale_3DNow(c);
  1662. return swScale_3DNow;
  1663. #elif HAVE_MMX
  1664. sws_init_swScale_MMX(c);
  1665. return swScale_MMX;
  1666. #elif HAVE_ALTIVEC
  1667. sws_init_swScale_altivec(c);
  1668. return swScale_altivec;
  1669. #else
  1670. sws_init_swScale_C(c);
  1671. return swScale_C;
  1672. #endif
  1673. #endif //!CONFIG_RUNTIME_CPUDETECT
  1674. }
  1675. static int PlanarToNV12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1676. int srcSliceH, uint8_t* dstParam[], int dstStride[]){
  1677. uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
  1678. /* Copy Y plane */
  1679. if (dstStride[0]==srcStride[0] && srcStride[0] > 0)
  1680. memcpy(dst, src[0], srcSliceH*dstStride[0]);
  1681. else
  1682. {
  1683. int i;
  1684. const uint8_t *srcPtr= src[0];
  1685. uint8_t *dstPtr= dst;
  1686. for (i=0; i<srcSliceH; i++)
  1687. {
  1688. memcpy(dstPtr, srcPtr, c->srcW);
  1689. srcPtr+= srcStride[0];
  1690. dstPtr+= dstStride[0];
  1691. }
  1692. }
  1693. dst = dstParam[1] + dstStride[1]*srcSliceY/2;
  1694. if (c->dstFormat == PIX_FMT_NV12)
  1695. interleaveBytes(src[1], src[2], dst, c->srcW/2, srcSliceH/2, srcStride[1], srcStride[2], dstStride[0]);
  1696. else
  1697. interleaveBytes(src[2], src[1], dst, c->srcW/2, srcSliceH/2, srcStride[2], srcStride[1], dstStride[0]);
  1698. return srcSliceH;
  1699. }
  1700. static int PlanarToYuy2Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1701. int srcSliceH, uint8_t* dstParam[], int dstStride[]){
  1702. uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
  1703. yv12toyuy2(src[0], src[1], src[2], dst, c->srcW, srcSliceH, srcStride[0], srcStride[1], dstStride[0]);
  1704. return srcSliceH;
  1705. }
  1706. static int PlanarToUyvyWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1707. int srcSliceH, uint8_t* dstParam[], int dstStride[]){
  1708. uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
  1709. yv12touyvy(src[0], src[1], src[2], dst, c->srcW, srcSliceH, srcStride[0], srcStride[1], dstStride[0]);
  1710. return srcSliceH;
  1711. }
  1712. static int YUV422PToYuy2Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1713. int srcSliceH, uint8_t* dstParam[], int dstStride[]){
  1714. uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
  1715. yuv422ptoyuy2(src[0],src[1],src[2],dst,c->srcW,srcSliceH,srcStride[0],srcStride[1],dstStride[0]);
  1716. return srcSliceH;
  1717. }
  1718. static int YUV422PToUyvyWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1719. int srcSliceH, uint8_t* dstParam[], int dstStride[]){
  1720. uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
  1721. yuv422ptouyvy(src[0],src[1],src[2],dst,c->srcW,srcSliceH,srcStride[0],srcStride[1],dstStride[0]);
  1722. return srcSliceH;
  1723. }
  1724. static int YUYV2YUV420Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1725. int srcSliceH, uint8_t* dstParam[], int dstStride[]){
  1726. uint8_t *ydst=dstParam[0] + dstStride[0]*srcSliceY;
  1727. uint8_t *udst=dstParam[1] + dstStride[1]*srcSliceY/2;
  1728. uint8_t *vdst=dstParam[2] + dstStride[2]*srcSliceY/2;
  1729. yuyvtoyuv420(ydst, udst, vdst, src[0], c->srcW, srcSliceH, dstStride[0], dstStride[1], srcStride[0]);
  1730. if (dstParam[3])
  1731. fillPlane(dstParam[3], dstStride[3], c->srcW, srcSliceH, srcSliceY, 255);
  1732. return srcSliceH;
  1733. }
  1734. static int YUYV2YUV422Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1735. int srcSliceH, uint8_t* dstParam[], int dstStride[]){
  1736. uint8_t *ydst=dstParam[0] + dstStride[0]*srcSliceY;
  1737. uint8_t *udst=dstParam[1] + dstStride[1]*srcSliceY;
  1738. uint8_t *vdst=dstParam[2] + dstStride[2]*srcSliceY;
  1739. yuyvtoyuv422(ydst, udst, vdst, src[0], c->srcW, srcSliceH, dstStride[0], dstStride[1], srcStride[0]);
  1740. return srcSliceH;
  1741. }
  1742. static int UYVY2YUV420Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1743. int srcSliceH, uint8_t* dstParam[], int dstStride[]){
  1744. uint8_t *ydst=dstParam[0] + dstStride[0]*srcSliceY;
  1745. uint8_t *udst=dstParam[1] + dstStride[1]*srcSliceY/2;
  1746. uint8_t *vdst=dstParam[2] + dstStride[2]*srcSliceY/2;
  1747. uyvytoyuv420(ydst, udst, vdst, src[0], c->srcW, srcSliceH, dstStride[0], dstStride[1], srcStride[0]);
  1748. if (dstParam[3])
  1749. fillPlane(dstParam[3], dstStride[3], c->srcW, srcSliceH, srcSliceY, 255);
  1750. return srcSliceH;
  1751. }
  1752. static int UYVY2YUV422Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1753. int srcSliceH, uint8_t* dstParam[], int dstStride[]){
  1754. uint8_t *ydst=dstParam[0] + dstStride[0]*srcSliceY;
  1755. uint8_t *udst=dstParam[1] + dstStride[1]*srcSliceY;
  1756. uint8_t *vdst=dstParam[2] + dstStride[2]*srcSliceY;
  1757. uyvytoyuv422(ydst, udst, vdst, src[0], c->srcW, srcSliceH, dstStride[0], dstStride[1], srcStride[0]);
  1758. return srcSliceH;
  1759. }
  1760. static int pal2rgbWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1761. int srcSliceH, uint8_t* dst[], int dstStride[]){
  1762. const enum PixelFormat srcFormat= c->srcFormat;
  1763. const enum PixelFormat dstFormat= c->dstFormat;
  1764. void (*conv)(const uint8_t *src, uint8_t *dst, long num_pixels,
  1765. const uint8_t *palette)=NULL;
  1766. int i;
  1767. uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
  1768. uint8_t *srcPtr= src[0];
  1769. if (!usePal(srcFormat))
  1770. av_log(c, AV_LOG_ERROR, "internal error %s -> %s converter\n",
  1771. sws_format_name(srcFormat), sws_format_name(dstFormat));
  1772. switch(dstFormat){
  1773. case PIX_FMT_RGB32 : conv = palette8topacked32; break;
  1774. case PIX_FMT_BGR32 : conv = palette8topacked32; break;
  1775. case PIX_FMT_BGR32_1: conv = palette8topacked32; break;
  1776. case PIX_FMT_RGB32_1: conv = palette8topacked32; break;
  1777. case PIX_FMT_RGB24 : conv = palette8topacked24; break;
  1778. case PIX_FMT_BGR24 : conv = palette8topacked24; break;
  1779. default: av_log(c, AV_LOG_ERROR, "internal error %s -> %s converter\n",
  1780. sws_format_name(srcFormat), sws_format_name(dstFormat)); break;
  1781. }
  1782. for (i=0; i<srcSliceH; i++) {
  1783. conv(srcPtr, dstPtr, c->srcW, (uint8_t *) c->pal_rgb);
  1784. srcPtr+= srcStride[0];
  1785. dstPtr+= dstStride[0];
  1786. }
  1787. return srcSliceH;
  1788. }
  1789. /* {RGB,BGR}{15,16,24,32,32_1} -> {RGB,BGR}{15,16,24,32} */
  1790. static int rgb2rgbWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1791. int srcSliceH, uint8_t* dst[], int dstStride[]){
  1792. const enum PixelFormat srcFormat= c->srcFormat;
  1793. const enum PixelFormat dstFormat= c->dstFormat;
  1794. const int srcBpp= (fmt_depth(srcFormat) + 7) >> 3;
  1795. const int dstBpp= (fmt_depth(dstFormat) + 7) >> 3;
  1796. const int srcId= fmt_depth(srcFormat) >> 2; /* 1:0, 4:1, 8:2, 15:3, 16:4, 24:6, 32:8 */
  1797. const int dstId= fmt_depth(dstFormat) >> 2;
  1798. void (*conv)(const uint8_t *src, uint8_t *dst, long src_size)=NULL;
  1799. /* BGR -> BGR */
  1800. if ( (isBGR(srcFormat) && isBGR(dstFormat))
  1801. || (isRGB(srcFormat) && isRGB(dstFormat))){
  1802. switch(srcId | (dstId<<4)){
  1803. case 0x34: conv= rgb16to15; break;
  1804. case 0x36: conv= rgb24to15; break;
  1805. case 0x38: conv= rgb32to15; break;
  1806. case 0x43: conv= rgb15to16; break;
