You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1485 lines
47KB

  1. /*
  2. * huffyuv codec for libavcodec
  3. *
  4. * Copyright (c) 2002-2003 Michael Niedermayer <michaelni@gmx.at>
  5. *
  6. * see http://www.pcisys.net/~melanson/codecs/huffyuv.txt for a description of
  7. * the algorithm used
  8. *
  9. * This file is part of FFmpeg.
  10. *
  11. * FFmpeg is free software; you can redistribute it and/or
  12. * modify it under the terms of the GNU Lesser General Public
  13. * License as published by the Free Software Foundation; either
  14. * version 2.1 of the License, or (at your option) any later version.
  15. *
  16. * FFmpeg is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  19. * Lesser General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU Lesser General Public
  22. * License along with FFmpeg; if not, write to the Free Software
  23. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  24. */
  25. /**
  26. * @file libavcodec/huffyuv.c
  27. * huffyuv codec for libavcodec.
  28. */
  29. #include "avcodec.h"
  30. #include "get_bits.h"
  31. #include "put_bits.h"
  32. #include "dsputil.h"
  33. #define VLC_BITS 11
  34. #ifdef WORDS_BIGENDIAN
  35. #define B 3
  36. #define G 2
  37. #define R 1
  38. #else
  39. #define B 0
  40. #define G 1
  41. #define R 2
  42. #endif
  43. typedef enum Predictor{
  44. LEFT= 0,
  45. PLANE,
  46. MEDIAN,
  47. } Predictor;
  48. typedef struct HYuvContext{
  49. AVCodecContext *avctx;
  50. Predictor predictor;
  51. GetBitContext gb;
  52. PutBitContext pb;
  53. int interlaced;
  54. int decorrelate;
  55. int bitstream_bpp;
  56. int version;
  57. int yuy2; //use yuy2 instead of 422P
  58. int bgr32; //use bgr32 instead of bgr24
  59. int width, height;
  60. int flags;
  61. int context;
  62. int picture_number;
  63. int last_slice_end;
  64. uint8_t *temp[3];
  65. uint64_t stats[3][256];
  66. uint8_t len[3][256];
  67. uint32_t bits[3][256];
  68. uint32_t pix_bgr_map[1<<VLC_BITS];
  69. VLC vlc[6]; //Y,U,V,YY,YU,YV
  70. AVFrame picture;
  71. uint8_t *bitstream_buffer;
  72. unsigned int bitstream_buffer_size;
  73. DSPContext dsp;
  74. }HYuvContext;
  75. static const unsigned char classic_shift_luma[] = {
  76. 34,36,35,69,135,232,9,16,10,24,11,23,12,16,13,10,14,8,15,8,
  77. 16,8,17,20,16,10,207,206,205,236,11,8,10,21,9,23,8,8,199,70,
  78. 69,68, 0
  79. };
  80. static const unsigned char classic_shift_chroma[] = {
  81. 66,36,37,38,39,40,41,75,76,77,110,239,144,81,82,83,84,85,118,183,
  82. 56,57,88,89,56,89,154,57,58,57,26,141,57,56,58,57,58,57,184,119,
  83. 214,245,116,83,82,49,80,79,78,77,44,75,41,40,39,38,37,36,34, 0
  84. };
  85. static const unsigned char classic_add_luma[256] = {
  86. 3, 9, 5, 12, 10, 35, 32, 29, 27, 50, 48, 45, 44, 41, 39, 37,
  87. 73, 70, 68, 65, 64, 61, 58, 56, 53, 50, 49, 46, 44, 41, 38, 36,
  88. 68, 65, 63, 61, 58, 55, 53, 51, 48, 46, 45, 43, 41, 39, 38, 36,
  89. 35, 33, 32, 30, 29, 27, 26, 25, 48, 47, 46, 44, 43, 41, 40, 39,
  90. 37, 36, 35, 34, 32, 31, 30, 28, 27, 26, 24, 23, 22, 20, 19, 37,
  91. 35, 34, 33, 31, 30, 29, 27, 26, 24, 23, 21, 20, 18, 17, 15, 29,
  92. 27, 26, 24, 22, 21, 19, 17, 16, 14, 26, 25, 23, 21, 19, 18, 16,
  93. 15, 27, 25, 23, 21, 19, 17, 16, 14, 26, 25, 23, 21, 18, 17, 14,
  94. 12, 17, 19, 13, 4, 9, 2, 11, 1, 7, 8, 0, 16, 3, 14, 6,
  95. 12, 10, 5, 15, 18, 11, 10, 13, 15, 16, 19, 20, 22, 24, 27, 15,
  96. 18, 20, 22, 24, 26, 14, 17, 20, 22, 24, 27, 15, 18, 20, 23, 25,
  97. 28, 16, 19, 22, 25, 28, 32, 36, 21, 25, 29, 33, 38, 42, 45, 49,
  98. 28, 31, 34, 37, 40, 42, 44, 47, 49, 50, 52, 54, 56, 57, 59, 60,
  99. 62, 64, 66, 67, 69, 35, 37, 39, 40, 42, 43, 45, 47, 48, 51, 52,
  100. 54, 55, 57, 59, 60, 62, 63, 66, 67, 69, 71, 72, 38, 40, 42, 43,
  101. 46, 47, 49, 51, 26, 28, 30, 31, 33, 34, 18, 19, 11, 13, 7, 8,
  102. };
  103. static const unsigned char classic_add_chroma[256] = {
  104. 3, 1, 2, 2, 2, 2, 3, 3, 7, 5, 7, 5, 8, 6, 11, 9,
  105. 7, 13, 11, 10, 9, 8, 7, 5, 9, 7, 6, 4, 7, 5, 8, 7,
  106. 11, 8, 13, 11, 19, 15, 22, 23, 20, 33, 32, 28, 27, 29, 51, 77,
  107. 43, 45, 76, 81, 46, 82, 75, 55, 56,144, 58, 80, 60, 74,147, 63,
  108. 143, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
  109. 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 27, 30, 21, 22,
  110. 17, 14, 5, 6,100, 54, 47, 50, 51, 53,106,107,108,109,110,111,
  111. 112,113,114,115, 4,117,118, 92, 94,121,122, 3,124,103, 2, 1,
  112. 0,129,130,131,120,119,126,125,136,137,138,139,140,141,142,134,
  113. 135,132,133,104, 64,101, 62, 57,102, 95, 93, 59, 61, 28, 97, 96,
  114. 52, 49, 48, 29, 32, 25, 24, 46, 23, 98, 45, 44, 43, 20, 42, 41,
  115. 19, 18, 99, 40, 15, 39, 38, 16, 13, 12, 11, 37, 10, 9, 8, 36,
  116. 7,128,127,105,123,116, 35, 34, 33,145, 31, 79, 42,146, 78, 26,
  117. 83, 48, 49, 50, 44, 47, 26, 31, 30, 18, 17, 19, 21, 24, 25, 13,
  118. 14, 16, 17, 18, 20, 21, 12, 14, 15, 9, 10, 6, 9, 6, 5, 8,
  119. 6, 12, 8, 10, 7, 9, 6, 4, 6, 2, 2, 3, 3, 3, 3, 2,
  120. };
  121. static inline int add_left_prediction(uint8_t *dst, uint8_t *src, int w, int acc){
  122. int i;
  123. for(i=0; i<w-1; i++){
  124. acc+= src[i];
  125. dst[i]= acc;
  126. i++;
  127. acc+= src[i];
  128. dst[i]= acc;
