You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1569 lines
52KB

  1. /*
  2. * huffyuv codec for libavcodec
  3. *
  4. * Copyright (c) 2002-2003 Michael Niedermayer <michaelni@gmx.at>
  5. *
  6. * see http://www.pcisys.net/~melanson/codecs/huffyuv.txt for a description of
  7. * the algorithm used
  8. *
  9. * This file is part of FFmpeg.
  10. *
  11. * FFmpeg is free software; you can redistribute it and/or
  12. * modify it under the terms of the GNU Lesser General Public
  13. * License as published by the Free Software Foundation; either
  14. * version 2.1 of the License, or (at your option) any later version.
  15. *
  16. * FFmpeg is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  19. * Lesser General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU Lesser General Public
  22. * License along with FFmpeg; if not, write to the Free Software
  23. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  24. */
  25. /**
  26. * @file
  27. * huffyuv codec for libavcodec.
  28. */
  29. #include "avcodec.h"
  30. #include "get_bits.h"
  31. #include "put_bits.h"
  32. #include "dsputil.h"
  33. #include "thread.h"
  34. #define VLC_BITS 11
  35. #if HAVE_BIGENDIAN
  36. #define B 3
  37. #define G 2
  38. #define R 1
  39. #define A 0
  40. #else
  41. #define B 0
  42. #define G 1
  43. #define R 2
  44. #define A 3
  45. #endif
  46. typedef enum Predictor{
  47. LEFT= 0,
  48. PLANE,
  49. MEDIAN,
  50. } Predictor;
  51. typedef struct HYuvContext{
  52. AVCodecContext *avctx;
  53. Predictor predictor;
  54. GetBitContext gb;
  55. PutBitContext pb;
  56. int interlaced;
  57. int decorrelate;
  58. int bitstream_bpp;
  59. int version;
  60. int yuy2; //use yuy2 instead of 422P
  61. int bgr32; //use bgr32 instead of bgr24
  62. int width, height;
  63. int flags;
  64. int context;
  65. int picture_number;
  66. int last_slice_end;
  67. uint8_t *temp[3];
  68. uint64_t stats[3][256];
  69. uint8_t len[3][256];
  70. uint32_t bits[3][256];
  71. uint32_t pix_bgr_map[1<<VLC_BITS];
  72. VLC vlc[6]; //Y,U,V,YY,YU,YV
  73. AVFrame picture;
  74. uint8_t *bitstream_buffer;
  75. unsigned int bitstream_buffer_size;
  76. DSPContext dsp;
  77. }HYuvContext;
  78. #define classic_shift_luma_table_size 42
  79. static const unsigned char classic_shift_luma[classic_shift_luma_table_size + FF_INPUT_BUFFER_PADDING_SIZE] = {
  80. 34,36,35,69,135,232,9,16,10,24,11,23,12,16,13,10,14,8,15,8,
  81. 16,8,17,20,16,10,207,206,205,236,11,8,10,21,9,23,8,8,199,70,
  82. 69,68, 0,
  83. 0,0,0,0,0,0,0,0,
  84. };
  85. #define classic_shift_chroma_table_size 59
  86. static const unsigned char classic_shift_chroma[classic_shift_chroma_table_size + FF_INPUT_BUFFER_PADDING_SIZE] = {
  87. 66,36,37,38,39,40,41,75,76,77,110,239,144,81,82,83,84,85,118,183,
  88. 56,57,88,89,56,89,154,57,58,57,26,141,57,56,58,57,58,57,184,119,
  89. 214,245,116,83,82,49,80,79,78,77,44,75,41,40,39,38,37,36,34, 0,
  90. 0,0,0,0,0,0,0,0,
  91. };
  92. static const unsigned char classic_add_luma[256] = {
  93. 3, 9, 5, 12, 10, 35, 32, 29, 27, 50, 48, 45, 44, 41, 39, 37,
  94. 73, 70, 68, 65, 64, 61, 58, 56, 53, 50, 49, 46, 44, 41, 38, 36,
  95. 68, 65, 63, 61, 58, 55, 53, 51, 48, 46, 45, 43, 41, 39, 38, 36,
  96. 35, 33, 32, 30, 29, 27, 26, 25, 48, 47, 46, 44, 43, 41, 40, 39,
  97. 37, 36, 35, 34, 32, 31, 30, 28, 27, 26, 24, 23, 22, 20, 19, 37,
  98. 35, 34, 33, 31, 30, 29, 27, 26, 24, 23, 21, 20, 18, 17, 15, 29,
  99. 27, 26, 24, 22, 21, 19, 17, 16, 14, 26, 25, 23, 21, 19, 18, 16,
  100. 15, 27, 25, 23, 21, 19, 17, 16, 14, 26, 25, 23, 21, 18, 17, 14,
  101. 12, 17, 19, 13, 4, 9, 2, 11, 1, 7, 8, 0, 16, 3, 14, 6,
  102. 12, 10, 5, 15, 18, 11, 10, 13, 15, 16, 19, 20, 22, 24, 27, 15,
  103. 18, 20, 22, 24, 26, 14, 17, 20, 22, 24, 27, 15, 18, 20, 23, 25,
  104. 28, 16, 19, 22, 25, 28, 32, 36, 21, 25, 29, 33, 38, 42, 45, 49,
  105. 28, 31, 34, 37, 40, 42, 44, 47, 49, 50, 52, 54, 56, 57, 59, 60,
  106. 62, 64, 66, 67, 69, 35, 37, 39, 40, 42, 43, 45, 47, 48, 51, 52,
  107. 54, 55, 57, 59, 60, 62, 63, 66, 67, 69, 71, 72, 38, 40, 42, 43,
  108. 46, 47, 49, 51, 26, 28, 30, 31, 33, 34, 18, 19, 11, 13, 7, 8,
  109. };
  110. static const unsigned char classic_add_chroma[256] = {
  111. 3, 1, 2, 2, 2, 2, 3, 3, 7, 5, 7, 5, 8, 6, 11, 9,
  112. 7, 13, 11, 10, 9, 8, 7, 5, 9, 7, 6, 4, 7, 5, 8, 7,
  113. 11, 8, 13, 11, 19, 15, 22, 23, 20, 33, 32, 28, 27, 29, 51, 77,
  114. 43, 45, 76, 81, 46, 82, 75, 55, 56,144, 58, 80, 60, 74,147, 63,
  115. 143, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
  116. 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 27, 30, 21, 22,
  117. 17, 14, 5, 6,100, 54, 47, 50, 51, 53,106,107,108,109,110,111,
  118. 112,113,114,115, 4,117,118, 92, 94,121,122, 3,124,103, 2, 1,
  119. 0,129,130,131,120,119,126,125,136,137,138,139,140,141,142,134,
  120. 135,132,133,104, 64,101, 62, 57,102, 95, 93, 59, 61, 28, 97, 96,
  121. 52, 49, 48, 29, 32, 25, 24, 46, 23, 98, 45, 44, 43, 20, 42, 41,
  122. 19, 18, 99, 40, 15, 39, 38, 16, 13, 12, 11, 37, 10, 9, 8, 36,
  123. 7,128,127,105,123,116, 35, 34, 33,145, 31, 79, 42,146, 78, 26,
  124. 83, 48, 49, 50, 44, 47, 26, 31, 30, 18, 17, 19, 21, 24, 25, 13,
  125. 14, 16, 17, 18, 20, 21, 12, 14, 15, 9, 10, 6, 9, 6, 5, 8,
  126. 6, 12, 8, 10, 7, 9, 6, 4, 6, 2, 2, 3, 3, 3, 3, 2,
  127. };
  128. static inline int sub_left_prediction(HYuvContext *s, uint8_t *dst, const uint8_t *src, int w, int left){
  129. int i;
  130. if(w<32){
  131. for(i=0; i<w; i++){