  1807. case 0x46: conv= rgb24to16; break;
  1808. case 0x48: conv= rgb32to16; break;
  1809. case 0x63: conv= rgb15to24; break;
  1810. case 0x64: conv= rgb16to24; break;
  1811. case 0x68: conv= rgb32to24; break;
  1812. case 0x83: conv= rgb15to32; break;
  1813. case 0x84: conv= rgb16to32; break;
  1814. case 0x86: conv= rgb24to32; break;
  1815. default: av_log(c, AV_LOG_ERROR, "internal error %s -> %s converter\n",
  1816. sws_format_name(srcFormat), sws_format_name(dstFormat)); break;
  1817. }
  1818. }else if ( (isBGR(srcFormat) && isRGB(dstFormat))
  1819. || (isRGB(srcFormat) && isBGR(dstFormat))){
  1820. switch(srcId | (dstId<<4)){
  1821. case 0x33: conv= rgb15tobgr15; break;
  1822. case 0x34: conv= rgb16tobgr15; break;
  1823. case 0x36: conv= rgb24tobgr15; break;
  1824. case 0x38: conv= rgb32tobgr15; break;
  1825. case 0x43: conv= rgb15tobgr16; break;
  1826. case 0x44: conv= rgb16tobgr16; break;
  1827. case 0x46: conv= rgb24tobgr16; break;
  1828. case 0x48: conv= rgb32tobgr16; break;
  1829. case 0x63: conv= rgb15tobgr24; break;
  1830. case 0x64: conv= rgb16tobgr24; break;
  1831. case 0x66: conv= rgb24tobgr24; break;
  1832. case 0x68: conv= rgb32tobgr24; break;
  1833. case 0x83: conv= rgb15tobgr32; break;
  1834. case 0x84: conv= rgb16tobgr32; break;
  1835. case 0x86: conv= rgb24tobgr32; break;
  1836. case 0x88: conv= rgb32tobgr32; break;
  1837. default: av_log(c, AV_LOG_ERROR, "internal error %s -> %s converter\n",
  1838. sws_format_name(srcFormat), sws_format_name(dstFormat)); break;
  1839. }
  1840. }else{
  1841. av_log(c, AV_LOG_ERROR, "internal error %s -> %s converter\n",
  1842. sws_format_name(srcFormat), sws_format_name(dstFormat));
  1843. }
  1844. if(conv)
  1845. {
  1846. uint8_t *srcPtr= src[0];
  1847. if(srcFormat == PIX_FMT_RGB32_1 || srcFormat == PIX_FMT_BGR32_1)
  1848. srcPtr += ALT32_CORR;
  1849. if (dstStride[0]*srcBpp == srcStride[0]*dstBpp && srcStride[0] > 0)
  1850. conv(srcPtr, dst[0] + dstStride[0]*srcSliceY, srcSliceH*srcStride[0]);
  1851. else
  1852. {
  1853. int i;
  1854. uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
  1855. for (i=0; i<srcSliceH; i++)
  1856. {
  1857. conv(srcPtr, dstPtr, c->srcW*srcBpp);
  1858. srcPtr+= srcStride[0];
  1859. dstPtr+= dstStride[0];
  1860. }
  1861. }
  1862. }
  1863. return srcSliceH;
  1864. }
  1865. static int bgr24toyv12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1866. int srcSliceH, uint8_t* dst[], int dstStride[]){
  1867. rgb24toyv12(
  1868. src[0],
  1869. dst[0]+ srcSliceY *dstStride[0],
  1870. dst[1]+(srcSliceY>>1)*dstStride[1],
  1871. dst[2]+(srcSliceY>>1)*dstStride[2],
  1872. c->srcW, srcSliceH,
  1873. dstStride[0], dstStride[1], srcStride[0]);
  1874. if (dst[3])
  1875. fillPlane(dst[3], dstStride[3], c->srcW, srcSliceH, srcSliceY, 255);
  1876. return srcSliceH;
  1877. }
  1878. static int yvu9toyv12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1879. int srcSliceH, uint8_t* dst[], int dstStride[]){
  1880. int i;
  1881. /* copy Y */
  1882. if (srcStride[0]==dstStride[0] && srcStride[0] > 0)
  1883. memcpy(dst[0]+ srcSliceY*dstStride[0], src[0], srcStride[0]*srcSliceH);
  1884. else{
  1885. uint8_t *srcPtr= src[0];
  1886. uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
  1887. for (i=0; i<srcSliceH; i++)
  1888. {
  1889. memcpy(dstPtr, srcPtr, c->srcW);
  1890. srcPtr+= srcStride[0];
  1891. dstPtr+= dstStride[0];
  1892. }
  1893. }
  1894. if (c->dstFormat==PIX_FMT_YUV420P || c->dstFormat==PIX_FMT_YUVA420P){
  1895. planar2x(src[1], dst[1] + dstStride[1]*(srcSliceY >> 1), c->chrSrcW,
  1896. srcSliceH >> 2, srcStride[1], dstStride[1]);
  1897. planar2x(src[2], dst[2] + dstStride[2]*(srcSliceY >> 1), c->chrSrcW,
  1898. srcSliceH >> 2, srcStride[2], dstStride[2]);
  1899. }else{
  1900. planar2x(src[1], dst[2] + dstStride[2]*(srcSliceY >> 1), c->chrSrcW,
  1901. srcSliceH >> 2, srcStride[1], dstStride[2]);
  1902. planar2x(src[2], dst[1] + dstStride[1]*(srcSliceY >> 1), c->chrSrcW,
  1903. srcSliceH >> 2, srcStride[2], dstStride[1]);
  1904. }
  1905. if (dst[3])
  1906. fillPlane(dst[3], dstStride[3], c->srcW, srcSliceH, srcSliceY, 255);
  1907. return srcSliceH;
  1908. }
  1909. /* unscaled copy like stuff (assumes nearly identical formats) */
  1910. static int packedCopy(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1911. int srcSliceH, uint8_t* dst[], int dstStride[])
  1912. {
  1913. if (dstStride[0]==srcStride[0] && srcStride[0] > 0)
  1914. memcpy(dst[0] + dstStride[0]*srcSliceY, src[0], srcSliceH*dstStride[0]);
  1915. else
  1916. {
  1917. int i;
  1918. uint8_t *srcPtr= src[0];
  1919. uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
  1920. int length=0;
  1921. /* universal length finder */
  1922. while(length+c->srcW <= FFABS(dstStride[0])
  1923. && length+c->srcW <= FFABS(srcStride[0])) length+= c->srcW;
  1924. assert(length!=0);
  1925. for (i=0; i<srcSliceH; i++)
  1926. {
  1927. memcpy(dstPtr, srcPtr, length);
  1928. srcPtr+= srcStride[0];
  1929. dstPtr+= dstStride[0];
  1930. }
  1931. }
  1932. return srcSliceH;
  1933. }
  1934. static int planarCopy(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1935. int srcSliceH, uint8_t* dst[], int dstStride[])
  1936. {
  1937. int plane, i, j;
  1938. for (plane=0; plane<4; plane++)
  1939. {
  1940. int length= (plane==0 || plane==3) ? c->srcW : -((-c->srcW )>>c->chrDstHSubSample);
  1941. int y= (plane==0 || plane==3) ? srcSliceY: -((-srcSliceY)>>c->chrDstVSubSample);
  1942. int height= (plane==0 || plane==3) ? srcSliceH: -((-srcSliceH)>>c->chrDstVSubSample);
  1943. uint8_t *srcPtr= src[plane];
  1944. uint8_t *dstPtr= dst[plane] + dstStride[plane]*y;
  1945. if (!dst[plane]) continue;
  1946. // ignore palette for GRAY8
  1947. if (plane == 1 && !dst[2]) continue;
  1948. if (!src[plane] || (plane == 1 && !src[2])){
  1949. if(is16BPS(c->dstFormat))
  1950. length*=2;
  1951. fillPlane(dst[plane], dstStride[plane], length, height, y, (plane==3) ? 255 : 128);
  1952. }else
  1953. {
  1954. if(is16BPS(c->srcFormat) && !is16BPS(c->dstFormat)){
  1955. if (!isBE(c->srcFormat)) srcPtr++;
  1956. for (i=0; i<height; i++){
  1957. for (j=0; j<length; j++) dstPtr[j] = srcPtr[j<<1];
  1958. srcPtr+= srcStride[plane];
  1959. dstPtr+= dstStride[plane];
  1960. }
  1961. }else if(!is16BPS(c->srcFormat) && is16BPS(c->dstFormat)){
  1962. for (i=0; i<height; i++){
  1963. for (j=0; j<length; j++){
  1964. dstPtr[ j<<1 ] = srcPtr[j];
  1965. dstPtr[(j<<1)+1] = srcPtr[j];
  1966. }
  1967. srcPtr+= srcStride[plane];
  1968. dstPtr+= dstStride[plane];
  1969. }
  1970. }else if(is16BPS(c->srcFormat) && is16BPS(c->dstFormat)
  1971. && isBE(c->srcFormat) != isBE(c->dstFormat)){
  1972. for (i=0; i<height; i++){
  1973. for (j=0; j<length; j++)
  1974. ((uint16_t*)dstPtr)[j] = bswap_16(((uint16_t*)srcPtr)[j]);
  1975. srcPtr+= srcStride[plane];
  1976. dstPtr+= dstStride[plane];
  1977. }
  1978. } else if (dstStride[plane]==srcStride[plane] && srcStride[plane] > 0)
  1979. memcpy(dst[plane] + dstStride[plane]*y, src[plane], height*dstStride[plane]);
  1980. else
  1981. {
  1982. if(is16BPS(c->srcFormat) && is16BPS(c->dstFormat))
  1983. length*=2;
