You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2178 lines
70KB

  1. /*
  2. * The simplest mpeg encoder (well, it was the simplest!)
  3. * Copyright (c) 2000,2001 Gerard Lantau.
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation; either version 2 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  18. *
  19. * 4MV & hq encoding stuff by Michael Niedermayer <michaelni@gmx.at>
  20. */
  21. #include <stdlib.h>
  22. #include <stdio.h>
  23. #include <math.h>
  24. #include <string.h>
  25. #include "avcodec.h"
  26. #include "dsputil.h"
  27. #include "mpegvideo.h"
  28. #ifdef USE_FASTMEMCPY
  29. #include "fastmemcpy.h"
  30. #endif
  31. static void encode_picture(MpegEncContext *s, int picture_number);
  32. static void rate_control_init(MpegEncContext *s);
  33. static int rate_estimate_qscale(MpegEncContext *s);
  34. static void dct_unquantize_mpeg1_c(MpegEncContext *s,
  35. DCTELEM *block, int n, int qscale);
  36. static void dct_unquantize_h263_c(MpegEncContext *s,
  37. DCTELEM *block, int n, int qscale);
  38. static void draw_edges_c(UINT8 *buf, int wrap, int width, int height, int w);
  39. static int dct_quantize_c(MpegEncContext *s, DCTELEM *block, int n, int qscale);
  40. int (*dct_quantize)(MpegEncContext *s, DCTELEM *block, int n, int qscale)= dct_quantize_c;
  41. void (*draw_edges)(UINT8 *buf, int wrap, int width, int height, int w)= draw_edges_c;
  42. #define EDGE_WIDTH 16
  43. /* enable all paranoid tests for rounding, overflows, etc... */
  44. //#define PARANOID
  45. //#define DEBUG
  46. /* for jpeg fast DCT */
  47. #define CONST_BITS 14
  48. static const unsigned short aanscales[64] = {
  49. /* precomputed values scaled up by 14 bits */
  50. 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
  51. 22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270,
  52. 21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906,
  53. 19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315,
  54. 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
  55. 12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552,
  56. 8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446,
  57. 4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247
  58. };
  59. static UINT8 h263_chroma_roundtab[16] = {
  60. 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2,
  61. };
  62. static UINT16 default_mv_penalty[MAX_FCODE+1][MAX_MV*2+1];
  63. static UINT8 default_fcode_tab[MAX_MV*2+1];
  64. extern UINT8 zigzag_end[64];
  65. /* default motion estimation */
  66. int motion_estimation_method = ME_EPZS;
  67. static void convert_matrix(int *qmat, UINT16 *qmat16, const UINT16 *quant_matrix, int qscale)
  68. {
  69. int i;
  70. if (av_fdct == jpeg_fdct_ifast) {
  71. for(i=0;i<64;i++) {
  72. /* 16 <= qscale * quant_matrix[i] <= 7905 */
  73. /* 19952 <= aanscales[i] * qscale * quant_matrix[i] <= 249205026 */
  74. /* (1<<36)/19952 >= (1<<36)/(aanscales[i] * qscale * quant_matrix[i]) >= (1<<36)/249205026 */
  75. /* 3444240 >= (1<<36)/(aanscales[i] * qscale * quant_matrix[i]) >= 275 */
  76. qmat[block_permute_op(i)] = (int)((UINT64_C(1) << (QMAT_SHIFT + 11)) /
  77. (aanscales[i] * qscale * quant_matrix[block_permute_op(i)]));
  78. }
  79. } else {
  80. for(i=0;i<64;i++) {
  81. /* We can safely suppose that 16 <= quant_matrix[i] <= 255
  82. So 16 <= qscale * quant_matrix[i] <= 7905
  83. so (1<<19) / 16 >= (1<<19) / (qscale * quant_matrix[i]) >= (1<<19) / 7905
  84. so 32768 >= (1<<19) / (qscale * quant_matrix[i]) >= 67
  85. */
  86. qmat[i] = (1 << QMAT_SHIFT_MMX) / (qscale * quant_matrix[i]);
  87. qmat16[i] = (1 << QMAT_SHIFT_MMX) / (qscale * quant_matrix[block_permute_op(i)]);
  88. }
  89. }
  90. }
  91. /* init common structure for both encoder and decoder */
  92. int MPV_common_init(MpegEncContext *s)
  93. {
  94. int c_size, i;
  95. UINT8 *pict;
  96. s->dct_unquantize_h263 = dct_unquantize_h263_c;
  97. s->dct_unquantize_mpeg = dct_unquantize_mpeg1_c;
  98. #ifdef HAVE_MMX
  99. MPV_common_init_mmx(s);
  100. #endif
  101. //setup default unquantizers (mpeg4 might change it later)
  102. if(s->out_format == FMT_H263)
  103. s->dct_unquantize = s->dct_unquantize_h263;
  104. else
  105. s->dct_unquantize = s->dct_unquantize_mpeg;
  106. s->mb_width = (s->width + 15) / 16;
  107. s->mb_height = (s->height + 15) / 16;
  108. s->mb_num = s->mb_width * s->mb_height;
  109. s->linesize = s->mb_width * 16 + 2 * EDGE_WIDTH;
  110. for(i=0;i<3;i++) {
  111. int w, h, shift, pict_start;
  112. w = s->linesize;
  113. h = s->mb_height * 16 + 2 * EDGE_WIDTH;
  114. shift = (i == 0) ? 0 : 1;
  115. c_size = (w >> shift) * (h >> shift);
  116. pict_start = (w >> shift) * (EDGE_WIDTH >> shift) + (EDGE_WIDTH >> shift);
  117. pict = av_mallocz(c_size);
  118. if (pict == NULL)
  119. goto fail;
  120. s->last_picture_base[i] = pict;
  121. s->last_picture[i] = pict + pict_start;
  122. pict = av_mallocz(c_size);
  123. if (pict == NULL)
  124. goto fail;
  125. s->next_picture_base[i] = pict;
  126. s->next_picture[i] = pict + pict_start;
  127. if (s->has_b_frames) {
  128. pict = av_mallocz(c_size);
  129. if (pict == NULL)
  130. goto fail;
  131. s->aux_picture_base[i] = pict;
  132. s->aux_picture[i] = pict + pict_start;
  133. }
  134. }
  135. if (s->encoding) {
  136. /* Allocate MB type table */
  137. s->mb_type = av_mallocz(s->mb_num * sizeof(char));
  138. if (s->mb_type == NULL) {
  139. perror("malloc");
  140. goto fail;
  141. }
  142. s->mb_var = av_mallocz(s->mb_num * sizeof(INT16));
  143. if (s->mb_var == NULL) {
  144. perror("malloc");
  145. goto fail;
  146. }
  147. /* Allocate MV table */
  148. /* By now we just have one MV per MB */
  149. s->mv_table[0] = av_mallocz(s->mb_num * sizeof(INT16));
  150. s->mv_table[1] = av_mallocz(s->mb_num * sizeof(INT16));
  151. if (s->mv_table[1] == NULL || s->mv_table[0] == NULL) {
  152. perror("malloc");
  153. goto fail;
  154. }
  155. }
  156. if (s->out_format == FMT_H263 || s->encoding) {
  157. int size;
  158. /* MV prediction */
  159. size = (2 * s->mb_width + 2) * (2 * s->mb_height + 2);
  160. s->motion_val = malloc(size * 2 * sizeof(INT16));
  161. if (s->motion_val == NULL)
  162. goto fail;
  163. memset(s->motion_val, 0, size * 2 * sizeof(INT16));
  164. }
  165. if (s->h263_pred || s->h263_plus) {
  166. int y_size, c_size, i, size;
  167. /* dc values */
  168. y_size = (2 * s->mb_width + 2) * (2 * s->mb_height + 2);
  169. c_size = (s->mb_width + 2) * (s->mb_height + 2);
  170. size = y_size + 2 * c_size;
  171. s->dc_val[0] = malloc(size * sizeof(INT16));
  172. if (s->dc_val[0] == NULL)
  173. goto fail;
  174. s->dc_val[1] = s->dc_val[0] + y_size;
  175. s->dc_val[2] = s->dc_val[1] + c_size;
  176. for(i=0;i<size;i++)
  177. s->dc_val[0][i] = 1024;
  178. /* ac values */
  179. s->ac_val[0] = av_mallocz(size * sizeof(INT16) * 16);
  180. if (s->ac_val[0] == NULL)
  181. goto fail;
  182. s->ac_val[1] = s->ac_val[0] + y_size;
  183. s->ac_val[2] = s->ac_val[1] + c_size;
  184. /* cbp values */
  185. s->coded_block = av_mallocz(y_size);
  186. if (!s->coded_block)
  187. goto fail;
  188. /* which mb is a intra block */
  189. s->mbintra_table = av_mallocz(s->mb_num);
  190. if (!s->mbintra_table)
  191. goto fail;
  192. memset(s->mbintra_table, 1, s->mb_num);
  193. }
  194. /* default structure is frame */
  195. s->picture_structure = PICT_FRAME;
  196. /* init macroblock skip table */
  197. if (!s->encoding) {
  198. s->mbskip_table = av_mallocz(s->mb_num);
  199. if (!s->mbskip_table)
  200. goto fail;
  201. }
  202. s->block= s->intra_block;
  203. s->context_initialized = 1;
  204. return 0;
  205. fail:
  206. MPV_common_end(s);
  207. return -1;
  208. }
  209. /* init common structure for both encoder and decoder */
  210. void MPV_common_end(MpegEncContext *s)
  211. {
  212. int i;
  213. if (s->mb_type)
  214. free(s->mb_type);
  215. if (s->mb_var)
  216. free(s->mb_var);
  217. if (s->mv_table[0])
  218. free(s->mv_table[0]);
  219. if (s->mv_table[1])
  220. free(s->mv_table[1]);
  221. if (s->motion_val)
  222. free(s->motion_val);
  223. if (s->dc_val[0])
  224. free(s->dc_val[0]);
  225. if (s->ac_val[0])
  226. free(s->ac_val[0]);
  227. if (s->coded_block)
  228. free(s->coded_block);
  229. if (s->mbintra_table)
  230. free(s->mbintra_table);
  231. if (s->mbskip_table)