  129. }
  130. for(; i<w; i++){
  131. acc+= src[i];
  132. dst[i]= acc;
  133. }
  134. return acc;
  135. }
  136. static inline void add_left_prediction_bgr32(uint8_t *dst, uint8_t *src, int w, int *red, int *green, int *blue){
  137. int i;
  138. int r,g,b;
  139. r= *red;
  140. g= *green;
  141. b= *blue;
  142. for(i=0; i<w; i++){
  143. b+= src[4*i+B];
  144. g+= src[4*i+G];
  145. r+= src[4*i+R];
  146. dst[4*i+B]= b;
  147. dst[4*i+G]= g;
  148. dst[4*i+R]= r;
  149. }
  150. *red= r;
  151. *green= g;
  152. *blue= b;
  153. }
  154. static inline int sub_left_prediction(HYuvContext *s, uint8_t *dst, uint8_t *src, int w, int left){
  155. int i;
  156. if(w<32){
  157. for(i=0; i<w; i++){
  158. const int temp= src[i];
  159. dst[i]= temp - left;
  160. left= temp;
  161. }
  162. return left;
  163. }else{
  164. for(i=0; i<16; i++){
  165. const int temp= src[i];
  166. dst[i]= temp - left;
  167. left= temp;
  168. }
  169. s->dsp.diff_bytes(dst+16, src+16, src+15, w-16);
  170. return src[w-1];
  171. }
  172. }
  173. static inline void sub_left_prediction_bgr32(HYuvContext *s, uint8_t *dst, uint8_t *src, int w, int *red, int *green, int *blue){
  174. int i;
  175. int r,g,b;
  176. r= *red;
  177. g= *green;
  178. b= *blue;
  179. for(i=0; i<FFMIN(w,4); i++){
  180. const int rt= src[i*4+R];
  181. const int gt= src[i*4+G];
  182. const int bt= src[i*4+B];
  183. dst[i*4+R]= rt - r;
  184. dst[i*4+G]= gt - g;
  185. dst[i*4+B]= bt - b;
  186. r = rt;
  187. g = gt;
  188. b = bt;
  189. }
  190. s->dsp.diff_bytes(dst+16, src+16, src+12, w*4-16);
  191. *red= src[(w-1)*4+R];
  192. *green= src[(w-1)*4+G];
  193. *blue= src[(w-1)*4+B];
  194. }
  195. static void read_len_table(uint8_t *dst, GetBitContext *gb){
  196. int i, val, repeat;
  197. for(i=0; i<256;){
  198. repeat= get_bits(gb, 3);
  199. val = get_bits(gb, 5);
  200. if(repeat==0)
  201. repeat= get_bits(gb, 8);
  202. //printf("%d %d\n", val, repeat);
  203. while (repeat--)
  204. dst[i++] = val;
  205. }
  206. }
  207. static int generate_bits_table(uint32_t *dst, uint8_t *len_table){
  208. int len, index;
  209. uint32_t bits=0;
  210. for(len=32; len>0; len--){
  211. for(index=0; index<256; index++){
  212. if(len_table[index]==len)
  213. dst[index]= bits++;
  214. }
  215. if(bits & 1){
  216. av_log(NULL, AV_LOG_ERROR, "Error generating huffman table\n");
  217. return -1;
  218. }
  219. bits >>= 1;
  220. }
  221. return 0;
  222. }
  223. #if CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER
  224. typedef struct {
  225. uint64_t val;
  226. int name;
  227. } HeapElem;
  228. static void heap_sift(HeapElem *h, int root, int size)
  229. {
  230. while(root*2+1 < size) {
  231. int child = root*2+1;
  232. if(child < size-1 && h[child].val > h[child+1].val)
  233. child++;
  234. if(h[root].val > h[child].val) {
  235. FFSWAP(HeapElem, h[root], h[child]);
  236. root = child;
  237. } else
  238. break;
  239. }
  240. }
  241. static void generate_len_table(uint8_t *dst, uint64_t *stats, int size){
  242. HeapElem h[size];
  243. int up[2*size];
  244. int len[2*size];
  245. int offset, i, next;
  246. for(offset=1; ; offset<<=1){
  247. for(i=0; i<size; i++){
  248. h[i].name = i;
  249. h[i].val = (stats[i] << 8) + offset;
  250. }
  251. for(i=size/2-1; i>=0; i--)
  252. heap_sift(h, i, size);
  253. for(next=size; next<size*2-1; next++){
  254. // merge the two smallest entries, and put it back in the heap
  255. uint64_t min1v = h[0].val;
  256. up[h[0].name] = next;
  257. h[0].val = INT64_MAX;
  258. heap_sift(h, 0, size);
  259. up[h[0].name] = next;
  260. h[0].name = next;
  261. h[0].val += min1v;
  262. heap_sift(h, 0, size);
  263. }
  264. len[2*size-2] = 0;
  265. for(i=2*size-3; i>=size; i--)
  266. len[i] = len[up[i]] + 1;
  267. for(i=0; i<size; i++) {
  268. dst[i] = len[up[i]] + 1;
  269. if(dst[i] >= 32) break;
  270. }
  271. if(i==size) break;
  272. }
  273. }
  274. #endif /* CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER */
  275. static void generate_joint_tables(HYuvContext *s){
  276. uint16_t symbols[1<<VLC_BITS];
  277. uint16_t bits[1<<VLC_BITS];
  278. uint8_t len[1<<VLC_BITS];
  279. if(s->bitstream_bpp < 24){
  280. int p, i, y, u;
  281. for(p=0; p<3; p++){
  282. for(i=y=0; y<256; y++){
  283. int len0 = s->len[0][y];
  284. int limit = VLC_BITS - len0;
  285. if(limit <= 0)
  286. continue;
  287. for(u=0; u<256; u++){
  288. int len1 = s->len[p][u];
  289. if(len1 > limit)
  290. continue;
  291. len[i] = len0 + len1;
  292. bits[i] = (s->bits[0][y] << len1) + s->bits[p][u];
  293. symbols[i] = (y<<8) + u;
  294. if(symbols[i] != 0xffff) // reserved to mean "invalid"
  295. i++;
  296. }
  297. }
  298. free_vlc(&s->vlc[3+p]);
  299. init_vlc_sparse(&s->vlc[3+p], VLC_BITS, i, len, 1, 1, bits, 2, 2, symbols, 2, 2, 0);
  300. }
  301. }else{
  302. uint8_t (*map)[4] = (uint8_t(*)[4])s->pix_bgr_map;
  303. int i, b, g, r, code;
  304. int p0 = s->decorrelate;
  305. int p1 = !s->decorrelate;
  306. // restrict the range to +/-16 becaues that's pretty much guaranteed to
  307. // cover all the combinations that fit in 11 bits total, and it doesn't
  308. // matter if we miss a few rare codes.
