You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

890 lines
28KB

  1. /*
  2. * 4XM codec
  3. * Copyright (c) 2003 Michael Niedermayer
  4. *
  5. * This file is part of Libav.
  6. *
  7. * Libav is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * Libav is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with Libav; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * 4XM codec.
  24. */
  25. #include "libavutil/intreadwrite.h"
  26. #include "avcodec.h"
  27. #include "dsputil.h"
  28. #include "get_bits.h"
  29. #include "bytestream.h"
  30. //#undef NDEBUG
  31. //#include <assert.h>
  32. #define BLOCK_TYPE_VLC_BITS 5
  33. #define ACDC_VLC_BITS 9
  34. #define CFRAME_BUFFER_COUNT 100
  35. static const uint8_t block_type_tab[2][4][8][2]={
  36. {
  37. { //{8,4,2}x{8,4,2}
  38. { 0,1}, { 2,2}, { 6,3}, {14,4}, {30,5}, {31,5}, { 0,0}
  39. },{ //{8,4}x1
  40. { 0,1}, { 0,0}, { 2,2}, { 6,3}, {14,4}, {15,4}, { 0,0}
  41. },{ //1x{8,4}
  42. { 0,1}, { 2,2}, { 0,0}, { 6,3}, {14,4}, {15,4}, { 0,0}
  43. },{ //1x2, 2x1
  44. { 0,1}, { 0,0}, { 0,0}, { 2,2}, { 6,3}, {14,4}, {15,4}
  45. }
  46. },{
  47. { //{8,4,2}x{8,4,2}
  48. { 1,2}, { 4,3}, { 5,3}, {0,2}, {6,3}, {7,3}, {0,0}
  49. },{//{8,4}x1
  50. { 1,2}, { 0,0}, { 2,2}, {0,2}, {6,3}, {7,3}, {0,0}
  51. },{//1x{8,4}
  52. { 1,2}, { 2,2}, { 0,0}, {0,2}, {6,3}, {7,3}, {0,0}
  53. },{//1x2, 2x1
  54. { 1,2}, { 0,0}, { 0,0}, {0,2}, {2,2}, {6,3}, {7,3}
  55. }
  56. }
  57. };
  58. static const uint8_t size2index[4][4]={
  59. {-1, 3, 1, 1},
  60. { 3, 0, 0, 0},
  61. { 2, 0, 0, 0},
  62. { 2, 0, 0, 0},
  63. };
  64. static const int8_t mv[256][2]={
  65. { 0, 0},{ 0, -1},{ -1, 0},{ 1, 0},{ 0, 1},{ -1, -1},{ 1, -1},{ -1, 1},
  66. { 1, 1},{ 0, -2},{ -2, 0},{ 2, 0},{ 0, 2},{ -1, -2},{ 1, -2},{ -2, -1},
  67. { 2, -1},{ -2, 1},{ 2, 1},{ -1, 2},{ 1, 2},{ -2, -2},{ 2, -2},{ -2, 2},
  68. { 2, 2},{ 0, -3},{ -3, 0},{ 3, 0},{ 0, 3},{ -1, -3},{ 1, -3},{ -3, -1},
  69. { 3, -1},{ -3, 1},{ 3, 1},{ -1, 3},{ 1, 3},{ -2, -3},{ 2, -3},{ -3, -2},
  70. { 3, -2},{ -3, 2},{ 3, 2},{ -2, 3},{ 2, 3},{ 0, -4},{ -4, 0},{ 4, 0},
  71. { 0, 4},{ -1, -4},{ 1, -4},{ -4, -1},{ 4, -1},{ 4, 1},{ -1, 4},{ 1, 4},
  72. { -3, -3},{ -3, 3},{ 3, 3},{ -2, -4},{ -4, -2},{ 4, -2},{ -4, 2},{ -2, 4},
  73. { 2, 4},{ -3, -4},{ 3, -4},{ 4, -3},{ -5, 0},{ -4, 3},{ -3, 4},{ 3, 4},
  74. { -1, -5},{ -5, -1},{ -5, 1},{ -1, 5},{ -2, -5},{ 2, -5},{ 5, -2},{ 5, 2},
  75. { -4, -4},{ -4, 4},{ -3, -5},{ -5, -3},{ -5, 3},{ 3, 5},{ -6, 0},{ 0, 6},