  1984. for (i=0; i<height; i++)
  1985. {
  1986. memcpy(dstPtr, srcPtr, length);
  1987. srcPtr+= srcStride[plane];
  1988. dstPtr+= dstStride[plane];
  1989. }
  1990. }
  1991. }
  1992. }
  1993. return srcSliceH;
  1994. }
  1995. static void getSubSampleFactors(int *h, int *v, int format){
  1996. switch(format){
  1997. case PIX_FMT_UYVY422:
  1998. case PIX_FMT_YUYV422:
  1999. *h=1;
  2000. *v=0;
  2001. break;
  2002. case PIX_FMT_YUV420P:
  2003. case PIX_FMT_YUV420PLE:
  2004. case PIX_FMT_YUV420PBE:
  2005. case PIX_FMT_YUVA420P:
  2006. case PIX_FMT_GRAY16BE:
  2007. case PIX_FMT_GRAY16LE:
  2008. case PIX_FMT_GRAY8: //FIXME remove after different subsamplings are fully implemented
  2009. case PIX_FMT_NV12:
  2010. case PIX_FMT_NV21:
  2011. *h=1;
  2012. *v=1;
  2013. break;
  2014. case PIX_FMT_YUV440P:
  2015. *h=0;
  2016. *v=1;
  2017. break;
  2018. case PIX_FMT_YUV410P:
  2019. *h=2;
  2020. *v=2;
  2021. break;
  2022. case PIX_FMT_YUV444P:
  2023. case PIX_FMT_YUV444PLE:
  2024. case PIX_FMT_YUV444PBE:
  2025. *h=0;
  2026. *v=0;
  2027. break;
  2028. case PIX_FMT_YUV422P:
  2029. case PIX_FMT_YUV422PLE:
  2030. case PIX_FMT_YUV422PBE:
  2031. *h=1;
  2032. *v=0;
  2033. break;
  2034. case PIX_FMT_YUV411P:
  2035. *h=2;
  2036. *v=0;
  2037. break;
  2038. default:
  2039. *h=0;
  2040. *v=0;
  2041. break;
  2042. }
  2043. }
  2044. static uint16_t roundToInt16(int64_t f){
  2045. int r= (f + (1<<15))>>16;
  2046. if (r<-0x7FFF) return 0x8000;
  2047. else if (r> 0x7FFF) return 0x7FFF;
  2048. else return r;
  2049. }
  2050. int sws_setColorspaceDetails(SwsContext *c, const int inv_table[4], int srcRange, const int table[4], int dstRange, int brightness, int contrast, int saturation){
  2051. int64_t crv = inv_table[0];
  2052. int64_t cbu = inv_table[1];
  2053. int64_t cgu = -inv_table[2];
  2054. int64_t cgv = -inv_table[3];
  2055. int64_t cy = 1<<16;
  2056. int64_t oy = 0;
  2057. memcpy(c->srcColorspaceTable, inv_table, sizeof(int)*4);
  2058. memcpy(c->dstColorspaceTable, table, sizeof(int)*4);
  2059. c->brightness= brightness;
  2060. c->contrast = contrast;
  2061. c->saturation= saturation;
  2062. c->srcRange = srcRange;
  2063. c->dstRange = dstRange;
  2064. if (isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
  2065. c->uOffset= 0x0400040004000400LL;
  2066. c->vOffset= 0x0400040004000400LL;
  2067. if (!srcRange){
  2068. cy= (cy*255) / 219;
  2069. oy= 16<<16;
  2070. }else{
  2071. crv= (crv*224) / 255;
  2072. cbu= (cbu*224) / 255;
  2073. cgu= (cgu*224) / 255;
  2074. cgv= (cgv*224) / 255;
  2075. }
  2076. cy = (cy *contrast )>>16;
  2077. crv= (crv*contrast * saturation)>>32;
  2078. cbu= (cbu*contrast * saturation)>>32;
  2079. cgu= (cgu*contrast * saturation)>>32;
  2080. cgv= (cgv*contrast * saturation)>>32;
  2081. oy -= 256*brightness;
  2082. c->yCoeff= roundToInt16(cy *8192) * 0x0001000100010001ULL;
  2083. c->vrCoeff= roundToInt16(crv*8192) * 0x0001000100010001ULL;
  2084. c->ubCoeff= roundToInt16(cbu*8192) * 0x0001000100010001ULL;
  2085. c->vgCoeff= roundToInt16(cgv*8192) * 0x0001000100010001ULL;
  2086. c->ugCoeff= roundToInt16(cgu*8192) * 0x0001000100010001ULL;
  2087. c->yOffset= roundToInt16(oy * 8) * 0x0001000100010001ULL;
  2088. c->yuv2rgb_y_coeff = (int16_t)roundToInt16(cy <<13);
  2089. c->yuv2rgb_y_offset = (int16_t)roundToInt16(oy << 9);
  2090. c->yuv2rgb_v2r_coeff= (int16_t)roundToInt16(crv<<13);
  2091. c->yuv2rgb_v2g_coeff= (int16_t)roundToInt16(cgv<<13);
  2092. c->yuv2rgb_u2g_coeff= (int16_t)roundToInt16(cgu<<13);
  2093. c->yuv2rgb_u2b_coeff= (int16_t)roundToInt16(cbu<<13);
  2094. ff_yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness, contrast, saturation);
  2095. //FIXME factorize
  2096. #ifdef COMPILE_ALTIVEC
  2097. if (c->flags & SWS_CPU_CAPS_ALTIVEC)
  2098. ff_yuv2rgb_init_tables_altivec(c, inv_table, brightness, contrast, saturation);
  2099. #endif
  2100. return 0;
  2101. }
  2102. int sws_getColorspaceDetails(SwsContext *c, int **inv_table, int *srcRange, int **table, int *dstRange, int *brightness, int *contrast, int *saturation){
  2103. if (isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
  2104. *inv_table = c->srcColorspaceTable;
  2105. *table = c->dstColorspaceTable;
  2106. *srcRange = c->srcRange;
  2107. *dstRange = c->dstRange;
  2108. *brightness= c->brightness;
  2109. *contrast = c->contrast;
  2110. *saturation= c->saturation;
  2111. return 0;
  2112. }
  2113. static int handle_jpeg(enum PixelFormat *format)
  2114. {
  2115. switch (*format) {
  2116. case PIX_FMT_YUVJ420P:
  2117. *format = PIX_FMT_YUV420P;
  2118. return 1;
  2119. case PIX_FMT_YUVJ422P:
  2120. *format = PIX_FMT_YUV422P;
  2121. return 1;
  2122. case PIX_FMT_YUVJ444P:
  2123. *format = PIX_FMT_YUV444P;
  2124. return 1;
  2125. case PIX_FMT_YUVJ440P:
  2126. *format = PIX_FMT_YUV440P;
  2127. return 1;
  2128. default:
  2129. return 0;
  2130. }
  2131. }
  2132. SwsContext *sws_getContext(int srcW, int srcH, enum PixelFormat srcFormat, int dstW, int dstH, enum PixelFormat dstFormat, int flags,
  2133. SwsFilter *srcFilter, SwsFilter *dstFilter, double *param){
  2134. SwsContext *c;
  2135. int i;
  2136. int usesVFilter, usesHFilter;
  2137. int unscaled, needsDither;
  2138. int srcRange, dstRange;
  2139. SwsFilter dummyFilter= {NULL, NULL, NULL, NULL};
  2140. #if ARCH_X86
  2141. if (flags & SWS_CPU_CAPS_MMX)
  2142. __asm__ volatile("emms\n\t"::: "memory");
  2143. #endif
  2144. #if !CONFIG_RUNTIME_CPUDETECT || !CONFIG_GPL //ensure that the flags match the compiled variant if cpudetect is off
  2145. flags &= ~(SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_MMX2|SWS_CPU_CAPS_3DNOW|SWS_CPU_CAPS_ALTIVEC|SWS_CPU_CAPS_BFIN);
  2146. #if HAVE_MMX2
  2147. flags |= SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_MMX2;
  2148. #elif HAVE_AMD3DNOW
  2149. flags |= SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_3DNOW;
  2150. #elif HAVE_MMX
  2151. flags |= SWS_CPU_CAPS_MMX;
  2152. #elif HAVE_ALTIVEC
  2153. flags |= SWS_CPU_CAPS_ALTIVEC;
  2154. #elif ARCH_BFIN
  2155. flags |= SWS_CPU_CAPS_BFIN;
  2156. #endif
  2157. #endif /* CONFIG_RUNTIME_CPUDETECT */
  2158. if (clip_table[512] != 255) globalInit();
  2159. if (!rgb15to16) sws_rgb2rgb_init(flags);
  2160. unscaled = (srcW == dstW && srcH == dstH);
  2161. needsDither= (isBGR(dstFormat) || isRGB(dstFormat))
  2162. && (fmt_depth(dstFormat))<24
  2163. && ((fmt_depth(dstFormat))<(fmt_depth(srcFormat)) || (!(isRGB(srcFormat) || isBGR(srcFormat))));
  2164. srcRange = handle_jpeg(&srcFormat);
  2165. dstRange = handle_jpeg(&dstFormat);
  2166. if (!isSupportedIn(srcFormat))
  2167. {
  2168. av_log(NULL, AV_LOG_ERROR, "swScaler: %s is not supported as input pixel format\n", sws_format_name(srcFormat));
  2169. return NULL;
  2170. }
  2171. if (!isSupportedOut(dstFormat))
  2172. {
  2173. av_log(NULL, AV_LOG_ERROR, "swScaler: %s is not supported as output pixel format\n", sws_format_name(dstFormat));
  2174. return NULL;
  2175. }
  2176. i= flags & ( SWS_POINT
  2177. |SWS_AREA
  2178. |SWS_BILINEAR
  2179. |SWS_FAST_BILINEAR
  2180. |SWS_BICUBIC
  2181. |SWS_X
  2182. |SWS_GAUSS
  2183. |SWS_LANCZOS
  2184. |SWS_SINC
  2185. |SWS_SPLINE
