You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

878 lines
30KB

  1. /*
  2. * VC3/DNxHD encoder
  3. * Copyright (c) 2007 Baptiste Coudurier <baptiste dot coudurier at smartjog dot com>
  4. *
  5. * VC-3 encoder funded by the British Broadcasting Corporation
  6. *
  7. * This file is part of Libav.
  8. *
  9. * Libav is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU Lesser General Public
  11. * License as published by the Free Software Foundation; either
  12. * version 2.1 of the License, or (at your option) any later version.
  13. *
  14. * Libav is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * Lesser General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU Lesser General Public
  20. * License along with Libav; if not, write to the Free Software
  21. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  22. */
  23. //#define DEBUG
  24. #define RC_VARIANCE 1 // use variance or ssd for fast rc
  25. #include "libavutil/opt.h"
  26. #include "avcodec.h"
  27. #include "dsputil.h"
  28. #include "mpegvideo.h"
  29. #include "mpegvideo_common.h"
  30. #include "dnxhdenc.h"
  31. #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
  32. static const AVOption options[]={
  33. {"nitris_compat", "encode with Avid Nitris compatibility", offsetof(DNXHDEncContext, nitris_compat), FF_OPT_TYPE_INT, {.dbl = 0}, 0, 1, VE},
  34. {NULL}
  35. };
  36. static const AVClass class = { "dnxhd", av_default_item_name, options, LIBAVUTIL_VERSION_INT };
  37. #define LAMBDA_FRAC_BITS 10
  38. static av_always_inline void dnxhd_get_pixels_8x4(DCTELEM *restrict block, const uint8_t *pixels, int line_size)
  39. {
  40. int i;
  41. for (i = 0; i < 4; i++) {
  42. block[0] = pixels[0]; block[1] = pixels[1];
  43. block[2] = pixels[2]; block[3] = pixels[3];
  44. block[4] = pixels[4]; block[5] = pixels[5];
  45. block[6] = pixels[6]; block[7] = pixels[7];
  46. pixels += line_size;
  47. block += 8;
  48. }
  49. memcpy(block, block - 8, sizeof(*block) * 8);
  50. memcpy(block + 8, block - 16, sizeof(*block) * 8);
  51. memcpy(block + 16, block - 24, sizeof(*block) * 8);
  52. memcpy(block + 24, block - 32, sizeof(*block) * 8);
  53. }
  54. static int dnxhd_init_vlc(DNXHDEncContext *ctx)
  55. {
  56. int i, j, level, run;
  57. int max_level = 1<<(ctx->cid_table->bit_depth+2);
  58. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->vlc_codes, max_level*4*sizeof(*ctx->vlc_codes), fail);
  59. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->vlc_bits, max_level*4*sizeof(*ctx->vlc_bits) , fail);
  60. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->run_codes, 63*2, fail);
  61. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->run_bits, 63, fail);
  62. ctx->vlc_codes += max_level*2;
  63. ctx->vlc_bits += max_level*2;
  64. for (level = -max_level; level < max_level; level++) {
  65. for (run = 0; run < 2; run++) {
  66. int index = (level<<1)|run;
  67. int sign, offset = 0, alevel = level;
  68. MASK_ABS(sign, alevel);
  69. if (alevel > 64) {
  70. offset = (alevel-1)>>6;
  71. alevel -= offset<<6;
  72. }
  73. for (j = 0; j < 257; j++) {
  74. if (ctx->cid_table->ac_level[j] == alevel &&
  75. (!offset || (ctx->cid_table->ac_index_flag[j] && offset)) &&
  76. (!run || (ctx->cid_table->ac_run_flag [j] && run))) {
  77. assert(!ctx->vlc_codes[index]);
  78. if (alevel) {
  79. ctx->vlc_codes[index] = (ctx->cid_table->ac_codes[j]<<1)|(sign&1);
  80. ctx->vlc_bits [index] = ctx->cid_table->ac_bits[j]+1;
  81. } else {
  82. ctx->vlc_codes[index] = ctx->cid_table->ac_codes[j];
  83. ctx->vlc_bits [index] = ctx->cid_table->ac_bits [j];
  84. }
  85. break;
  86. }
  87. }
  88. assert(!alevel || j < 257);