  132. const int temp= src[i];
  133. dst[i]= temp - left;
  134. left= temp;
  135. }
  136. return left;
  137. }else{
  138. for(i=0; i<16; i++){
  139. const int temp= src[i];
  140. dst[i]= temp - left;
  141. left= temp;
  142. }
  143. s->dsp.diff_bytes(dst+16, src+16, src+15, w-16);
  144. return src[w-1];
  145. }
  146. }
  147. static inline void sub_left_prediction_bgr32(HYuvContext *s, uint8_t *dst, const uint8_t *src, int w, int *red, int *green, int *blue, int *alpha){
  148. int i;
  149. int r,g,b,a;
  150. r= *red;
  151. g= *green;
  152. b= *blue;
  153. a= *alpha;
  154. for(i=0; i<FFMIN(w,4); i++){
  155. const int rt= src[i*4+R];
  156. const int gt= src[i*4+G];
  157. const int bt= src[i*4+B];
  158. const int at= src[i*4+A];
  159. dst[i*4+R]= rt - r;
  160. dst[i*4+G]= gt - g;
  161. dst[i*4+B]= bt - b;
  162. dst[i*4+A]= at - a;
  163. r = rt;
  164. g = gt;
  165. b = bt;
  166. a = at;
  167. }
  168. s->dsp.diff_bytes(dst+16, src+16, src+12, w*4-16);
  169. *red= src[(w-1)*4+R];
  170. *green= src[(w-1)*4+G];
  171. *blue= src[(w-1)*4+B];
  172. *alpha= src[(w-1)*4+A];
  173. }
  174. static inline void sub_left_prediction_rgb24(HYuvContext *s, uint8_t *dst, const uint8_t *src, int w, int *red, int *green, int *blue){
  175. int i;
  176. int r,g,b;
  177. r= *red;
  178. g= *green;
  179. b= *blue;
  180. for(i=0; i<FFMIN(w,16); i++){
  181. const int rt= src[i*3+0];
  182. const int gt= src[i*3+1];
  183. const int bt= src[i*3+2];
  184. dst[i*3+0]= rt - r;
  185. dst[i*3+1]= gt - g;
  186. dst[i*3+2]= bt - b;
  187. r = rt;
  188. g = gt;
  189. b = bt;
  190. }
  191. s->dsp.diff_bytes(dst+48, src+48, src+48-3, w*3-48);
  192. *red= src[(w-1)*3+0];
  193. *green= src[(w-1)*3+1];
  194. *blue= src[(w-1)*3+2];
  195. }
  196. static int read_len_table(uint8_t *dst, GetBitContext *gb){
  197. int i, val, repeat;
  198. for(i=0; i<256;){
  199. repeat= get_bits(gb, 3);
  200. val = get_bits(gb, 5);
  201. if(repeat==0)
  202. repeat= get_bits(gb, 8);
  203. //printf("%d %d\n", val, repeat);
  204. if(i+repeat > 256 || get_bits_left(gb) < 0) {
  205. av_log(NULL, AV_LOG_ERROR, "Error reading huffman table\n");
  206. return -1;
  207. }
  208. while (repeat--)
  209. dst[i++] = val;
  210. }
  211. return 0;
  212. }
  213. static int generate_bits_table(uint32_t *dst, const uint8_t *len_table){
  214. int len, index;
  215. uint32_t bits=0;
  216. for(len=32; len>0; len--){
  217. for(index=0; index<256; index++){
  218. if(len_table[index]==len)
  219. dst[index]= bits++;
  220. }
  221. if(bits & 1){
  222. av_log(NULL, AV_LOG_ERROR, "Error generating huffman table\n");
  223. return -1;
  224. }
  225. bits >>= 1;
  226. }
  227. return 0;
  228. }
  229. #if CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER
  230. typedef struct {
  231. uint64_t val;
  232. int name;
  233. } HeapElem;
  234. static void heap_sift(HeapElem *h, int root, int size)
  235. {
  236. while(root*2+1 < size) {
  237. int child = root*2+1;
  238. if(child < size-1 && h[child].val > h[child+1].val)
  239. child++;
  240. if(h[root].val > h[child].val) {
  241. FFSWAP(HeapElem, h[root], h[child]);
  242. root = child;
  243. } else
  244. break;
  245. }
  246. }
  247. static void generate_len_table(uint8_t *dst, const uint64_t *stats){
  248. HeapElem h[256];
  249. int up[2*256];
  250. int len[2*256];
  251. int offset, i, next;
  252. int size = 256;
  253. for(offset=1; ; offset<<=1){
  254. for(i=0; i<size; i++){
  255. h[i].name = i;
  256. h[i].val = (stats[i] << 8) + offset;
  257. }
  258. for(i=size/2-1; i>=0; i--)
  259. heap_sift(h, i, size);
  260. for(next=size; next<size*2-1; next++){
  261. // merge the two smallest entries, and put it back in the heap
  262. uint64_t min1v = h[0].val;
  263. up[h[0].name] = next;
  264. h[0].val = INT64_MAX;
  265. heap_sift(h, 0, size);
  266. up[h[0].name] = next;
  267. h[0].name = next;
  268. h[0].val += min1v;
  269. heap_sift(h, 0, size);
  270. }
  271. len[2*size-2] = 0;
  272. for(i=2*size-3; i>=size; i--)
  273. len[i] = len[up[i]] + 1;
  274. for(i=0; i<size; i++) {
  275. dst[i] = len[up[i]] + 1;
  276. if(dst[i] >= 32) break;
  277. }
  278. if(i==size) break;
  279. }
  280. }
  281. #endif /* CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER */
  282. static void generate_joint_tables(HYuvContext *s){
  283. uint16_t symbols[1<<VLC_BITS];
  284. uint16_t bits[1<<VLC_BITS];
  285. uint8_t len[1<<VLC_BITS];
  286. if(s->bitstream_bpp < 24){
  287. int p, i, y, u;
  288. for(p=0; p<3; p++){
  289. for(i=y=0; y<256; y++){
  290. int len0 = s->len[0][y];
  291. int limit = VLC_BITS - len0;
  292. if(limit <= 0)
  293. continue;
  294. for(u=0; u<256; u++){
  295. int len1 = s->len[p][u];
  296. if(len1 > limit)
  297. continue;
  298. len[i] = len0 + len1;
  299. bits[i] = (s->bits[0][y] << len1) + s->bits[p][u];
  300. symbols[i] = (y<<8) + u;
  301. if(symbols[i] != 0xffff) // reserved to mean "invalid"
  302. i++;
  303. }
  304. }
  305. ff_free_vlc(&s->vlc[3+p]);
  306. ff_init_vlc_sparse(&s->vlc[3+p], VLC_BITS, i, len, 1, 1, bits, 2, 2, symbols, 2, 2, 0);
  307. }
  308. }else{
  309. uint8_t (*map)[4] = (uint8_t(*)[4])s->pix_bgr_map;
  310. int i, b, g, r, code;
  311. int p0 = s->decorrelate;
  312. int p1 = !s->decorrelate;
  313. // restrict the range to +/-16 becaues that's pretty much guaranteed to
  314. // cover all the combinations that fit in 11 bits total, and it doesn't
  315. // matter if we miss a few rare codes.