  76. { -6, -1},{ -6, 1},{ 1, 6},{ 2, -6},{ -6, 2},{ 2, 6},{ -5, -4},{ 5, 4},
  77. { 4, 5},{ -6, -3},{ 6, 3},{ -7, 0},{ -1, -7},{ 5, -5},{ -7, 1},{ -1, 7},
  78. { 4, -6},{ 6, 4},{ -2, -7},{ -7, 2},{ -3, -7},{ 7, -3},{ 3, 7},{ 6, -5},
  79. { 0, -8},{ -1, -8},{ -7, -4},{ -8, 1},{ 4, 7},{ 2, -8},{ -2, 8},{ 6, 6},
  80. { -8, 3},{ 5, -7},{ -5, 7},{ 8, -4},{ 0, -9},{ -9, -1},{ 1, 9},{ 7, -6},
  81. { -7, 6},{ -5, -8},{ -5, 8},{ -9, 3},{ 9, -4},{ 7, -7},{ 8, -6},{ 6, 8},
  82. { 10, 1},{-10, 2},{ 9, -5},{ 10, -3},{ -8, -7},{-10, -4},{ 6, -9},{-11, 0},
  83. { 11, 1},{-11, -2},{ -2, 11},{ 7, -9},{ -7, 9},{ 10, 6},{ -4, 11},{ 8, -9},
  84. { 8, 9},{ 5, 11},{ 7,-10},{ 12, -3},{ 11, 6},{ -9, -9},{ 8, 10},{ 5, 12},
  85. {-11, 7},{ 13, 2},{ 6,-12},{ 10, 9},{-11, 8},{ -7, 12},{ 0, 14},{ 14, -2},
  86. { -9, 11},{ -6, 13},{-14, -4},{ -5,-14},{ 5, 14},{-15, -1},{-14, -6},{ 3,-15},
  87. { 11,-11},{ -7, 14},{ -5, 15},{ 8,-14},{ 15, 6},{ 3, 16},{ 7,-15},{-16, 5},
  88. { 0, 17},{-16, -6},{-10, 14},{-16, 7},{ 12, 13},{-16, 8},{-17, 6},{-18, 3},
  89. { -7, 17},{ 15, 11},{ 16, 10},{ 2,-19},{ 3,-19},{-11,-16},{-18, 8},{-19, -6},
  90. { 2,-20},{-17,-11},{-10,-18},{ 8, 19},{-21, -1},{-20, 7},{ -4, 21},{ 21, 5},
  91. { 15, 16},{ 2,-22},{-10,-20},{-22, 5},{ 20,-11},{ -7,-22},{-12, 20},{ 23, -5},
  92. { 13,-20},{ 24, -2},{-15, 19},{-11, 22},{ 16, 19},{ 23,-10},{-18,-18},{ -9,-24},
  93. { 24,-10},{ -3, 26},{-23, 13},{-18,-20},{ 17, 21},{ -4, 27},{ 27, 6},{ 1,-28},
  94. {-11, 26},{-17,-23},{ 7, 28},{ 11,-27},{ 29, 5},{-23,-19},{-28,-11},{-21, 22},
  95. {-30, 7},{-17, 26},{-27, 16},{ 13, 29},{ 19,-26},{ 10,-31},{-14,-30},{ 20,-27},
  96. {-29, 18},{-16,-31},{-28,-22},{ 21,-30},{-25, 28},{ 26,-29},{ 25,-32},{-32,-32}
  97. };
  98. // this is simply the scaled down elementwise product of the standard jpeg quantizer table and the AAN premul table
  99. static const uint8_t dequant_table[64]={
  100. 16, 15, 13, 19, 24, 31, 28, 17,
  101. 17, 23, 25, 31, 36, 63, 45, 21,
  102. 18, 24, 27, 37, 52, 59, 49, 20,
  103. 16, 28, 34, 40, 60, 80, 51, 20,
  104. 18, 31, 48, 66, 68, 86, 56, 21,
  105. 19, 38, 56, 59, 64, 64, 48, 20,
  106. 27, 48, 55, 55, 56, 51, 35, 15,
  107. 20, 35, 34, 32, 31, 22, 15, 8,
  108. };
  109. static VLC block_type_vlc[2][4];
  110. typedef struct CFrameBuffer{
  111. unsigned int allocated_size;
  112. unsigned int size;
  113. int id;
  114. uint8_t *data;
  115. }CFrameBuffer;
  116. typedef struct FourXContext{
  117. AVCodecContext *avctx;
  118. DSPContext dsp;
  119. AVFrame current_picture, last_picture;