  89. if (offset) {
  90. ctx->vlc_codes[index] = (ctx->vlc_codes[index]<<ctx->cid_table->index_bits)|offset;
  91. ctx->vlc_bits [index]+= ctx->cid_table->index_bits;
  92. }
  93. }
  94. }
  95. for (i = 0; i < 62; i++) {
  96. int run = ctx->cid_table->run[i];
  97. assert(run < 63);
  98. ctx->run_codes[run] = ctx->cid_table->run_codes[i];
  99. ctx->run_bits [run] = ctx->cid_table->run_bits[i];
  100. }
  101. return 0;
  102. fail:
  103. return -1;
  104. }
  105. static int dnxhd_init_qmat(DNXHDEncContext *ctx, int lbias, int cbias)
  106. {
  107. // init first elem to 1 to avoid div by 0 in convert_matrix
  108. uint16_t weight_matrix[64] = {1,}; // convert_matrix needs uint16_t*
  109. int qscale, i;
  110. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_l, (ctx->m.avctx->qmax+1) * 64 * sizeof(int), fail);
  111. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_c, (ctx->m.avctx->qmax+1) * 64 * sizeof(int), fail);
  112. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_l16, (ctx->m.avctx->qmax+1) * 64 * 2 * sizeof(uint16_t), fail);
  113. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_c16, (ctx->m.avctx->qmax+1) * 64 * 2 * sizeof(uint16_t), fail);
  114. for (i = 1; i < 64; i++) {
  115. int j = ctx->m.dsp.idct_permutation[ff_zigzag_direct[i]];
  116. weight_matrix[j] = ctx->cid_table->luma_weight[i];
  117. }
  118. ff_convert_matrix(&ctx->m.dsp, ctx->qmatrix_l, ctx->qmatrix_l16, weight_matrix,
  119. ctx->m.intra_quant_bias, 1, ctx->m.avctx->qmax, 1);
  120. for (i = 1; i < 64; i++) {
  121. int j = ctx->m.dsp.idct_permutation[ff_zigzag_direct[i]];
  122. weight_matrix[j] = ctx->cid_table->chroma_weight[i];
  123. }
  124. ff_convert_matrix(&ctx->m.dsp, ctx->qmatrix_c, ctx->qmatrix_c16, weight_matrix,
  125. ctx->m.intra_quant_bias, 1, ctx->m.avctx->qmax, 1);
  126. for (qscale = 1; qscale <= ctx->m.avctx->qmax; qscale++) {
  127. for (i = 0; i < 64; i++) {
  128. ctx->qmatrix_l [qscale] [i] <<= 2; ctx->qmatrix_c [qscale] [i] <<= 2;
  129. ctx->qmatrix_l16[qscale][0][i] <<= 2; ctx->qmatrix_l16[qscale][1][i] <<= 2;
  130. ctx->qmatrix_c16[qscale][0][i] <<= 2; ctx->qmatrix_c16[qscale][1][i] <<= 2;
  131. }
  132. }
  133. return 0;
  134. fail:
  135. return -1;
  136. }
  137. static int dnxhd_init_rc(DNXHDEncContext *ctx)
  138. {
  139. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_rc, 8160*ctx->m.avctx->qmax*sizeof(RCEntry), fail);
  140. if (ctx->m.avctx->mb_decision != FF_MB_DECISION_RD)
  141. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_cmp, ctx->m.mb_num*sizeof(RCCMPEntry), fail);
  142. ctx->frame_bits = (ctx->cid_table->coding_unit_size - 640 - 4 - ctx->min_padding) * 8;
  143. ctx->qscale = 1;
  144. ctx->lambda = 2<<LAMBDA_FRAC_BITS; // qscale 2
  145. return 0;
  146. fail:
  147. return -1;
  148. }
  149. static int dnxhd_encode_init(AVCodecContext *avctx)
  150. {
  151. DNXHDEncContext *ctx = avctx->priv_data;
  152. int i, index;
  153. ctx->cid = ff_dnxhd_find_cid(avctx);
  154. if (!ctx->cid || avctx->pix_fmt != PIX_FMT_YUV422P) {
  155. av_log(avctx, AV_LOG_ERROR, "video parameters incompatible with DNxHD\n");
  156. return -1;
  157. }
  158. av_log(avctx, AV_LOG_DEBUG, "cid %d\n", ctx->cid);
  159. index = ff_dnxhd_get_cid_table(ctx->cid);
  160. ctx->cid_table = &ff_dnxhd_cid_table[index];
  161. ctx->m.avctx = avctx;
  162. ctx->m.mb_intra = 1;
  163. ctx->m.h263_aic = 1;
  164. ctx->get_pixels_8x4_sym = dnxhd_get_pixels_8x4;
  165. dsputil_init(&ctx->m.dsp, avctx);
  166. ff_dct_common_init(&ctx->m);
  167. #if HAVE_MMX
  168. ff_dnxhd_init_mmx(ctx);
  169. #endif
  170. if (!ctx->m.dct_quantize)
  171. ctx->m.dct_quantize = dct_quantize_c;