  316. for(i=0, g=-16; g<16; g++){
  317. int len0 = s->len[p0][g&255];
  318. int limit0 = VLC_BITS - len0;
  319. if(limit0 < 2)
  320. continue;
  321. for(b=-16; b<16; b++){
  322. int len1 = s->len[p1][b&255];
  323. int limit1 = limit0 - len1;
  324. if(limit1 < 1)
  325. continue;
  326. code = (s->bits[p0][g&255] << len1) + s->bits[p1][b&255];
  327. for(r=-16; r<16; r++){
  328. int len2 = s->len[2][r&255];
  329. if(len2 > limit1)
  330. continue;
  331. len[i] = len0 + len1 + len2;
  332. bits[i] = (code << len2) + s->bits[2][r&255];
  333. if(s->decorrelate){
  334. map[i][G] = g;
  335. map[i][B] = g+b;
  336. map[i][R] = g+r;
  337. }else{
  338. map[i][B] = g;
  339. map[i][G] = b;
  340. map[i][R] = r;
  341. }
  342. i++;
  343. }
  344. }
  345. }
  346. ff_free_vlc(&s->vlc[3]);
  347. init_vlc(&s->vlc[3], VLC_BITS, i, len, 1, 1, bits, 2, 2, 0);
  348. }
  349. }
  350. static int read_huffman_tables(HYuvContext *s, const uint8_t *src, int length){
  351. GetBitContext gb;
  352. int i;
  353. init_get_bits(&gb, src, length*8);
  354. for(i=0; i<3; i++){
  355. if(read_len_table(s->len[i], &gb)<0)
  356. return -1;
  357. if(generate_bits_table(s->bits[i], s->len[i])<0){
  358. return -1;
  359. }
  360. ff_free_vlc(&s->vlc[i]);
  361. init_vlc(&s->vlc[i], VLC_BITS, 256, s->len[i], 1, 1, s->bits[i], 4, 4, 0);
  362. }
  363. generate_joint_tables(s);
  364. return (get_bits_count(&gb)+7)/8;
  365. }
  366. static int read_old_huffman_tables(HYuvContext *s){
  367. #if 1
  368. GetBitContext gb;
  369. int i;
  370. init_get_bits(&gb, classic_shift_luma, classic_shift_luma_table_size*8);
  371. if(read_len_table(s->len[0], &gb)<0)
  372. return -1;
  373. init_get_bits(&gb, classic_shift_chroma, classic_shift_chroma_table_size*8);
  374. if(read_len_table(s->len[1], &gb)<0)
  375. return -1;
  376. for(i=0; i<256; i++) s->bits[0][i] = classic_add_luma [i];
  377. for(i=0; i<256; i++) s->bits[1][i] = classic_add_chroma[i];
  378. if(s->bitstream_bpp >= 24){
  379. memcpy(s->bits[1], s->bits[0], 256*sizeof(uint32_t));
  380. memcpy(s->len[1] , s->len [0], 256*sizeof(uint8_t));
  381. }
  382. memcpy(s->bits[2], s->bits[1], 256*sizeof(uint32_t));
  383. memcpy(s->len[2] , s->len [1], 256*sizeof(uint8_t));
  384. for(i=0; i<3; i++){
  385. ff_free_vlc(&s->vlc[i]);
  386. init_vlc(&s->vlc[i], VLC_BITS, 256, s->len[i], 1, 1, s->bits[i], 4, 4, 0);
  387. }
  388. generate_joint_tables(s);
  389. return 0;
  390. #else
  391. av_log(s->avctx, AV_LOG_DEBUG, "v1 huffyuv is not supported \n");
  392. return -1;
  393. #endif
  394. }
  395. static av_cold void alloc_temp(HYuvContext *s){
  396. int i;
  397. if(s->bitstream_bpp<24){
  398. for(i=0; i<3; i++){
  399. s->temp[i]= av_malloc(s->width + 16);
  400. }
  401. }else{
  402. s->temp[0]= av_mallocz(4*s->width + 16);
  403. }
  404. }
  405. static av_cold int common_init(AVCodecContext *avctx){
  406. HYuvContext *s = avctx->priv_data;
  407. s->avctx= avctx;
  408. s->flags= avctx->flags;
  409. ff_dsputil_init(&s->dsp, avctx);
  410. s->width= avctx->width;
  411. s->height= avctx->height;
  412. assert(s->width>0 && s->height>0);
  413. return 0;
  414. }
  415. #if CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER
  416. static av_cold int decode_init(AVCodecContext *avctx)
  417. {
  418. HYuvContext *s = avctx->priv_data;
  419. common_init(avctx);
  420. memset(s->vlc, 0, 3*sizeof(VLC));
  421. avctx->coded_frame= &s->picture;
  422. avcodec_get_frame_defaults(&s->picture);
  423. s->interlaced= s->height > 288;
  424. s->bgr32=1;
  425. //if(avctx->extradata)
  426. // printf("extradata:%X, extradata_size:%d\n", *(uint32_t*)avctx->extradata, avctx->extradata_size);
  427. if(avctx->extradata_size){
  428. if((avctx->bits_per_coded_sample&7) && avctx->bits_per_coded_sample != 12)
  429. s->version=1; // do such files exist at all?
  430. else
  431. s->version=2;
  432. }else
  433. s->version=0;
  434. if(s->version==2){
  435. int method, interlace;
  436. if (avctx->extradata_size < 4)
  437. return -1;
  438. method= ((uint8_t*)avctx->extradata)[0];
  439. s->decorrelate= method&64 ? 1 : 0;
  440. s->predictor= method&63;
  441. s->bitstream_bpp= ((uint8_t*)avctx->extradata)[1];
  442. if(s->bitstream_bpp==0)
  443. s->bitstream_bpp= avctx->bits_per_coded_sample&~7;
  444. interlace= (((uint8_t*)avctx->extradata)[2] & 0x30) >> 4;
  445. s->interlaced= (interlace==1) ? 1 : (interlace==2) ? 0 : s->interlaced;
  446. s->context= ((uint8_t*)avctx->extradata)[2] & 0x40 ? 1 : 0;
  447. if(read_huffman_tables(s, ((uint8_t*)avctx->extradata)+4, avctx->extradata_size-4) < 0)
  448. return -1;
  449. }else{
  450. switch(avctx->bits_per_coded_sample&7){
  451. case 1:
  452. s->predictor= LEFT;
  453. s->decorrelate= 0;
  454. break;
  455. case 2:
  456. s->predictor= LEFT;
  457. s->decorrelate= 1;
  458. break;
  459. case 3:
  460. s->predictor= PLANE;
  461. s->decorrelate= avctx->bits_per_coded_sample >= 24;
  462. break;
  463. case 4:
  464. s->predictor= MEDIAN;
  465. s->decorrelate= 0;
  466. break;
  467. default:
  468. s->predictor= LEFT; //OLD
  469. s->decorrelate= 0;
  470. break;
  471. }
  472. s->bitstream_bpp= avctx->bits_per_coded_sample & ~7;
  473. s->context= 0;
  474. if(read_old_huffman_tables(s) < 0)
  475. return -1;
  476. }
  477. switch(s->bitstream_bpp){
  478. case 12:
  479. avctx->pix_fmt = PIX_FMT_YUV420P;
  480. break;
  481. case 16:
  482. if(s->yuy2){
  483. avctx->pix_fmt = PIX_FMT_YUYV422;
  484. }else{
  485. avctx->pix_fmt = PIX_FMT_YUV422P;
  486. }
  487. break;
  488. case 24:
  489. case 32:
  490. if(s->bgr32){
  491. avctx->pix_fmt = PIX_FMT_RGB32;
  492. }else{
  493. avctx->pix_fmt = PIX_FMT_BGR24;
  494. }
  495. break;
  496. default:
  497. return AVERROR_INVALIDDATA;
  498. }
  499. alloc_temp(s);
  500. // av_log(NULL, AV_LOG_DEBUG, "pred:%d bpp:%d hbpp:%d il:%d\n", s->predictor, s->bitstream_bpp, avctx->bits_per_coded_sample, s->interlaced);
  501. return 0;
  502. }
  503. static av_cold int decode_init_thread_copy(AVCodecContext *avctx)
  504. {
  505. HYuvContext *s = avctx->priv_data;
  506. int i;
  507. avctx->coded_frame= &s->picture;
  508. alloc_temp(s);
  509. for (i = 0; i < 6; i++)
  510. s->vlc[i].table = NULL;
  511. if(s->version==2){
  512. if(read_huffman_tables(s, ((uint8_t*)avctx->extradata)+4, avctx->extradata_size) < 0)
  513. return -1;
  514. }else{
  515. if(read_old_huffman_tables(s) < 0)
  516. return -1;
  517. }
  518. return 0;
  519. }
  520. #endif /* CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER */
  521. #if CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER
  522. static int store_table(HYuvContext *s, const uint8_t *len, uint8_t *buf){
  523. int i;
  524. int index= 0;
  525. for(i=0; i<256;){
  526. int val= len[i];
  527. int repeat=0;
  528. for(; i<256 && len[i]==val && repeat<255; i++)
  529. repeat++;
  530. assert(val < 32 && val >0 && repeat<256 && repeat>0);
  531. if(repeat>7){
  532. buf[index++]= val;
  533. buf[index++]= repeat;
  534. }else{
  535. buf[index++]= val | (repeat<<5);
  536. }
  537. }
  538. return index;
  539. }
  540. static av_cold int encode_init(AVCodecContext *avctx)
  541. {
  542. HYuvContext *s = avctx->priv_data;
  543. int i, j;
  544. common_init(avctx);
  545. avctx->extradata= av_mallocz(1024*30); // 256*3+4 == 772
  546. avctx->stats_out= av_mallocz(1024*30); // 21*256*3(%llu ) + 3(\n) + 1(0) = 16132
  547. s->version=2;
  548. avctx->coded_frame= &s->picture;
  549. switch(avctx->pix_fmt){
  550. case PIX_FMT_YUV420P:
  551. s->bitstream_bpp= 12;
  552. break;
  553. case PIX_FMT_YUV422P:
  554. s->bitstream_bpp= 16;
  555. break;
  556. case PIX_FMT_RGB32:
  557. s->bitstream_bpp= 32;
  558. break;
  559. case PIX_FMT_RGB24:
  560. s->bitstream_bpp= 24;
  561. break;
  562. default:
  563. av_log(avctx, AV_LOG_ERROR, "format not supported\n");
  564. return -1;
  565. }
  566. avctx->bits_per_coded_sample= s->bitstream_bpp;
  567. s->decorrelate= s->bitstream_bpp >= 24;
  568. s->predictor= avctx->prediction_method;
  569. s->interlaced= avctx->flags&CODEC_FLAG_INTERLACED_ME ? 1 : 0;
  570. if(avctx->context_model==1){
  571. s->context= avctx->context_model;
  572. if(s->flags & (CODEC_FLAG_PASS1|CODEC_FLAG_PASS2)){
  573. av_log(avctx, AV_LOG_ERROR, "context=1 is not compatible with 2 pass huffyuv encoding\n");
  574. return -1;
  575. }
  576. }else s->context= 0;
  577. if(avctx->codec->id==CODEC_ID_HUFFYUV){
  578. if(avctx->pix_fmt==PIX_FMT_YUV420P){
  579. av_log(avctx, AV_LOG_ERROR, "Error: YV12 is not supported by huffyuv; use vcodec=ffvhuff or format=422p\n");
  580. return -1;
  581. }
  582. if(avctx->context_model){
  583. av_log(avctx, AV_LOG_ERROR, "Error: per-frame huffman tables are not supported by huffyuv; use vcodec=ffvhuff\n");
  584. return -1;
  585. }
  586. if(s->interlaced != ( s->height > 288 ))
  587. av_log(avctx, AV_LOG_INFO, "using huffyuv 2.2.0 or newer interlacing flag\n");
  588. }
  589. if(s->bitstream_bpp>=24 && s->predictor==MEDIAN){
  590. av_log(avctx, AV_LOG_ERROR, "Error: RGB is incompatible with median predictor\n");
  591. return -1;
  592. }
  593. ((uint8_t*)avctx->extradata)[0]= s->predictor | (s->decorrelate << 6);
  594. ((uint8_t*)avctx->extradata)[1]= s->bitstream_bpp;
  595. ((uint8_t*)avctx->extradata)[2]= s->interlaced ? 0x10 : 0x20;
  596. if(s->context)
  597. ((uint8_t*)avctx->extradata)[2]|= 0x40;
  598. ((uint8_t*)avctx->extradata)[3]= 0;
  599. s->avctx->extradata_size= 4;
  600. if(avctx->stats_in){
  601. char *p= avctx->stats_in;
  602. for(i=0; i<3; i++)
  603. for(j=0; j<256; j++)
  604. s->stats[i][j]= 1;
  605. for(;;){
  606. for(i=0; i<3; i++){
  607. char *next;
  608. for(j=0; j<256; j++){
  609. s->stats[i][j]+= strtol(p, &next, 0);
  610. if(next==p) return -1;
  611. p=next;
  612. }
  613. }
  614. if(p[0]==0 || p[1]==0 || p[2]==0) break;
  615. }
  616. }else{
  617. for(i=0; i<3; i++)
  618. for(j=0; j<256; j++){
  619. int d= FFMIN(j, 256-j);
  620. s->stats[i][j]= 100000000/(d+1);
  621. }
  622. }
  623. for(i=0; i<3; i++){
  624. generate_len_table(s->len[i], s->stats[i]);
  625. if(generate_bits_table(s->bits[i], s->len[i])<0){
  626. return -1;
  627. }
  628. s->avctx->extradata_size+=
  629. store_table(s, s->len[i], &((uint8_t*)s->avctx->extradata)[s->avctx->extradata_size]);
  630. }
  631. if(s->context){
  632. for(i=0; i<3; i++){
  633. int pels = s->width*s->height / (i?40:10);
  634. for(j=0; j<256; j++){
  635. int d= FFMIN(j, 256-j);
  636. s->stats[i][j]= pels/(d+1);
  637. }
  638. }
  639. }else{
  640. for(i=0; i<3; i++)
  641. for(j=0; j<256; j++)
  642. s->stats[i][j]= 0;
  643. }
  644. // printf("pred:%d bpp:%d hbpp:%d il:%d\n", s->predictor, s->bitstream_bpp, avctx->bits_per_coded_sample, s->interlaced);
  645. alloc_temp(s);
  646. s->picture_number=0;
  647. return 0;
  648. }
  649. #endif /* CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER */
  650. /* TODO instead of restarting the read when the code isn't in the first level
  651. * of the joint table, jump into the 2nd level of the individual table. */
  652. #define READ_2PIX(dst0, dst1, plane1){\
  653. uint16_t code = get_vlc2(&s->gb, s->vlc[3+plane1].table, VLC_BITS, 1);\
  654. if(code != 0xffff){\
  655. dst0 = code>>8;\
  656. dst1 = code;\
  657. }else{\
  658. dst0 = get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);\
  659. dst1 = get_vlc2(&s->gb, s->vlc[plane1].table, VLC_BITS, 3);\
  660. }\
  661. }
  662. static void decode_422_bitstream(HYuvContext *s, int count){
  663. int i;
  664. count/=2;
  665. if(count >= (get_bits_left(&s->gb))/(31*4)){
  666. for (i = 0; i < count && get_bits_left(&s->gb) > 0; i++) {
  667. READ_2PIX(s->temp[0][2*i ], s->temp[1][i], 1);
  668. READ_2PIX(s->temp[0][2*i+1], s->temp[2][i], 2);
  669. }
  670. }else{
  671. for(i=0; i<count; i++){
  672. READ_2PIX(s->temp[0][2*i ], s->temp[1][i], 1);
  673. READ_2PIX(s->temp[0][2*i+1], s->temp[2][i], 2);
  674. }
  675. }
  676. }
  677. static void decode_gray_bitstream(HYuvContext *s, int count){
  678. int i;
  679. count/=2;
  680. if(count >= (get_bits_left(&s->gb))/(31*2)){
  681. for (i = 0; i < count && get_bits_left(&s->gb) > 0; i++) {
  682. READ_2PIX(s->temp[0][2*i ], s->temp[0][2*i+1], 0);
  683. }
  684. }else{
  685. for(i=0; i<count; i++){
  686. READ_2PIX(s->temp[0][2*i ], s->temp[0][2*i+1], 0);
  687. }
  688. }
  689. }
  690. #if CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER
  691. static int encode_422_bitstream(HYuvContext *s, int offset, int count){
  692. int i;
  693. const uint8_t *y = s->temp[0] + offset;
  694. const uint8_t *u = s->temp[1] + offset/2;
  695. const uint8_t *v = s->temp[2] + offset/2;
  696. if(s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb)>>3) < 2*4*count){
  697. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  698. return -1;
  699. }
  700. #define LOAD4\
  701. int y0 = y[2*i];\
  702. int y1 = y[2*i+1];\
  703. int u0 = u[i];\
  704. int v0 = v[i];
  705. count/=2;
  706. if(s->flags&CODEC_FLAG_PASS1){
  707. for(i=0; i<count; i++){
  708. LOAD4;
  709. s->stats[0][y0]++;
  710. s->stats[1][u0]++;
  711. s->stats[0][y1]++;
  712. s->stats[2][v0]++;
  713. }
  714. }
  715. if(s->avctx->flags2&CODEC_FLAG2_NO_OUTPUT)
  716. return 0;