  309. for(i=0, g=-16; g<16; g++){
  310. int len0 = s->len[p0][g&255];
  311. int limit0 = VLC_BITS - len0;
  312. if(limit0 < 2)
  313. continue;
  314. for(b=-16; b<16; b++){
  315. int len1 = s->len[p1][b&255];
  316. int limit1 = limit0 - len1;
  317. if(limit1 < 1)
  318. continue;
  319. code = (s->bits[p0][g&255] << len1) + s->bits[p1][b&255];
  320. for(r=-16; r<16; r++){
  321. int len2 = s->len[2][r&255];
  322. if(len2 > limit1)
  323. continue;
  324. len[i] = len0 + len1 + len2;
  325. bits[i] = (code << len2) + s->bits[2][r&255];
  326. if(s->decorrelate){
  327. map[i][G] = g;
  328. map[i][B] = g+b;
  329. map[i][R] = g+r;
  330. }else{
  331. map[i][B] = g;
  332. map[i][G] = b;
  333. map[i][R] = r;
  334. }
  335. i++;
  336. }
  337. }
  338. }
  339. free_vlc(&s->vlc[3]);
  340. init_vlc(&s->vlc[3], VLC_BITS, i, len, 1, 1, bits, 2, 2, 0);
  341. }
  342. }
  343. static int read_huffman_tables(HYuvContext *s, uint8_t *src, int length){
  344. GetBitContext gb;
  345. int i;
  346. init_get_bits(&gb, src, length*8);
  347. for(i=0; i<3; i++){
  348. read_len_table(s->len[i], &gb);
  349. if(generate_bits_table(s->bits[i], s->len[i])<0){
  350. return -1;
  351. }
  352. #if 0
  353. for(j=0; j<256; j++){
  354. printf("%6X, %2d, %3d\n", s->bits[i][j], s->len[i][j], j);
  355. }
  356. #endif
  357. free_vlc(&s->vlc[i]);
  358. init_vlc(&s->vlc[i], VLC_BITS, 256, s->len[i], 1, 1, s->bits[i], 4, 4, 0);
  359. }
  360. generate_joint_tables(s);
  361. return (get_bits_count(&gb)+7)/8;
  362. }
  363. static int read_old_huffman_tables(HYuvContext *s){
  364. #if 1
  365. GetBitContext gb;
  366. int i;
  367. init_get_bits(&gb, classic_shift_luma, sizeof(classic_shift_luma)*8);
  368. read_len_table(s->len[0], &gb);
  369. init_get_bits(&gb, classic_shift_chroma, sizeof(classic_shift_chroma)*8);
  370. read_len_table(s->len[1], &gb);
  371. for(i=0; i<256; i++) s->bits[0][i] = classic_add_luma [i];
  372. for(i=0; i<256; i++) s->bits[1][i] = classic_add_chroma[i];
  373. if(s->bitstream_bpp >= 24){
  374. memcpy(s->bits[1], s->bits[0], 256*sizeof(uint32_t));
  375. memcpy(s->len[1] , s->len [0], 256*sizeof(uint8_t));
  376. }
  377. memcpy(s->bits[2], s->bits[1], 256*sizeof(uint32_t));
  378. memcpy(s->len[2] , s->len [1], 256*sizeof(uint8_t));
  379. for(i=0; i<3; i++){
  380. free_vlc(&s->vlc[i]);
  381. init_vlc(&s->vlc[i], VLC_BITS, 256, s->len[i], 1, 1, s->bits[i], 4, 4, 0);
  382. }
  383. generate_joint_tables(s);
  384. return 0;
  385. #else
  386. av_log(s->avctx, AV_LOG_DEBUG, "v1 huffyuv is not supported \n");
  387. return -1;
  388. #endif
  389. }
  390. static av_cold void alloc_temp(HYuvContext *s){
  391. int i;
  392. if(s->bitstream_bpp<24){
  393. for(i=0; i<3; i++){
  394. s->temp[i]= av_malloc(s->width + 16);
  395. }
  396. }else{
  397. for(i=0; i<2; i++){
  398. s->temp[i]= av_malloc(4*s->width + 16);
  399. }
  400. }
  401. }
  402. static av_cold int common_init(AVCodecContext *avctx){
  403. HYuvContext *s = avctx->priv_data;
  404. s->avctx= avctx;
  405. s->flags= avctx->flags;
  406. dsputil_init(&s->dsp, avctx);
  407. s->width= avctx->width;
  408. s->height= avctx->height;
  409. assert(s->width>0 && s->height>0);
  410. return 0;
  411. }
  412. #if CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER
  413. static av_cold int decode_init(AVCodecContext *avctx)
  414. {
  415. HYuvContext *s = avctx->priv_data;
  416. common_init(avctx);
  417. memset(s->vlc, 0, 3*sizeof(VLC));
  418. avctx->coded_frame= &s->picture;
  419. s->interlaced= s->height > 288;
  420. s->bgr32=1;
  421. //if(avctx->extradata)
  422. // printf("extradata:%X, extradata_size:%d\n", *(uint32_t*)avctx->extradata, avctx->extradata_size);
  423. if(avctx->extradata_size){
  424. if((avctx->bits_per_coded_sample&7) && avctx->bits_per_coded_sample != 12)
  425. s->version=1; // do such files exist at all?
  426. else
  427. s->version=2;
  428. }else
  429. s->version=0;
  430. if(s->version==2){
  431. int method, interlace;
  432. method= ((uint8_t*)avctx->extradata)[0];
  433. s->decorrelate= method&64 ? 1 : 0;
  434. s->predictor= method&63;
  435. s->bitstream_bpp= ((uint8_t*)avctx->extradata)[1];
  436. if(s->bitstream_bpp==0)
  437. s->bitstream_bpp= avctx->bits_per_coded_sample&~7;
  438. interlace= (((uint8_t*)avctx->extradata)[2] & 0x30) >> 4;
  439. s->interlaced= (interlace==1) ? 1 : (interlace==2) ? 0 : s->interlaced;
  440. s->context= ((uint8_t*)avctx->extradata)[2] & 0x40 ? 1 : 0;
  441. if(read_huffman_tables(s, ((uint8_t*)avctx->extradata)+4, avctx->extradata_size) < 0)
  442. return -1;
  443. }else{
  444. switch(avctx->bits_per_coded_sample&7){
  445. case 1:
  446. s->predictor= LEFT;
  447. s->decorrelate= 0;
  448. break;
  449. case 2:
  450. s->predictor= LEFT;
  451. s->decorrelate= 1;
  452. break;
  453. case 3:
  454. s->predictor= PLANE;
  455. s->decorrelate= avctx->bits_per_coded_sample >= 24;
  456. break;
  457. case 4:
  458. s->predictor= MEDIAN;
  459. s->decorrelate= 0;
  460. break;
  461. default:
  462. s->predictor= LEFT; //OLD
  463. s->decorrelate= 0;
  464. break;
  465. }
  466. s->bitstream_bpp= avctx->bits_per_coded_sample & ~7;
  467. s->context= 0;
  468. if(read_old_huffman_tables(s) < 0)
  469. return -1;
  470. }
  471. switch(s->bitstream_bpp){
  472. case 12:
  473. avctx->pix_fmt = PIX_FMT_YUV420P;
  474. break;
  475. case 16:
  476. if(s->yuy2){
  477. avctx->pix_fmt = PIX_FMT_YUYV422;
  478. }else{
  479. avctx->pix_fmt = PIX_FMT_YUV422P;
  480. }
  481. break;
  482. case 24:
  483. case 32:
  484. if(s->bgr32){
  485. avctx->pix_fmt = PIX_FMT_RGB32;
  486. }else{
  487. avctx->pix_fmt = PIX_FMT_BGR24;
  488. }
  489. break;
  490. default:
  491. assert(0);
  492. }
  493. alloc_temp(s);
  494. // av_log(NULL, AV_LOG_DEBUG, "pred:%d bpp:%d hbpp:%d il:%d\n", s->predictor, s->bitstream_bpp, avctx->bits_per_coded_sample, s->interlaced);
  495. return 0;
  496. }
  497. #endif /* CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER */
  498. #if CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER
  499. static int store_table(HYuvContext *s, uint8_t *len, uint8_t *buf){