  172. ctx->m.mb_height = (avctx->height + 15) / 16;
  173. ctx->m.mb_width = (avctx->width + 15) / 16;
  174. if (avctx->flags & CODEC_FLAG_INTERLACED_DCT) {
  175. ctx->interlaced = 1;
  176. ctx->m.mb_height /= 2;
  177. }
  178. ctx->m.mb_num = ctx->m.mb_height * ctx->m.mb_width;
  179. if (avctx->intra_quant_bias != FF_DEFAULT_QUANT_BIAS)
  180. ctx->m.intra_quant_bias = avctx->intra_quant_bias;
  181. if (dnxhd_init_qmat(ctx, ctx->m.intra_quant_bias, 0) < 0) // XXX tune lbias/cbias
  182. return -1;
  183. // Avid Nitris hardware decoder requires a minimum amount of padding in the coding unit payload
  184. if (ctx->nitris_compat)
  185. ctx->min_padding = 1600;
  186. if (dnxhd_init_vlc(ctx) < 0)
  187. return -1;
  188. if (dnxhd_init_rc(ctx) < 0)
  189. return -1;
  190. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->slice_size, ctx->m.mb_height*sizeof(uint32_t), fail);
  191. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->slice_offs, ctx->m.mb_height*sizeof(uint32_t), fail);
  192. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_bits, ctx->m.mb_num *sizeof(uint16_t), fail);
  193. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_qscale, ctx->m.mb_num *sizeof(uint8_t), fail);
  194. ctx->frame.key_frame = 1;
  195. ctx->frame.pict_type = AV_PICTURE_TYPE_I;
  196. ctx->m.avctx->coded_frame = &ctx->frame;
  197. if (avctx->thread_count > MAX_THREADS) {
  198. av_log(avctx, AV_LOG_ERROR, "too many threads\n");
  199. return -1;
  200. }
  201. ctx->thread[0] = ctx;
  202. for (i = 1; i < avctx->thread_count; i++) {
  203. ctx->thread[i] = av_malloc(sizeof(DNXHDEncContext));
  204. memcpy(ctx->thread[i], ctx, sizeof(DNXHDEncContext));
  205. }
  206. return 0;
  207. fail: //for FF_ALLOCZ_OR_GOTO
  208. return -1;
  209. }
  210. static int dnxhd_write_header(AVCodecContext *avctx, uint8_t *buf)
  211. {
  212. DNXHDEncContext *ctx = avctx->priv_data;
  213. const uint8_t header_prefix[5] = { 0x00,0x00,0x02,0x80,0x01 };
  214. memset(buf, 0, 640);
  215. memcpy(buf, header_prefix, 5);
  216. buf[5] = ctx->interlaced ? ctx->cur_field+2 : 0x01;
  217. buf[6] = 0x80; // crc flag off
  218. buf[7] = 0xa0; // reserved
  219. AV_WB16(buf + 0x18, avctx->height>>ctx->interlaced); // ALPF
  220. AV_WB16(buf + 0x1a, avctx->width); // SPL
  221. AV_WB16(buf + 0x1d, avctx->height>>ctx->interlaced); // NAL
  222. buf[0x21] = 0x38; // FIXME 8 bit per comp
  223. buf[0x22] = 0x88 + (ctx->interlaced<<2);
  224. AV_WB32(buf + 0x28, ctx->cid); // CID
  225. buf[0x2c] = ctx->interlaced ? 0 : 0x80;
  226. buf[0x5f] = 0x01; // UDL
  227. buf[0x167] = 0x02; // reserved
  228. AV_WB16(buf + 0x16a, ctx->m.mb_height * 4 + 4); // MSIPS
  229. buf[0x16d] = ctx->m.mb_height; // Ns
  230. buf[0x16f] = 0x10; // reserved
  231. ctx->msip = buf + 0x170;
  232. return 0;
  233. }
  234. static av_always_inline void dnxhd_encode_dc(DNXHDEncContext *ctx, int diff)
  235. {
  236. int nbits;
  237. if (diff < 0) {
  238. nbits = av_log2_16bit(-2*diff);
  239. diff--;
  240. } else {
  241. nbits = av_log2_16bit(2*diff);
  242. }
  243. put_bits(&ctx->m.pb, ctx->cid_table->dc_bits[nbits] + nbits,
  244. (ctx->cid_table->dc_codes[nbits]<<nbits) + (diff & ((1 << nbits) - 1)));
  245. }
  246. static av_always_inline void dnxhd_encode_block(DNXHDEncContext *ctx, DCTELEM *block, int last_index, int n)
  247. {
  248. int last_non_zero = 0;
  249. int slevel, i, j;
  250. dnxhd_encode_dc(ctx, block[0] - ctx->m.last_dc[n]);
  251. ctx->m.last_dc[n] = block[0];
  252. for (i = 1; i <= last_index; i++) {
  253. j = ctx->m.intra_scantable.permutated[i];
  254. slevel = block[j];
  255. if (slevel) {
  256. int run_level = i - last_non_zero - 1;