  717. if(s->context){
  718. for(i=0; i<count; i++){
  719. LOAD4;
  720. s->stats[0][y0]++;
  721. put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);
  722. s->stats[1][u0]++;
  723. put_bits(&s->pb, s->len[1][u0], s->bits[1][u0]);
  724. s->stats[0][y1]++;
  725. put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
  726. s->stats[2][v0]++;
  727. put_bits(&s->pb, s->len[2][v0], s->bits[2][v0]);
  728. }
  729. }else{
  730. for(i=0; i<count; i++){
  731. LOAD4;
  732. put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);
  733. put_bits(&s->pb, s->len[1][u0], s->bits[1][u0]);
  734. put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
  735. put_bits(&s->pb, s->len[2][v0], s->bits[2][v0]);
  736. }
  737. }
  738. return 0;
  739. }
  740. static int encode_gray_bitstream(HYuvContext *s, int count){
  741. int i;
  742. if(s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb)>>3) < 4*count){
  743. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  744. return -1;
  745. }
  746. #define LOAD2\
  747. int y0 = s->temp[0][2*i];\
  748. int y1 = s->temp[0][2*i+1];
  749. #define STAT2\
  750. s->stats[0][y0]++;\
  751. s->stats[0][y1]++;
  752. #define WRITE2\
  753. put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);\
  754. put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
  755. count/=2;
  756. if(s->flags&CODEC_FLAG_PASS1){
  757. for(i=0; i<count; i++){
  758. LOAD2;
  759. STAT2;
  760. }
  761. }
  762. if(s->avctx->flags2&CODEC_FLAG2_NO_OUTPUT)
  763. return 0;
  764. if(s->context){
  765. for(i=0; i<count; i++){
  766. LOAD2;
  767. STAT2;
  768. WRITE2;
  769. }
  770. }else{
  771. for(i=0; i<count; i++){
  772. LOAD2;
  773. WRITE2;
  774. }
  775. }
  776. return 0;
  777. }
  778. #endif /* CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER */
  779. static av_always_inline void decode_bgr_1(HYuvContext *s, int count, int decorrelate, int alpha){
  780. int i;
  781. for(i=0; i<count; i++){
  782. int code = get_vlc2(&s->gb, s->vlc[3].table, VLC_BITS, 1);
  783. if(code != -1){
  784. *(uint32_t*)&s->temp[0][4*i] = s->pix_bgr_map[code];
  785. }else if(decorrelate){
  786. s->temp[0][4*i+G] = get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  787. s->temp[0][4*i+B] = get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3) + s->temp[0][4*i+G];
  788. s->temp[0][4*i+R] = get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3) + s->temp[0][4*i+G];
  789. }else{
  790. s->temp[0][4*i+B] = get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  791. s->temp[0][4*i+G] = get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  792. s->temp[0][4*i+R] = get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3);
  793. }
  794. if(alpha)
  795. s->temp[0][4*i+A] = get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3);
  796. }
  797. }
  798. static void decode_bgr_bitstream(HYuvContext *s, int count){
  799. if(s->decorrelate){
  800. if(s->bitstream_bpp==24)
  801. decode_bgr_1(s, count, 1, 0);
  802. else
  803. decode_bgr_1(s, count, 1, 1);
  804. }else{
  805. if(s->bitstream_bpp==24)
  806. decode_bgr_1(s, count, 0, 0);
  807. else
  808. decode_bgr_1(s, count, 0, 1);
  809. }
  810. }
  811. static inline int encode_bgra_bitstream(HYuvContext *s, int count, int planes){
  812. int i;
  813. if(s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb)>>3) < 4*planes*count){
  814. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  815. return -1;
  816. }
  817. #define LOAD3\
  818. int g= s->temp[0][planes==3 ? 3*i+1 : 4*i+G];\
  819. int b= (s->temp[0][planes==3 ? 3*i+2 : 4*i+B] - g) & 0xff;\
  820. int r= (s->temp[0][planes==3 ? 3*i+0 : 4*i+R] - g) & 0xff;\
  821. int a= s->temp[0][planes*i+A];
  822. #define STAT3\
  823. s->stats[0][b]++;\
  824. s->stats[1][g]++;\
  825. s->stats[2][r]++;\
  826. if(planes==4) s->stats[2][a]++;
  827. #define WRITE3\
  828. put_bits(&s->pb, s->len[1][g], s->bits[1][g]);\
  829. put_bits(&s->pb, s->len[0][b], s->bits[0][b]);\
  830. put_bits(&s->pb, s->len[2][r], s->bits[2][r]);\
  831. if(planes==4) put_bits(&s->pb, s->len[2][a], s->bits[2][a]);
  832. if((s->flags&CODEC_FLAG_PASS1) && (s->avctx->flags2&CODEC_FLAG2_NO_OUTPUT)){
  833. for(i=0; i<count; i++){
  834. LOAD3;
  835. STAT3;
  836. }
  837. }else if(s->context || (s->flags&CODEC_FLAG_PASS1)){
  838. for(i=0; i<count; i++){
  839. LOAD3;
  840. STAT3;
  841. WRITE3;
  842. }
  843. }else{
  844. for(i=0; i<count; i++){
  845. LOAD3;
  846. WRITE3;
  847. }
  848. }
  849. return 0;
  850. }
  851. #if CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER
  852. static void draw_slice(HYuvContext *s, int y){
  853. int h, cy, i;
  854. int offset[AV_NUM_DATA_POINTERS];
  855. if(s->avctx->draw_horiz_band==NULL)
  856. return;
  857. h= y - s->last_slice_end;
  858. y -= h;
  859. if(s->bitstream_bpp==12){
  860. cy= y>>1;
  861. }else{
  862. cy= y;
  863. }
  864. offset[0] = s->picture.linesize[0]*y;
  865. offset[1] = s->picture.linesize[1]*cy;
  866. offset[2] = s->picture.linesize[2]*cy;
  867. for (i = 3; i < AV_NUM_DATA_POINTERS; i++)
  868. offset[i] = 0;
  869. emms_c();
  870. s->avctx->draw_horiz_band(s->avctx, &s->picture, offset, y, 3, h);
  871. s->last_slice_end= y + h;
  872. }
  873. static int decode_frame(AVCodecContext *avctx, void *data, int *data_size, AVPacket *avpkt){
  874. const uint8_t *buf = avpkt->data;
  875. int buf_size = avpkt->size;
  876. HYuvContext *s = avctx->priv_data;
  877. const int width= s->width;
  878. const int width2= s->width>>1;
  879. const int height= s->height;
  880. int fake_ystride, fake_ustride, fake_vstride;
  881. AVFrame * const p= &s->picture;
  882. int table_size= 0;
  883. AVFrame *picture = data;
  884. av_fast_malloc(&s->bitstream_buffer, &s->bitstream_buffer_size, buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
  885. if (!s->bitstream_buffer)
  886. return AVERROR(ENOMEM);
  887. memset(s->bitstream_buffer + buf_size, 0, FF_INPUT_BUFFER_PADDING_SIZE);
  888. s->dsp.bswap_buf((uint32_t*)s->bitstream_buffer, (const uint32_t*)buf, buf_size/4);
  889. if(p->data[0])
  890. ff_thread_release_buffer(avctx, p);
  891. p->reference= 0;
  892. if(ff_thread_get_buffer(avctx, p) < 0){
  893. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  894. return -1;
  895. }
  896. if(s->context){
  897. table_size = read_huffman_tables(s, s->bitstream_buffer, buf_size);
  898. if(table_size < 0)
  899. return -1;
  900. }
  901. if((unsigned)(buf_size-table_size) >= INT_MAX/8)
  902. return -1;
  903. init_get_bits(&s->gb, s->bitstream_buffer+table_size, (buf_size-table_size)*8);