  232. free(s->mbskip_table);
  233. for(i=0;i<3;i++) {
  234. if (s->last_picture_base[i])
  235. free(s->last_picture_base[i]);
  236. if (s->next_picture_base[i])
  237. free(s->next_picture_base[i]);
  238. if (s->has_b_frames)
  239. free(s->aux_picture_base[i]);
  240. }
  241. s->context_initialized = 0;
  242. }
  243. /* init video encoder */
  244. int MPV_encode_init(AVCodecContext *avctx)
  245. {
  246. MpegEncContext *s = avctx->priv_data;
  247. int i;
  248. avctx->pix_fmt = PIX_FMT_YUV420P;
  249. s->bit_rate = avctx->bit_rate;
  250. s->bit_rate_tolerance = avctx->bit_rate_tolerance;
  251. s->frame_rate = avctx->frame_rate;
  252. s->width = avctx->width;
  253. s->height = avctx->height;
  254. s->gop_size = avctx->gop_size;
  255. s->rtp_mode = avctx->rtp_mode;
  256. s->rtp_payload_size = avctx->rtp_payload_size;
  257. if (avctx->rtp_callback)
  258. s->rtp_callback = avctx->rtp_callback;
  259. s->qmin= avctx->qmin;
  260. s->qmax= avctx->qmax;
  261. s->max_qdiff= avctx->max_qdiff;
  262. s->qcompress= avctx->qcompress;
  263. s->qblur= avctx->qblur;
  264. s->avctx = avctx;
  265. s->aspect_ratio_info= avctx->aspect_ratio_info;
  266. s->flags= avctx->flags;
  267. if (s->gop_size <= 1) {
  268. s->intra_only = 1;
  269. s->gop_size = 12;
  270. } else {
  271. s->intra_only = 0;
  272. }
  273. /* ME algorithm */
  274. if (avctx->me_method == 0)
  275. /* For compatibility */
  276. s->me_method = motion_estimation_method;
  277. else
  278. s->me_method = avctx->me_method;
  279. /* Fixed QSCALE */
  280. s->fixed_qscale = (avctx->flags & CODEC_FLAG_QSCALE);
  281. switch(avctx->codec->id) {
  282. case CODEC_ID_MPEG1VIDEO:
  283. s->out_format = FMT_MPEG1;
  284. break;
  285. case CODEC_ID_MJPEG:
  286. s->out_format = FMT_MJPEG;
  287. s->intra_only = 1; /* force intra only for jpeg */
  288. s->mjpeg_write_tables = 1; /* write all tables */
  289. s->mjpeg_vsample[0] = 2; /* set up default sampling factors */
  290. s->mjpeg_vsample[1] = 1; /* the only currently supported values */
  291. s->mjpeg_vsample[2] = 1;
  292. s->mjpeg_hsample[0] = 2;
  293. s->mjpeg_hsample[1] = 1;
  294. s->mjpeg_hsample[2] = 1;
  295. if (mjpeg_init(s) < 0)
  296. return -1;
  297. break;
  298. case CODEC_ID_H263:
  299. if (h263_get_picture_format(s->width, s->height) == 7) {
  300. printf("Input picture size isn't suitable for h263 codec! try h263+\n");
  301. return -1;
  302. }
  303. s->out_format = FMT_H263;
  304. break;
  305. case CODEC_ID_H263P:
  306. s->out_format = FMT_H263;
  307. s->rtp_mode = 1;
  308. s->rtp_payload_size = 1200;
  309. s->h263_plus = 1;
  310. s->unrestricted_mv = 1;
  311. /* These are just to be sure */
  312. s->umvplus = 0;
  313. s->umvplus_dec = 0;
  314. break;
  315. case CODEC_ID_RV10:
  316. s->out_format = FMT_H263;
  317. s->h263_rv10 = 1;
  318. break;
  319. case CODEC_ID_MPEG4:
  320. s->out_format = FMT_H263;
  321. s->h263_pred = 1;
  322. s->unrestricted_mv = 1;
  323. break;
  324. case CODEC_ID_MSMPEG4V1:
  325. s->out_format = FMT_H263;
  326. s->h263_msmpeg4 = 1;
  327. s->h263_pred = 1;
  328. s->unrestricted_mv = 1;
  329. s->msmpeg4_version= 1;
  330. break;
  331. case CODEC_ID_MSMPEG4V2:
  332. s->out_format = FMT_H263;
  333. s->h263_msmpeg4 = 1;
  334. s->h263_pred = 1;
  335. s->unrestricted_mv = 1;
  336. s->msmpeg4_version= 2;
  337. break;
  338. case CODEC_ID_MSMPEG4V3:
  339. s->out_format = FMT_H263;
  340. s->h263_msmpeg4 = 1;
  341. s->h263_pred = 1;
  342. s->unrestricted_mv = 1;
  343. s->msmpeg4_version= 3;
  344. break;
  345. default:
  346. return -1;
  347. }
  348. if((s->flags&CODEC_FLAG_4MV) && !(s->flags&CODEC_FLAG_HQ)){
  349. printf("4MV is currently only supported in HQ mode\n");
  350. return -1;
  351. }
  352. { /* set up some save defaults, some codecs might override them later */
  353. static int done=0;
  354. if(!done){
  355. int i;
  356. done=1;
  357. memset(default_mv_penalty, 0, sizeof(UINT16)*(MAX_FCODE+1)*(2*MAX_MV+1));
  358. memset(default_fcode_tab , 0, sizeof(UINT8)*(2*MAX_MV+1));
  359. for(i=-16; i<16; i++){
  360. default_fcode_tab[i + MAX_MV]= 1;
  361. }
  362. }
  363. }
  364. s->mv_penalty= default_mv_penalty;
  365. s->fcode_tab= default_fcode_tab;
  366. if (s->out_format == FMT_H263)
  367. h263_encode_init(s);
  368. else if (s->out_format == FMT_MPEG1)
  369. mpeg1_encode_init(s);
  370. /* dont use mv_penalty table for crap MV as it would be confused */
  371. if (s->me_method < 5) s->mv_penalty = default_mv_penalty;
  372. s->encoding = 1;
  373. /* init */
  374. if (MPV_common_init(s) < 0)
  375. return -1;
  376. /* init default q matrix */
  377. for(i=0;i<64;i++) {
  378. s->intra_matrix[i] = default_intra_matrix[i];
  379. s->non_intra_matrix[i] = default_non_intra_matrix[i];
  380. }
  381. /* rate control init */
  382. rate_control_init(s);
  383. s->picture_number = 0;
  384. s->picture_in_gop_number = 0;
  385. s->fake_picture_number = 0;
  386. /* motion detector init */
  387. s->f_code = 1;
  388. return 0;
  389. }
  390. int MPV_encode_end(AVCodecContext *avctx)
  391. {
  392. MpegEncContext *s = avctx->priv_data;
  393. #ifdef STATS
  394. print_stats();
  395. #endif
  396. MPV_common_end(s);
  397. if (s->out_format == FMT_MJPEG)
  398. mjpeg_close(s);
  399. return 0;
  400. }
  401. /* draw the edges of width 'w' of an image of size width, height */
  402. static void draw_edges_c(UINT8 *buf, int wrap, int width, int height, int w)
  403. {
  404. UINT8 *ptr, *last_line;
  405. int i;
  406. last_line = buf + (height - 1) * wrap;
  407. for(i=0;i<w;i++) {
  408. /* top and bottom */
  409. memcpy(buf - (i + 1) * wrap, buf, width);
  410. memcpy(last_line + (i + 1) * wrap, last_line, width);
  411. }
  412. /* left and right */
  413. ptr = buf;
  414. for(i=0;i<height;i++) {
  415. memset(ptr - w, ptr[0], w);
  416. memset(ptr + width, ptr[width-1], w);
  417. ptr += wrap;
  418. }
  419. /* corners */
  420. for(i=0;i<w;i++) {
  421. memset(buf - (i + 1) * wrap - w, buf[0], w); /* top left */
  422. memset(buf - (i + 1) * wrap + width, buf[width-1], w); /* top right */
  423. memset(last_line + (i + 1) * wrap - w, last_line[0], w); /* top left */
  424. memset(last_line + (i + 1) * wrap + width, last_line[width-1], w); /* top right */
  425. }
  426. }
  427. /* generic function for encode/decode called before a frame is coded/decoded */
  428. void MPV_frame_start(MpegEncContext *s)
  429. {
  430. int i;
  431. UINT8 *tmp;
  432. s->mb_skiped = 0;
  433. if (s->pict_type == B_TYPE) {
  434. for(i=0;i<3;i++) {
  435. s->current_picture[i] = s->aux_picture[i];
  436. }
  437. } else {
  438. s->last_non_b_pict_type= s->pict_type;
  439. for(i=0;i<3;i++) {
  440. /* swap next and last */
  441. tmp = s->last_picture[i];
  442. s->last_picture[i] = s->next_picture[i];
  443. s->next_picture[i] = tmp;
  444. s->current_picture[i] = tmp;
  445. }
  446. }
  447. }
  448. /* generic function for encode/decode called after a frame has been coded/decoded */
  449. void MPV_frame_end(MpegEncContext *s)
  450. {
  451. /* draw edge for correct motion prediction if outside */
  452. if (s->pict_type != B_TYPE && !s->intra_only) {
  453. if(s->avctx==NULL || s->avctx->codec->id!=CODEC_ID_MPEG4 || s->divx_version==500){
  454. draw_edges(s->current_picture[0], s->linesize, s->mb_width*16, s->mb_height*16, EDGE_WIDTH);
  455. draw_edges(s->current_picture[1], s->linesize/2, s->mb_width*8, s->mb_height*8, EDGE_WIDTH/2);
  456. draw_edges(s->current_picture[2], s->linesize/2, s->mb_width*8, s->mb_height*8, EDGE_WIDTH/2);
  457. }else{
  458. /* mpeg4? / opendivx / xvid */
  459. draw_edges(s->current_picture[0], s->linesize, s->width, s->height, EDGE_WIDTH);
  460. draw_edges(s->current_picture[1], s->linesize/2, s->width/2, s->height/2, EDGE_WIDTH/2);
  461. draw_edges(s->current_picture[2], s->linesize/2, s->width/2, s->height/2, EDGE_WIDTH/2);
  462. }
  463. }
  464. emms_c();
  465. }
  466. int MPV_encode_picture(AVCodecContext *avctx,
  467. unsigned char *buf, int buf_size, void *data)
  468. {
  469. MpegEncContext *s = avctx->priv_data;
  470. AVPicture *pict = data;
  471. int i, j;
  472. if (s->fixed_qscale)
  473. s->qscale = avctx->quality;
  474. init_put_bits(&s->pb, buf, buf_size, NULL, NULL);
  475. s->force_type= (avctx->flags&CODEC_FLAG_TYPE) ?