  257. int rlevel = (slevel<<1)|!!run_level;
  258. put_bits(&ctx->m.pb, ctx->vlc_bits[rlevel], ctx->vlc_codes[rlevel]);
  259. if (run_level)
  260. put_bits(&ctx->m.pb, ctx->run_bits[run_level], ctx->run_codes[run_level]);
  261. last_non_zero = i;
  262. }
  263. }
  264. put_bits(&ctx->m.pb, ctx->vlc_bits[0], ctx->vlc_codes[0]); // EOB
  265. }
  266. static av_always_inline void dnxhd_unquantize_c(DNXHDEncContext *ctx, DCTELEM *block, int n, int qscale, int last_index)
  267. {
  268. const uint8_t *weight_matrix;
  269. int level;
  270. int i;
  271. weight_matrix = (n&2) ? ctx->cid_table->chroma_weight : ctx->cid_table->luma_weight;
  272. for (i = 1; i <= last_index; i++) {
  273. int j = ctx->m.intra_scantable.permutated[i];
  274. level = block[j];
  275. if (level) {
  276. if (level < 0) {
  277. level = (1-2*level) * qscale * weight_matrix[i];
  278. if (weight_matrix[i] != 32)
  279. level += 32;
  280. level >>= 6;
  281. level = -level;
  282. } else {
  283. level = (2*level+1) * qscale * weight_matrix[i];
  284. if (weight_matrix[i] != 32)
  285. level += 32;
  286. level >>= 6;
  287. }
  288. block[j] = level;
  289. }
  290. }
  291. }
  292. static av_always_inline int dnxhd_ssd_block(DCTELEM *qblock, DCTELEM *block)
  293. {
  294. int score = 0;
  295. int i;
  296. for (i = 0; i < 64; i++)
  297. score += (block[i] - qblock[i]) * (block[i] - qblock[i]);
  298. return score;
  299. }
  300. static av_always_inline int dnxhd_calc_ac_bits(DNXHDEncContext *ctx, DCTELEM *block, int last_index)
  301. {
  302. int last_non_zero = 0;
  303. int bits = 0;
  304. int i, j, level;
  305. for (i = 1; i <= last_index; i++) {
  306. j = ctx->m.intra_scantable.permutated[i];
  307. level = block[j];
  308. if (level) {
  309. int run_level = i - last_non_zero - 1;
  310. bits += ctx->vlc_bits[(level<<1)|!!run_level]+ctx->run_bits[run_level];
  311. last_non_zero = i;
  312. }
  313. }
  314. return bits;
  315. }
  316. static av_always_inline void dnxhd_get_blocks(DNXHDEncContext *ctx, int mb_x, int mb_y)
  317. {
  318. const uint8_t *ptr_y = ctx->thread[0]->src[0] + ((mb_y << 4) * ctx->m.linesize) + (mb_x << 4);
  319. const uint8_t *ptr_u = ctx->thread[0]->src[1] + ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << 3);
  320. const uint8_t *ptr_v = ctx->thread[0]->src[2] + ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << 3);
  321. DSPContext *dsp = &ctx->m.dsp;
  322. dsp->get_pixels(ctx->blocks[0], ptr_y, ctx->m.linesize);
  323. dsp->get_pixels(ctx->blocks[1], ptr_y + 8, ctx->m.linesize);
  324. dsp->get_pixels(ctx->blocks[2], ptr_u, ctx->m.uvlinesize);
  325. dsp->get_pixels(ctx->blocks[3], ptr_v, ctx->m.uvlinesize);
  326. if (mb_y+1 == ctx->m.mb_height && ctx->m.avctx->height == 1080) {
  327. if (ctx->interlaced) {
  328. ctx->get_pixels_8x4_sym(ctx->blocks[4], ptr_y + ctx->dct_y_offset, ctx->m.linesize);
  329. ctx->get_pixels_8x4_sym(ctx->blocks[5], ptr_y + ctx->dct_y_offset + 8, ctx->m.linesize);
  330. ctx->get_pixels_8x4_sym(ctx->blocks[6], ptr_u + ctx->dct_uv_offset, ctx->m.uvlinesize);
  331. ctx->get_pixels_8x4_sym(ctx->blocks[7], ptr_v + ctx->dct_uv_offset, ctx->m.uvlinesize);
  332. } else {
  333. dsp->clear_block(ctx->blocks[4]);
  334. dsp->clear_block(ctx->blocks[5]);
  335. dsp->clear_block(ctx->blocks[6]);
  336. dsp->clear_block(ctx->blocks[7]);
  337. }
  338. } else {
  339. dsp->get_pixels(ctx->blocks[4], ptr_y + ctx->dct_y_offset, ctx->m.linesize);
  340. dsp->get_pixels(ctx->blocks[5], ptr_y + ctx->dct_y_offset + 8, ctx->m.linesize);
  341. dsp->get_pixels(ctx->blocks[6], ptr_u + ctx->dct_uv_offset, ctx->m.uvlinesize);
  342. dsp->get_pixels(ctx->blocks[7], ptr_v + ctx->dct_uv_offset, ctx->m.uvlinesize);