  500. int i;
  501. int index= 0;
  502. for(i=0; i<256;){
  503. int val= len[i];
  504. int repeat=0;
  505. for(; i<256 && len[i]==val && repeat<255; i++)
  506. repeat++;
  507. assert(val < 32 && val >0 && repeat<256 && repeat>0);
  508. if(repeat>7){
  509. buf[index++]= val;
  510. buf[index++]= repeat;
  511. }else{
  512. buf[index++]= val | (repeat<<5);
  513. }
  514. }
  515. return index;
  516. }
  517. static av_cold int encode_init(AVCodecContext *avctx)
  518. {
  519. HYuvContext *s = avctx->priv_data;
  520. int i, j;
  521. common_init(avctx);
  522. avctx->extradata= av_mallocz(1024*30); // 256*3+4 == 772
  523. avctx->stats_out= av_mallocz(1024*30); // 21*256*3(%llu ) + 3(\n) + 1(0) = 16132
  524. s->version=2;
  525. avctx->coded_frame= &s->picture;
  526. switch(avctx->pix_fmt){
  527. case PIX_FMT_YUV420P:
  528. s->bitstream_bpp= 12;
  529. break;
  530. case PIX_FMT_YUV422P:
  531. s->bitstream_bpp= 16;
  532. break;
  533. case PIX_FMT_RGB32:
  534. s->bitstream_bpp= 24;
  535. break;
  536. default:
  537. av_log(avctx, AV_LOG_ERROR, "format not supported\n");
  538. return -1;
  539. }
  540. avctx->bits_per_coded_sample= s->bitstream_bpp;
  541. s->decorrelate= s->bitstream_bpp >= 24;
  542. s->predictor= avctx->prediction_method;
  543. s->interlaced= avctx->flags&CODEC_FLAG_INTERLACED_ME ? 1 : 0;
  544. if(avctx->context_model==1){
  545. s->context= avctx->context_model;
  546. if(s->flags & (CODEC_FLAG_PASS1|CODEC_FLAG_PASS2)){
  547. av_log(avctx, AV_LOG_ERROR, "context=1 is not compatible with 2 pass huffyuv encoding\n");
  548. return -1;
  549. }
  550. }else s->context= 0;
  551. if(avctx->codec->id==CODEC_ID_HUFFYUV){
  552. if(avctx->pix_fmt==PIX_FMT_YUV420P){
  553. av_log(avctx, AV_LOG_ERROR, "Error: YV12 is not supported by huffyuv; use vcodec=ffvhuff or format=422p\n");
  554. return -1;
  555. }
  556. if(avctx->context_model){
  557. av_log(avctx, AV_LOG_ERROR, "Error: per-frame huffman tables are not supported by huffyuv; use vcodec=ffvhuff\n");
  558. return -1;
  559. }
  560. if(s->interlaced != ( s->height > 288 ))
  561. av_log(avctx, AV_LOG_INFO, "using huffyuv 2.2.0 or newer interlacing flag\n");
  562. }
  563. if(s->bitstream_bpp>=24 && s->predictor==MEDIAN){
  564. av_log(avctx, AV_LOG_ERROR, "Error: RGB is incompatible with median predictor\n");
  565. return -1;
  566. }
  567. ((uint8_t*)avctx->extradata)[0]= s->predictor | (s->decorrelate << 6);
  568. ((uint8_t*)avctx->extradata)[1]= s->bitstream_bpp;
  569. ((uint8_t*)avctx->extradata)[2]= s->interlaced ? 0x10 : 0x20;
  570. if(s->context)
  571. ((uint8_t*)avctx->extradata)[2]|= 0x40;
  572. ((uint8_t*)avctx->extradata)[3]= 0;
  573. s->avctx->extradata_size= 4;
  574. if(avctx->stats_in){
  575. char *p= avctx->stats_in;
  576. for(i=0; i<3; i++)
  577. for(j=0; j<256; j++)
  578. s->stats[i][j]= 1;
  579. for(;;){
  580. for(i=0; i<3; i++){
  581. char *next;
  582. for(j=0; j<256; j++){
  583. s->stats[i][j]+= strtol(p, &next, 0);
  584. if(next==p) return -1;
  585. p=next;
  586. }
  587. }
  588. if(p[0]==0 || p[1]==0 || p[2]==0) break;
  589. }
  590. }else{
  591. for(i=0; i<3; i++)
  592. for(j=0; j<256; j++){
  593. int d= FFMIN(j, 256-j);
  594. s->stats[i][j]= 100000000/(d+1);
  595. }
  596. }
  597. for(i=0; i<3; i++){
  598. generate_len_table(s->len[i], s->stats[i], 256);
  599. if(generate_bits_table(s->bits[i], s->len[i])<0){
  600. return -1;
  601. }
  602. s->avctx->extradata_size+=
  603. store_table(s, s->len[i], &((uint8_t*)s->avctx->extradata)[s->avctx->extradata_size]);
  604. }
  605. if(s->context){
  606. for(i=0; i<3; i++){
  607. int pels = s->width*s->height / (i?40:10);
  608. for(j=0; j<256; j++){
  609. int d= FFMIN(j, 256-j);
  610. s->stats[i][j]= pels/(d+1);
  611. }
  612. }
  613. }else{
  614. for(i=0; i<3; i++)
  615. for(j=0; j<256; j++)
  616. s->stats[i][j]= 0;
  617. }
  618. // printf("pred:%d bpp:%d hbpp:%d il:%d\n", s->predictor, s->bitstream_bpp, avctx->bits_per_coded_sample, s->interlaced);
  619. alloc_temp(s);
  620. s->picture_number=0;
  621. return 0;
  622. }
  623. #endif /* CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER */
  624. /* TODO instead of restarting the read when the code isn't in the first level
  625. * of the joint table, jump into the 2nd level of the individual table. */
  626. #define READ_2PIX(dst0, dst1, plane1){\
  627. uint16_t code = get_vlc2(&s->gb, s->vlc[3+plane1].table, VLC_BITS, 1);\
  628. if(code != 0xffff){\
  629. dst0 = code>>8;\
  630. dst1 = code;\
  631. }else{\
  632. dst0 = get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);\
  633. dst1 = get_vlc2(&s->gb, s->vlc[plane1].table, VLC_BITS, 3);\
  634. }\
  635. }
  636. static void decode_422_bitstream(HYuvContext *s, int count){
  637. int i;
  638. count/=2;
  639. for(i=0; i<count; i++){
  640. READ_2PIX(s->temp[0][2*i ], s->temp[1][i], 1);
  641. READ_2PIX(s->temp[0][2*i+1], s->temp[2][i], 2);
  642. }
  643. }
  644. static void decode_gray_bitstream(HYuvContext *s, int count){
  645. int i;
  646. count/=2;
  647. for(i=0; i<count; i++){
  648. READ_2PIX(s->temp[0][2*i ], s->temp[0][2*i+1], 0);
  649. }
  650. }
  651. #if CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER
  652. static int encode_422_bitstream(HYuvContext *s, int count){
  653. int i;
  654. if(s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb)>>3) < 2*4*count){
  655. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  656. return -1;
  657. }
  658. #define LOAD4\
  659. int y0 = s->temp[0][2*i];\
  660. int y1 = s->temp[0][2*i+1];\
  661. int u0 = s->temp[1][i];\
  662. int v0 = s->temp[2][i];
  663. count/=2;
  664. if(s->flags&CODEC_FLAG_PASS1){
  665. for(i=0; i<count; i++){
  666. LOAD4;
  667. s->stats[0][y0]++;
  668. s->stats[1][u0]++;
  669. s->stats[0][y1]++;
  670. s->stats[2][v0]++;
  671. }
  672. }
  673. if(s->avctx->flags2&CODEC_FLAG2_NO_OUTPUT)
  674. return 0;
  675. if(s->context){
  676. for(i=0; i<count; i++){
  677. LOAD4;
  678. s->stats[0][y0]++;
  679. put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);
  680. s->stats[1][u0]++;
  681. put_bits(&s->pb, s->len[1][u0], s->bits[1][u0]);