  476. (avctx->key_frame ? I_TYPE : P_TYPE) : 0;
  477. if (!s->intra_only) {
  478. /* first picture of GOP is intra */
  479. if (s->picture_in_gop_number % s->gop_size==0 || s->force_type==I_TYPE){
  480. s->picture_in_gop_number=0;
  481. s->pict_type = I_TYPE;
  482. }else
  483. s->pict_type = P_TYPE;
  484. } else {
  485. s->pict_type = I_TYPE;
  486. }
  487. MPV_frame_start(s);
  488. for(i=0;i<3;i++) {
  489. UINT8 *src = pict->data[i];
  490. UINT8 *dest = s->current_picture[i];
  491. int src_wrap = pict->linesize[i];
  492. int dest_wrap = s->linesize;
  493. int w = s->width;
  494. int h = s->height;
  495. if (i >= 1) {
  496. dest_wrap >>= 1;
  497. w >>= 1;
  498. h >>= 1;
  499. }
  500. if(dest_wrap==src_wrap){
  501. s->new_picture[i] = pict->data[i];
  502. } else {
  503. for(j=0;j<h;j++) {
  504. memcpy(dest, src, w);
  505. dest += dest_wrap;
  506. src += src_wrap;
  507. }
  508. s->new_picture[i] = s->current_picture[i];
  509. }
  510. }
  511. encode_picture(s, s->picture_number);
  512. avctx->key_frame = (s->pict_type == I_TYPE);
  513. avctx->header_bits = s->header_bits;
  514. avctx->mv_bits = s->mv_bits;
  515. avctx->misc_bits = s->misc_bits;
  516. avctx->i_tex_bits = s->i_tex_bits;
  517. avctx->p_tex_bits = s->p_tex_bits;
  518. avctx->i_count = s->i_count;
  519. avctx->p_count = s->p_count;
  520. avctx->skip_count = s->skip_count;
  521. MPV_frame_end(s);
  522. s->picture_number++;
  523. s->picture_in_gop_number++;
  524. if (s->out_format == FMT_MJPEG)
  525. mjpeg_picture_trailer(s);
  526. flush_put_bits(&s->pb);
  527. s->last_frame_bits= s->frame_bits;
  528. s->frame_bits = (pbBufPtr(&s->pb) - s->pb.buf) * 8;
  529. s->total_bits += s->frame_bits;
  530. avctx->frame_bits = s->frame_bits;
  531. //printf("fcode: %d, type: %d, head: %d, mv: %d, misc: %d, frame: %d, itex: %d, ptex: %d\n",
  532. //s->f_code, avctx->key_frame, s->header_bits, s->mv_bits, s->misc_bits, s->frame_bits, s->i_tex_bits, s->p_tex_bits);
  533. avctx->quality = s->qscale;
  534. if (avctx->get_psnr) {
  535. /* At this point pict->data should have the original frame */
  536. /* an s->current_picture should have the coded/decoded frame */
  537. get_psnr(pict->data, s->current_picture,
  538. pict->linesize, s->linesize, avctx);
  539. }
  540. return pbBufPtr(&s->pb) - s->pb.buf;
  541. }
  542. static inline int clip(int a, int amin, int amax)
  543. {
  544. if (a < amin)
  545. return amin;
  546. else if (a > amax)
  547. return amax;
  548. else
  549. return a;
  550. }
  551. static inline void gmc1_motion(MpegEncContext *s,
  552. UINT8 *dest_y, UINT8 *dest_cb, UINT8 *dest_cr,
  553. int dest_offset,
  554. UINT8 **ref_picture, int src_offset,
  555. int h)
  556. {
  557. UINT8 *ptr;
  558. int dxy, offset, mx, my, src_x, src_y, height, linesize;
  559. int motion_x, motion_y;
  560. if(s->real_sprite_warping_points>1) printf("more than 1 warp point isnt supported\n");
  561. motion_x= s->sprite_offset[0][0];
  562. motion_y= s->sprite_offset[0][1];
  563. src_x = s->mb_x * 16 + (motion_x >> (s->sprite_warping_accuracy+1));
  564. src_y = s->mb_y * 16 + (motion_y >> (s->sprite_warping_accuracy+1));
  565. motion_x<<=(3-s->sprite_warping_accuracy);
  566. motion_y<<=(3-s->sprite_warping_accuracy);
  567. src_x = clip(src_x, -16, s->width);
  568. if (src_x == s->width)
  569. motion_x =0;
  570. src_y = clip(src_y, -16, s->height);
  571. if (src_y == s->height)
  572. motion_y =0;
  573. linesize = s->linesize;
  574. ptr = ref_picture[0] + (src_y * linesize) + src_x + src_offset;
  575. dest_y+=dest_offset;
  576. gmc1(dest_y , ptr , linesize, h, motion_x&15, motion_y&15, s->no_rounding);
  577. gmc1(dest_y+8, ptr+8, linesize, h, motion_x&15, motion_y&15, s->no_rounding);
  578. motion_x= s->sprite_offset[1][0];
  579. motion_y= s->sprite_offset[1][1];
  580. src_x = s->mb_x * 8 + (motion_x >> (s->sprite_warping_accuracy+1));
  581. src_y = s->mb_y * 8 + (motion_y >> (s->sprite_warping_accuracy+1));
  582. motion_x<<=(3-s->sprite_warping_accuracy);
  583. motion_y<<=(3-s->sprite_warping_accuracy);
  584. src_x = clip(src_x, -8, s->width>>1);
  585. if (src_x == s->width>>1)
  586. motion_x =0;
  587. src_y = clip(src_y, -8, s->height>>1);
  588. if (src_y == s->height>>1)
  589. motion_y =0;
  590. offset = (src_y * linesize>>1) + src_x + (src_offset>>1);
  591. ptr = ref_picture[1] + offset;
  592. gmc1(dest_cb + (dest_offset>>1), ptr, linesize>>1, h>>1, motion_x&15, motion_y&15, s->no_rounding);
  593. ptr = ref_picture[2] + offset;
  594. gmc1(dest_cr + (dest_offset>>1), ptr, linesize>>1, h>>1, motion_x&15, motion_y&15, s->no_rounding);
  595. return;
  596. }
  597. /* apply one mpeg motion vector to the three components */
  598. static inline void mpeg_motion(MpegEncContext *s,
  599. UINT8 *dest_y, UINT8 *dest_cb, UINT8 *dest_cr,
  600. int dest_offset,
  601. UINT8 **ref_picture, int src_offset,
  602. int field_based, op_pixels_func *pix_op,
  603. int motion_x, int motion_y, int h)
  604. {
  605. UINT8 *ptr;
  606. int dxy, offset, mx, my, src_x, src_y, height, linesize;
  607. if(s->quarter_sample)
  608. {
  609. motion_x>>=1;
  610. motion_y>>=1;
  611. }
  612. dxy = ((motion_y & 1) << 1) | (motion_x & 1);
  613. src_x = s->mb_x * 16 + (motion_x >> 1);
  614. src_y = s->mb_y * (16 >> field_based) + (motion_y >> 1);
  615. /* WARNING: do no forget half pels */
  616. height = s->height >> field_based;
  617. src_x = clip(src_x, -16, s->width);
  618. if (src_x == s->width)
  619. dxy &= ~1;
  620. src_y = clip(src_y, -16, height);
  621. if (src_y == height)
  622. dxy &= ~2;
  623. linesize = s->linesize << field_based;
  624. ptr = ref_picture[0] + (src_y * linesize) + (src_x) + src_offset;
  625. dest_y += dest_offset;
  626. pix_op[dxy](dest_y, ptr, linesize, h);
  627. pix_op[dxy](dest_y + 8, ptr + 8, linesize, h);
  628. if (s->out_format == FMT_H263) {
  629. dxy = 0;
  630. if ((motion_x & 3) != 0)
  631. dxy |= 1;
  632. if ((motion_y & 3) != 0)
  633. dxy |= 2;
  634. mx = motion_x >> 2;
  635. my = motion_y >> 2;
  636. } else {
  637. mx = motion_x / 2;
  638. my = motion_y / 2;
  639. dxy = ((my & 1) << 1) | (mx & 1);
  640. mx >>= 1;
  641. my >>= 1;
  642. }
  643. src_x = s->mb_x * 8 + mx;
  644. src_y = s->mb_y * (8 >> field_based) + my;
  645. src_x = clip(src_x, -8, s->width >> 1);
  646. if (src_x == (s->width >> 1))
  647. dxy &= ~1;
  648. src_y = clip(src_y, -8, height >> 1);
  649. if (src_y == (height >> 1))
  650. dxy &= ~2;
  651. offset = (src_y * (linesize >> 1)) + src_x + (src_offset >> 1);
  652. ptr = ref_picture[1] + offset;
  653. pix_op[dxy](dest_cb + (dest_offset >> 1), ptr, linesize >> 1, h >> 1);
  654. ptr = ref_picture[2] + offset;
  655. pix_op[dxy](dest_cr + (dest_offset >> 1), ptr, linesize >> 1, h >> 1);
  656. }
  657. static inline void qpel_motion(MpegEncContext *s,
  658. UINT8 *dest_y, UINT8 *dest_cb, UINT8 *dest_cr,
  659. int dest_offset,
  660. UINT8 **ref_picture, int src_offset,
  661. int field_based, op_pixels_func *pix_op,
  662. qpel_mc_func *qpix_op,
  663. int motion_x, int motion_y, int h)
  664. {
  665. UINT8 *ptr;
  666. int dxy, offset, mx, my, src_x, src_y, height, linesize;
  667. dxy = ((motion_y & 3) << 2) | (motion_x & 3);
  668. src_x = s->mb_x * 16 + (motion_x >> 2);
  669. src_y = s->mb_y * (16 >> field_based) + (motion_y >> 2);
  670. height = s->height >> field_based;
  671. src_x = clip(src_x, -16, s->width);
  672. if (src_x == s->width)
  673. dxy &= ~3;
  674. src_y = clip(src_y, -16, height);
  675. if (src_y == height)
  676. dxy &= ~12;
  677. linesize = s->linesize << field_based;
  678. ptr = ref_picture[0] + (src_y * linesize) + src_x + src_offset;
  679. dest_y += dest_offset;
  680. //printf("%d %d %d\n", src_x, src_y, dxy);
  681. qpix_op[dxy](dest_y , ptr , linesize, linesize, motion_x&3, motion_y&3);
  682. qpix_op[dxy](dest_y + 8, ptr + 8, linesize, linesize, motion_x&3, motion_y&3);
  683. qpix_op[dxy](dest_y + linesize*8 , ptr + linesize*8 , linesize, linesize, motion_x&3, motion_y&3);
  684. qpix_op[dxy](dest_y + linesize*8 + 8, ptr + linesize*8 + 8, linesize, linesize, motion_x&3, motion_y&3);
  685. mx= (motion_x>>1) | (motion_x&1);
  686. my= (motion_y>>1) | (motion_y&1);
  687. dxy = 0;
  688. if ((mx & 3) != 0)
  689. dxy |= 1;
  690. if ((my & 3) != 0)
  691. dxy |= 2;
  692. mx = mx >> 2;
  693. my = my >> 2;
  694. src_x = s->mb_x * 8 + mx;
  695. src_y = s->mb_y * (8 >> field_based) + my;
  696. src_x = clip(src_x, -8, s->width >> 1);
  697. if (src_x == (s->width >> 1))
  698. dxy &= ~1;
  699. src_y = clip(src_y, -8, height >> 1);
  700. if (src_y == (height >> 1))
  701. dxy &= ~2;
  702. offset = (src_y * (linesize >> 1)) + src_x + (src_offset >> 1);