  343. }
  344. }
  345. static av_always_inline int dnxhd_switch_matrix(DNXHDEncContext *ctx, int i)
  346. {
  347. if (i&2) {
  348. ctx->m.q_intra_matrix16 = ctx->qmatrix_c16;
  349. ctx->m.q_intra_matrix = ctx->qmatrix_c;
  350. return 1 + (i&1);
  351. } else {
  352. ctx->m.q_intra_matrix16 = ctx->qmatrix_l16;
  353. ctx->m.q_intra_matrix = ctx->qmatrix_l;
  354. return 0;
  355. }
  356. }
  357. static int dnxhd_calc_bits_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr)
  358. {
  359. DNXHDEncContext *ctx = avctx->priv_data;
  360. int mb_y = jobnr, mb_x;
  361. int qscale = ctx->qscale;
  362. LOCAL_ALIGNED_16(DCTELEM, block, [64]);
  363. ctx = ctx->thread[threadnr];
  364. ctx->m.last_dc[0] =
  365. ctx->m.last_dc[1] =
  366. ctx->m.last_dc[2] = 1024;
  367. for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
  368. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  369. int ssd = 0;
  370. int ac_bits = 0;
  371. int dc_bits = 0;
  372. int i;
  373. dnxhd_get_blocks(ctx, mb_x, mb_y);
  374. for (i = 0; i < 8; i++) {
  375. DCTELEM *src_block = ctx->blocks[i];
  376. int overflow, nbits, diff, last_index;
  377. int n = dnxhd_switch_matrix(ctx, i);
  378. memcpy(block, src_block, 64*sizeof(*block));
  379. last_index = ctx->m.dct_quantize(&ctx->m, block, i, qscale, &overflow);
  380. ac_bits += dnxhd_calc_ac_bits(ctx, block, last_index);
  381. diff = block[0] - ctx->m.last_dc[n];
  382. if (diff < 0) nbits = av_log2_16bit(-2*diff);
  383. else nbits = av_log2_16bit( 2*diff);
  384. dc_bits += ctx->cid_table->dc_bits[nbits] + nbits;
  385. ctx->m.last_dc[n] = block[0];
  386. if (avctx->mb_decision == FF_MB_DECISION_RD || !RC_VARIANCE) {
  387. dnxhd_unquantize_c(ctx, block, i, qscale, last_index);
  388. ctx->m.dsp.idct(block);
  389. ssd += dnxhd_ssd_block(block, src_block);
  390. }
  391. }
  392. ctx->mb_rc[qscale][mb].ssd = ssd;
  393. ctx->mb_rc[qscale][mb].bits = ac_bits+dc_bits+12+8*ctx->vlc_bits[0];
  394. }
  395. return 0;
  396. }
  397. static int dnxhd_encode_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr)
  398. {
  399. DNXHDEncContext *ctx = avctx->priv_data;
  400. int mb_y = jobnr, mb_x;
  401. ctx = ctx->thread[threadnr];
  402. init_put_bits(&ctx->m.pb, (uint8_t *)arg + 640 + ctx->slice_offs[jobnr], ctx->slice_size[jobnr]);
  403. ctx->m.last_dc[0] =
  404. ctx->m.last_dc[1] =
  405. ctx->m.last_dc[2] = 1024;
  406. for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
  407. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  408. int qscale = ctx->mb_qscale[mb];
  409. int i;
  410. put_bits(&ctx->m.pb, 12, qscale<<1);
  411. dnxhd_get_blocks(ctx, mb_x, mb_y);
  412. for (i = 0; i < 8; i++) {
  413. DCTELEM *block = ctx->blocks[i];
  414. int last_index, overflow;
  415. int n = dnxhd_switch_matrix(ctx, i);
  416. last_index = ctx->m.dct_quantize(&ctx->m, block, i, qscale, &overflow);
  417. //START_TIMER;
  418. dnxhd_encode_block(ctx, block, last_index, n);
  419. //STOP_TIMER("encode_block");
  420. }
  421. }
  422. if (put_bits_count(&ctx->m.pb)&31)
  423. put_bits(&ctx->m.pb, 32-(put_bits_count(&ctx->m.pb)&31), 0);
  424. flush_put_bits(&ctx->m.pb);
  425. return 0;
  426. }
  427. static void dnxhd_setup_threads_slices(DNXHDEncContext *ctx)
  428. {
  429. int mb_y, mb_x;
  430. int offset = 0;
  431. for (mb_y = 0; mb_y < ctx->m.mb_height; mb_y++) {
  432. int thread_size;
  433. ctx->slice_offs[mb_y] = offset;
  434. ctx->slice_size[mb_y] = 0;
  435. for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
  436. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  437. ctx->slice_size[mb_y] += ctx->mb_bits[mb];
  438. }