  682. s->stats[0][y1]++;
  683. put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
  684. s->stats[2][v0]++;
  685. put_bits(&s->pb, s->len[2][v0], s->bits[2][v0]);
  686. }
  687. }else{
  688. for(i=0; i<count; i++){
  689. LOAD4;
  690. put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);
  691. put_bits(&s->pb, s->len[1][u0], s->bits[1][u0]);
  692. put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
  693. put_bits(&s->pb, s->len[2][v0], s->bits[2][v0]);
  694. }
  695. }
  696. return 0;
  697. }
  698. static int encode_gray_bitstream(HYuvContext *s, int count){
  699. int i;
  700. if(s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb)>>3) < 4*count){
  701. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  702. return -1;
  703. }
  704. #define LOAD2\
  705. int y0 = s->temp[0][2*i];\
  706. int y1 = s->temp[0][2*i+1];
  707. #define STAT2\
  708. s->stats[0][y0]++;\
  709. s->stats[0][y1]++;
  710. #define WRITE2\
  711. put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);\
  712. put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
  713. count/=2;
  714. if(s->flags&CODEC_FLAG_PASS1){
  715. for(i=0; i<count; i++){
  716. LOAD2;
  717. STAT2;
  718. }
  719. }
  720. if(s->avctx->flags2&CODEC_FLAG2_NO_OUTPUT)
  721. return 0;
  722. if(s->context){
  723. for(i=0; i<count; i++){
  724. LOAD2;
  725. STAT2;
  726. WRITE2;
  727. }
  728. }else{
  729. for(i=0; i<count; i++){
  730. LOAD2;
  731. WRITE2;
  732. }
  733. }
  734. return 0;
  735. }
  736. #endif /* CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER */
  737. static av_always_inline void decode_bgr_1(HYuvContext *s, int count, int decorrelate, int alpha){
  738. int i;
  739. for(i=0; i<count; i++){
  740. int code = get_vlc2(&s->gb, s->vlc[3].table, VLC_BITS, 1);
  741. if(code != -1){
  742. *(uint32_t*)&s->temp[0][4*i] = s->pix_bgr_map[code];
  743. }else if(decorrelate){
  744. s->temp[0][4*i+G] = get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  745. s->temp[0][4*i+B] = get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3) + s->temp[0][4*i+G];
  746. s->temp[0][4*i+R] = get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3) + s->temp[0][4*i+G];
  747. }else{
  748. s->temp[0][4*i+B] = get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  749. s->temp[0][4*i+G] = get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  750. s->temp[0][4*i+R] = get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3);
  751. }
  752. if(alpha)
  753. get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3); //?!
  754. }
  755. }
  756. static void decode_bgr_bitstream(HYuvContext *s, int count){
  757. if(s->decorrelate){
  758. if(s->bitstream_bpp==24)
  759. decode_bgr_1(s, count, 1, 0);
  760. else
  761. decode_bgr_1(s, count, 1, 1);
  762. }else{
  763. if(s->bitstream_bpp==24)
  764. decode_bgr_1(s, count, 0, 0);
  765. else
  766. decode_bgr_1(s, count, 0, 1);
  767. }
  768. }
  769. static int encode_bgr_bitstream(HYuvContext *s, int count){
  770. int i;
  771. if(s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb)>>3) < 3*4*count){
  772. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  773. return -1;
  774. }
  775. #define LOAD3\
  776. int g= s->temp[0][4*i+G];\
  777. int b= (s->temp[0][4*i+B] - g) & 0xff;\
  778. int r= (s->temp[0][4*i+R] - g) & 0xff;
  779. #define STAT3\
  780. s->stats[0][b]++;\
  781. s->stats[1][g]++;\
  782. s->stats[2][r]++;
  783. #define WRITE3\
  784. put_bits(&s->pb, s->len[1][g], s->bits[1][g]);\
  785. put_bits(&s->pb, s->len[0][b], s->bits[0][b]);\
  786. put_bits(&s->pb, s->len[2][r], s->bits[2][r]);
  787. if((s->flags&CODEC_FLAG_PASS1) && (s->avctx->flags2&CODEC_FLAG2_NO_OUTPUT)){
  788. for(i=0; i<count; i++){
  789. LOAD3;
  790. STAT3;
  791. }
  792. }else if(s->context || (s->flags&CODEC_FLAG_PASS1)){
  793. for(i=0; i<count; i++){
  794. LOAD3;
  795. STAT3;
  796. WRITE3;
  797. }
  798. }else{
  799. for(i=0; i<count; i++){
  800. LOAD3;
  801. WRITE3;
  802. }
  803. }
  804. return 0;
  805. }
  806. #if CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER
  807. static void draw_slice(HYuvContext *s, int y){
  808. int h, cy;
  809. int offset[4];
  810. if(s->avctx->draw_horiz_band==NULL)
  811. return;
  812. h= y - s->last_slice_end;
  813. y -= h;
  814. if(s->bitstream_bpp==12){
  815. cy= y>>1;
  816. }else{
  817. cy= y;
  818. }
  819. offset[0] = s->picture.linesize[0]*y;
  820. offset[1] = s->picture.linesize[1]*cy;
  821. offset[2] = s->picture.linesize[2]*cy;
  822. offset[3] = 0;
  823. emms_c();
  824. s->avctx->draw_horiz_band(s->avctx, &s->picture, offset, y, 3, h);
  825. s->last_slice_end= y + h;
  826. }
  827. static int decode_frame(AVCodecContext *avctx, void *data, int *data_size, AVPacket *avpkt){
  828. const uint8_t *buf = avpkt->data;
  829. int buf_size = avpkt->size;
  830. HYuvContext *s = avctx->priv_data;
  831. const int width= s->width;
  832. const int width2= s->width>>1;
  833. const int height= s->height;
  834. int fake_ystride, fake_ustride, fake_vstride;
  835. AVFrame * const p= &s->picture;
  836. int table_size= 0;
  837. AVFrame *picture = data;
  838. av_fast_malloc(&s->bitstream_buffer, &s->bitstream_buffer_size, buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
  839. if (!s->bitstream_buffer)
  840. return AVERROR(ENOMEM);
  841. s->dsp.bswap_buf((uint32_t*)s->bitstream_buffer, (const uint32_t*)buf, buf_size/4);
  842. if(p->data[0])
  843. avctx->release_buffer(avctx, p);
  844. p->reference= 0;
  845. if(avctx->get_buffer(avctx, p) < 0){
  846. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  847. return -1;
  848. }
  849. if(s->context){
  850. table_size = read_huffman_tables(s, s->bitstream_buffer, buf_size);
  851. if(table_size < 0)
  852. return -1;
  853. }
  854. if((unsigned)(buf_size-table_size) >= INT_MAX/8)
  855. return -1;
  856. init_get_bits(&s->gb, s->bitstream_buffer+table_size, (buf_size-table_size)*8);
  857. fake_ystride= s->interlaced ? p->linesize[0]*2 : p->linesize[0];
  858. fake_ustride= s->interlaced ? p->linesize[1]*2 : p->linesize[1];
  859. fake_vstride= s->interlaced ? p->linesize[2]*2 : p->linesize[2];