  904. fake_ystride= s->interlaced ? p->linesize[0]*2 : p->linesize[0];
  905. fake_ustride= s->interlaced ? p->linesize[1]*2 : p->linesize[1];
  906. fake_vstride= s->interlaced ? p->linesize[2]*2 : p->linesize[2];
  907. s->last_slice_end= 0;
  908. if(s->bitstream_bpp<24){
  909. int y, cy;
  910. int lefty, leftu, leftv;
  911. int lefttopy, lefttopu, lefttopv;
  912. if(s->yuy2){
  913. p->data[0][3]= get_bits(&s->gb, 8);
  914. p->data[0][2]= get_bits(&s->gb, 8);
  915. p->data[0][1]= get_bits(&s->gb, 8);
  916. p->data[0][0]= get_bits(&s->gb, 8);
  917. av_log(avctx, AV_LOG_ERROR, "YUY2 output is not implemented yet\n");
  918. return -1;
  919. }else{
  920. leftv= p->data[2][0]= get_bits(&s->gb, 8);
  921. lefty= p->data[0][1]= get_bits(&s->gb, 8);
  922. leftu= p->data[1][0]= get_bits(&s->gb, 8);
  923. p->data[0][0]= get_bits(&s->gb, 8);
  924. switch(s->predictor){
  925. case LEFT:
  926. case PLANE:
  927. decode_422_bitstream(s, width-2);
  928. lefty= s->dsp.add_hfyu_left_prediction(p->data[0] + 2, s->temp[0], width-2, lefty);
  929. if(!(s->flags&CODEC_FLAG_GRAY)){
  930. leftu= s->dsp.add_hfyu_left_prediction(p->data[1] + 1, s->temp[1], width2-1, leftu);
  931. leftv= s->dsp.add_hfyu_left_prediction(p->data[2] + 1, s->temp[2], width2-1, leftv);
  932. }
  933. for(cy=y=1; y<s->height; y++,cy++){
  934. uint8_t *ydst, *udst, *vdst;
  935. if(s->bitstream_bpp==12){
  936. decode_gray_bitstream(s, width);
  937. ydst= p->data[0] + p->linesize[0]*y;
  938. lefty= s->dsp.add_hfyu_left_prediction(ydst, s->temp[0], width, lefty);
  939. if(s->predictor == PLANE){
  940. if(y>s->interlaced)
  941. s->dsp.add_bytes(ydst, ydst - fake_ystride, width);
  942. }
  943. y++;
  944. if(y>=s->height) break;
  945. }
  946. draw_slice(s, y);
  947. ydst= p->data[0] + p->linesize[0]*y;
  948. udst= p->data[1] + p->linesize[1]*cy;
  949. vdst= p->data[2] + p->linesize[2]*cy;
  950. decode_422_bitstream(s, width);
  951. lefty= s->dsp.add_hfyu_left_prediction(ydst, s->temp[0], width, lefty);
  952. if(!(s->flags&CODEC_FLAG_GRAY)){
  953. leftu= s->dsp.add_hfyu_left_prediction(udst, s->temp[1], width2, leftu);
  954. leftv= s->dsp.add_hfyu_left_prediction(vdst, s->temp[2], width2, leftv);
  955. }
  956. if(s->predictor == PLANE){
  957. if(cy>s->interlaced){
  958. s->dsp.add_bytes(ydst, ydst - fake_ystride, width);
  959. if(!(s->flags&CODEC_FLAG_GRAY)){
  960. s->dsp.add_bytes(udst, udst - fake_ustride, width2);
  961. s->dsp.add_bytes(vdst, vdst - fake_vstride, width2);
  962. }
  963. }
  964. }
  965. }
  966. draw_slice(s, height);
  967. break;
  968. case MEDIAN:
  969. /* first line except first 2 pixels is left predicted */
  970. decode_422_bitstream(s, width-2);
  971. lefty= s->dsp.add_hfyu_left_prediction(p->data[0] + 2, s->temp[0], width-2, lefty);
  972. if(!(s->flags&CODEC_FLAG_GRAY)){
  973. leftu= s->dsp.add_hfyu_left_prediction(p->data[1] + 1, s->temp[1], width2-1, leftu);
  974. leftv= s->dsp.add_hfyu_left_prediction(p->data[2] + 1, s->temp[2], width2-1, leftv);
  975. }
  976. cy=y=1;
  977. /* second line is left predicted for interlaced case */
  978. if(s->interlaced){
  979. decode_422_bitstream(s, width);
  980. lefty= s->dsp.add_hfyu_left_prediction(p->data[0] + p->linesize[0], s->temp[0], width, lefty);
  981. if(!(s->flags&CODEC_FLAG_GRAY)){
  982. leftu= s->dsp.add_hfyu_left_prediction(p->data[1] + p->linesize[2], s->temp[1], width2, leftu);
  983. leftv= s->dsp.add_hfyu_left_prediction(p->data[2] + p->linesize[1], s->temp[2], width2, leftv);
  984. }
  985. y++; cy++;
  986. }
  987. /* next 4 pixels are left predicted too */
  988. decode_422_bitstream(s, 4);
  989. lefty= s->dsp.add_hfyu_left_prediction(p->data[0] + fake_ystride, s->temp[0], 4, lefty);
  990. if(!(s->flags&CODEC_FLAG_GRAY)){
  991. leftu= s->dsp.add_hfyu_left_prediction(p->data[1] + fake_ustride, s->temp[1], 2, leftu);
  992. leftv= s->dsp.add_hfyu_left_prediction(p->data[2] + fake_vstride, s->temp[2], 2, leftv);
  993. }
  994. /* next line except the first 4 pixels is median predicted */
  995. lefttopy= p->data[0][3];
  996. decode_422_bitstream(s, width-4);
  997. s->dsp.add_hfyu_median_prediction(p->data[0] + fake_ystride+4, p->data[0]+4, s->temp[0], width-4, &lefty, &lefttopy);
  998. if(!(s->flags&CODEC_FLAG_GRAY)){
  999. lefttopu= p->data[1][1];
  1000. lefttopv= p->data[2][1];
  1001. s->dsp.add_hfyu_median_prediction(p->data[1] + fake_ustride+2, p->data[1]+2, s->temp[1], width2-2, &leftu, &lefttopu);
  1002. s->dsp.add_hfyu_median_prediction(p->data[2] + fake_vstride+2, p->data[2]+2, s->temp[2], width2-2, &leftv, &lefttopv);
  1003. }
  1004. y++; cy++;
  1005. for(; y<height; y++,cy++){
  1006. uint8_t *ydst, *udst, *vdst;
  1007. if(s->bitstream_bpp==12){
  1008. while(2*cy > y){
  1009. decode_gray_bitstream(s, width);
  1010. ydst= p->data[0] + p->linesize[0]*y;
  1011. s->dsp.add_hfyu_median_prediction(ydst, ydst - fake_ystride, s->temp[0], width, &lefty, &lefttopy);
  1012. y++;
  1013. }
  1014. if(y>=height) break;
  1015. }
  1016. draw_slice(s, y);
  1017. decode_422_bitstream(s, width);
  1018. ydst= p->data[0] + p->linesize[0]*y;
  1019. udst= p->data[1] + p->linesize[1]*cy;
  1020. vdst= p->data[2] + p->linesize[2]*cy;
  1021. s->dsp.add_hfyu_median_prediction(ydst, ydst - fake_ystride, s->temp[0], width, &lefty, &lefttopy);
  1022. if(!(s->flags&CODEC_FLAG_GRAY)){
  1023. s->dsp.add_hfyu_median_prediction(udst, udst - fake_ustride, s->temp[1], width2, &leftu, &lefttopu);
  1024. s->dsp.add_hfyu_median_prediction(vdst, vdst - fake_vstride, s->temp[2], width2, &leftv, &lefttopv);
  1025. }
  1026. }
  1027. draw_slice(s, height);
  1028. break;
  1029. }
  1030. }
  1031. }else{
  1032. int y;
  1033. int leftr, leftg, leftb, lefta;
  1034. const int last_line= (height-1)*p->linesize[0];
  1035. if(s->bitstream_bpp==32){
  1036. lefta= p->data[0][last_line+A]= get_bits(&s->gb, 8);
  1037. leftr= p->data[0][last_line+R]= get_bits(&s->gb, 8);
  1038. leftg= p->data[0][last_line+G]= get_bits(&s->gb, 8);
  1039. leftb= p->data[0][last_line+B]= get_bits(&s->gb, 8);
  1040. }else{
  1041. leftr= p->data[0][last_line+R]= get_bits(&s->gb, 8);
  1042. leftg= p->data[0][last_line+G]= get_bits(&s->gb, 8);
  1043. leftb= p->data[0][last_line+B]= get_bits(&s->gb, 8);
  1044. lefta= p->data[0][last_line+A]= 255;
  1045. skip_bits(&s->gb, 8);
  1046. }
  1047. if(s->bgr32){
  1048. switch(s->predictor){
  1049. case LEFT:
  1050. case PLANE:
  1051. decode_bgr_bitstream(s, width-1);
  1052. s->dsp.add_hfyu_left_prediction_bgr32(p->data[0] + last_line+4, s->temp[0], width-1, &leftr, &leftg, &leftb, &lefta);
  1053. for(y=s->height-2; y>=0; y--){ //Yes it is stored upside down.