  439. ctx->slice_size[mb_y] = (ctx->slice_size[mb_y]+31)&~31;
  440. ctx->slice_size[mb_y] >>= 3;
  441. thread_size = ctx->slice_size[mb_y];
  442. offset += thread_size;
  443. }
  444. }
  445. static int dnxhd_mb_var_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr)
  446. {
  447. DNXHDEncContext *ctx = avctx->priv_data;
  448. int mb_y = jobnr, mb_x;
  449. ctx = ctx->thread[threadnr];
  450. for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
  451. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  452. uint8_t *pix = ctx->thread[0]->src[0] + ((mb_y<<4) * ctx->m.linesize) + (mb_x<<4);
  453. int sum = ctx->m.dsp.pix_sum(pix, ctx->m.linesize);
  454. int varc = (ctx->m.dsp.pix_norm1(pix, ctx->m.linesize) - (((unsigned)(sum*sum))>>8)+128)>>8;
  455. ctx->mb_cmp[mb].value = varc;
  456. ctx->mb_cmp[mb].mb = mb;
  457. }
  458. return 0;
  459. }
  460. static int dnxhd_encode_rdo(AVCodecContext *avctx, DNXHDEncContext *ctx)
  461. {
  462. int lambda, up_step, down_step;
  463. int last_lower = INT_MAX, last_higher = 0;
  464. int x, y, q;
  465. for (q = 1; q < avctx->qmax; q++) {
  466. ctx->qscale = q;
  467. avctx->execute2(avctx, dnxhd_calc_bits_thread, NULL, NULL, ctx->m.mb_height);
  468. }
  469. up_step = down_step = 2<<LAMBDA_FRAC_BITS;
  470. lambda = ctx->lambda;
  471. for (;;) {
  472. int bits = 0;
  473. int end = 0;
  474. if (lambda == last_higher) {
  475. lambda++;
  476. end = 1; // need to set final qscales/bits
  477. }
  478. for (y = 0; y < ctx->m.mb_height; y++) {
  479. for (x = 0; x < ctx->m.mb_width; x++) {
  480. unsigned min = UINT_MAX;
  481. int qscale = 1;
  482. int mb = y*ctx->m.mb_width+x;
  483. for (q = 1; q < avctx->qmax; q++) {
  484. unsigned score = ctx->mb_rc[q][mb].bits*lambda+(ctx->mb_rc[q][mb].ssd<<LAMBDA_FRAC_BITS);
  485. if (score < min) {
  486. min = score;
  487. qscale = q;
  488. }
  489. }
  490. bits += ctx->mb_rc[qscale][mb].bits;
  491. ctx->mb_qscale[mb] = qscale;
  492. ctx->mb_bits[mb] = ctx->mb_rc[qscale][mb].bits;
  493. }
  494. bits = (bits+31)&~31; // padding
  495. if (bits > ctx->frame_bits)
  496. break;
  497. }
  498. //av_dlog(ctx->m.avctx, "lambda %d, up %u, down %u, bits %d, frame %d\n",
  499. // lambda, last_higher, last_lower, bits, ctx->frame_bits);
  500. if (end) {
  501. if (bits > ctx->frame_bits)
  502. return -1;
  503. break;
  504. }
  505. if (bits < ctx->frame_bits) {
  506. last_lower = FFMIN(lambda, last_lower);
  507. if (last_higher != 0)
  508. lambda = (lambda+last_higher)>>1;
  509. else
  510. lambda -= down_step;
  511. down_step *= 5; // XXX tune ?
  512. up_step = 1<<LAMBDA_FRAC_BITS;
  513. lambda = FFMAX(1, lambda);
  514. if (lambda == last_lower)
  515. break;
  516. } else {
  517. last_higher = FFMAX(lambda, last_higher);
  518. if (last_lower != INT_MAX)
  519. lambda = (lambda+last_lower)>>1;
  520. else if ((int64_t)lambda + up_step > INT_MAX)
  521. return -1;
  522. else
  523. lambda += up_step;
  524. up_step = FFMIN((int64_t)up_step*5, INT_MAX);
  525. down_step = 1<<LAMBDA_FRAC_BITS;
  526. }
  527. }
  528. //av_dlog(ctx->m.avctx, "out lambda %d\n", lambda);
  529. ctx->lambda = lambda;
  530. return 0;
  531. }
  532. static int dnxhd_find_qscale(DNXHDEncContext *ctx)
  533. {
  534. int bits = 0;
  535. int up_step = 1;
  536. int down_step = 1;
  537. int last_higher = 0;
  538. int last_lower = INT_MAX;
  539. int qscale;
  540. int x, y;
  541. qscale = ctx->qscale;
  542. for (;;) {
  543. bits = 0;
  544. ctx->qscale = qscale;
  545. // XXX avoid recalculating bits
  546. ctx->m.avctx->execute2(ctx->m.avctx, dnxhd_calc_bits_thread, NULL, NULL, ctx->m.mb_height);
  547. for (y = 0; y < ctx->m.mb_height; y++) {