  860. s->last_slice_end= 0;
  861. if(s->bitstream_bpp<24){
  862. int y, cy;
  863. int lefty, leftu, leftv;
  864. int lefttopy, lefttopu, lefttopv;
  865. if(s->yuy2){
  866. p->data[0][3]= get_bits(&s->gb, 8);
  867. p->data[0][2]= get_bits(&s->gb, 8);
  868. p->data[0][1]= get_bits(&s->gb, 8);
  869. p->data[0][0]= get_bits(&s->gb, 8);
  870. av_log(avctx, AV_LOG_ERROR, "YUY2 output is not implemented yet\n");
  871. return -1;
  872. }else{
  873. leftv= p->data[2][0]= get_bits(&s->gb, 8);
  874. lefty= p->data[0][1]= get_bits(&s->gb, 8);
  875. leftu= p->data[1][0]= get_bits(&s->gb, 8);
  876. p->data[0][0]= get_bits(&s->gb, 8);
  877. switch(s->predictor){
  878. case LEFT:
  879. case PLANE:
  880. decode_422_bitstream(s, width-2);
  881. lefty= add_left_prediction(p->data[0] + 2, s->temp[0], width-2, lefty);
  882. if(!(s->flags&CODEC_FLAG_GRAY)){
  883. leftu= add_left_prediction(p->data[1] + 1, s->temp[1], width2-1, leftu);
  884. leftv= add_left_prediction(p->data[2] + 1, s->temp[2], width2-1, leftv);
  885. }
  886. for(cy=y=1; y<s->height; y++,cy++){
  887. uint8_t *ydst, *udst, *vdst;
  888. if(s->bitstream_bpp==12){
  889. decode_gray_bitstream(s, width);
  890. ydst= p->data[0] + p->linesize[0]*y;
  891. lefty= add_left_prediction(ydst, s->temp[0], width, lefty);
  892. if(s->predictor == PLANE){
  893. if(y>s->interlaced)
  894. s->dsp.add_bytes(ydst, ydst - fake_ystride, width);
  895. }
  896. y++;
  897. if(y>=s->height) break;
  898. }
  899. draw_slice(s, y);
  900. ydst= p->data[0] + p->linesize[0]*y;
  901. udst= p->data[1] + p->linesize[1]*cy;
  902. vdst= p->data[2] + p->linesize[2]*cy;
  903. decode_422_bitstream(s, width);
  904. lefty= add_left_prediction(ydst, s->temp[0], width, lefty);
  905. if(!(s->flags&CODEC_FLAG_GRAY)){
  906. leftu= add_left_prediction(udst, s->temp[1], width2, leftu);
  907. leftv= add_left_prediction(vdst, s->temp[2], width2, leftv);
  908. }
  909. if(s->predictor == PLANE){
  910. if(cy>s->interlaced){
  911. s->dsp.add_bytes(ydst, ydst - fake_ystride, width);
  912. if(!(s->flags&CODEC_FLAG_GRAY)){
  913. s->dsp.add_bytes(udst, udst - fake_ustride, width2);
  914. s->dsp.add_bytes(vdst, vdst - fake_vstride, width2);
  915. }
  916. }
  917. }
  918. }
  919. draw_slice(s, height);
  920. break;
  921. case MEDIAN:
  922. /* first line except first 2 pixels is left predicted */
  923. decode_422_bitstream(s, width-2);
  924. lefty= add_left_prediction(p->data[0] + 2, s->temp[0], width-2, lefty);
  925. if(!(s->flags&CODEC_FLAG_GRAY)){
  926. leftu= add_left_prediction(p->data[1] + 1, s->temp[1], width2-1, leftu);
  927. leftv= add_left_prediction(p->data[2] + 1, s->temp[2], width2-1, leftv);
  928. }
  929. cy=y=1;
  930. /* second line is left predicted for interlaced case */
  931. if(s->interlaced){
  932. decode_422_bitstream(s, width);
  933. lefty= add_left_prediction(p->data[0] + p->linesize[0], s->temp[0], width, lefty);
  934. if(!(s->flags&CODEC_FLAG_GRAY)){
  935. leftu= add_left_prediction(p->data[1] + p->linesize[2], s->temp[1], width2, leftu);
  936. leftv= add_left_prediction(p->data[2] + p->linesize[1], s->temp[2], width2, leftv);
  937. }
  938. y++; cy++;
  939. }
  940. /* next 4 pixels are left predicted too */
  941. decode_422_bitstream(s, 4);
  942. lefty= add_left_prediction(p->data[0] + fake_ystride, s->temp[0], 4, lefty);
  943. if(!(s->flags&CODEC_FLAG_GRAY)){
  944. leftu= add_left_prediction(p->data[1] + fake_ustride, s->temp[1], 2, leftu);
  945. leftv= add_left_prediction(p->data[2] + fake_vstride, s->temp[2], 2, leftv);
  946. }
  947. /* next line except the first 4 pixels is median predicted */
  948. lefttopy= p->data[0][3];
  949. decode_422_bitstream(s, width-4);
  950. s->dsp.add_hfyu_median_prediction(p->data[0] + fake_ystride+4, p->data[0]+4, s->temp[0], width-4, &lefty, &lefttopy);
  951. if(!(s->flags&CODEC_FLAG_GRAY)){
  952. lefttopu= p->data[1][1];
  953. lefttopv= p->data[2][1];
  954. s->dsp.add_hfyu_median_prediction(p->data[1] + fake_ustride+2, p->data[1]+2, s->temp[1], width2-2, &leftu, &lefttopu);
  955. s->dsp.add_hfyu_median_prediction(p->data[2] + fake_vstride+2, p->data[2]+2, s->temp[2], width2-2, &leftv, &lefttopv);
  956. }
  957. y++; cy++;
  958. for(; y<height; y++,cy++){
  959. uint8_t *ydst, *udst, *vdst;
  960. if(s->bitstream_bpp==12){
  961. while(2*cy > y){
  962. decode_gray_bitstream(s, width);
  963. ydst= p->data[0] + p->linesize[0]*y;
  964. s->dsp.add_hfyu_median_prediction(ydst, ydst - fake_ystride, s->temp[0], width, &lefty, &lefttopy);
  965. y++;
  966. }
  967. if(y>=height) break;
  968. }
  969. draw_slice(s, y);
  970. decode_422_bitstream(s, width);
  971. ydst= p->data[0] + p->linesize[0]*y;
  972. udst= p->data[1] + p->linesize[1]*cy;
  973. vdst= p->data[2] + p->linesize[2]*cy;
  974. s->dsp.add_hfyu_median_prediction(ydst, ydst - fake_ystride, s->temp[0], width, &lefty, &lefttopy);
  975. if(!(s->flags&CODEC_FLAG_GRAY)){
  976. s->dsp.add_hfyu_median_prediction(udst, udst - fake_ustride, s->temp[1], width2, &leftu, &lefttopu);
  977. s->dsp.add_hfyu_median_prediction(vdst, vdst - fake_vstride, s->temp[2], width2, &leftv, &lefttopv);
  978. }
  979. }
  980. draw_slice(s, height);
  981. break;
  982. }
  983. }
  984. }else{
  985. int y;
  986. int leftr, leftg, leftb;
  987. const int last_line= (height-1)*p->linesize[0];
  988. if(s->bitstream_bpp==32){
  989. skip_bits(&s->gb, 8);
  990. leftr= p->data[0][last_line+R]= get_bits(&s->gb, 8);
  991. leftg= p->data[0][last_line+G]= get_bits(&s->gb, 8);
  992. leftb= p->data[0][last_line+B]= get_bits(&s->gb, 8);
  993. }else{
  994. leftr= p->data[0][last_line+R]= get_bits(&s->gb, 8);
  995. leftg= p->data[0][last_line+G]= get_bits(&s->gb, 8);
  996. leftb= p->data[0][last_line+B]= get_bits(&s->gb, 8);
  997. skip_bits(&s->gb, 8);
  998. }
  999. if(s->bgr32){
  1000. switch(s->predictor){
  1001. case LEFT:
  1002. case PLANE:
  1003. decode_bgr_bitstream(s, width-1);
  1004. add_left_prediction_bgr32(p->data[0] + last_line+4, s->temp[0], width-1, &leftr, &leftg, &leftb);
  1005. for(y=s->height-2; y>=0; y--){ //Yes it is stored upside down.