  1054. decode_bgr_bitstream(s, width);
  1055. s->dsp.add_hfyu_left_prediction_bgr32(p->data[0] + p->linesize[0]*y, s->temp[0], width, &leftr, &leftg, &leftb, &lefta);
  1056. if(s->predictor == PLANE){
  1057. if(s->bitstream_bpp!=32) lefta=0;
  1058. if((y&s->interlaced)==0 && y<s->height-1-s->interlaced){
  1059. s->dsp.add_bytes(p->data[0] + p->linesize[0]*y,
  1060. p->data[0] + p->linesize[0]*y + fake_ystride, fake_ystride);
  1061. }
  1062. }
  1063. }
  1064. draw_slice(s, height); // just 1 large slice as this is not possible in reverse order
  1065. break;
  1066. default:
  1067. av_log(avctx, AV_LOG_ERROR, "prediction type not supported!\n");
  1068. }
  1069. }else{
  1070. av_log(avctx, AV_LOG_ERROR, "BGR24 output is not implemented yet\n");
  1071. return -1;
  1072. }
  1073. }
  1074. emms_c();
  1075. *picture= *p;
  1076. *data_size = sizeof(AVFrame);
  1077. return (get_bits_count(&s->gb)+31)/32*4 + table_size;
  1078. }
  1079. #endif /* CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER */
  1080. static int common_end(HYuvContext *s){
  1081. int i;
  1082. for(i=0; i<3; i++){
  1083. av_freep(&s->temp[i]);
  1084. }
  1085. return 0;
  1086. }
  1087. #if CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER
  1088. static av_cold int decode_end(AVCodecContext *avctx)
  1089. {
  1090. HYuvContext *s = avctx->priv_data;
  1091. int i;
  1092. if (s->picture.data[0])
  1093. avctx->release_buffer(avctx, &s->picture);
  1094. common_end(s);
  1095. av_freep(&s->bitstream_buffer);
  1096. for(i=0; i<6; i++){
  1097. ff_free_vlc(&s->vlc[i]);
  1098. }
  1099. return 0;
  1100. }
  1101. #endif /* CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER */
  1102. #if CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER
  1103. static int encode_frame(AVCodecContext *avctx, AVPacket *pkt,
  1104. const AVFrame *pict, int *got_packet)
  1105. {
  1106. HYuvContext *s = avctx->priv_data;
  1107. const int width= s->width;
  1108. const int width2= s->width>>1;
  1109. const int height= s->height;
  1110. const int fake_ystride= s->interlaced ? pict->linesize[0]*2 : pict->linesize[0];
  1111. const int fake_ustride= s->interlaced ? pict->linesize[1]*2 : pict->linesize[1];
  1112. const int fake_vstride= s->interlaced ? pict->linesize[2]*2 : pict->linesize[2];
  1113. AVFrame * const p= &s->picture;
  1114. int i, j, size = 0, ret;
  1115. if (!pkt->data &&
  1116. (ret = av_new_packet(pkt, width * height * 3 * 4 + FF_MIN_BUFFER_SIZE)) < 0) {
  1117. av_log(avctx, AV_LOG_ERROR, "Error allocating output packet.\n");
  1118. return ret;
  1119. }
  1120. *p = *pict;
  1121. p->pict_type= AV_PICTURE_TYPE_I;
  1122. p->key_frame= 1;
  1123. if(s->context){
  1124. for(i=0; i<3; i++){
  1125. generate_len_table(s->len[i], s->stats[i]);
  1126. if(generate_bits_table(s->bits[i], s->len[i])<0)
  1127. return -1;
  1128. size += store_table(s, s->len[i], &pkt->data[size]);
  1129. }
  1130. for(i=0; i<3; i++)
  1131. for(j=0; j<256; j++)
  1132. s->stats[i][j] >>= 1;
  1133. }
  1134. init_put_bits(&s->pb, pkt->data + size, pkt->size - size);
  1135. if(avctx->pix_fmt == PIX_FMT_YUV422P || avctx->pix_fmt == PIX_FMT_YUV420P){
  1136. int lefty, leftu, leftv, y, cy;
  1137. put_bits(&s->pb, 8, leftv= p->data[2][0]);
  1138. put_bits(&s->pb, 8, lefty= p->data[0][1]);
  1139. put_bits(&s->pb, 8, leftu= p->data[1][0]);
  1140. put_bits(&s->pb, 8, p->data[0][0]);
  1141. lefty= sub_left_prediction(s, s->temp[0], p->data[0], width , 0);
  1142. leftu= sub_left_prediction(s, s->temp[1], p->data[1], width2, 0);
  1143. leftv= sub_left_prediction(s, s->temp[2], p->data[2], width2, 0);
  1144. encode_422_bitstream(s, 2, width-2);
  1145. if(s->predictor==MEDIAN){
  1146. int lefttopy, lefttopu, lefttopv;
  1147. cy=y=1;
  1148. if(s->interlaced){
  1149. lefty= sub_left_prediction(s, s->temp[0], p->data[0]+p->linesize[0], width , lefty);
  1150. leftu= sub_left_prediction(s, s->temp[1], p->data[1]+p->linesize[1], width2, leftu);
  1151. leftv= sub_left_prediction(s, s->temp[2], p->data[2]+p->linesize[2], width2, leftv);
  1152. encode_422_bitstream(s, 0, width);
  1153. y++; cy++;
  1154. }
  1155. lefty= sub_left_prediction(s, s->temp[0], p->data[0]+fake_ystride, 4, lefty);
  1156. leftu= sub_left_prediction(s, s->temp[1], p->data[1]+fake_ustride, 2, leftu);
  1157. leftv= sub_left_prediction(s, s->temp[2], p->data[2]+fake_vstride, 2, leftv);
  1158. encode_422_bitstream(s, 0, 4);
  1159. lefttopy= p->data[0][3];
  1160. lefttopu= p->data[1][1];
  1161. lefttopv= p->data[2][1];
  1162. s->dsp.sub_hfyu_median_prediction(s->temp[0], p->data[0]+4, p->data[0] + fake_ystride+4, width-4 , &lefty, &lefttopy);
  1163. s->dsp.sub_hfyu_median_prediction(s->temp[1], p->data[1]+2, p->data[1] + fake_ustride+2, width2-2, &leftu, &lefttopu);
  1164. s->dsp.sub_hfyu_median_prediction(s->temp[2], p->data[2]+2, p->data[2] + fake_vstride+2, width2-2, &leftv, &lefttopv);
  1165. encode_422_bitstream(s, 0, width-4);
  1166. y++; cy++;
  1167. for(; y<height; y++,cy++){
  1168. uint8_t *ydst, *udst, *vdst;
  1169. if(s->bitstream_bpp==12){
  1170. while(2*cy > y){
  1171. ydst= p->data[0] + p->linesize[0]*y;
  1172. s->dsp.sub_hfyu_median_prediction(s->temp[0], ydst - fake_ystride, ydst, width , &lefty, &lefttopy);
  1173. encode_gray_bitstream(s, width);
  1174. y++;
  1175. }
  1176. if(y>=height) break;
  1177. }
  1178. ydst= p->data[0] + p->linesize[0]*y;
  1179. udst= p->data[1] + p->linesize[1]*cy;
  1180. vdst= p->data[2] + p->linesize[2]*cy;
  1181. s->dsp.sub_hfyu_median_prediction(s->temp[0], ydst - fake_ystride, ydst, width , &lefty, &lefttopy);
  1182. s->dsp.sub_hfyu_median_prediction(s->temp[1], udst - fake_ustride, udst, width2, &leftu, &lefttopu);
  1183. s->dsp.sub_hfyu_median_prediction(s->temp[2], vdst - fake_vstride, vdst, width2, &leftv, &lefttopv);
  1184. encode_422_bitstream(s, 0, width);
  1185. }
  1186. }else{
  1187. for(cy=y=1; y<height; y++,cy++){
  1188. uint8_t *ydst, *udst, *vdst;
  1189. /* encode a luma only line & y++ */
  1190. if(s->bitstream_bpp==12){
  1191. ydst= p->data[0] + p->linesize[0]*y;
  1192. if(s->predictor == PLANE && s->interlaced < y){
  1193. s->dsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
  1194. lefty= sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
  1195. }else{
  1196. lefty= sub_left_prediction(s, s->temp[0], ydst, width , lefty);
  1197. }
  1198. encode_gray_bitstream(s, width);
  1199. y++;
  1200. if(y>=height) break;
  1201. }