  703. ptr = ref_picture[1] + offset;
  704. pix_op[dxy](dest_cb + (dest_offset >> 1), ptr, linesize >> 1, h >> 1);
  705. ptr = ref_picture[2] + offset;
  706. pix_op[dxy](dest_cr + (dest_offset >> 1), ptr, linesize >> 1, h >> 1);
  707. }
  708. static inline void MPV_motion(MpegEncContext *s,
  709. UINT8 *dest_y, UINT8 *dest_cb, UINT8 *dest_cr,
  710. int dir, UINT8 **ref_picture,
  711. op_pixels_func *pix_op, qpel_mc_func *qpix_op)
  712. {
  713. int dxy, offset, mx, my, src_x, src_y, motion_x, motion_y;
  714. int mb_x, mb_y, i;
  715. UINT8 *ptr, *dest;
  716. mb_x = s->mb_x;
  717. mb_y = s->mb_y;
  718. switch(s->mv_type) {
  719. case MV_TYPE_16X16:
  720. if(s->mcsel){
  721. #if 0
  722. mpeg_motion(s, dest_y, dest_cb, dest_cr, 0,
  723. ref_picture, 0,
  724. 0, pix_op,
  725. s->sprite_offset[0][0]>>3,
  726. s->sprite_offset[0][1]>>3,
  727. 16);
  728. #else
  729. gmc1_motion(s, dest_y, dest_cb, dest_cr, 0,
  730. ref_picture, 0,
  731. 16);
  732. #endif
  733. }else if(s->quarter_sample && dir==0){ //FIXME
  734. qpel_motion(s, dest_y, dest_cb, dest_cr, 0,
  735. ref_picture, 0,
  736. 0, pix_op, qpix_op,
  737. s->mv[dir][0][0], s->mv[dir][0][1], 16);
  738. }else{
  739. mpeg_motion(s, dest_y, dest_cb, dest_cr, 0,
  740. ref_picture, 0,
  741. 0, pix_op,
  742. s->mv[dir][0][0], s->mv[dir][0][1], 16);
  743. }
  744. break;
  745. case MV_TYPE_8X8:
  746. for(i=0;i<4;i++) {
  747. motion_x = s->mv[dir][i][0];
  748. motion_y = s->mv[dir][i][1];
  749. dxy = ((motion_y & 1) << 1) | (motion_x & 1);
  750. src_x = mb_x * 16 + (motion_x >> 1) + (i & 1) * 8;
  751. src_y = mb_y * 16 + (motion_y >> 1) + (i >>1) * 8;
  752. /* WARNING: do no forget half pels */
  753. src_x = clip(src_x, -16, s->width);
  754. if (src_x == s->width)
  755. dxy &= ~1;
  756. src_y = clip(src_y, -16, s->height);
  757. if (src_y == s->height)
  758. dxy &= ~2;
  759. ptr = ref_picture[0] + (src_y * s->linesize) + (src_x);
  760. dest = dest_y + ((i & 1) * 8) + (i >> 1) * 8 * s->linesize;
  761. pix_op[dxy](dest, ptr, s->linesize, 8);
  762. }
  763. /* In case of 8X8, we construct a single chroma motion vector
  764. with a special rounding */
  765. mx = 0;
  766. my = 0;
  767. for(i=0;i<4;i++) {
  768. mx += s->mv[dir][i][0];
  769. my += s->mv[dir][i][1];
  770. }
  771. if (mx >= 0)
  772. mx = (h263_chroma_roundtab[mx & 0xf] + ((mx >> 3) & ~1));
  773. else {
  774. mx = -mx;
  775. mx = -(h263_chroma_roundtab[mx & 0xf] + ((mx >> 3) & ~1));
  776. }
  777. if (my >= 0)
  778. my = (h263_chroma_roundtab[my & 0xf] + ((my >> 3) & ~1));
  779. else {
  780. my = -my;
  781. my = -(h263_chroma_roundtab[my & 0xf] + ((my >> 3) & ~1));
  782. }
  783. dxy = ((my & 1) << 1) | (mx & 1);
  784. mx >>= 1;
  785. my >>= 1;
  786. src_x = mb_x * 8 + mx;
  787. src_y = mb_y * 8 + my;
  788. src_x = clip(src_x, -8, s->width/2);
  789. if (src_x == s->width/2)
  790. dxy &= ~1;
  791. src_y = clip(src_y, -8, s->height/2);
  792. if (src_y == s->height/2)
  793. dxy &= ~2;
  794. offset = (src_y * (s->linesize >> 1)) + src_x;
  795. ptr = ref_picture[1] + offset;
  796. pix_op[dxy](dest_cb, ptr, s->linesize >> 1, 8);
  797. ptr = ref_picture[2] + offset;
  798. pix_op[dxy](dest_cr, ptr, s->linesize >> 1, 8);
  799. break;
  800. case MV_TYPE_FIELD:
  801. if (s->picture_structure == PICT_FRAME) {
  802. /* top field */
  803. mpeg_motion(s, dest_y, dest_cb, dest_cr, 0,
  804. ref_picture, s->field_select[dir][0] ? s->linesize : 0,
  805. 1, pix_op,
  806. s->mv[dir][0][0], s->mv[dir][0][1], 8);
  807. /* bottom field */
  808. mpeg_motion(s, dest_y, dest_cb, dest_cr, s->linesize,
  809. ref_picture, s->field_select[dir][1] ? s->linesize : 0,
  810. 1, pix_op,
  811. s->mv[dir][1][0], s->mv[dir][1][1], 8);
  812. } else {
  813. }
  814. break;
  815. }
  816. }
  817. /* put block[] to dest[] */
  818. static inline void put_dct(MpegEncContext *s,
  819. DCTELEM *block, int i, UINT8 *dest, int line_size)
  820. {
  821. if (!s->mpeg2)
  822. s->dct_unquantize(s, block, i, s->qscale);
  823. ff_idct (block);
  824. put_pixels_clamped(block, dest, line_size);
  825. }
  826. /* add block[] to dest[] */
  827. static inline void add_dct(MpegEncContext *s,
  828. DCTELEM *block, int i, UINT8 *dest, int line_size)
  829. {
  830. if (s->block_last_index[i] >= 0) {
  831. if (!s->mpeg2)
  832. if(s->encoding || (!s->h263_msmpeg4))
  833. s->dct_unquantize(s, block, i, s->qscale);
  834. ff_idct (block);
  835. add_pixels_clamped(block, dest, line_size);
  836. }
  837. }
  838. /* generic function called after a macroblock has been parsed by the
  839. decoder or after it has been encoded by the encoder.
  840. Important variables used:
  841. s->mb_intra : true if intra macroblock
  842. s->mv_dir : motion vector direction
  843. s->mv_type : motion vector type
  844. s->mv : motion vector
  845. s->interlaced_dct : true if interlaced dct used (mpeg2)
  846. */
  847. void MPV_decode_mb(MpegEncContext *s, DCTELEM block[6][64])
  848. {
  849. int mb_x, mb_y;
  850. int dct_linesize, dct_offset;
  851. op_pixels_func *op_pix;
  852. qpel_mc_func *op_qpix;
  853. mb_x = s->mb_x;
  854. mb_y = s->mb_y;
  855. #ifdef FF_POSTPROCESS
  856. quant_store[mb_y][mb_x]=s->qscale;
  857. //printf("[%02d][%02d] %d\n",mb_x,mb_y,s->qscale);
  858. #endif
  859. /* update DC predictors for P macroblocks */
  860. if (!s->mb_intra) {
  861. if (s->h263_pred || s->h263_aic) {
  862. if(s->mbintra_table[mb_x + mb_y*s->mb_width])
  863. {
  864. int wrap, xy, v;
  865. s->mbintra_table[mb_x + mb_y*s->mb_width]=0;
  866. wrap = 2 * s->mb_width + 2;
  867. xy = 2 * mb_x + 1 + (2 * mb_y + 1) * wrap;
  868. v = 1024;
  869. s->dc_val[0][xy] = v;
  870. s->dc_val[0][xy + 1] = v;
  871. s->dc_val[0][xy + wrap] = v;
  872. s->dc_val[0][xy + 1 + wrap] = v;
  873. /* ac pred */
  874. memset(s->ac_val[0][xy], 0, 16 * sizeof(INT16));
  875. memset(s->ac_val[0][xy + 1], 0, 16 * sizeof(INT16));
  876. memset(s->ac_val[0][xy + wrap], 0, 16 * sizeof(INT16));
  877. memset(s->ac_val[0][xy + 1 + wrap], 0, 16 * sizeof(INT16));
  878. if (s->h263_msmpeg4) {
  879. s->coded_block[xy] = 0;
  880. s->coded_block[xy + 1] = 0;
  881. s->coded_block[xy + wrap] = 0;
  882. s->coded_block[xy + 1 + wrap] = 0;
  883. }
  884. /* chroma */
  885. wrap = s->mb_width + 2;
  886. xy = mb_x + 1 + (mb_y + 1) * wrap;
  887. s->dc_val[1][xy] = v;
  888. s->dc_val[2][xy] = v;
  889. /* ac pred */
  890. memset(s->ac_val[1][xy], 0, 16 * sizeof(INT16));
  891. memset(s->ac_val[2][xy], 0, 16 * sizeof(INT16));
  892. }
  893. } else {
  894. s->last_dc[0] = 128 << s->intra_dc_precision;
  895. s->last_dc[1] = 128 << s->intra_dc_precision;
  896. s->last_dc[2] = 128 << s->intra_dc_precision;
  897. }
  898. }
  899. else if (s->h263_pred || s->h263_aic)
  900. s->mbintra_table[mb_x + mb_y*s->mb_width]=1;
  901. /* update motion predictor, not for B-frames as they need the motion_val from the last P/S-Frame */
  902. if (s->out_format == FMT_H263) {
  903. if(s->pict_type!=B_TYPE){
  904. int xy, wrap, motion_x, motion_y;
  905. wrap = 2 * s->mb_width + 2;
  906. xy = 2 * mb_x + 1 + (2 * mb_y + 1) * wrap;
  907. if (s->mb_intra) {
  908. motion_x = 0;
  909. motion_y = 0;
  910. goto motion_init;
  911. } else if (s->mv_type == MV_TYPE_16X16) {
  912. motion_x = s->mv[0][0][0];
  913. motion_y = s->mv[0][0][1];
  914. motion_init:
  915. /* no update if 8X8 because it has been done during parsing */
  916. s->motion_val[xy][0] = motion_x;
  917. s->motion_val[xy][1] = motion_y;
  918. s->motion_val[xy + 1][0] = motion_x;
  919. s->motion_val[xy + 1][1] = motion_y;
  920. s->motion_val[xy + wrap][0] = motion_x;
  921. s->motion_val[xy + wrap][1] = motion_y;
  922. s->motion_val[xy + 1 + wrap][0] = motion_x;
  923. s->motion_val[xy + 1 + wrap][1] = motion_y;
  924. }
  925. }
  926. }
  927. if (!s->intra_only) {
  928. UINT8 *dest_y, *dest_cb, *dest_cr;
  929. UINT8 *mbskip_ptr;
  930. /* avoid copy if macroblock skipped in last frame too */
  931. if (!s->encoding && s->pict_type != B_TYPE) {
  932. mbskip_ptr = &s->mbskip_table[s->mb_y * s->mb_width + s->mb_x];
  933. if (s->mb_skiped) {
  934. s->mb_skiped = 0;
  935. /* if previous was skipped too, then nothing to do ! */
  936. if (*mbskip_ptr != 0)
  937. goto the_end;
  938. *mbskip_ptr = 1; /* indicate that this time we skiped it */
  939. } else {
  940. *mbskip_ptr = 0; /* not skipped */
  941. }
  942. }
  943. dest_y = s->current_picture[0] + (mb_y * 16 * s->linesize) + mb_x * 16;
  944. dest_cb = s->current_picture[1] + (mb_y * 8 * (s->linesize >> 1)) + mb_x * 8;
  945. dest_cr = s->current_picture[2] + (mb_y * 8 * (s->linesize >> 1)) + mb_x * 8;
  946. if (s->interlaced_dct) {
  947. dct_linesize = s->linesize * 2;