  548. for (x = 0; x < ctx->m.mb_width; x++)
  549. bits += ctx->mb_rc[qscale][y*ctx->m.mb_width+x].bits;
  550. bits = (bits+31)&~31; // padding
  551. if (bits > ctx->frame_bits)
  552. break;
  553. }
  554. //av_dlog(ctx->m.avctx, "%d, qscale %d, bits %d, frame %d, higher %d, lower %d\n",
  555. // ctx->m.avctx->frame_number, qscale, bits, ctx->frame_bits, last_higher, last_lower);
  556. if (bits < ctx->frame_bits) {
  557. if (qscale == 1)
  558. return 1;
  559. if (last_higher == qscale - 1) {
  560. qscale = last_higher;
  561. break;
  562. }
  563. last_lower = FFMIN(qscale, last_lower);
  564. if (last_higher != 0)
  565. qscale = (qscale+last_higher)>>1;
  566. else
  567. qscale -= down_step++;
  568. if (qscale < 1)
  569. qscale = 1;
  570. up_step = 1;
  571. } else {
  572. if (last_lower == qscale + 1)
  573. break;
  574. last_higher = FFMAX(qscale, last_higher);
  575. if (last_lower != INT_MAX)
  576. qscale = (qscale+last_lower)>>1;
  577. else
  578. qscale += up_step++;
  579. down_step = 1;
  580. if (qscale >= ctx->m.avctx->qmax)
  581. return -1;
  582. }
  583. }
  584. //av_dlog(ctx->m.avctx, "out qscale %d\n", qscale);
  585. ctx->qscale = qscale;
  586. return 0;
  587. }
  588. #define BUCKET_BITS 8
  589. #define RADIX_PASSES 4
  590. #define NBUCKETS (1 << BUCKET_BITS)
  591. static inline int get_bucket(int value, int shift)
  592. {
  593. value >>= shift;
  594. value &= NBUCKETS - 1;
  595. return NBUCKETS - 1 - value;
  596. }
  597. static void radix_count(const RCCMPEntry *data, int size, int buckets[RADIX_PASSES][NBUCKETS])
  598. {
  599. int i, j;
  600. memset(buckets, 0, sizeof(buckets[0][0]) * RADIX_PASSES * NBUCKETS);
  601. for (i = 0; i < size; i++) {
  602. int v = data[i].value;
  603. for (j = 0; j < RADIX_PASSES; j++) {
  604. buckets[j][get_bucket(v, 0)]++;
  605. v >>= BUCKET_BITS;
  606. }
  607. assert(!v);
  608. }
  609. for (j = 0; j < RADIX_PASSES; j++) {
  610. int offset = size;
  611. for (i = NBUCKETS - 1; i >= 0; i--)
  612. buckets[j][i] = offset -= buckets[j][i];
  613. assert(!buckets[j][0]);
  614. }
  615. }
  616. static void radix_sort_pass(RCCMPEntry *dst, const RCCMPEntry *data, int size, int buckets[NBUCKETS], int pass)
  617. {
  618. int shift = pass * BUCKET_BITS;
  619. int i;
  620. for (i = 0; i < size; i++) {
  621. int v = get_bucket(data[i].value, shift);
  622. int pos = buckets[v]++;
  623. dst[pos] = data[i];
  624. }
  625. }
  626. static void radix_sort(RCCMPEntry *data, int size)
  627. {
  628. int buckets[RADIX_PASSES][NBUCKETS];
  629. RCCMPEntry *tmp = av_malloc(sizeof(*tmp) * size);
  630. radix_count(data, size, buckets);
  631. radix_sort_pass(tmp, data, size, buckets[0], 0);
  632. radix_sort_pass(data, tmp, size, buckets[1], 1);
  633. if (buckets[2][NBUCKETS - 1] || buckets[3][NBUCKETS - 1]) {
  634. radix_sort_pass(tmp, data, size, buckets[2], 2);
  635. radix_sort_pass(data, tmp, size, buckets[3], 3);
  636. }
  637. av_free(tmp);
  638. }
  639. static int dnxhd_encode_fast(AVCodecContext *avctx, DNXHDEncContext *ctx)
  640. {
  641. int max_bits = 0;
  642. int ret, x, y;
  643. if ((ret = dnxhd_find_qscale(ctx)) < 0)
  644. return -1;
  645. for (y = 0; y < ctx->m.mb_height; y++) {
  646. for (x = 0; x < ctx->m.mb_width; x++) {
  647. int mb = y*ctx->m.mb_width+x;
  648. int delta_bits;
  649. ctx->mb_qscale[mb] = ctx->qscale;
  650. ctx->mb_bits[mb] = ctx->mb_rc[ctx->qscale][mb].bits;
  651. max_bits += ctx->mb_rc[ctx->qscale][mb].bits;
  652. if (!RC_VARIANCE) {
  653. delta_bits = ctx->mb_rc[ctx->qscale][mb].bits-ctx->mb_rc[ctx->qscale+1][mb].bits;
  654. ctx->mb_cmp[mb].mb = mb;
  655. ctx->mb_cmp[mb].value = delta_bits ?