  2186. |SWS_BICUBLIN);
  2187. if(!i || (i & (i-1)))
  2188. {
  2189. av_log(NULL, AV_LOG_ERROR, "swScaler: Exactly one scaler algorithm must be chosen\n");
  2190. return NULL;
  2191. }
  2192. /* sanity check */
  2193. if (srcW<4 || srcH<1 || dstW<8 || dstH<1) //FIXME check if these are enough and try to lowwer them after fixing the relevant parts of the code
  2194. {
  2195. av_log(NULL, AV_LOG_ERROR, "swScaler: %dx%d -> %dx%d is invalid scaling dimension\n",
  2196. srcW, srcH, dstW, dstH);
  2197. return NULL;
  2198. }
  2199. if(srcW > VOFW || dstW > VOFW){
  2200. av_log(NULL, AV_LOG_ERROR, "swScaler: Compile-time maximum width is "AV_STRINGIFY(VOFW)" change VOF/VOFW and recompile\n");
  2201. return NULL;
  2202. }
  2203. if (!dstFilter) dstFilter= &dummyFilter;
  2204. if (!srcFilter) srcFilter= &dummyFilter;
  2205. c= av_mallocz(sizeof(SwsContext));
  2206. c->av_class = &sws_context_class;
  2207. c->srcW= srcW;
  2208. c->srcH= srcH;
  2209. c->dstW= dstW;
  2210. c->dstH= dstH;
  2211. c->lumXInc= ((srcW<<16) + (dstW>>1))/dstW;
  2212. c->lumYInc= ((srcH<<16) + (dstH>>1))/dstH;
  2213. c->flags= flags;
  2214. c->dstFormat= dstFormat;
  2215. c->srcFormat= srcFormat;
  2216. c->vRounder= 4* 0x0001000100010001ULL;
  2217. usesHFilter= usesVFilter= 0;
  2218. if (dstFilter->lumV && dstFilter->lumV->length>1) usesVFilter=1;
  2219. if (dstFilter->lumH && dstFilter->lumH->length>1) usesHFilter=1;
  2220. if (dstFilter->chrV && dstFilter->chrV->length>1) usesVFilter=1;
  2221. if (dstFilter->chrH && dstFilter->chrH->length>1) usesHFilter=1;
  2222. if (srcFilter->lumV && srcFilter->lumV->length>1) usesVFilter=1;
  2223. if (srcFilter->lumH && srcFilter->lumH->length>1) usesHFilter=1;
  2224. if (srcFilter->chrV && srcFilter->chrV->length>1) usesVFilter=1;
  2225. if (srcFilter->chrH && srcFilter->chrH->length>1) usesHFilter=1;
  2226. getSubSampleFactors(&c->chrSrcHSubSample, &c->chrSrcVSubSample, srcFormat);
  2227. getSubSampleFactors(&c->chrDstHSubSample, &c->chrDstVSubSample, dstFormat);
  2228. // reuse chroma for 2 pixels RGB/BGR unless user wants full chroma interpolation
  2229. if ((isBGR(dstFormat) || isRGB(dstFormat)) && !(flags&SWS_FULL_CHR_H_INT)) c->chrDstHSubSample=1;
  2230. // drop some chroma lines if the user wants it
  2231. c->vChrDrop= (flags&SWS_SRC_V_CHR_DROP_MASK)>>SWS_SRC_V_CHR_DROP_SHIFT;
  2232. c->chrSrcVSubSample+= c->vChrDrop;
  2233. // drop every other pixel for chroma calculation unless user wants full chroma
  2234. if ((isBGR(srcFormat) || isRGB(srcFormat)) && !(flags&SWS_FULL_CHR_H_INP)
  2235. && srcFormat!=PIX_FMT_RGB8 && srcFormat!=PIX_FMT_BGR8
  2236. && srcFormat!=PIX_FMT_RGB4 && srcFormat!=PIX_FMT_BGR4
  2237. && srcFormat!=PIX_FMT_RGB4_BYTE && srcFormat!=PIX_FMT_BGR4_BYTE
  2238. && ((dstW>>c->chrDstHSubSample) <= (srcW>>1) || (flags&(SWS_FAST_BILINEAR|SWS_POINT))))
  2239. c->chrSrcHSubSample=1;
  2240. if (param){
  2241. c->param[0] = param[0];
  2242. c->param[1] = param[1];
  2243. }else{
  2244. c->param[0] =
  2245. c->param[1] = SWS_PARAM_DEFAULT;
  2246. }
  2247. c->chrIntHSubSample= c->chrDstHSubSample;
  2248. c->chrIntVSubSample= c->chrSrcVSubSample;
  2249. // Note the -((-x)>>y) is so that we always round toward +inf.
  2250. c->chrSrcW= -((-srcW) >> c->chrSrcHSubSample);
  2251. c->chrSrcH= -((-srcH) >> c->chrSrcVSubSample);
  2252. c->chrDstW= -((-dstW) >> c->chrDstHSubSample);
  2253. c->chrDstH= -((-dstH) >> c->chrDstVSubSample);
  2254. sws_setColorspaceDetails(c, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], srcRange, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT] /* FIXME*/, dstRange, 0, 1<<16, 1<<16);
  2255. /* unscaled special cases */
  2256. if (unscaled && !usesHFilter && !usesVFilter && (srcRange == dstRange || isBGR(dstFormat) || isRGB(dstFormat)))
  2257. {
  2258. /* yv12_to_nv12 */
  2259. if ((srcFormat == PIX_FMT_YUV420P || srcFormat == PIX_FMT_YUVA420P) && (dstFormat == PIX_FMT_NV12 || dstFormat == PIX_FMT_NV21))
  2260. {
  2261. c->swScale= PlanarToNV12Wrapper;
  2262. }
  2263. /* yuv2bgr */
  2264. if ((srcFormat==PIX_FMT_YUV420P || srcFormat==PIX_FMT_YUV422P || srcFormat==PIX_FMT_YUVA420P) && (isBGR(dstFormat) || isRGB(dstFormat))
  2265. && !(flags & SWS_ACCURATE_RND) && !(dstH&1))
  2266. {
  2267. c->swScale= ff_yuv2rgb_get_func_ptr(c);
  2268. }
  2269. if (srcFormat==PIX_FMT_YUV410P && (dstFormat==PIX_FMT_YUV420P || dstFormat==PIX_FMT_YUVA420P) && !(flags & SWS_BITEXACT))
  2270. {
  2271. c->swScale= yvu9toyv12Wrapper;
  2272. }
  2273. /* bgr24toYV12 */
  2274. if (srcFormat==PIX_FMT_BGR24 && (dstFormat==PIX_FMT_YUV420P || dstFormat==PIX_FMT_YUVA420P) && !(flags & SWS_ACCURATE_RND))
  2275. c->swScale= bgr24toyv12Wrapper;
  2276. /* RGB/BGR -> RGB/BGR (no dither needed forms) */
  2277. if ( (isBGR(srcFormat) || isRGB(srcFormat))
  2278. && (isBGR(dstFormat) || isRGB(dstFormat))
  2279. && srcFormat != PIX_FMT_BGR8 && dstFormat != PIX_FMT_BGR8
  2280. && srcFormat != PIX_FMT_RGB8 && dstFormat != PIX_FMT_RGB8
  2281. && srcFormat != PIX_FMT_BGR4 && dstFormat != PIX_FMT_BGR4
  2282. && srcFormat != PIX_FMT_RGB4 && dstFormat != PIX_FMT_RGB4
  2283. && srcFormat != PIX_FMT_BGR4_BYTE && dstFormat != PIX_FMT_BGR4_BYTE
  2284. && srcFormat != PIX_FMT_RGB4_BYTE && dstFormat != PIX_FMT_RGB4_BYTE
  2285. && srcFormat != PIX_FMT_MONOBLACK && dstFormat != PIX_FMT_MONOBLACK
  2286. && srcFormat != PIX_FMT_MONOWHITE && dstFormat != PIX_FMT_MONOWHITE
  2287. && dstFormat != PIX_FMT_RGB32_1
  2288. && dstFormat != PIX_FMT_BGR32_1
  2289. && (!needsDither || (c->flags&(SWS_FAST_BILINEAR|SWS_POINT))))
  2290. c->swScale= rgb2rgbWrapper;
  2291. if ((usePal(srcFormat) && (
  2292. dstFormat == PIX_FMT_RGB32 ||
  2293. dstFormat == PIX_FMT_RGB32_1 ||
  2294. dstFormat == PIX_FMT_RGB24 ||
  2295. dstFormat == PIX_FMT_BGR32 ||
  2296. dstFormat == PIX_FMT_BGR32_1 ||
  2297. dstFormat == PIX_FMT_BGR24)))
  2298. c->swScale= pal2rgbWrapper;
  2299. if (srcFormat == PIX_FMT_YUV422P)
  2300. {
  2301. if (dstFormat == PIX_FMT_YUYV422)
  2302. c->swScale= YUV422PToYuy2Wrapper;
  2303. else if (dstFormat == PIX_FMT_UYVY422)
  2304. c->swScale= YUV422PToUyvyWrapper;
  2305. }
  2306. /* LQ converters if -sws 0 or -sws 4*/
  2307. if (c->flags&(SWS_FAST_BILINEAR|SWS_POINT)){
  2308. /* yv12_to_yuy2 */
  2309. if (srcFormat == PIX_FMT_YUV420P || srcFormat == PIX_FMT_YUVA420P)
  2310. {
  2311. if (dstFormat == PIX_FMT_YUYV422)
  2312. c->swScale= PlanarToYuy2Wrapper;
  2313. else if (dstFormat == PIX_FMT_UYVY422)
  2314. c->swScale= PlanarToUyvyWrapper;
  2315. }
  2316. }
  2317. if(srcFormat == PIX_FMT_YUYV422 && (dstFormat == PIX_FMT_YUV420P || dstFormat == PIX_FMT_YUVA420P))
  2318. c->swScale= YUYV2YUV420Wrapper;
  2319. if(srcFormat == PIX_FMT_UYVY422 && (dstFormat == PIX_FMT_YUV420P || dstFormat == PIX_FMT_YUVA420P))
  2320. c->swScale= UYVY2YUV420Wrapper;
  2321. if(srcFormat == PIX_FMT_YUYV422 && dstFormat == PIX_FMT_YUV422P)
  2322. c->swScale= YUYV2YUV422Wrapper;
  2323. if(srcFormat == PIX_FMT_UYVY422 && dstFormat == PIX_FMT_YUV422P)
  2324. c->swScale= UYVY2YUV422Wrapper;
  2325. #ifdef COMPILE_ALTIVEC
  2326. if ((c->flags & SWS_CPU_CAPS_ALTIVEC) &&
  2327. !(c->flags & SWS_BITEXACT) &&
  2328. srcFormat == PIX_FMT_YUV420P) {