  120. GetBitContext pre_gb; ///< ac/dc prefix
  121. GetBitContext gb;
  122. GetByteContext g;
  123. GetByteContext g2;
  124. int mv[256];
  125. VLC pre_vlc;
  126. int last_dc;
  127. DECLARE_ALIGNED(16, DCTELEM, block)[6][64];
  128. void *bitstream_buffer;
  129. unsigned int bitstream_buffer_size;
  130. int version;
  131. CFrameBuffer cfrm[CFRAME_BUFFER_COUNT];
  132. } FourXContext;
  133. #define FIX_1_082392200 70936
  134. #define FIX_1_414213562 92682
  135. #define FIX_1_847759065 121095
  136. #define FIX_2_613125930 171254
  137. #define MULTIPLY(var,const) (((var)*(const)) >> 16)
  138. static void idct(DCTELEM block[64]){
  139. int tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
  140. int tmp10, tmp11, tmp12, tmp13;
  141. int z5, z10, z11, z12, z13;
  142. int i;
  143. int temp[64];
  144. for(i=0; i<8; i++){
  145. tmp10 = block[8*0 + i] + block[8*4 + i];
  146. tmp11 = block[8*0 + i] - block[8*4 + i];
  147. tmp13 = block[8*2 + i] + block[8*6 + i];
  148. tmp12 = MULTIPLY(block[8*2 + i] - block[8*6 + i], FIX_1_414213562) - tmp13;
  149. tmp0 = tmp10 + tmp13;
  150. tmp3 = tmp10 - tmp13;
  151. tmp1 = tmp11 + tmp12;
  152. tmp2 = tmp11 - tmp12;
  153. z13 = block[8*5 + i] + block[8*3 + i];
  154. z10 = block[8*5 + i] - block[8*3 + i];
  155. z11 = block[8*1 + i] + block[8*7 + i];
  156. z12 = block[8*1 + i] - block[8*7 + i];
  157. tmp7 = z11 + z13;
  158. tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562);
  159. z5 = MULTIPLY(z10 + z12, FIX_1_847759065);
  160. tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5;
  161. tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5;
  162. tmp6 = tmp12 - tmp7;
  163. tmp5 = tmp11 - tmp6;
  164. tmp4 = tmp10 + tmp5;
  165. temp[8*0 + i] = tmp0 + tmp7;
  166. temp[8*7 + i] = tmp0 - tmp7;
  167. temp[8*1 + i] = tmp1 + tmp6;
  168. temp[8*6 + i] = tmp1 - tmp6;
  169. temp[8*2 + i] = tmp2 + tmp5;
  170. temp[8*5 + i] = tmp2 - tmp5;
  171. temp[8*4 + i] = tmp3 + tmp4;
  172. temp[8*3 + i] = tmp3 - tmp4;
  173. }
  174. for(i=0; i<8*8; i+=8){
  175. tmp10 = temp[0 + i] + temp[4 + i];
  176. tmp11 = temp[0 + i] - temp[4 + i];
  177. tmp13 = temp[2 + i] + temp[6 + i];
  178. tmp12 = MULTIPLY(temp[2 + i] - temp[6 + i], FIX_1_414213562) - tmp13;
  179. tmp0 = tmp10 + tmp13;
  180. tmp3 = tmp10 - tmp13;
  181. tmp1 = tmp11 + tmp12;
  182. tmp2 = tmp11 - tmp12;
  183. z13 = temp[5 + i] + temp[3 + i];
  184. z10 = temp[5 + i] - temp[3 + i];
  185. z11 = temp[1 + i] + temp[7 + i];