  656. ((ctx->mb_rc[ctx->qscale][mb].ssd-ctx->mb_rc[ctx->qscale+1][mb].ssd)*100)/delta_bits
  657. : INT_MIN; //avoid increasing qscale
  658. }
  659. }
  660. max_bits += 31; //worst padding
  661. }
  662. if (!ret) {
  663. if (RC_VARIANCE)
  664. avctx->execute2(avctx, dnxhd_mb_var_thread, NULL, NULL, ctx->m.mb_height);
  665. radix_sort(ctx->mb_cmp, ctx->m.mb_num);
  666. for (x = 0; x < ctx->m.mb_num && max_bits > ctx->frame_bits; x++) {
  667. int mb = ctx->mb_cmp[x].mb;
  668. max_bits -= ctx->mb_rc[ctx->qscale][mb].bits - ctx->mb_rc[ctx->qscale+1][mb].bits;
  669. ctx->mb_qscale[mb] = ctx->qscale+1;
  670. ctx->mb_bits[mb] = ctx->mb_rc[ctx->qscale+1][mb].bits;
  671. }
  672. }
  673. return 0;
  674. }
  675. static void dnxhd_load_picture(DNXHDEncContext *ctx, const AVFrame *frame)
  676. {
  677. int i;
  678. for (i = 0; i < 3; i++) {
  679. ctx->frame.data[i] = frame->data[i];
  680. ctx->frame.linesize[i] = frame->linesize[i];
  681. }
  682. for (i = 0; i < ctx->m.avctx->thread_count; i++) {
  683. ctx->thread[i]->m.linesize = ctx->frame.linesize[0]<<ctx->interlaced;
  684. ctx->thread[i]->m.uvlinesize = ctx->frame.linesize[1]<<ctx->interlaced;
  685. ctx->thread[i]->dct_y_offset = ctx->m.linesize *8;
  686. ctx->thread[i]->dct_uv_offset = ctx->m.uvlinesize*8;
  687. }
  688. ctx->frame.interlaced_frame = frame->interlaced_frame;
  689. ctx->cur_field = frame->interlaced_frame && !frame->top_field_first;
  690. }
  691. static int dnxhd_encode_picture(AVCodecContext *avctx, unsigned char *buf, int buf_size, void *data)
  692. {
  693. DNXHDEncContext *ctx = avctx->priv_data;
  694. int first_field = 1;
  695. int offset, i, ret;
  696. if (buf_size < ctx->cid_table->frame_size) {
  697. av_log(avctx, AV_LOG_ERROR, "output buffer is too small to compress picture\n");
  698. return -1;
  699. }
  700. dnxhd_load_picture(ctx, data);
  701. encode_coding_unit:
  702. for (i = 0; i < 3; i++) {
  703. ctx->src[i] = ctx->frame.data[i];
  704. if (ctx->interlaced && ctx->cur_field)
  705. ctx->src[i] += ctx->frame.linesize[i];
  706. }
  707. dnxhd_write_header(avctx, buf);
  708. if (avctx->mb_decision == FF_MB_DECISION_RD)
  709. ret = dnxhd_encode_rdo(avctx, ctx);
  710. else
  711. ret = dnxhd_encode_fast(avctx, ctx);
  712. if (ret < 0) {
  713. av_log(avctx, AV_LOG_ERROR,
  714. "picture could not fit ratecontrol constraints, increase qmax\n");
  715. return -1;
  716. }
  717. dnxhd_setup_threads_slices(ctx);
  718. offset = 0;
  719. for (i = 0; i < ctx->m.mb_height; i++) {
  720. AV_WB32(ctx->msip + i * 4, offset);
  721. offset += ctx->slice_size[i];
  722. assert(!(ctx->slice_size[i] & 3));
  723. }
  724. avctx->execute2(avctx, dnxhd_encode_thread, buf, NULL, ctx->m.mb_height);
  725. assert(640 + offset + 4 <= ctx->cid_table->coding_unit_size);
  726. memset(buf + 640 + offset, 0, ctx->cid_table->coding_unit_size - 4 - offset - 640);
  727. AV_WB32(buf + ctx->cid_table->coding_unit_size - 4, 0x600DC0DE); // EOF
  728. if (ctx->interlaced && first_field) {
  729. first_field = 0;
  730. ctx->cur_field ^= 1;
  731. buf += ctx->cid_table->coding_unit_size;
  732. buf_size -= ctx->cid_table->coding_unit_size;
  733. goto encode_coding_unit;
  734. }
  735. ctx->frame.quality = ctx->qscale*FF_QP2LAMBDA;
  736. return ctx->cid_table->frame_size;
  737. }
  738. static int dnxhd_encode_end(AVCodecContext *avctx)
  739. {
  740. DNXHDEncContext *ctx = avctx->priv_data;
  741. int max_level = 1<<(ctx->cid_table->bit_depth+2);
  742. int i;
  743. av_free(ctx->vlc_codes-max_level*2);
  744. av_free(ctx->vlc_bits -max_level*2);
  745. av_freep(&ctx->run_codes);
  746. av_freep(&ctx->run_bits);
  747. av_freep(&ctx->mb_bits);
  748. av_freep(&ctx->mb_qscale);
  749. av_freep(&ctx->mb_rc);
  750. av_freep(&ctx->mb_cmp);
  751. av_freep(&ctx->slice_size);
  752. av_freep(&ctx->slice_offs);
  753. av_freep(&ctx->qmatrix_c);
  754. av_freep(&ctx->qmatrix_l);
  755. av_freep(&ctx->qmatrix_c16);
  756. av_freep(&ctx->qmatrix_l16);
  757. for (i = 1; i < avctx->thread_count; i++)
  758. av_freep(&ctx->thread[i]);
  759. return 0;
  760. }
  761. AVCodec ff_dnxhd_encoder = {
  762. "dnxhd",
  763. AVMEDIA_TYPE_VIDEO,
  764. CODEC_ID_DNXHD,
  765. sizeof(DNXHDEncContext),
  766. dnxhd_encode_init,
  767. dnxhd_encode_picture,
  768. dnxhd_encode_end,
  769. .capabilities = CODEC_CAP_SLICE_THREADS,
  770. .pix_fmts = (const enum PixelFormat[]){PIX_FMT_YUV422P, PIX_FMT_NONE},
  771. .long_name = NULL_IF_CONFIG_SMALL("VC3/DNxHD"),
  772. .priv_class = &class,
  773. };