  2329. // unscaled YV12 -> packed YUV, we want speed
  2330. if (dstFormat == PIX_FMT_YUYV422)
  2331. c->swScale= yv12toyuy2_unscaled_altivec;
  2332. else if (dstFormat == PIX_FMT_UYVY422)
  2333. c->swScale= yv12touyvy_unscaled_altivec;
  2334. }
  2335. #endif
  2336. /* simple copy */
  2337. if ( srcFormat == dstFormat
  2338. || (srcFormat == PIX_FMT_YUVA420P && dstFormat == PIX_FMT_YUV420P)
  2339. || (srcFormat == PIX_FMT_YUV420P && dstFormat == PIX_FMT_YUVA420P)
  2340. || (isPlanarYUV(srcFormat) && isGray(dstFormat))
  2341. || (isPlanarYUV(dstFormat) && isGray(srcFormat))
  2342. || (isGray(dstFormat) && isGray(srcFormat))
  2343. || (isPlanarYUV(srcFormat) && isPlanarYUV(dstFormat)
  2344. && c->chrDstHSubSample == c->chrSrcHSubSample
  2345. && c->chrDstVSubSample == c->chrSrcVSubSample))
  2346. {
  2347. if (isPacked(c->srcFormat))
  2348. c->swScale= packedCopy;
  2349. else /* Planar YUV or gray */
  2350. c->swScale= planarCopy;
  2351. }
  2352. #if ARCH_BFIN
  2353. if (flags & SWS_CPU_CAPS_BFIN)
  2354. ff_bfin_get_unscaled_swscale (c);
  2355. #endif
  2356. if (c->swScale){
  2357. if (flags&SWS_PRINT_INFO)
  2358. av_log(c, AV_LOG_INFO, "using unscaled %s -> %s special converter\n",
  2359. sws_format_name(srcFormat), sws_format_name(dstFormat));
  2360. return c;
  2361. }
  2362. }
  2363. if (flags & SWS_CPU_CAPS_MMX2)
  2364. {
  2365. c->canMMX2BeUsed= (dstW >=srcW && (dstW&31)==0 && (srcW&15)==0) ? 1 : 0;
  2366. if (!c->canMMX2BeUsed && dstW >=srcW && (srcW&15)==0 && (flags&SWS_FAST_BILINEAR))
  2367. {
  2368. if (flags&SWS_PRINT_INFO)
  2369. av_log(c, AV_LOG_INFO, "output width is not a multiple of 32 -> no MMX2 scaler\n");
  2370. }
  2371. if (usesHFilter) c->canMMX2BeUsed=0;
  2372. }
  2373. else
  2374. c->canMMX2BeUsed=0;
  2375. c->chrXInc= ((c->chrSrcW<<16) + (c->chrDstW>>1))/c->chrDstW;
  2376. c->chrYInc= ((c->chrSrcH<<16) + (c->chrDstH>>1))/c->chrDstH;
  2377. // match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src to pixel n-2 of dst
  2378. // but only for the FAST_BILINEAR mode otherwise do correct scaling
  2379. // n-2 is the last chrominance sample available
  2380. // this is not perfect, but no one should notice the difference, the more correct variant
  2381. // would be like the vertical one, but that would require some special code for the
  2382. // first and last pixel
  2383. if (flags&SWS_FAST_BILINEAR)
  2384. {
  2385. if (c->canMMX2BeUsed)
  2386. {
  2387. c->lumXInc+= 20;
  2388. c->chrXInc+= 20;
  2389. }
  2390. //we don't use the x86 asm scaler if MMX is available
  2391. else if (flags & SWS_CPU_CAPS_MMX)
  2392. {
  2393. c->lumXInc = ((srcW-2)<<16)/(dstW-2) - 20;
  2394. c->chrXInc = ((c->chrSrcW-2)<<16)/(c->chrDstW-2) - 20;
  2395. }
  2396. }
  2397. /* precalculate horizontal scaler filter coefficients */
  2398. {
  2399. const int filterAlign=
  2400. (flags & SWS_CPU_CAPS_MMX) ? 4 :
  2401. (flags & SWS_CPU_CAPS_ALTIVEC) ? 8 :
  2402. 1;
  2403. initFilter(&c->hLumFilter, &c->hLumFilterPos, &c->hLumFilterSize, c->lumXInc,
  2404. srcW , dstW, filterAlign, 1<<14,
  2405. (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC) : flags,
  2406. srcFilter->lumH, dstFilter->lumH, c->param);
  2407. initFilter(&c->hChrFilter, &c->hChrFilterPos, &c->hChrFilterSize, c->chrXInc,
  2408. c->chrSrcW, c->chrDstW, filterAlign, 1<<14,
  2409. (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
  2410. srcFilter->chrH, dstFilter->chrH, c->param);
  2411. #define MAX_FUNNY_CODE_SIZE 10000
  2412. #if defined(COMPILE_MMX2)
  2413. // can't downscale !!!
  2414. if (c->canMMX2BeUsed && (flags & SWS_FAST_BILINEAR))
  2415. {
  2416. #ifdef MAP_ANONYMOUS
  2417. c->funnyYCode = mmap(NULL, MAX_FUNNY_CODE_SIZE, PROT_EXEC | PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
  2418. c->funnyUVCode = mmap(NULL, MAX_FUNNY_CODE_SIZE, PROT_EXEC | PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
  2419. #elif HAVE_VIRTUALALLOC
  2420. c->funnyYCode = VirtualAlloc(NULL, MAX_FUNNY_CODE_SIZE, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
  2421. c->funnyUVCode = VirtualAlloc(NULL, MAX_FUNNY_CODE_SIZE, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
  2422. #else
  2423. c->funnyYCode = av_malloc(MAX_FUNNY_CODE_SIZE);
  2424. c->funnyUVCode = av_malloc(MAX_FUNNY_CODE_SIZE);
  2425. #endif
  2426. c->lumMmx2Filter = av_malloc((dstW /8+8)*sizeof(int16_t));
  2427. c->chrMmx2Filter = av_malloc((c->chrDstW /4+8)*sizeof(int16_t));
  2428. c->lumMmx2FilterPos= av_malloc((dstW /2/8+8)*sizeof(int32_t));
  2429. c->chrMmx2FilterPos= av_malloc((c->chrDstW/2/4+8)*sizeof(int32_t));
  2430. initMMX2HScaler( dstW, c->lumXInc, c->funnyYCode , c->lumMmx2Filter, c->lumMmx2FilterPos, 8);
  2431. initMMX2HScaler(c->chrDstW, c->chrXInc, c->funnyUVCode, c->chrMmx2Filter, c->chrMmx2FilterPos, 4);
  2432. }
  2433. #endif /* defined(COMPILE_MMX2) */
  2434. } // initialize horizontal stuff
  2435. /* precalculate vertical scaler filter coefficients */
  2436. {
  2437. const int filterAlign=
  2438. (flags & SWS_CPU_CAPS_MMX) && (flags & SWS_ACCURATE_RND) ? 2 :
  2439. (flags & SWS_CPU_CAPS_ALTIVEC) ? 8 :
  2440. 1;
  2441. initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize, c->lumYInc,
  2442. srcH , dstH, filterAlign, (1<<12),
  2443. (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC) : flags,
  2444. srcFilter->lumV, dstFilter->lumV, c->param);
  2445. initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize, c->chrYInc,
  2446. c->chrSrcH, c->chrDstH, filterAlign, (1<<12),
  2447. (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
  2448. srcFilter->chrV, dstFilter->chrV, c->param);
  2449. #if HAVE_ALTIVEC
  2450. c->vYCoeffsBank = av_malloc(sizeof (vector signed short)*c->vLumFilterSize*c->dstH);
  2451. c->vCCoeffsBank = av_malloc(sizeof (vector signed short)*c->vChrFilterSize*c->chrDstH);
  2452. for (i=0;i<c->vLumFilterSize*c->dstH;i++) {
  2453. int j;
  2454. short *p = (short *)&c->vYCoeffsBank[i];
  2455. for (j=0;j<8;j++)
  2456. p[j] = c->vLumFilter[i];
  2457. }
  2458. for (i=0;i<c->vChrFilterSize*c->chrDstH;i++) {
  2459. int j;
  2460. short *p = (short *)&c->vCCoeffsBank[i];
  2461. for (j=0;j<8;j++)
  2462. p[j] = c->vChrFilter[i];
  2463. }
  2464. #endif
  2465. }
  2466. // calculate buffer sizes so that they won't run out while handling these damn slices
  2467. c->vLumBufSize= c->vLumFilterSize;
  2468. c->vChrBufSize= c->vChrFilterSize;
  2469. for (i=0; i<dstH; i++)
  2470. {
  2471. int chrI= i*c->chrDstH / dstH;
  2472. int nextSlice= FFMAX(c->vLumFilterPos[i ] + c->vLumFilterSize - 1,
  2473. ((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)<<c->chrSrcVSubSample));
  2474. nextSlice>>= c->chrSrcVSubSample;
  2475. nextSlice<<= c->chrSrcVSubSample;
  2476. if (c->vLumFilterPos[i ] + c->vLumBufSize < nextSlice)
  2477. c->vLumBufSize= nextSlice - c->vLumFilterPos[i];
  2478. if (c->vChrFilterPos[chrI] + c->vChrBufSize < (nextSlice>>c->chrSrcVSubSample))
  2479. c->vChrBufSize= (nextSlice>>c->chrSrcVSubSample) - c->vChrFilterPos[chrI];
  2480. }
  2481. // allocate pixbufs (we use dynamic allocation because otherwise we would need to
  2482. c->lumPixBuf= av_malloc(c->vLumBufSize*2*sizeof(int16_t*));