  948. dct_offset = s->linesize;
  949. } else {
  950. dct_linesize = s->linesize;
  951. dct_offset = s->linesize * 8;
  952. }
  953. if (!s->mb_intra) {
  954. /* motion handling */
  955. if (!s->no_rounding){
  956. op_pix = put_pixels_tab;
  957. op_qpix= qpel_mc_rnd_tab;
  958. }else{
  959. op_pix = put_no_rnd_pixels_tab;
  960. op_qpix= qpel_mc_no_rnd_tab;
  961. }
  962. if (s->mv_dir & MV_DIR_FORWARD) {
  963. MPV_motion(s, dest_y, dest_cb, dest_cr, 0, s->last_picture, op_pix, op_qpix);
  964. if (!s->no_rounding)
  965. op_pix = avg_pixels_tab;
  966. else
  967. op_pix = avg_no_rnd_pixels_tab;
  968. }
  969. if (s->mv_dir & MV_DIR_BACKWARD) {
  970. MPV_motion(s, dest_y, dest_cb, dest_cr, 1, s->next_picture, op_pix, op_qpix);
  971. }
  972. /* add dct residue */
  973. add_dct(s, block[0], 0, dest_y, dct_linesize);
  974. add_dct(s, block[1], 1, dest_y + 8, dct_linesize);
  975. add_dct(s, block[2], 2, dest_y + dct_offset, dct_linesize);
  976. add_dct(s, block[3], 3, dest_y + dct_offset + 8, dct_linesize);
  977. add_dct(s, block[4], 4, dest_cb, s->linesize >> 1);
  978. add_dct(s, block[5], 5, dest_cr, s->linesize >> 1);
  979. } else {
  980. /* dct only in intra block */
  981. put_dct(s, block[0], 0, dest_y, dct_linesize);
  982. put_dct(s, block[1], 1, dest_y + 8, dct_linesize);
  983. put_dct(s, block[2], 2, dest_y + dct_offset, dct_linesize);
  984. put_dct(s, block[3], 3, dest_y + dct_offset + 8, dct_linesize);
  985. put_dct(s, block[4], 4, dest_cb, s->linesize >> 1);
  986. put_dct(s, block[5], 5, dest_cr, s->linesize >> 1);
  987. }
  988. }
  989. the_end:
  990. emms_c(); //FIXME remove
  991. }
  992. static void encode_mb(MpegEncContext *s)
  993. {
  994. int wrap;
  995. const int mb_x= s->mb_x;
  996. const int mb_y= s->mb_y;
  997. UINT8 *ptr;
  998. const int motion_x= s->mv[0][0][0];
  999. const int motion_y= s->mv[0][0][1];
  1000. int i;
  1001. /* get the pixels */
  1002. wrap = s->linesize;
  1003. ptr = s->new_picture[0] + (mb_y * 16 * wrap) + mb_x * 16;
  1004. get_pixels(s->block[0], ptr, wrap);
  1005. get_pixels(s->block[1], ptr + 8, wrap);
  1006. get_pixels(s->block[2], ptr + 8 * wrap, wrap);
  1007. get_pixels(s->block[3], ptr + 8 * wrap + 8, wrap);
  1008. wrap = s->linesize >> 1;
  1009. ptr = s->new_picture[1] + (mb_y * 8 * wrap) + mb_x * 8;
  1010. get_pixels(s->block[4], ptr, wrap);
  1011. wrap = s->linesize >> 1;
  1012. ptr = s->new_picture[2] + (mb_y * 8 * wrap) + mb_x * 8;
  1013. get_pixels(s->block[5], ptr, wrap);
  1014. /* subtract previous frame if non intra */
  1015. if (!s->mb_intra) {
  1016. int dxy, offset, mx, my;
  1017. if(s->mv_type==MV_TYPE_16X16){
  1018. dxy = ((motion_y & 1) << 1) | (motion_x & 1);
  1019. ptr = s->last_picture[0] +
  1020. ((mb_y * 16 + (motion_y >> 1)) * s->linesize) +
  1021. (mb_x * 16 + (motion_x >> 1));
  1022. sub_pixels_2(s->block[0], ptr, s->linesize, dxy);
  1023. sub_pixels_2(s->block[1], ptr + 8, s->linesize, dxy);
  1024. sub_pixels_2(s->block[2], ptr + s->linesize * 8, s->linesize, dxy);
  1025. sub_pixels_2(s->block[3], ptr + 8 + s->linesize * 8, s->linesize ,dxy);
  1026. if (s->out_format == FMT_H263) {
  1027. /* special rounding for h263 */
  1028. dxy = 0;
  1029. if ((motion_x & 3) != 0)
  1030. dxy |= 1;
  1031. if ((motion_y & 3) != 0)
  1032. dxy |= 2;
  1033. mx = motion_x >> 2;
  1034. my = motion_y >> 2;
  1035. } else {
  1036. mx = motion_x / 2;
  1037. my = motion_y / 2;
  1038. dxy = ((my & 1) << 1) | (mx & 1);
  1039. mx >>= 1;
  1040. my >>= 1;
  1041. }
  1042. offset = ((mb_y * 8 + my) * (s->linesize >> 1)) + (mb_x * 8 + mx);
  1043. ptr = s->last_picture[1] + offset;
  1044. sub_pixels_2(s->block[4], ptr, s->linesize >> 1, dxy);
  1045. ptr = s->last_picture[2] + offset;
  1046. sub_pixels_2(s->block[5], ptr, s->linesize >> 1, dxy);
  1047. }else{
  1048. int src_x, src_y;
  1049. for(i=0;i<4;i++) {
  1050. int motion_x = s->mv[0][i][0];
  1051. int motion_y = s->mv[0][i][1];
  1052. dxy = ((motion_y & 1) << 1) | (motion_x & 1);
  1053. src_x = mb_x * 16 + (motion_x >> 1) + (i & 1) * 8;
  1054. src_y = mb_y * 16 + (motion_y >> 1) + (i >>1) * 8;
  1055. ptr = s->last_picture[0] + (src_y * s->linesize) + (src_x);
  1056. sub_pixels_2(s->block[i], ptr, s->linesize, dxy);
  1057. }
  1058. /* In case of 8X8, we construct a single chroma motion vector
  1059. with a special rounding */
  1060. mx = 0;
  1061. my = 0;
  1062. for(i=0;i<4;i++) {
  1063. mx += s->mv[0][i][0];
  1064. my += s->mv[0][i][1];
  1065. }
  1066. if (mx >= 0)
  1067. mx = (h263_chroma_roundtab[mx & 0xf] + ((mx >> 3) & ~1));
  1068. else {
  1069. mx = -mx;
  1070. mx = -(h263_chroma_roundtab[mx & 0xf] + ((mx >> 3) & ~1));
  1071. }
  1072. if (my >= 0)
  1073. my = (h263_chroma_roundtab[my & 0xf] + ((my >> 3) & ~1));
  1074. else {
  1075. my = -my;
  1076. my = -(h263_chroma_roundtab[my & 0xf] + ((my >> 3) & ~1));
  1077. }
  1078. dxy = ((my & 1) << 1) | (mx & 1);
  1079. mx >>= 1;
  1080. my >>= 1;
  1081. src_x = mb_x * 8 + mx;
  1082. src_y = mb_y * 8 + my;
  1083. src_x = clip(src_x, -8, s->width/2);
  1084. if (src_x == s->width/2)
  1085. dxy &= ~1;
  1086. src_y = clip(src_y, -8, s->height/2);
  1087. if (src_y == s->height/2)
  1088. dxy &= ~2;
  1089. offset = (src_y * (s->linesize >> 1)) + src_x;
  1090. ptr = s->last_picture[1] + offset;
  1091. sub_pixels_2(s->block[4], ptr, s->linesize >> 1, dxy);
  1092. ptr = s->last_picture[2] + offset;
  1093. sub_pixels_2(s->block[5], ptr, s->linesize >> 1, dxy);
  1094. }
  1095. }
  1096. #if 0
  1097. {
  1098. float adap_parm;
  1099. adap_parm = ((s->avg_mb_var << 1) + s->mb_var[s->mb_width*mb_y+mb_x] + 1.0) /
  1100. ((s->mb_var[s->mb_width*mb_y+mb_x] << 1) + s->avg_mb_var + 1.0);
  1101. printf("\ntype=%c qscale=%2d adap=%0.2f dquant=%4.2f var=%4d avgvar=%4d",
  1102. (s->mb_type[s->mb_width*mb_y+mb_x] > 0) ? 'I' : 'P',
  1103. s->qscale, adap_parm, s->qscale*adap_parm,
  1104. s->mb_var[s->mb_width*mb_y+mb_x], s->avg_mb_var);
  1105. }
  1106. #endif
  1107. /* DCT & quantize */
  1108. if (s->h263_msmpeg4) {
  1109. msmpeg4_dc_scale(s);
  1110. } else if (s->h263_pred) {
  1111. h263_dc_scale(s);
  1112. } else {
  1113. /* default quantization values */
  1114. s->y_dc_scale = 8;
  1115. s->c_dc_scale = 8;
  1116. }
  1117. for(i=0;i<6;i++) {
  1118. s->block_last_index[i] = dct_quantize(s, s->block[i], i, s->qscale);
  1119. }
  1120. /* huffman encode */
  1121. switch(s->out_format) {
  1122. case FMT_MPEG1:
  1123. mpeg1_encode_mb(s, s->block, motion_x, motion_y);
  1124. break;
  1125. case FMT_H263:
  1126. if (s->h263_msmpeg4)
  1127. msmpeg4_encode_mb(s, s->block, motion_x, motion_y);
  1128. else if(s->h263_pred)
  1129. mpeg4_encode_mb(s, s->block, motion_x, motion_y);
  1130. else
  1131. h263_encode_mb(s, s->block, motion_x, motion_y);
  1132. break;
  1133. case FMT_MJPEG:
  1134. mjpeg_encode_mb(s, s->block);
  1135. break;
  1136. }
  1137. }
  1138. static void copy_bits(PutBitContext *pb, UINT8 *src, int length)
  1139. {
  1140. int bytes= length>>3;
  1141. int bits= length&7;
  1142. int i;
  1143. for(i=0; i<bytes; i++) put_bits(pb, 8, src[i]);
  1144. put_bits(pb, bits, src[i]>>(8-bits));
  1145. }
  1146. static void encode_picture(MpegEncContext *s, int picture_number)
  1147. {
  1148. int mb_x, mb_y, last_gob, pdif = 0;
  1149. int i;
  1150. int bits;
  1151. MpegEncContext best_s;
  1152. UINT8 bit_buf[4][3000]; //FIXME check that this is ALLWAYS large enogh for a MB
  1153. s->picture_number = picture_number;
  1154. s->block_wrap[0]=
  1155. s->block_wrap[1]=
  1156. s->block_wrap[2]=
  1157. s->block_wrap[3]= s->mb_width*2 + 2;
  1158. s->block_wrap[4]=
  1159. s->block_wrap[5]= s->mb_width + 2;
  1160. s->last_mc_mb_var = s->mc_mb_var;
  1161. /* Reset the average MB variance */
  1162. s->avg_mb_var = 0;
  1163. s->mc_mb_var = 0;
  1164. /* Estimate motion for every MB */
  1165. if(s->pict_type == P_TYPE){
  1166. for(mb_y=0; mb_y < s->mb_height; mb_y++) {
  1167. s->block_index[0]= s->block_wrap[0]*(mb_y*2 + 1) - 1;
  1168. s->block_index[1]= s->block_wrap[0]*(mb_y*2 + 1);
  1169. s->block_index[2]= s->block_wrap[0]*(mb_y*2 + 2) - 1;
  1170. s->block_index[3]= s->block_wrap[0]*(mb_y*2 + 2);
  1171. for(mb_x=0; mb_x < s->mb_width; mb_x++) {
  1172. s->mb_x = mb_x;
  1173. s->mb_y = mb_y;
  1174. s->block_index[0]+=2;
  1175. s->block_index[1]+=2;
  1176. s->block_index[2]+=2;
  1177. s->block_index[3]+=2;
  1178. /* compute motion vector & mb_type and store in context */
  1179. estimate_motion(s, mb_x, mb_y);
  1180. // s->mb_type[mb_y*s->mb_width + mb_x]=MB_TYPE_INTER;
  1181. }
  1182. }
  1183. emms_c();
  1184. }else{
  1185. /* I-Frame */
  1186. //FIXME do we need to zero them?