  186. z12 = temp[1 + i] - temp[7 + i];
  187. tmp7 = z11 + z13;
  188. tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562);
  189. z5 = MULTIPLY(z10 + z12, FIX_1_847759065);
  190. tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5;
  191. tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5;
  192. tmp6 = tmp12 - tmp7;
  193. tmp5 = tmp11 - tmp6;
  194. tmp4 = tmp10 + tmp5;
  195. block[0 + i] = (tmp0 + tmp7)>>6;
  196. block[7 + i] = (tmp0 - tmp7)>>6;
  197. block[1 + i] = (tmp1 + tmp6)>>6;
  198. block[6 + i] = (tmp1 - tmp6)>>6;
  199. block[2 + i] = (tmp2 + tmp5)>>6;
  200. block[5 + i] = (tmp2 - tmp5)>>6;
  201. block[4 + i] = (tmp3 + tmp4)>>6;
  202. block[3 + i] = (tmp3 - tmp4)>>6;
  203. }
  204. }
  205. static av_cold void init_vlcs(FourXContext *f){
  206. static VLC_TYPE table[8][32][2];
  207. int i;
  208. for(i=0; i<8; i++){
  209. block_type_vlc[0][i].table= table[i];
  210. block_type_vlc[0][i].table_allocated= 32;
  211. init_vlc(&block_type_vlc[0][i], BLOCK_TYPE_VLC_BITS, 7,
  212. &block_type_tab[0][i][0][1], 2, 1,
  213. &block_type_tab[0][i][0][0], 2, 1, INIT_VLC_USE_NEW_STATIC);
  214. }
  215. }
  216. static void init_mv(FourXContext *f){
  217. int i;
  218. for(i=0; i<256; i++){
  219. if(f->version>1)
  220. f->mv[i] = mv[i][0] + mv[i][1] *f->current_picture.linesize[0]/2;
  221. else
  222. f->mv[i] = (i&15) - 8 + ((i>>4)-8)*f->current_picture.linesize[0]/2;
  223. }
  224. }
  225. #if HAVE_BIGENDIAN
  226. #define LE_CENTRIC_MUL(dst, src, scale, dc) \
  227. { \
  228. unsigned tmpval = AV_RN32(src); \
  229. tmpval = (tmpval << 16) | (tmpval >> 16); \
  230. tmpval = tmpval * (scale) + (dc); \
  231. tmpval = (tmpval << 16) | (tmpval >> 16); \
  232. AV_WN32A(dst, tmpval); \
  233. }
  234. #else
  235. #define LE_CENTRIC_MUL(dst, src, scale, dc) \
  236. { \
  237. unsigned tmpval = AV_RN32(src) * (scale) + (dc); \
  238. AV_WN32A(dst, tmpval); \
  239. }
  240. #endif
  241. static inline void mcdc(uint16_t *dst, uint16_t *src, int log2w, int h, int stride, int scale, unsigned dc){
  242. int i;
  243. dc*= 0x10001;
  244. switch(log2w){
  245. case 0:
  246. for(i=0; i<h; i++){
  247. dst[0] = scale*src[0] + dc;
  248. if(scale) src += stride;
  249. dst += stride;
  250. }
  251. break;
  252. case 1:
  253. for(i=0; i<h; i++){
  254. LE_CENTRIC_MUL(dst, src, scale, dc);
  255. if(scale) src += stride;
  256. dst += stride;
  257. }
  258. break;
  259. case 2:
  260. for(i=0; i<h; i++){
  261. LE_CENTRIC_MUL(dst, src, scale, dc);