  2483. c->chrPixBuf= av_malloc(c->vChrBufSize*2*sizeof(int16_t*));
  2484. if (CONFIG_SWSCALE_ALPHA && isALPHA(c->srcFormat) && isALPHA(c->dstFormat))
  2485. c->alpPixBuf= av_malloc(c->vLumBufSize*2*sizeof(int16_t*));
  2486. //Note we need at least one pixel more at the end because of the MMX code (just in case someone wanna replace the 4000/8000)
  2487. /* align at 16 bytes for AltiVec */
  2488. for (i=0; i<c->vLumBufSize; i++)
  2489. c->lumPixBuf[i]= c->lumPixBuf[i+c->vLumBufSize]= av_mallocz(VOF+1);
  2490. for (i=0; i<c->vChrBufSize; i++)
  2491. c->chrPixBuf[i]= c->chrPixBuf[i+c->vChrBufSize]= av_malloc((VOF+1)*2);
  2492. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf)
  2493. for (i=0; i<c->vLumBufSize; i++)
  2494. c->alpPixBuf[i]= c->alpPixBuf[i+c->vLumBufSize]= av_mallocz(VOF+1);
  2495. //try to avoid drawing green stuff between the right end and the stride end
  2496. for (i=0; i<c->vChrBufSize; i++) memset(c->chrPixBuf[i], 64, (VOF+1)*2);
  2497. assert(2*VOFW == VOF);
  2498. assert(c->chrDstH <= dstH);
  2499. if (flags&SWS_PRINT_INFO)
  2500. {
  2501. #ifdef DITHER1XBPP
  2502. const char *dither= " dithered";
  2503. #else
  2504. const char *dither= "";
  2505. #endif
  2506. if (flags&SWS_FAST_BILINEAR)
  2507. av_log(c, AV_LOG_INFO, "FAST_BILINEAR scaler, ");
  2508. else if (flags&SWS_BILINEAR)
  2509. av_log(c, AV_LOG_INFO, "BILINEAR scaler, ");
  2510. else if (flags&SWS_BICUBIC)
  2511. av_log(c, AV_LOG_INFO, "BICUBIC scaler, ");
  2512. else if (flags&SWS_X)
  2513. av_log(c, AV_LOG_INFO, "Experimental scaler, ");
  2514. else if (flags&SWS_POINT)
  2515. av_log(c, AV_LOG_INFO, "Nearest Neighbor / POINT scaler, ");
  2516. else if (flags&SWS_AREA)
  2517. av_log(c, AV_LOG_INFO, "Area Averageing scaler, ");
  2518. else if (flags&SWS_BICUBLIN)
  2519. av_log(c, AV_LOG_INFO, "luma BICUBIC / chroma BILINEAR scaler, ");
  2520. else if (flags&SWS_GAUSS)
  2521. av_log(c, AV_LOG_INFO, "Gaussian scaler, ");
  2522. else if (flags&SWS_SINC)
  2523. av_log(c, AV_LOG_INFO, "Sinc scaler, ");
  2524. else if (flags&SWS_LANCZOS)
  2525. av_log(c, AV_LOG_INFO, "Lanczos scaler, ");
  2526. else if (flags&SWS_SPLINE)
  2527. av_log(c, AV_LOG_INFO, "Bicubic spline scaler, ");
  2528. else
  2529. av_log(c, AV_LOG_INFO, "ehh flags invalid?! ");
  2530. if (dstFormat==PIX_FMT_BGR555 || dstFormat==PIX_FMT_BGR565)
  2531. av_log(c, AV_LOG_INFO, "from %s to%s %s ",
  2532. sws_format_name(srcFormat), dither, sws_format_name(dstFormat));
  2533. else
  2534. av_log(c, AV_LOG_INFO, "from %s to %s ",
  2535. sws_format_name(srcFormat), sws_format_name(dstFormat));
  2536. if (flags & SWS_CPU_CAPS_MMX2)
  2537. av_log(c, AV_LOG_INFO, "using MMX2\n");
  2538. else if (flags & SWS_CPU_CAPS_3DNOW)
  2539. av_log(c, AV_LOG_INFO, "using 3DNOW\n");
  2540. else if (flags & SWS_CPU_CAPS_MMX)
  2541. av_log(c, AV_LOG_INFO, "using MMX\n");
  2542. else if (flags & SWS_CPU_CAPS_ALTIVEC)
  2543. av_log(c, AV_LOG_INFO, "using AltiVec\n");
  2544. else
  2545. av_log(c, AV_LOG_INFO, "using C\n");
  2546. }
  2547. if (flags & SWS_PRINT_INFO)
  2548. {
  2549. if (flags & SWS_CPU_CAPS_MMX)
  2550. {
  2551. if (c->canMMX2BeUsed && (flags&SWS_FAST_BILINEAR))
  2552. av_log(c, AV_LOG_VERBOSE, "using FAST_BILINEAR MMX2 scaler for horizontal scaling\n");
  2553. else
  2554. {
  2555. if (c->hLumFilterSize==4)
  2556. av_log(c, AV_LOG_VERBOSE, "using 4-tap MMX scaler for horizontal luminance scaling\n");
  2557. else if (c->hLumFilterSize==8)
  2558. av_log(c, AV_LOG_VERBOSE, "using 8-tap MMX scaler for horizontal luminance scaling\n");
  2559. else
  2560. av_log(c, AV_LOG_VERBOSE, "using n-tap MMX scaler for horizontal luminance scaling\n");
  2561. if (c->hChrFilterSize==4)
  2562. av_log(c, AV_LOG_VERBOSE, "using 4-tap MMX scaler for horizontal chrominance scaling\n");
  2563. else if (c->hChrFilterSize==8)
  2564. av_log(c, AV_LOG_VERBOSE, "using 8-tap MMX scaler for horizontal chrominance scaling\n");
  2565. else
  2566. av_log(c, AV_LOG_VERBOSE, "using n-tap MMX scaler for horizontal chrominance scaling\n");
  2567. }
  2568. }
  2569. else
  2570. {
  2571. #if ARCH_X86
  2572. av_log(c, AV_LOG_VERBOSE, "using x86 asm scaler for horizontal scaling\n");
  2573. #else
  2574. if (flags & SWS_FAST_BILINEAR)
  2575. av_log(c, AV_LOG_VERBOSE, "using FAST_BILINEAR C scaler for horizontal scaling\n");
  2576. else
  2577. av_log(c, AV_LOG_VERBOSE, "using C scaler for horizontal scaling\n");
  2578. #endif
  2579. }
  2580. if (isPlanarYUV(dstFormat))
  2581. {
  2582. if (c->vLumFilterSize==1)
  2583. av_log(c, AV_LOG_VERBOSE, "using 1-tap %s \"scaler\" for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2584. else
  2585. av_log(c, AV_LOG_VERBOSE, "using n-tap %s scaler for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2586. }
  2587. else
  2588. {
  2589. if (c->vLumFilterSize==1 && c->vChrFilterSize==2)
  2590. av_log(c, AV_LOG_VERBOSE, "using 1-tap %s \"scaler\" for vertical luminance scaling (BGR)\n"
  2591. " 2-tap scaler for vertical chrominance scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2592. else if (c->vLumFilterSize==2 && c->vChrFilterSize==2)
  2593. av_log(c, AV_LOG_VERBOSE, "using 2-tap linear %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2594. else
  2595. av_log(c, AV_LOG_VERBOSE, "using n-tap %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2596. }
  2597. if (dstFormat==PIX_FMT_BGR24)
  2598. av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR24 converter\n",
  2599. (flags & SWS_CPU_CAPS_MMX2) ? "MMX2" : ((flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C"));
  2600. else if (dstFormat==PIX_FMT_RGB32)
  2601. av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR32 converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2602. else if (dstFormat==PIX_FMT_BGR565)
  2603. av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR16 converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2604. else if (dstFormat==PIX_FMT_BGR555)
  2605. av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR15 converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2606. av_log(c, AV_LOG_VERBOSE, "%dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
  2607. }
  2608. if (flags & SWS_PRINT_INFO)
  2609. {
  2610. av_log(c, AV_LOG_DEBUG, "lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  2611. c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
  2612. av_log(c, AV_LOG_DEBUG, "chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  2613. c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH, c->chrXInc, c->chrYInc);
  2614. }
  2615. c->swScale= getSwsFunc(c);
  2616. return c;
  2617. }
  2618. static void reset_ptr(uint8_t* src[], int format){
  2619. if(!isALPHA(format))
  2620. src[3]=NULL;
  2621. if(!isPlanarYUV(format)){
  2622. src[3]=src[2]=NULL;
  2623. if( format != PIX_FMT_PAL8
  2624. && format != PIX_FMT_RGB8
  2625. && format != PIX_FMT_BGR8
  2626. && format != PIX_FMT_RGB4_BYTE
  2627. && format != PIX_FMT_BGR4_BYTE
  2628. )
  2629. src[1]= NULL;
  2630. }
  2631. }
  2632. /**
  2633. * swscale wrapper, so we don't need to export the SwsContext.
  2634. * Assumes planar YUV to be in YUV order instead of YVU.