  1187. memset(s->motion_val[0], 0, sizeof(INT16)*(s->mb_width*2 + 2)*(s->mb_height*2 + 2)*2);
  1188. memset(s->mv_table[0] , 0, sizeof(INT16)*s->mb_width*s->mb_height);
  1189. memset(s->mv_table[1] , 0, sizeof(INT16)*s->mb_width*s->mb_height);
  1190. memset(s->mb_type , MB_TYPE_INTRA, sizeof(UINT8)*s->mb_width*s->mb_height);
  1191. }
  1192. if(s->avg_mb_var < s->mc_mb_var && s->pict_type != B_TYPE && (!s->force_type)){ //FIXME subtract MV bits
  1193. s->pict_type= I_TYPE;
  1194. s->picture_in_gop_number=0;
  1195. memset(s->mb_type , MB_TYPE_INTRA, sizeof(UINT8)*s->mb_width*s->mb_height);
  1196. //printf("Scene change detected, encoding as I Frame\n");
  1197. }
  1198. /* find best f_code for ME which do unlimited searches */
  1199. if(s->pict_type == P_TYPE && s->me_method >= 5){
  1200. int mv_num[8];
  1201. int i;
  1202. int loose=0;
  1203. UINT8 * fcode_tab= s->fcode_tab;
  1204. for(i=0; i<8; i++) mv_num[i]=0;
  1205. for(i=0; i<s->mb_num; i++){
  1206. if(s->mb_type[i] & MB_TYPE_INTER){
  1207. mv_num[ fcode_tab[s->mv_table[0][i] + MAX_MV] ]++;
  1208. mv_num[ fcode_tab[s->mv_table[1][i] + MAX_MV] ]++;
  1209. //printf("%d %d %d\n", s->mv_table[0][i], fcode_tab[s->mv_table[0][i] + MAX_MV], i);
  1210. }
  1211. //else printf("I");
  1212. }
  1213. for(i=MAX_FCODE; i>1; i--){
  1214. loose+= mv_num[i];
  1215. if(loose > 10) break; //FIXME this is pretty ineffective
  1216. }
  1217. s->f_code= i;
  1218. /* for(i=0; i<=MAX_FCODE; i++){
  1219. printf("%d ", mv_num[i]);
  1220. }
  1221. printf("\n");*/
  1222. }else{
  1223. s->f_code= 1;
  1224. }
  1225. //printf("f_code %d ///\n", s->f_code);
  1226. /* convert MBs with too long MVs to I-Blocks */
  1227. if(s->pict_type==P_TYPE){
  1228. int i, x, y;
  1229. const int f_code= s->f_code;
  1230. UINT8 * fcode_tab= s->fcode_tab;
  1231. //FIXME try to clip instead of intra izing ;)
  1232. /* clip / convert to intra 16x16 type MVs */
  1233. for(i=0; i<s->mb_num; i++){
  1234. if(s->mb_type[i]&MB_TYPE_INTER){
  1235. if( fcode_tab[s->mv_table[0][i] + MAX_MV] > f_code
  1236. || fcode_tab[s->mv_table[0][i] + MAX_MV] == 0
  1237. || fcode_tab[s->mv_table[1][i] + MAX_MV] > f_code
  1238. || fcode_tab[s->mv_table[1][i] + MAX_MV] == 0 ){
  1239. s->mb_type[i] &= ~MB_TYPE_INTER;
  1240. s->mb_type[i] |= MB_TYPE_INTRA;
  1241. s->mv_table[0][i] = 0;
  1242. s->mv_table[1][i] = 0;
  1243. }
  1244. }
  1245. }
  1246. if(s->flags&CODEC_FLAG_4MV){
  1247. int wrap= 2+ s->mb_width*2;
  1248. /* clip / convert to intra 8x8 type MVs */
  1249. for(y=0; y<s->mb_height; y++){
  1250. int xy= (y*2 + 1)*wrap + 1;
  1251. i= y*s->mb_width;
  1252. for(x=0; x<s->mb_width; x++){
  1253. if(s->mb_type[i]&MB_TYPE_INTER4V){
  1254. int block;
  1255. for(block=0; block<4; block++){
  1256. int off= (block& 1) + (block>>1)*wrap;
  1257. int mx= s->motion_val[ xy + off ][0];
  1258. int my= s->motion_val[ xy + off ][1];
  1259. if( fcode_tab[mx + MAX_MV] > f_code
  1260. || fcode_tab[mx + MAX_MV] == 0
  1261. || fcode_tab[my + MAX_MV] > f_code
  1262. || fcode_tab[my + MAX_MV] == 0 ){
  1263. s->mb_type[i] &= ~MB_TYPE_INTER4V;
  1264. s->mb_type[i] |= MB_TYPE_INTRA;
  1265. }
  1266. }
  1267. xy+=2;
  1268. i++;
  1269. }
  1270. }
  1271. }
  1272. }
  1273. }
  1274. // printf("%d %d\n", s->avg_mb_var, s->mc_mb_var);
  1275. if (!s->fixed_qscale)
  1276. s->qscale = rate_estimate_qscale(s);
  1277. /* precompute matrix */
  1278. if (s->out_format == FMT_MJPEG) {
  1279. /* for mjpeg, we do include qscale in the matrix */
  1280. s->intra_matrix[0] = default_intra_matrix[0];
  1281. for(i=1;i<64;i++)
  1282. s->intra_matrix[i] = (default_intra_matrix[i] * s->qscale) >> 3;
  1283. convert_matrix(s->q_intra_matrix, s->q_intra_matrix16, s->intra_matrix, 8);
  1284. } else {
  1285. convert_matrix(s->q_intra_matrix, s->q_intra_matrix16, s->intra_matrix, s->qscale);
  1286. convert_matrix(s->q_non_intra_matrix, s->q_non_intra_matrix16, s->non_intra_matrix, s->qscale);
  1287. }
  1288. s->last_bits= get_bit_count(&s->pb);
  1289. switch(s->out_format) {
  1290. case FMT_MJPEG:
  1291. mjpeg_picture_header(s);
  1292. break;
  1293. case FMT_H263:
  1294. if (s->h263_msmpeg4)
  1295. msmpeg4_encode_picture_header(s, picture_number);
  1296. else if (s->h263_pred)
  1297. mpeg4_encode_picture_header(s, picture_number);
  1298. else if (s->h263_rv10)
  1299. rv10_encode_picture_header(s, picture_number);
  1300. else
  1301. h263_encode_picture_header(s, picture_number);
  1302. break;
  1303. case FMT_MPEG1:
  1304. mpeg1_encode_picture_header(s, picture_number);
  1305. break;
  1306. }
  1307. bits= get_bit_count(&s->pb);
  1308. s->header_bits= bits - s->last_bits;
  1309. s->last_bits= bits;
  1310. s->mv_bits=0;
  1311. s->misc_bits=0;
  1312. s->i_tex_bits=0;
  1313. s->p_tex_bits=0;
  1314. s->i_count=0;
  1315. s->p_count=0;
  1316. s->skip_count=0;
  1317. /* init last dc values */
  1318. /* note: quant matrix value (8) is implied here */
  1319. s->last_dc[0] = 128;
  1320. s->last_dc[1] = 128;
  1321. s->last_dc[2] = 128;
  1322. s->mb_incr = 1;
  1323. s->last_mv[0][0][0] = 0;
  1324. s->last_mv[0][0][1] = 0;
  1325. /* Get the GOB height based on picture height */
  1326. if (s->out_format == FMT_H263 && !s->h263_pred && !s->h263_msmpeg4) {
  1327. if (s->height <= 400)
  1328. s->gob_index = 1;
  1329. else if (s->height <= 800)
  1330. s->gob_index = 2;
  1331. else
  1332. s->gob_index = 4;
  1333. }
  1334. s->avg_mb_var = s->avg_mb_var / s->mb_num;
  1335. for(mb_y=0; mb_y < s->mb_height; mb_y++) {
  1336. /* Put GOB header based on RTP MTU */
  1337. /* TODO: Put all this stuff in a separate generic function */
  1338. if (s->rtp_mode) {
  1339. if (!mb_y) {
  1340. s->ptr_lastgob = s->pb.buf;
  1341. s->ptr_last_mb_line = s->pb.buf;
  1342. } else if (s->out_format == FMT_H263 && !s->h263_pred && !s->h263_msmpeg4 && !(mb_y % s->gob_index)) {
  1343. last_gob = h263_encode_gob_header(s, mb_y);
  1344. if (last_gob) {
  1345. s->first_gob_line = 1;
  1346. }
  1347. }
  1348. }
  1349. s->block_index[0]= s->block_wrap[0]*(mb_y*2 + 1) - 1;
  1350. s->block_index[1]= s->block_wrap[0]*(mb_y*2 + 1);
  1351. s->block_index[2]= s->block_wrap[0]*(mb_y*2 + 2) - 1;
  1352. s->block_index[3]= s->block_wrap[0]*(mb_y*2 + 2);
  1353. s->block_index[4]= s->block_wrap[4]*(mb_y + 1) + s->block_wrap[0]*(s->mb_height*2 + 2);
  1354. s->block_index[5]= s->block_wrap[4]*(mb_y + 1 + s->mb_height + 2) + s->block_wrap[0]*(s->mb_height*2 + 2);
  1355. for(mb_x=0; mb_x < s->mb_width; mb_x++) {
  1356. const int mb_type= s->mb_type[mb_y * s->mb_width + mb_x];
  1357. PutBitContext pb;
  1358. int d;
  1359. int dmin=10000000;
  1360. int best=0;
  1361. s->mb_x = mb_x;
  1362. s->mb_y = mb_y;
  1363. s->block_index[0]+=2;
  1364. s->block_index[1]+=2;
  1365. s->block_index[2]+=2;
  1366. s->block_index[3]+=2;
  1367. s->block_index[4]++;
  1368. s->block_index[5]++;
  1369. s->mv_dir = MV_DIR_FORWARD;
  1370. if(mb_type & (mb_type-1)){ // more than 1 MB type possible
  1371. pb= s->pb;
  1372. if(mb_type&MB_TYPE_INTER){
  1373. s->mv_type = MV_TYPE_16X16;
  1374. s->mb_intra= 0;
  1375. s->mv[0][0][0] = s->mv_table[0][mb_y * s->mb_width + mb_x];
  1376. s->mv[0][0][1] = s->mv_table[1][mb_y * s->mb_width + mb_x];
  1377. init_put_bits(&s->pb, bit_buf[1], 3000, NULL, NULL);
  1378. s->block= s->inter_block;
  1379. encode_mb(s);
  1380. d= get_bit_count(&s->pb);
  1381. if(d<dmin){
  1382. flush_put_bits(&s->pb);
  1383. dmin=d;
  1384. best_s.mv[0][0][0]= s->mv[0][0][0];
  1385. best_s.mv[0][0][1]= s->mv[0][0][1];
  1386. best_s.mb_intra= 0;
  1387. best_s.mv_type = MV_TYPE_16X16;
  1388. best_s.pb=s->pb;
  1389. best_s.block= s->block;
  1390. best=1;
  1391. for(i=0; i<6; i++)
  1392. best_s.block_last_index[i]= s->block_last_index[i];
  1393. }
  1394. }
  1395. if(mb_type&MB_TYPE_INTER4V){
  1396. s->mv_type = MV_TYPE_8X8;
  1397. s->mb_intra= 0;
  1398. for(i=0; i<4; i++){
  1399. s->mv[0][i][0] = s->motion_val[s->block_index[i]][0];
  1400. s->mv[0][i][1] = s->motion_val[s->block_index[i]][1];
  1401. }
  1402. init_put_bits(&s->pb, bit_buf[2], 3000, NULL, NULL);
  1403. s->block= s->inter4v_block;
  1404. encode_mb(s);
  1405. d= get_bit_count(&s->pb);
  1406. if(d<dmin){
  1407. flush_put_bits(&s->pb);
  1408. dmin=d;
  1409. for(i=0; i<4; i++){
  1410. best_s.mv[0][i][0] = s->mv[0][i][0];
  1411. best_s.mv[0][i][1] = s->mv[0][i][1];