  1202. ydst= p->data[0] + p->linesize[0]*y;
  1203. udst= p->data[1] + p->linesize[1]*cy;
  1204. vdst= p->data[2] + p->linesize[2]*cy;
  1205. if(s->predictor == PLANE && s->interlaced < cy){
  1206. s->dsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
  1207. s->dsp.diff_bytes(s->temp[2], udst, udst - fake_ustride, width2);
  1208. s->dsp.diff_bytes(s->temp[2] + width2, vdst, vdst - fake_vstride, width2);
  1209. lefty= sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
  1210. leftu= sub_left_prediction(s, s->temp[1], s->temp[2], width2, leftu);
  1211. leftv= sub_left_prediction(s, s->temp[2], s->temp[2] + width2, width2, leftv);
  1212. }else{
  1213. lefty= sub_left_prediction(s, s->temp[0], ydst, width , lefty);
  1214. leftu= sub_left_prediction(s, s->temp[1], udst, width2, leftu);
  1215. leftv= sub_left_prediction(s, s->temp[2], vdst, width2, leftv);
  1216. }
  1217. encode_422_bitstream(s, 0, width);
  1218. }
  1219. }
  1220. }else if(avctx->pix_fmt == PIX_FMT_RGB32){
  1221. uint8_t *data = p->data[0] + (height-1)*p->linesize[0];
  1222. const int stride = -p->linesize[0];
  1223. const int fake_stride = -fake_ystride;
  1224. int y;
  1225. int leftr, leftg, leftb, lefta;
  1226. put_bits(&s->pb, 8, lefta= data[A]);
  1227. put_bits(&s->pb, 8, leftr= data[R]);
  1228. put_bits(&s->pb, 8, leftg= data[G]);
  1229. put_bits(&s->pb, 8, leftb= data[B]);
  1230. sub_left_prediction_bgr32(s, s->temp[0], data+4, width-1, &leftr, &leftg, &leftb, &lefta);
  1231. encode_bgra_bitstream(s, width-1, 4);
  1232. for(y=1; y<s->height; y++){
  1233. uint8_t *dst = data + y*stride;
  1234. if(s->predictor == PLANE && s->interlaced < y){
  1235. s->dsp.diff_bytes(s->temp[1], dst, dst - fake_stride, width*4);
  1236. sub_left_prediction_bgr32(s, s->temp[0], s->temp[1], width, &leftr, &leftg, &leftb, &lefta);
  1237. }else{
  1238. sub_left_prediction_bgr32(s, s->temp[0], dst, width, &leftr, &leftg, &leftb, &lefta);
  1239. }
  1240. encode_bgra_bitstream(s, width, 4);
  1241. }
  1242. }else if(avctx->pix_fmt == PIX_FMT_RGB24){
  1243. uint8_t *data = p->data[0] + (height-1)*p->linesize[0];
  1244. const int stride = -p->linesize[0];
  1245. const int fake_stride = -fake_ystride;
  1246. int y;
  1247. int leftr, leftg, leftb;
  1248. put_bits(&s->pb, 8, leftr= data[0]);
  1249. put_bits(&s->pb, 8, leftg= data[1]);
  1250. put_bits(&s->pb, 8, leftb= data[2]);
  1251. put_bits(&s->pb, 8, 0);
  1252. sub_left_prediction_rgb24(s, s->temp[0], data+3, width-1, &leftr, &leftg, &leftb);
  1253. encode_bgra_bitstream(s, width-1, 3);
  1254. for(y=1; y<s->height; y++){
  1255. uint8_t *dst = data + y*stride;
  1256. if(s->predictor == PLANE && s->interlaced < y){
  1257. s->dsp.diff_bytes(s->temp[1], dst, dst - fake_stride, width*3);
  1258. sub_left_prediction_rgb24(s, s->temp[0], s->temp[1], width, &leftr, &leftg, &leftb);
  1259. }else{
  1260. sub_left_prediction_rgb24(s, s->temp[0], dst, width, &leftr, &leftg, &leftb);
  1261. }
  1262. encode_bgra_bitstream(s, width, 3);
  1263. }
  1264. }else{
  1265. av_log(avctx, AV_LOG_ERROR, "Format not supported!\n");
  1266. }
  1267. emms_c();
  1268. size+= (put_bits_count(&s->pb)+31)/8;
  1269. put_bits(&s->pb, 16, 0);
  1270. put_bits(&s->pb, 15, 0);
  1271. size/= 4;
  1272. if((s->flags&CODEC_FLAG_PASS1) && (s->picture_number&31)==0){
  1273. int j;
  1274. char *p= avctx->stats_out;
  1275. char *end= p + 1024*30;
  1276. for(i=0; i<3; i++){
  1277. for(j=0; j<256; j++){
  1278. snprintf(p, end-p, "%"PRIu64" ", s->stats[i][j]);
  1279. p+= strlen(p);
  1280. s->stats[i][j]= 0;
  1281. }
  1282. snprintf(p, end-p, "\n");
  1283. p++;
  1284. }
  1285. } else
  1286. avctx->stats_out[0] = '\0';
  1287. if(!(s->avctx->flags2 & CODEC_FLAG2_NO_OUTPUT)){
  1288. flush_put_bits(&s->pb);
  1289. s->dsp.bswap_buf((uint32_t*)pkt->data, (uint32_t*)pkt->data, size);
  1290. }
  1291. s->picture_number++;
  1292. pkt->size = size*4;
  1293. pkt->flags |= AV_PKT_FLAG_KEY;
  1294. *got_packet = 1;
  1295. return 0;
  1296. }
  1297. static av_cold int encode_end(AVCodecContext *avctx)
  1298. {
  1299. HYuvContext *s = avctx->priv_data;
  1300. common_end(s);
  1301. av_freep(&avctx->extradata);
  1302. av_freep(&avctx->stats_out);
  1303. return 0;
  1304. }
  1305. #endif /* CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER */
  1306. #if CONFIG_HUFFYUV_DECODER
  1307. AVCodec ff_huffyuv_decoder = {
  1308. .name = "huffyuv",
  1309. .type = AVMEDIA_TYPE_VIDEO,
  1310. .id = CODEC_ID_HUFFYUV,
  1311. .priv_data_size = sizeof(HYuvContext),
  1312. .init = decode_init,
  1313. .close = decode_end,
  1314. .decode = decode_frame,
  1315. .capabilities = CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND | CODEC_CAP_FRAME_THREADS,
  1316. .init_thread_copy = ONLY_IF_THREADS_ENABLED(decode_init_thread_copy),
  1317. .long_name = NULL_IF_CONFIG_SMALL("Huffyuv / HuffYUV"),
  1318. };
  1319. #endif
  1320. #if CONFIG_FFVHUFF_DECODER
  1321. AVCodec ff_ffvhuff_decoder = {
  1322. .name = "ffvhuff",
  1323. .type = AVMEDIA_TYPE_VIDEO,
  1324. .id = CODEC_ID_FFVHUFF,
  1325. .priv_data_size = sizeof(HYuvContext),
  1326. .init = decode_init,
  1327. .close = decode_end,
  1328. .decode = decode_frame,
  1329. .capabilities = CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND | CODEC_CAP_FRAME_THREADS,
  1330. .init_thread_copy = ONLY_IF_THREADS_ENABLED(decode_init_thread_copy),
  1331. .long_name = NULL_IF_CONFIG_SMALL("Huffyuv FFmpeg variant"),
  1332. };
  1333. #endif
  1334. #if CONFIG_HUFFYUV_ENCODER
  1335. AVCodec ff_huffyuv_encoder = {
  1336. .name = "huffyuv",
  1337. .type = AVMEDIA_TYPE_VIDEO,
  1338. .id = CODEC_ID_HUFFYUV,
  1339. .priv_data_size = sizeof(HYuvContext),
  1340. .init = encode_init,
  1341. .encode2 = encode_frame,
  1342. .close = encode_end,
  1343. .pix_fmts= (const enum PixelFormat[]){PIX_FMT_YUV422P, PIX_FMT_RGB24, PIX_FMT_RGB32, PIX_FMT_NONE},
  1344. .long_name = NULL_IF_CONFIG_SMALL("Huffyuv / HuffYUV"),
  1345. };
  1346. #endif
  1347. #if CONFIG_FFVHUFF_ENCODER
  1348. AVCodec ff_ffvhuff_encoder = {
  1349. .name = "ffvhuff",
  1350. .type = AVMEDIA_TYPE_VIDEO,
  1351. .id = CODEC_ID_FFVHUFF,
  1352. .priv_data_size = sizeof(HYuvContext),
  1353. .init = encode_init,
  1354. .encode2 = encode_frame,
  1355. .close = encode_end,
  1356. .pix_fmts= (const enum PixelFormat[]){PIX_FMT_YUV420P, PIX_FMT_YUV422P, PIX_FMT_RGB24, PIX_FMT_RGB32, PIX_FMT_NONE},
  1357. .long_name = NULL_IF_CONFIG_SMALL("Huffyuv FFmpeg variant"),
  1358. };
  1359. #endif