  1006. decode_bgr_bitstream(s, width);
  1007. add_left_prediction_bgr32(p->data[0] + p->linesize[0]*y, s->temp[0], width, &leftr, &leftg, &leftb);
  1008. if(s->predictor == PLANE){
  1009. if((y&s->interlaced)==0 && y<s->height-1-s->interlaced){
  1010. s->dsp.add_bytes(p->data[0] + p->linesize[0]*y,
  1011. p->data[0] + p->linesize[0]*y + fake_ystride, fake_ystride);
  1012. }
  1013. }
  1014. }
  1015. draw_slice(s, height); // just 1 large slice as this is not possible in reverse order
  1016. break;
  1017. default:
  1018. av_log(avctx, AV_LOG_ERROR, "prediction type not supported!\n");
  1019. }
  1020. }else{
  1021. av_log(avctx, AV_LOG_ERROR, "BGR24 output is not implemented yet\n");
  1022. return -1;
  1023. }
  1024. }
  1025. emms_c();
  1026. *picture= *p;
  1027. *data_size = sizeof(AVFrame);
  1028. return (get_bits_count(&s->gb)+31)/32*4 + table_size;
  1029. }
  1030. #endif /* CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER */
  1031. static int common_end(HYuvContext *s){
  1032. int i;
  1033. for(i=0; i<3; i++){
  1034. av_freep(&s->temp[i]);
  1035. }
  1036. return 0;
  1037. }
  1038. #if CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER
  1039. static av_cold int decode_end(AVCodecContext *avctx)
  1040. {
  1041. HYuvContext *s = avctx->priv_data;
  1042. int i;
  1043. common_end(s);
  1044. av_freep(&s->bitstream_buffer);
  1045. for(i=0; i<6; i++){
  1046. free_vlc(&s->vlc[i]);
  1047. }
  1048. return 0;
  1049. }
  1050. #endif /* CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER */
  1051. #if CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER
  1052. static int encode_frame(AVCodecContext *avctx, unsigned char *buf, int buf_size, void *data){
  1053. HYuvContext *s = avctx->priv_data;
  1054. AVFrame *pict = data;
  1055. const int width= s->width;
  1056. const int width2= s->width>>1;
  1057. const int height= s->height;
  1058. const int fake_ystride= s->interlaced ? pict->linesize[0]*2 : pict->linesize[0];
  1059. const int fake_ustride= s->interlaced ? pict->linesize[1]*2 : pict->linesize[1];
  1060. const int fake_vstride= s->interlaced ? pict->linesize[2]*2 : pict->linesize[2];
  1061. AVFrame * const p= &s->picture;
  1062. int i, j, size=0;
  1063. *p = *pict;
  1064. p->pict_type= FF_I_TYPE;
  1065. p->key_frame= 1;
  1066. if(s->context){
  1067. for(i=0; i<3; i++){
  1068. generate_len_table(s->len[i], s->stats[i], 256);
  1069. if(generate_bits_table(s->bits[i], s->len[i])<0)
  1070. return -1;
  1071. size+= store_table(s, s->len[i], &buf[size]);
  1072. }
  1073. for(i=0; i<3; i++)
  1074. for(j=0; j<256; j++)
  1075. s->stats[i][j] >>= 1;
  1076. }
  1077. init_put_bits(&s->pb, buf+size, buf_size-size);
  1078. if(avctx->pix_fmt == PIX_FMT_YUV422P || avctx->pix_fmt == PIX_FMT_YUV420P){
  1079. int lefty, leftu, leftv, y, cy;
  1080. put_bits(&s->pb, 8, leftv= p->data[2][0]);
  1081. put_bits(&s->pb, 8, lefty= p->data[0][1]);
  1082. put_bits(&s->pb, 8, leftu= p->data[1][0]);
  1083. put_bits(&s->pb, 8, p->data[0][0]);
  1084. lefty= sub_left_prediction(s, s->temp[0], p->data[0]+2, width-2 , lefty);
  1085. leftu= sub_left_prediction(s, s->temp[1], p->data[1]+1, width2-1, leftu);
  1086. leftv= sub_left_prediction(s, s->temp[2], p->data[2]+1, width2-1, leftv);
  1087. encode_422_bitstream(s, width-2);
  1088. if(s->predictor==MEDIAN){
  1089. int lefttopy, lefttopu, lefttopv;
  1090. cy=y=1;
  1091. if(s->interlaced){
  1092. lefty= sub_left_prediction(s, s->temp[0], p->data[0]+p->linesize[0], width , lefty);
  1093. leftu= sub_left_prediction(s, s->temp[1], p->data[1]+p->linesize[1], width2, leftu);
  1094. leftv= sub_left_prediction(s, s->temp[2], p->data[2]+p->linesize[2], width2, leftv);
  1095. encode_422_bitstream(s, width);
  1096. y++; cy++;
  1097. }
  1098. lefty= sub_left_prediction(s, s->temp[0], p->data[0]+fake_ystride, 4, lefty);
  1099. leftu= sub_left_prediction(s, s->temp[1], p->data[1]+fake_ustride, 2, leftu);
  1100. leftv= sub_left_prediction(s, s->temp[2], p->data[2]+fake_vstride, 2, leftv);
  1101. encode_422_bitstream(s, 4);
  1102. lefttopy= p->data[0][3];
  1103. lefttopu= p->data[1][1];
  1104. lefttopv= p->data[2][1];
  1105. s->dsp.sub_hfyu_median_prediction(s->temp[0], p->data[0]+4, p->data[0] + fake_ystride+4, width-4 , &lefty, &lefttopy);
  1106. s->dsp.sub_hfyu_median_prediction(s->temp[1], p->data[1]+2, p->data[1] + fake_ustride+2, width2-2, &leftu, &lefttopu);
  1107. s->dsp.sub_hfyu_median_prediction(s->temp[2], p->data[2]+2, p->data[2] + fake_vstride+2, width2-2, &leftv, &lefttopv);
  1108. encode_422_bitstream(s, width-4);
  1109. y++; cy++;
  1110. for(; y<height; y++,cy++){
  1111. uint8_t *ydst, *udst, *vdst;
  1112. if(s->bitstream_bpp==12){
  1113. while(2*cy > y){
  1114. ydst= p->data[0] + p->linesize[0]*y;
  1115. s->dsp.sub_hfyu_median_prediction(s->temp[0], ydst - fake_ystride, ydst, width , &lefty, &lefttopy);
  1116. encode_gray_bitstream(s, width);
  1117. y++;
  1118. }
  1119. if(y>=height) break;
  1120. }
  1121. ydst= p->data[0] + p->linesize[0]*y;
  1122. udst= p->data[1] + p->linesize[1]*cy;
  1123. vdst= p->data[2] + p->linesize[2]*cy;
  1124. s->dsp.sub_hfyu_median_prediction(s->temp[0], ydst - fake_ystride, ydst, width , &lefty, &lefttopy);
  1125. s->dsp.sub_hfyu_median_prediction(s->temp[1], udst - fake_ustride, udst, width2, &leftu, &lefttopu);
  1126. s->dsp.sub_hfyu_median_prediction(s->temp[2], vdst - fake_vstride, vdst, width2, &leftv, &lefttopv);