  1412. }
  1413. best_s.mb_intra= 0;
  1414. best_s.mv_type = MV_TYPE_8X8;
  1415. best_s.pb=s->pb;
  1416. best_s.block= s->block;
  1417. best=2;
  1418. for(i=0; i<6; i++)
  1419. best_s.block_last_index[i]= s->block_last_index[i];
  1420. }
  1421. }
  1422. if(mb_type&MB_TYPE_INTRA){
  1423. s->mv_type = MV_TYPE_16X16;
  1424. s->mb_intra= 1;
  1425. s->mv[0][0][0] = 0;
  1426. s->mv[0][0][1] = 0;
  1427. init_put_bits(&s->pb, bit_buf[0], 3000, NULL, NULL);
  1428. s->block= s->intra_block;
  1429. encode_mb(s);
  1430. d= get_bit_count(&s->pb);
  1431. if(d<dmin){
  1432. flush_put_bits(&s->pb);
  1433. dmin=d;
  1434. best_s.mv[0][0][0]= 0;
  1435. best_s.mv[0][0][1]= 0;
  1436. best_s.mb_intra= 1;
  1437. best_s.mv_type = MV_TYPE_16X16;
  1438. best_s.pb=s->pb;
  1439. best_s.block= s->block;
  1440. for(i=0; i<6; i++)
  1441. best_s.block_last_index[i]= s->block_last_index[i];
  1442. best=0;
  1443. }
  1444. /* force cleaning of ac/dc if needed ... */
  1445. s->mbintra_table[mb_x + mb_y*s->mb_width]=1;
  1446. }
  1447. for(i=0; i<4; i++){
  1448. s->mv[0][i][0] = best_s.mv[0][i][0];
  1449. s->mv[0][i][1] = best_s.mv[0][i][1];
  1450. }
  1451. s->mb_intra= best_s.mb_intra;
  1452. s->mv_type= best_s.mv_type;
  1453. for(i=0; i<6; i++)
  1454. s->block_last_index[i]= best_s.block_last_index[i];
  1455. copy_bits(&pb, bit_buf[best], dmin);
  1456. s->block= best_s.block;
  1457. s->pb= pb;
  1458. } else {
  1459. // only one MB-Type possible
  1460. if(mb_type&MB_TYPE_INTRA){
  1461. s->mb_intra= 1;
  1462. s->mv[0][0][0] = 0;
  1463. s->mv[0][0][1] = 0;
  1464. }else{
  1465. s->mb_intra= 0;
  1466. s->mv[0][0][0] = s->mv_table[0][mb_y * s->mb_width + mb_x];
  1467. s->mv[0][0][1] = s->mv_table[1][mb_y * s->mb_width + mb_x];
  1468. }
  1469. encode_mb(s);
  1470. }
  1471. MPV_decode_mb(s, s->block);
  1472. }
  1473. /* Obtain average GOB size for RTP */
  1474. if (s->rtp_mode) {
  1475. if (!mb_y)
  1476. s->mb_line_avgsize = pbBufPtr(&s->pb) - s->ptr_last_mb_line;
  1477. else if (!(mb_y % s->gob_index)) {
  1478. s->mb_line_avgsize = (s->mb_line_avgsize + pbBufPtr(&s->pb) - s->ptr_last_mb_line) >> 1;
  1479. s->ptr_last_mb_line = pbBufPtr(&s->pb);
  1480. }
  1481. //fprintf(stderr, "\nMB line: %d\tSize: %u\tAvg. Size: %u", s->mb_y,
  1482. // (s->pb.buf_ptr - s->ptr_last_mb_line), s->mb_line_avgsize);
  1483. s->first_gob_line = 0;
  1484. }
  1485. }
  1486. emms_c();
  1487. if (s->h263_msmpeg4 && s->msmpeg4_version<4 && s->pict_type == I_TYPE)
  1488. msmpeg4_encode_ext_header(s);
  1489. //if (s->gob_number)
  1490. // fprintf(stderr,"\nNumber of GOB: %d", s->gob_number);
  1491. /* Send the last GOB if RTP */
  1492. if (s->rtp_mode) {
  1493. flush_put_bits(&s->pb);
  1494. pdif = pbBufPtr(&s->pb) - s->ptr_lastgob;
  1495. /* Call the RTP callback to send the last GOB */
  1496. if (s->rtp_callback)
  1497. s->rtp_callback(s->ptr_lastgob, pdif, s->gob_number);
  1498. s->ptr_lastgob = pbBufPtr(&s->pb);
  1499. //fprintf(stderr,"\nGOB: %2d size: %d (last)", s->gob_number, pdif);
  1500. }
  1501. }
  1502. static int dct_quantize_c(MpegEncContext *s,
  1503. DCTELEM *block, int n,
  1504. int qscale)
  1505. {
  1506. int i, j, level, last_non_zero, q;
  1507. const int *qmat;
  1508. int minLevel, maxLevel;
  1509. if(s->avctx!=NULL && s->avctx->codec->id==CODEC_ID_MPEG4){
  1510. /* mpeg4 */
  1511. minLevel= -2048;
  1512. maxLevel= 2047;
  1513. }else if(s->out_format==FMT_MPEG1){
  1514. /* mpeg1 */
  1515. minLevel= -255;
  1516. maxLevel= 255;
  1517. }else if(s->out_format==FMT_MJPEG){
  1518. /* (m)jpeg */
  1519. minLevel= -1023;
  1520. maxLevel= 1023;
  1521. }else{
  1522. /* h263 / msmpeg4 */
  1523. minLevel= -128;
  1524. maxLevel= 127;
  1525. }
  1526. av_fdct (block);
  1527. /* we need this permutation so that we correct the IDCT
  1528. permutation. will be moved into DCT code */
  1529. block_permute(block);
  1530. if (s->mb_intra) {
  1531. if (n < 4)
  1532. q = s->y_dc_scale;
  1533. else
  1534. q = s->c_dc_scale;
  1535. q = q << 3;
  1536. /* note: block[0] is assumed to be positive */
  1537. block[0] = (block[0] + (q >> 1)) / q;
  1538. i = 1;
  1539. last_non_zero = 0;
  1540. if (s->out_format == FMT_H263) {
  1541. qmat = s->q_non_intra_matrix;
  1542. } else {
  1543. qmat = s->q_intra_matrix;
  1544. }
  1545. } else {
  1546. i = 0;
  1547. last_non_zero = -1;
  1548. qmat = s->q_non_intra_matrix;
  1549. }
  1550. for(;i<64;i++) {
  1551. j = zigzag_direct[i];
  1552. level = block[j];
  1553. level = level * qmat[j];
  1554. #ifdef PARANOID
  1555. {
  1556. static int count = 0;
  1557. int level1, level2, qmat1;
  1558. double val;
  1559. if (qmat == s->q_non_intra_matrix) {
  1560. qmat1 = default_non_intra_matrix[j] * s->qscale;
  1561. } else {
  1562. qmat1 = default_intra_matrix[j] * s->qscale;
  1563. }
  1564. if (av_fdct != jpeg_fdct_ifast)
  1565. val = ((double)block[j] * 8.0) / (double)qmat1;
  1566. else
  1567. val = ((double)block[j] * 8.0 * 2048.0) /
  1568. ((double)qmat1 * aanscales[j]);
  1569. level1 = (int)val;
  1570. level2 = level / (1 << (QMAT_SHIFT - 3));
  1571. if (level1 != level2) {
  1572. fprintf(stderr, "%d: quant error qlevel=%d wanted=%d level=%d qmat1=%d qmat=%d wantedf=%0.6f\n",
  1573. count, level2, level1, block[j], qmat1, qmat[j],
  1574. val);
  1575. count++;
  1576. }
  1577. }
  1578. #endif
  1579. /* XXX: slight error for the low range. Test should be equivalent to
  1580. (level <= -(1 << (QMAT_SHIFT - 3)) || level >= (1 <<
  1581. (QMAT_SHIFT - 3)))
  1582. */
  1583. if (((level << (31 - (QMAT_SHIFT - 3))) >> (31 - (QMAT_SHIFT - 3))) !=
  1584. level) {
  1585. level = level / (1 << (QMAT_SHIFT - 3));
  1586. /* XXX: currently, this code is not optimal. the range should be:
  1587. mpeg1: -255..255
  1588. mpeg2: -2048..2047
  1589. h263: -128..127
  1590. mpeg4: -2048..2047
  1591. */
  1592. if (level > maxLevel)
  1593. level = maxLevel;
  1594. else if (level < minLevel)
  1595. level = minLevel;
  1596. block[j] = level;
  1597. last_non_zero = i;
  1598. } else {
  1599. block[j] = 0;
  1600. }
  1601. }
  1602. return last_non_zero;
  1603. }
  1604. static void dct_unquantize_mpeg1_c(MpegEncContext *s,
  1605. DCTELEM *block, int n, int qscale)
  1606. {
  1607. int i, level, nCoeffs;
  1608. const UINT16 *quant_matrix;
  1609. if(s->alternate_scan) nCoeffs= 64;
  1610. else nCoeffs= s->block_last_index[n]+1;
  1611. if (s->mb_intra) {
  1612. if (n < 4)
  1613. block[0] = block[0] * s->y_dc_scale;
  1614. else
  1615. block[0] = block[0] * s->c_dc_scale;
  1616. /* XXX: only mpeg1 */
  1617. quant_matrix = s->intra_matrix;
  1618. for(i=1;i<nCoeffs;i++) {
  1619. int j= zigzag_direct[i];
  1620. level = block[j];
  1621. if (level) {
  1622. if (level < 0) {
  1623. level = -level;
  1624. level = (int)(level * qscale * quant_matrix[j]) >> 3;
  1625. level = (level - 1) | 1;
  1626. level = -level;
  1627. } else {
  1628. level = (int)(level * qscale * quant_matrix[j]) >> 3;
  1629. level = (level - 1) | 1;
  1630. }
  1631. #ifdef PARANOID
  1632. if (level < -2048 || level > 2047)
  1633. fprintf(stderr, "unquant error %d %d\n", i, level);
  1634. #endif
  1635. block[j] = level;
  1636. }
  1637. }
  1638. } else {
  1639. i = 0;
  1640. quant_matrix = s->non_intra_matrix;
  1641. for(;i<nCoeffs;i++) {
  1642. int j= zigzag_direct[i];
  1643. level = block[j];
  1644. if (level) {
  1645. if (level < 0) {
  1646. level = -level;
  1647. level = (((level << 1) + 1) * qscale *
  1648. ((int) (quant_matrix[j]))) >> 4;
  1649. level = (level - 1) | 1;
  1650. level = -level;
  1651. } else {
  1652. level = (((level << 1) + 1) * qscale *
  1653. ((int) (quant_matrix[j]))) >> 4;
  1654. level = (level - 1) | 1;
  1655. }
  1656. #ifdef PARANOID
  1657. if (level < -2048 || level > 2047)
  1658. fprintf(stderr, "unquant error %d %d\n", i, level);
  1659. #endif
  1660. block[j] = level;
  1661. }
  1662. }
  1663. }
  1664. }
  1665. static void dct_unquantize_h263_c(MpegEncContext *s,
  1666. DCTELEM *block, int n, int qscale)
  1667. {
  1668. int i, level, qmul, qadd;
  1669. int nCoeffs;
  1670. if (s->mb_intra) {
  1671. if (!s->h263_aic) {
  1672. if (n < 4)
  1673. block[0] = block[0] * s->y_dc_scale;
  1674. else
  1675. block[0] = block[0] * s->c_dc_scale;
  1676. }
  1677. i = 1;
  1678. nCoeffs= 64; //does not allways use zigzag table