  2635. */
  2636. int sws_scale(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  2637. int srcSliceH, uint8_t* dst[], int dstStride[]){
  2638. int i;
  2639. uint8_t* src2[4]= {src[0], src[1], src[2], src[3]};
  2640. uint8_t* dst2[4]= {dst[0], dst[1], dst[2], dst[3]};
  2641. if (c->sliceDir == 0 && srcSliceY != 0 && srcSliceY + srcSliceH != c->srcH) {
  2642. av_log(c, AV_LOG_ERROR, "Slices start in the middle!\n");
  2643. return 0;
  2644. }
  2645. if (c->sliceDir == 0) {
  2646. if (srcSliceY == 0) c->sliceDir = 1; else c->sliceDir = -1;
  2647. }
  2648. if (usePal(c->srcFormat)){
  2649. for (i=0; i<256; i++){
  2650. int p, r, g, b,y,u,v;
  2651. if(c->srcFormat == PIX_FMT_PAL8){
  2652. p=((uint32_t*)(src[1]))[i];
  2653. r= (p>>16)&0xFF;
  2654. g= (p>> 8)&0xFF;
  2655. b= p &0xFF;
  2656. }else if(c->srcFormat == PIX_FMT_RGB8){
  2657. r= (i>>5 )*36;
  2658. g= ((i>>2)&7)*36;
  2659. b= (i&3 )*85;
  2660. }else if(c->srcFormat == PIX_FMT_BGR8){
  2661. b= (i>>6 )*85;
  2662. g= ((i>>3)&7)*36;
  2663. r= (i&7 )*36;
  2664. }else if(c->srcFormat == PIX_FMT_RGB4_BYTE){
  2665. r= (i>>3 )*255;
  2666. g= ((i>>1)&3)*85;
  2667. b= (i&1 )*255;
  2668. }else {
  2669. assert(c->srcFormat == PIX_FMT_BGR4_BYTE);
  2670. b= (i>>3 )*255;
  2671. g= ((i>>1)&3)*85;
  2672. r= (i&1 )*255;
  2673. }
  2674. y= av_clip_uint8((RY*r + GY*g + BY*b + ( 33<<(RGB2YUV_SHIFT-1)))>>RGB2YUV_SHIFT);
  2675. u= av_clip_uint8((RU*r + GU*g + BU*b + (257<<(RGB2YUV_SHIFT-1)))>>RGB2YUV_SHIFT);
  2676. v= av_clip_uint8((RV*r + GV*g + BV*b + (257<<(RGB2YUV_SHIFT-1)))>>RGB2YUV_SHIFT);
  2677. c->pal_yuv[i]= y + (u<<8) + (v<<16);
  2678. switch(c->dstFormat) {
  2679. case PIX_FMT_BGR32:
  2680. #ifndef WORDS_BIGENDIAN
  2681. case PIX_FMT_RGB24:
  2682. #endif
  2683. c->pal_rgb[i]= r + (g<<8) + (b<<16);
  2684. break;
  2685. case PIX_FMT_BGR32_1:
  2686. #ifdef WORDS_BIGENDIAN
  2687. case PIX_FMT_BGR24:
  2688. #endif
  2689. c->pal_rgb[i]= (r + (g<<8) + (b<<16)) << 8;
  2690. break;
  2691. case PIX_FMT_RGB32_1:
  2692. #ifdef WORDS_BIGENDIAN
  2693. case PIX_FMT_RGB24:
  2694. #endif
  2695. c->pal_rgb[i]= (b + (g<<8) + (r<<16)) << 8;
  2696. break;
  2697. case PIX_FMT_RGB32:
  2698. #ifndef WORDS_BIGENDIAN
  2699. case PIX_FMT_BGR24:
  2700. #endif
  2701. default:
  2702. c->pal_rgb[i]= b + (g<<8) + (r<<16);
  2703. }
  2704. }
  2705. }
  2706. // copy strides, so they can safely be modified
  2707. if (c->sliceDir == 1) {
  2708. // slices go from top to bottom
  2709. int srcStride2[4]= {srcStride[0], srcStride[1], srcStride[2], srcStride[3]};
  2710. int dstStride2[4]= {dstStride[0], dstStride[1], dstStride[2], dstStride[3]};
  2711. reset_ptr(src2, c->srcFormat);
  2712. reset_ptr(dst2, c->dstFormat);
  2713. return c->swScale(c, src2, srcStride2, srcSliceY, srcSliceH, dst2, dstStride2);
  2714. } else {
  2715. // slices go from bottom to top => we flip the image internally
  2716. int srcStride2[4]= {-srcStride[0], -srcStride[1], -srcStride[2], -srcStride[3]};
  2717. int dstStride2[4]= {-dstStride[0], -dstStride[1], -dstStride[2], -dstStride[3]};
  2718. src2[0] += (srcSliceH-1)*srcStride[0];
  2719. if (!usePal(c->srcFormat))
  2720. src2[1] += ((srcSliceH>>c->chrSrcVSubSample)-1)*srcStride[1];
  2721. src2[2] += ((srcSliceH>>c->chrSrcVSubSample)-1)*srcStride[2];
  2722. src2[3] += (srcSliceH-1)*srcStride[3];
  2723. dst2[0] += ( c->dstH -1)*dstStride[0];
  2724. dst2[1] += ((c->dstH>>c->chrDstVSubSample)-1)*dstStride[1];
  2725. dst2[2] += ((c->dstH>>c->chrDstVSubSample)-1)*dstStride[2];
  2726. dst2[3] += ( c->dstH -1)*dstStride[3];
  2727. reset_ptr(src2, c->srcFormat);
  2728. reset_ptr(dst2, c->dstFormat);
  2729. return c->swScale(c, src2, srcStride2, c->srcH-srcSliceY-srcSliceH, srcSliceH, dst2, dstStride2);
  2730. }
  2731. }
  2732. #if LIBSWSCALE_VERSION_MAJOR < 1
  2733. int sws_scale_ordered(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  2734. int srcSliceH, uint8_t* dst[], int dstStride[]){
  2735. return sws_scale(c, src, srcStride, srcSliceY, srcSliceH, dst, dstStride);
  2736. }
  2737. #endif
  2738. SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur,
  2739. float lumaSharpen, float chromaSharpen,
  2740. float chromaHShift, float chromaVShift,
  2741. int verbose)
  2742. {
  2743. SwsFilter *filter= av_malloc(sizeof(SwsFilter));
  2744. if (lumaGBlur!=0.0){
  2745. filter->lumH= sws_getGaussianVec(lumaGBlur, 3.0);
  2746. filter->lumV= sws_getGaussianVec(lumaGBlur, 3.0);
  2747. }else{
  2748. filter->lumH= sws_getIdentityVec();
  2749. filter->lumV= sws_getIdentityVec();
  2750. }
  2751. if (chromaGBlur!=0.0){
  2752. filter->chrH= sws_getGaussianVec(chromaGBlur, 3.0);
  2753. filter->chrV= sws_getGaussianVec(chromaGBlur, 3.0);
  2754. }else{
  2755. filter->chrH= sws_getIdentityVec();
  2756. filter->chrV= sws_getIdentityVec();
  2757. }
  2758. if (chromaSharpen!=0.0){
  2759. SwsVector *id= sws_getIdentityVec();
  2760. sws_scaleVec(filter->chrH, -chromaSharpen);
  2761. sws_scaleVec(filter->chrV, -chromaSharpen);
  2762. sws_addVec(filter->chrH, id);
  2763. sws_addVec(filter->chrV, id);
  2764. sws_freeVec(id);
  2765. }
  2766. if (lumaSharpen!=0.0){
  2767. SwsVector *id= sws_getIdentityVec();
  2768. sws_scaleVec(filter->lumH, -lumaSharpen);
  2769. sws_scaleVec(filter->lumV, -lumaSharpen);
  2770. sws_addVec(filter->lumH, id);
  2771. sws_addVec(filter->lumV, id);
  2772. sws_freeVec(id);
  2773. }
  2774. if (chromaHShift != 0.0)
  2775. sws_shiftVec(filter->chrH, (int)(chromaHShift+0.5));
  2776. if (chromaVShift != 0.0)
  2777. sws_shiftVec(filter->chrV, (int)(chromaVShift+0.5));
  2778. sws_normalizeVec(filter->chrH, 1.0);
  2779. sws_normalizeVec(filter->chrV, 1.0);
  2780. sws_normalizeVec(filter->lumH, 1.0);
  2781. sws_normalizeVec(filter->lumV, 1.0);
  2782. if (verbose) sws_printVec2(filter->chrH, NULL, AV_LOG_DEBUG);
  2783. if (verbose) sws_printVec2(filter->lumH, NULL, AV_LOG_DEBUG);
  2784. return filter;
  2785. }
  2786. SwsVector *sws_getGaussianVec(double variance, double quality){
  2787. const int length= (int)(variance*quality + 0.5) | 1;
  2788. int i;
  2789. double *coeff= av_malloc(length*sizeof(double));
  2790. double middle= (length-1)*0.5;
  2791. SwsVector *vec= av_malloc(sizeof(SwsVector));
  2792. vec->coeff= coeff;
  2793. vec->length= length;
  2794. for (i=0; i<length; i++)
  2795. {
  2796. double dist= i-middle;
  2797. coeff[i]= exp(-dist*dist/(2*variance*variance)) / sqrt(2*variance*PI);
  2798. }
  2799. sws_normalizeVec(vec, 1.0);
  2800. return vec;
  2801. }
  2802. SwsVector *sws_getConstVec(double c, int length){
  2803. int i;
  2804. double *coeff= av_malloc(length*sizeof(double));
  2805. SwsVector *vec= av_malloc(sizeof(SwsVector));
  2806. vec->coeff= coeff;
  2807. vec->length= length;
  2808. for (i=0; i<length; i++)
  2809. coeff[i]= c;
  2810. return vec;
  2811. }
  2812. SwsVector *sws_getIdentityVec(void){
  2813. return sws_getConstVec(1.0, 1);
  2814. }
  2815. double sws_dcVec(SwsVector *a){
  2816. int i;
  2817. double sum=0;
  2818. for (i=0; i<a->length; i++)
  2819. sum+= a->coeff[i];
  2820. return sum;
  2821. }
  2822. void sws_scaleVec(SwsVector *a, double scalar){
  2823. int i;
  2824. for (i=0; i<a->length; i++)
  2825. a->coeff[i]*= scalar;
  2826. }
  2827. void sws_normalizeVec(SwsVector *a, double height){
  2828. sws_scaleVec(a, height/sws_dcVec(a));
  2829. }
  2830. static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b){