  1127. encode_422_bitstream(s, width);
  1128. }
  1129. }else{
  1130. for(cy=y=1; y<height; y++,cy++){
  1131. uint8_t *ydst, *udst, *vdst;
  1132. /* encode a luma only line & y++ */
  1133. if(s->bitstream_bpp==12){
  1134. ydst= p->data[0] + p->linesize[0]*y;
  1135. if(s->predictor == PLANE && s->interlaced < y){
  1136. s->dsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
  1137. lefty= sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
  1138. }else{
  1139. lefty= sub_left_prediction(s, s->temp[0], ydst, width , lefty);
  1140. }
  1141. encode_gray_bitstream(s, width);
  1142. y++;
  1143. if(y>=height) break;
  1144. }
  1145. ydst= p->data[0] + p->linesize[0]*y;
  1146. udst= p->data[1] + p->linesize[1]*cy;
  1147. vdst= p->data[2] + p->linesize[2]*cy;
  1148. if(s->predictor == PLANE && s->interlaced < cy){
  1149. s->dsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
  1150. s->dsp.diff_bytes(s->temp[2], udst, udst - fake_ustride, width2);
  1151. s->dsp.diff_bytes(s->temp[2] + width2, vdst, vdst - fake_vstride, width2);
  1152. lefty= sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
  1153. leftu= sub_left_prediction(s, s->temp[1], s->temp[2], width2, leftu);
  1154. leftv= sub_left_prediction(s, s->temp[2], s->temp[2] + width2, width2, leftv);
  1155. }else{
  1156. lefty= sub_left_prediction(s, s->temp[0], ydst, width , lefty);
  1157. leftu= sub_left_prediction(s, s->temp[1], udst, width2, leftu);
  1158. leftv= sub_left_prediction(s, s->temp[2], vdst, width2, leftv);
  1159. }
  1160. encode_422_bitstream(s, width);
  1161. }
  1162. }
  1163. }else if(avctx->pix_fmt == PIX_FMT_RGB32){
  1164. uint8_t *data = p->data[0] + (height-1)*p->linesize[0];
  1165. const int stride = -p->linesize[0];
  1166. const int fake_stride = -fake_ystride;
  1167. int y;
  1168. int leftr, leftg, leftb;
  1169. put_bits(&s->pb, 8, leftr= data[R]);
  1170. put_bits(&s->pb, 8, leftg= data[G]);
  1171. put_bits(&s->pb, 8, leftb= data[B]);
  1172. put_bits(&s->pb, 8, 0);
  1173. sub_left_prediction_bgr32(s, s->temp[0], data+4, width-1, &leftr, &leftg, &leftb);
  1174. encode_bgr_bitstream(s, width-1);
  1175. for(y=1; y<s->height; y++){
  1176. uint8_t *dst = data + y*stride;
  1177. if(s->predictor == PLANE && s->interlaced < y){
  1178. s->dsp.diff_bytes(s->temp[1], dst, dst - fake_stride, width*4);
  1179. sub_left_prediction_bgr32(s, s->temp[0], s->temp[1], width, &leftr, &leftg, &leftb);
  1180. }else{
  1181. sub_left_prediction_bgr32(s, s->temp[0], dst, width, &leftr, &leftg, &leftb);
  1182. }
  1183. encode_bgr_bitstream(s, width);
  1184. }
  1185. }else{
  1186. av_log(avctx, AV_LOG_ERROR, "Format not supported!\n");
  1187. }
  1188. emms_c();
  1189. size+= (put_bits_count(&s->pb)+31)/8;
  1190. put_bits(&s->pb, 16, 0);
  1191. put_bits(&s->pb, 15, 0);
  1192. size/= 4;
  1193. if((s->flags&CODEC_FLAG_PASS1) && (s->picture_number&31)==0){
  1194. int j;
  1195. char *p= avctx->stats_out;
  1196. char *end= p + 1024*30;
  1197. for(i=0; i<3; i++){
  1198. for(j=0; j<256; j++){
  1199. snprintf(p, end-p, "%"PRIu64" ", s->stats[i][j]);
  1200. p+= strlen(p);
  1201. s->stats[i][j]= 0;
  1202. }
  1203. snprintf(p, end-p, "\n");
  1204. p++;
  1205. }
  1206. } else
  1207. avctx->stats_out[0] = '\0';
  1208. if(!(s->avctx->flags2 & CODEC_FLAG2_NO_OUTPUT)){
  1209. flush_put_bits(&s->pb);
  1210. s->dsp.bswap_buf((uint32_t*)buf, (uint32_t*)buf, size);
  1211. }
  1212. s->picture_number++;
  1213. return size*4;
  1214. }
  1215. static av_cold int encode_end(AVCodecContext *avctx)
  1216. {
  1217. HYuvContext *s = avctx->priv_data;
  1218. common_end(s);
  1219. av_freep(&avctx->extradata);
  1220. av_freep(&avctx->stats_out);
  1221. return 0;
  1222. }
  1223. #endif /* CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER */
  1224. #if CONFIG_HUFFYUV_DECODER
  1225. AVCodec huffyuv_decoder = {
  1226. "huffyuv",
  1227. CODEC_TYPE_VIDEO,
  1228. CODEC_ID_HUFFYUV,
  1229. sizeof(HYuvContext),
  1230. decode_init,
  1231. NULL,
  1232. decode_end,
  1233. decode_frame,
  1234. CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND,
  1235. NULL,
  1236. .long_name = NULL_IF_CONFIG_SMALL("Huffyuv / HuffYUV"),
  1237. };
  1238. #endif
  1239. #if CONFIG_FFVHUFF_DECODER
  1240. AVCodec ffvhuff_decoder = {
  1241. "ffvhuff",
  1242. CODEC_TYPE_VIDEO,
  1243. CODEC_ID_FFVHUFF,
  1244. sizeof(HYuvContext),
  1245. decode_init,
  1246. NULL,
  1247. decode_end,
  1248. decode_frame,
  1249. CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND,
  1250. NULL,
  1251. .long_name = NULL_IF_CONFIG_SMALL("Huffyuv FFmpeg variant"),
  1252. };
  1253. #endif
  1254. #if CONFIG_HUFFYUV_ENCODER
  1255. AVCodec huffyuv_encoder = {
  1256. "huffyuv",
  1257. CODEC_TYPE_VIDEO,
  1258. CODEC_ID_HUFFYUV,
  1259. sizeof(HYuvContext),
  1260. encode_init,
  1261. encode_frame,
  1262. encode_end,
  1263. .pix_fmts= (enum PixelFormat[]){PIX_FMT_YUV422P, PIX_FMT_RGB32, PIX_FMT_NONE},
  1264. .long_name = NULL_IF_CONFIG_SMALL("Huffyuv / HuffYUV"),
  1265. };
  1266. #endif
  1267. #if CONFIG_FFVHUFF_ENCODER
  1268. AVCodec ffvhuff_encoder = {
  1269. "ffvhuff",
  1270. CODEC_TYPE_VIDEO,
  1271. CODEC_ID_FFVHUFF,
  1272. sizeof(HYuvContext),
  1273. encode_init,
  1274. encode_frame,
  1275. encode_end,
  1276. .pix_fmts= (enum PixelFormat[]){PIX_FMT_YUV420P, PIX_FMT_YUV422P, PIX_FMT_RGB32, PIX_FMT_NONE},
  1277. .long_name = NULL_IF_CONFIG_SMALL("Huffyuv FFmpeg variant"),
  1278. };
  1279. #endif