  1679. } else {
  1680. i = 0;
  1681. nCoeffs= zigzag_end[ s->block_last_index[n] ];
  1682. }
  1683. qmul = s->qscale << 1;
  1684. if (s->h263_aic && s->mb_intra)
  1685. qadd = 0;
  1686. else
  1687. qadd = (s->qscale - 1) | 1;
  1688. for(;i<nCoeffs;i++) {
  1689. level = block[i];
  1690. if (level) {
  1691. if (level < 0) {
  1692. level = level * qmul - qadd;
  1693. } else {
  1694. level = level * qmul + qadd;
  1695. }
  1696. #ifdef PARANOID
  1697. if (level < -2048 || level > 2047)
  1698. fprintf(stderr, "unquant error %d %d\n", i, level);
  1699. #endif
  1700. block[i] = level;
  1701. }
  1702. }
  1703. }
  1704. /* rate control */
  1705. /* an I frame is I_FRAME_SIZE_RATIO bigger than a P frame */
  1706. #define I_FRAME_SIZE_RATIO 3.0
  1707. #define QSCALE_K 20
  1708. static void rate_control_init(MpegEncContext *s)
  1709. {
  1710. #if 1
  1711. emms_c();
  1712. //initial values, they dont really matter as they will be totally different within a few frames
  1713. s->i_pred.coeff= s->p_pred.coeff= 7.0;
  1714. s->i_pred.count= s->p_pred.count= 1.0;
  1715. s->i_pred.decay= s->p_pred.decay= 0.4;
  1716. // use more bits at the beginning, otherwise high motion at the begin will look like shit
  1717. s->qsum=100;
  1718. s->qcount=100;
  1719. s->short_term_qsum=0.001;
  1720. s->short_term_qcount=0.001;
  1721. #else
  1722. s->wanted_bits = 0;
  1723. if (s->intra_only) {
  1724. s->I_frame_bits = ((INT64)s->bit_rate * FRAME_RATE_BASE) / s->frame_rate;
  1725. s->P_frame_bits = s->I_frame_bits;
  1726. } else {
  1727. s->P_frame_bits = (int) ((float)(s->gop_size * s->bit_rate) /
  1728. (float)((float)s->frame_rate / FRAME_RATE_BASE * (I_FRAME_SIZE_RATIO + s->gop_size - 1)));
  1729. s->I_frame_bits = (int)(s->P_frame_bits * I_FRAME_SIZE_RATIO);
  1730. }
  1731. #if defined(DEBUG)
  1732. printf("I_frame_size=%d P_frame_size=%d\n",
  1733. s->I_frame_bits, s->P_frame_bits);
  1734. #endif
  1735. #endif
  1736. }
  1737. static double predict(Predictor *p, double q, double var)
  1738. {
  1739. return p->coeff*var / (q*p->count);
  1740. }
  1741. static void update_predictor(Predictor *p, double q, double var, double size)
  1742. {
  1743. double new_coeff= size*q / (var + 1);
  1744. if(var<1000) return;
  1745. /*{
  1746. int pred= predict(p, q, var);
  1747. int error= abs(pred-size);
  1748. static double sum=0;
  1749. static int count=0;
  1750. if(count>5) sum+=error;
  1751. count++;
  1752. if(256*256*256*64%count==0){
  1753. printf("%d %f %f\n", count, sum/count, p->coeff);
  1754. }
  1755. }*/
  1756. p->count*= p->decay;
  1757. p->coeff*= p->decay;
  1758. p->count++;
  1759. p->coeff+= new_coeff;
  1760. }
  1761. static int rate_estimate_qscale(MpegEncContext *s)
  1762. {
  1763. #if 1
  1764. int qmin= s->qmin;
  1765. int qmax= s->qmax;
  1766. int rate_q=5;
  1767. float q;
  1768. int qscale;
  1769. float br_compensation;
  1770. double diff;
  1771. double short_term_q;
  1772. double long_term_q;
  1773. int last_qscale= s->qscale;
  1774. double fps;
  1775. INT64 wanted_bits;
  1776. emms_c();
  1777. fps= (double)s->frame_rate / FRAME_RATE_BASE;
  1778. wanted_bits= s->bit_rate*(double)s->picture_number/fps;
  1779. if(s->picture_number>2){
  1780. /* update predictors */
  1781. if(s->last_pict_type == I_TYPE){
  1782. //FIXME
  1783. }else{ //P Frame
  1784. //printf("%d %d %d %f\n", s->qscale, s->last_mc_mb_var, s->frame_bits, s->p_pred.coeff);
  1785. update_predictor(&s->p_pred, s->qscale, s->last_mc_mb_var, s->frame_bits);
  1786. }
  1787. }
  1788. if(s->pict_type == I_TYPE){
  1789. //FIXME
  1790. rate_q= s->qsum/s->qcount;
  1791. }else{ //P Frame
  1792. int i;
  1793. int diff, best_diff=1000000000;
  1794. for(i=1; i<=31; i++){
  1795. diff= predict(&s->p_pred, i, s->mc_mb_var) - (double)s->bit_rate/fps;
  1796. if(diff<0) diff= -diff;
  1797. if(diff<best_diff){
  1798. best_diff= diff;
  1799. rate_q= i;
  1800. }
  1801. }
  1802. }
  1803. s->short_term_qsum*=s->qblur;
  1804. s->short_term_qcount*=s->qblur;
  1805. s->short_term_qsum+= rate_q;
  1806. s->short_term_qcount++;
  1807. short_term_q= s->short_term_qsum/s->short_term_qcount;
  1808. long_term_q= s->qsum/s->qcount*(s->total_bits+1)/(wanted_bits+1); //+1 to avoid nan & 0
  1809. // q= (long_term_q - short_term_q)*s->qcompress + short_term_q;
  1810. q= 1/((1/long_term_q - 1/short_term_q)*s->qcompress + 1/short_term_q);
  1811. diff= s->total_bits - wanted_bits;
  1812. br_compensation= (s->bit_rate_tolerance - diff)/s->bit_rate_tolerance;
  1813. if(br_compensation<=0.0) br_compensation=0.001;
  1814. q/=br_compensation;
  1815. qscale= (int)(q + 0.5);
  1816. if (qscale<qmin) qscale=qmin;
  1817. else if(qscale>qmax) qscale=qmax;
  1818. if (qscale<last_qscale-s->max_qdiff) qscale=last_qscale-s->max_qdiff;
  1819. else if(qscale>last_qscale+s->max_qdiff) qscale=last_qscale+s->max_qdiff;
  1820. s->qsum+= qscale;
  1821. s->qcount++;
  1822. s->last_pict_type= s->pict_type;
  1823. //printf("q:%d diff:%d comp:%f rate_q:%d st_q:%f fvar:%d last_size:%d\n", qscale, (int)diff, br_compensation,
  1824. // rate_q, short_term_q, s->mc_mb_var, s->frame_bits);
  1825. //printf("%d %d\n", s->bit_rate, (int)fps);
  1826. return qscale;
  1827. #else
  1828. INT64 diff, total_bits = s->total_bits;
  1829. float q;
  1830. int qscale;
  1831. if (s->pict_type == I_TYPE) {
  1832. s->wanted_bits += s->I_frame_bits;
  1833. } else {
  1834. s->wanted_bits += s->P_frame_bits;
  1835. }
  1836. diff = s->wanted_bits - total_bits;
  1837. q = 31.0 - (float)diff / (QSCALE_K * s->mb_height * s->mb_width);
  1838. /* adjust for I frame */
  1839. if (s->pict_type == I_TYPE && !s->intra_only) {
  1840. q /= I_FRAME_SIZE_RATIO;
  1841. }
  1842. /* using a too small Q scale leeds to problems in mpeg1 and h263
  1843. because AC coefficients are clamped to 255 or 127 */
  1844. qmin = 3;
  1845. if (q < qmin)
  1846. q = qmin;
  1847. else if (q > 31)
  1848. q = 31;
  1849. qscale = (int)(q + 0.5);
  1850. #if defined(DEBUG)
  1851. printf("\n%d: total=%0.0f wanted=%0.0f br=%0.1f diff=%d qest=%2.1f\n",
  1852. s->picture_number,
  1853. (double)total_bits,
  1854. (double)s->wanted_bits,
  1855. (float)s->frame_rate / FRAME_RATE_BASE *
  1856. total_bits / s->picture_number,
  1857. (int)diff, q);
  1858. #endif
  1859. return qscale;
  1860. #endif
  1861. }
  1862. AVCodec mpeg1video_encoder = {
  1863. "mpeg1video",
  1864. CODEC_TYPE_VIDEO,
  1865. CODEC_ID_MPEG1VIDEO,
  1866. sizeof(MpegEncContext),
  1867. MPV_encode_init,
  1868. MPV_encode_picture,
  1869. MPV_encode_end,
  1870. };
  1871. AVCodec h263_encoder = {
  1872. "h263",
  1873. CODEC_TYPE_VIDEO,
  1874. CODEC_ID_H263,
  1875. sizeof(MpegEncContext),
  1876. MPV_encode_init,
  1877. MPV_encode_picture,
  1878. MPV_encode_end,
  1879. };
  1880. AVCodec h263p_encoder = {
  1881. "h263p",
  1882. CODEC_TYPE_VIDEO,
  1883. CODEC_ID_H263P,
  1884. sizeof(MpegEncContext),
  1885. MPV_encode_init,
  1886. MPV_encode_picture,
  1887. MPV_encode_end,
  1888. };
  1889. AVCodec rv10_encoder = {
  1890. "rv10",
  1891. CODEC_TYPE_VIDEO,
  1892. CODEC_ID_RV10,
  1893. sizeof(MpegEncContext),
  1894. MPV_encode_init,
  1895. MPV_encode_picture,
  1896. MPV_encode_end,
  1897. };
  1898. AVCodec mjpeg_encoder = {
  1899. "mjpeg",
  1900. CODEC_TYPE_VIDEO,
  1901. CODEC_ID_MJPEG,
  1902. sizeof(MpegEncContext),
  1903. MPV_encode_init,
  1904. MPV_encode_picture,
  1905. MPV_encode_end,
  1906. };
  1907. AVCodec mpeg4_encoder = {
  1908. "mpeg4",
  1909. CODEC_TYPE_VIDEO,
  1910. CODEC_ID_MPEG4,
  1911. sizeof(MpegEncContext),
  1912. MPV_encode_init,
  1913. MPV_encode_picture,
  1914. MPV_encode_end,
  1915. };
  1916. AVCodec msmpeg4v1_encoder = {
  1917. "msmpeg4v1",
  1918. CODEC_TYPE_VIDEO,
  1919. CODEC_ID_MSMPEG4V1,
  1920. sizeof(MpegEncContext),
  1921. MPV_encode_init,
  1922. MPV_encode_picture,
  1923. MPV_encode_end,
  1924. };
  1925. AVCodec msmpeg4v2_encoder = {
  1926. "msmpeg4v2",
  1927. CODEC_TYPE_VIDEO,
  1928. CODEC_ID_MSMPEG4V2,
  1929. sizeof(MpegEncContext),
  1930. MPV_encode_init,
  1931. MPV_encode_picture,
  1932. MPV_encode_end,
  1933. };
  1934. AVCodec msmpeg4v3_encoder = {
  1935. "msmpeg4",
  1936. CODEC_TYPE_VIDEO,
  1937. CODEC_ID_MSMPEG4V3,
  1938. sizeof(MpegEncContext),
  1939. MPV_encode_init,
  1940. MPV_encode_picture,
  1941. MPV_encode_end,
  1942. };