  2831. int length= a->length + b->length - 1;
  2832. double *coeff= av_malloc(length*sizeof(double));
  2833. int i, j;
  2834. SwsVector *vec= av_malloc(sizeof(SwsVector));
  2835. vec->coeff= coeff;
  2836. vec->length= length;
  2837. for (i=0; i<length; i++) coeff[i]= 0.0;
  2838. for (i=0; i<a->length; i++)
  2839. {
  2840. for (j=0; j<b->length; j++)
  2841. {
  2842. coeff[i+j]+= a->coeff[i]*b->coeff[j];
  2843. }
  2844. }
  2845. return vec;
  2846. }
  2847. static SwsVector *sws_sumVec(SwsVector *a, SwsVector *b){
  2848. int length= FFMAX(a->length, b->length);
  2849. double *coeff= av_malloc(length*sizeof(double));
  2850. int i;
  2851. SwsVector *vec= av_malloc(sizeof(SwsVector));
  2852. vec->coeff= coeff;
  2853. vec->length= length;
  2854. for (i=0; i<length; i++) coeff[i]= 0.0;
  2855. for (i=0; i<a->length; i++) coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
  2856. for (i=0; i<b->length; i++) coeff[i + (length-1)/2 - (b->length-1)/2]+= b->coeff[i];
  2857. return vec;
  2858. }
  2859. static SwsVector *sws_diffVec(SwsVector *a, SwsVector *b){
  2860. int length= FFMAX(a->length, b->length);
  2861. double *coeff= av_malloc(length*sizeof(double));
  2862. int i;
  2863. SwsVector *vec= av_malloc(sizeof(SwsVector));
  2864. vec->coeff= coeff;
  2865. vec->length= length;
  2866. for (i=0; i<length; i++) coeff[i]= 0.0;
  2867. for (i=0; i<a->length; i++) coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
  2868. for (i=0; i<b->length; i++) coeff[i + (length-1)/2 - (b->length-1)/2]-= b->coeff[i];
  2869. return vec;
  2870. }
  2871. /* shift left / or right if "shift" is negative */
  2872. static SwsVector *sws_getShiftedVec(SwsVector *a, int shift){
  2873. int length= a->length + FFABS(shift)*2;
  2874. double *coeff= av_malloc(length*sizeof(double));
  2875. int i;
  2876. SwsVector *vec= av_malloc(sizeof(SwsVector));
  2877. vec->coeff= coeff;
  2878. vec->length= length;
  2879. for (i=0; i<length; i++) coeff[i]= 0.0;
  2880. for (i=0; i<a->length; i++)
  2881. {
  2882. coeff[i + (length-1)/2 - (a->length-1)/2 - shift]= a->coeff[i];
  2883. }
  2884. return vec;
  2885. }
  2886. void sws_shiftVec(SwsVector *a, int shift){
  2887. SwsVector *shifted= sws_getShiftedVec(a, shift);
  2888. av_free(a->coeff);
  2889. a->coeff= shifted->coeff;
  2890. a->length= shifted->length;
  2891. av_free(shifted);
  2892. }
  2893. void sws_addVec(SwsVector *a, SwsVector *b){
  2894. SwsVector *sum= sws_sumVec(a, b);
  2895. av_free(a->coeff);
  2896. a->coeff= sum->coeff;
  2897. a->length= sum->length;
  2898. av_free(sum);
  2899. }
  2900. void sws_subVec(SwsVector *a, SwsVector *b){
  2901. SwsVector *diff= sws_diffVec(a, b);
  2902. av_free(a->coeff);
  2903. a->coeff= diff->coeff;
  2904. a->length= diff->length;
  2905. av_free(diff);
  2906. }
  2907. void sws_convVec(SwsVector *a, SwsVector *b){
  2908. SwsVector *conv= sws_getConvVec(a, b);
  2909. av_free(a->coeff);
  2910. a->coeff= conv->coeff;
  2911. a->length= conv->length;
  2912. av_free(conv);
  2913. }
  2914. SwsVector *sws_cloneVec(SwsVector *a){
  2915. double *coeff= av_malloc(a->length*sizeof(double));
  2916. int i;
  2917. SwsVector *vec= av_malloc(sizeof(SwsVector));
  2918. vec->coeff= coeff;
  2919. vec->length= a->length;
  2920. for (i=0; i<a->length; i++) coeff[i]= a->coeff[i];
  2921. return vec;
  2922. }
  2923. void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level){
  2924. int i;
  2925. double max=0;
  2926. double min=0;
  2927. double range;
  2928. for (i=0; i<a->length; i++)
  2929. if (a->coeff[i]>max) max= a->coeff[i];
  2930. for (i=0; i<a->length; i++)
  2931. if (a->coeff[i]<min) min= a->coeff[i];
  2932. range= max - min;
  2933. for (i=0; i<a->length; i++)
  2934. {
  2935. int x= (int)((a->coeff[i]-min)*60.0/range +0.5);
  2936. av_log(log_ctx, log_level, "%1.3f ", a->coeff[i]);
  2937. for (;x>0; x--) av_log(log_ctx, log_level, " ");
  2938. av_log(log_ctx, log_level, "|\n");
  2939. }
  2940. }
  2941. #if LIBSWSCALE_VERSION_MAJOR < 1
  2942. void sws_printVec(SwsVector *a){
  2943. sws_printVec2(a, NULL, AV_LOG_DEBUG);
  2944. }
  2945. #endif
  2946. void sws_freeVec(SwsVector *a){
  2947. if (!a) return;
  2948. av_freep(&a->coeff);
  2949. a->length=0;
  2950. av_free(a);
  2951. }
  2952. void sws_freeFilter(SwsFilter *filter){
  2953. if (!filter) return;
  2954. if (filter->lumH) sws_freeVec(filter->lumH);
  2955. if (filter->lumV) sws_freeVec(filter->lumV);
  2956. if (filter->chrH) sws_freeVec(filter->chrH);
  2957. if (filter->chrV) sws_freeVec(filter->chrV);
  2958. av_free(filter);
  2959. }
  2960. void sws_freeContext(SwsContext *c){
  2961. int i;
  2962. if (!c) return;
  2963. if (c->lumPixBuf)
  2964. {
  2965. for (i=0; i<c->vLumBufSize; i++)
  2966. av_freep(&c->lumPixBuf[i]);
  2967. av_freep(&c->lumPixBuf);
  2968. }
  2969. if (c->chrPixBuf)
  2970. {
  2971. for (i=0; i<c->vChrBufSize; i++)
  2972. av_freep(&c->chrPixBuf[i]);
  2973. av_freep(&c->chrPixBuf);
  2974. }
  2975. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf){
  2976. for (i=0; i<c->vLumBufSize; i++)
  2977. av_freep(&c->alpPixBuf[i]);
  2978. av_freep(&c->alpPixBuf);
  2979. }
  2980. av_freep(&c->vLumFilter);
  2981. av_freep(&c->vChrFilter);
  2982. av_freep(&c->hLumFilter);
  2983. av_freep(&c->hChrFilter);
  2984. #if HAVE_ALTIVEC
  2985. av_freep(&c->vYCoeffsBank);
  2986. av_freep(&c->vCCoeffsBank);
  2987. #endif
  2988. av_freep(&c->vLumFilterPos);
  2989. av_freep(&c->vChrFilterPos);
  2990. av_freep(&c->hLumFilterPos);
  2991. av_freep(&c->hChrFilterPos);
  2992. #if ARCH_X86 && CONFIG_GPL
  2993. #ifdef MAP_ANONYMOUS
  2994. if (c->funnyYCode ) munmap(c->funnyYCode , MAX_FUNNY_CODE_SIZE);
  2995. if (c->funnyUVCode) munmap(c->funnyUVCode, MAX_FUNNY_CODE_SIZE);
  2996. #elif HAVE_VIRTUALALLOC
  2997. if (c->funnyYCode ) VirtualFree(c->funnyYCode , MAX_FUNNY_CODE_SIZE, MEM_RELEASE);
  2998. if (c->funnyUVCode) VirtualFree(c->funnyUVCode, MAX_FUNNY_CODE_SIZE, MEM_RELEASE);
  2999. #else
  3000. av_free(c->funnyYCode );
  3001. av_free(c->funnyUVCode);
  3002. #endif
  3003. c->funnyYCode=NULL;
  3004. c->funnyUVCode=NULL;
  3005. #endif /* ARCH_X86 && CONFIG_GPL */
  3006. av_freep(&c->lumMmx2Filter);
  3007. av_freep(&c->chrMmx2Filter);
  3008. av_freep(&c->lumMmx2FilterPos);
  3009. av_freep(&c->chrMmx2FilterPos);
  3010. av_freep(&c->yuvTable);
  3011. av_free(c);
  3012. }
  3013. struct SwsContext *sws_getCachedContext(struct SwsContext *context,
  3014. int srcW, int srcH, enum PixelFormat srcFormat,
  3015. int dstW, int dstH, enum PixelFormat dstFormat, int flags,
  3016. SwsFilter *srcFilter, SwsFilter *dstFilter, double *param)
  3017. {
  3018. static const double default_param[2] = {SWS_PARAM_DEFAULT, SWS_PARAM_DEFAULT};
  3019. if (!param)
  3020. param = default_param;
  3021. if (context) {
  3022. if (context->srcW != srcW || context->srcH != srcH ||
  3023. context->srcFormat != srcFormat ||
  3024. context->dstW != dstW || context->dstH != dstH ||
  3025. context->dstFormat != dstFormat || context->flags != flags ||
  3026. context->param[0] != param[0] || context->param[1] != param[1])
  3027. {
  3028. sws_freeContext(context);
  3029. context = NULL;
  3030. }
  3031. }
  3032. if (!context) {
  3033. return sws_getContext(srcW, srcH, srcFormat,
  3034. dstW, dstH, dstFormat, flags,
  3035. srcFilter, dstFilter, param);
  3036. }
  3037. return context;
  3038. }