  262. LE_CENTRIC_MUL(dst + 2, src + 2, scale, dc);
  263. if(scale) src += stride;
  264. dst += stride;
  265. }
  266. break;
  267. case 3:
  268. for(i=0; i<h; i++){
  269. LE_CENTRIC_MUL(dst, src, scale, dc);
  270. LE_CENTRIC_MUL(dst + 2, src + 2, scale, dc);
  271. LE_CENTRIC_MUL(dst + 4, src + 4, scale, dc);
  272. LE_CENTRIC_MUL(dst + 6, src + 6, scale, dc);
  273. if(scale) src += stride;
  274. dst += stride;
  275. }
  276. break;
  277. default: assert(0);
  278. }
  279. }
  280. static void decode_p_block(FourXContext *f, uint16_t *dst, uint16_t *src, int log2w, int log2h, int stride){
  281. const int index= size2index[log2h][log2w];
  282. const int h= 1<<log2h;
  283. int code= get_vlc2(&f->gb, block_type_vlc[1-(f->version>1)][index].table, BLOCK_TYPE_VLC_BITS, 1);
  284. uint16_t *start= (uint16_t*)f->last_picture.data[0];
  285. uint16_t *end= start + stride*(f->avctx->height-h+1) - (1<<log2w);
  286. assert(code>=0 && code<=6);
  287. if(code == 0){
  288. src += f->mv[bytestream2_get_byte(&f->g)];
  289. if(start > src || src > end){
  290. av_log(f->avctx, AV_LOG_ERROR, "mv out of pic\n");
  291. return;
  292. }
  293. mcdc(dst, src, log2w, h, stride, 1, 0);
  294. }else if(code == 1){
  295. log2h--;
  296. decode_p_block(f, dst , src , log2w, log2h, stride);
  297. decode_p_block(f, dst + (stride<<log2h), src + (stride<<log2h), log2w, log2h, stride);
  298. }else if(code == 2){
  299. log2w--;
  300. decode_p_block(f, dst , src , log2w, log2h, stride);
  301. decode_p_block(f, dst + (1<<log2w), src + (1<<log2w), log2w, log2h, stride);
  302. }else if(code == 3 && f->version<2){
  303. mcdc(dst, src, log2w, h, stride, 1, 0);
  304. }else if(code == 4){
  305. src += f->mv[bytestream2_get_byte(&f->g)];
  306. if(start > src || src > end){
  307. av_log(f->avctx, AV_LOG_ERROR, "mv out of pic\n");
  308. return;
  309. }
  310. mcdc(dst, src, log2w, h, stride, 1, bytestream2_get_le16(&f->g2));
  311. }else if(code == 5){
  312. mcdc(dst, src, log2w, h, stride, 0, bytestream2_get_le16(&f->g2));
  313. }else if(code == 6){
  314. if(log2w){
  315. dst[0] = bytestream2_get_le16(&f->g2);
  316. dst[1] = bytestream2_get_le16(&f->g2);
  317. }else{
  318. dst[0 ] = bytestream2_get_le16(&f->g2);
  319. dst[stride] = bytestream2_get_le16(&f->g2);
  320. }
  321. }
  322. }
  323. static int decode_p_frame(FourXContext *f, const uint8_t *buf, int length){
  324. int x, y;
  325. const int width= f->avctx->width;
  326. const int height= f->avctx->height;
  327. uint16_t *src= (uint16_t*)f->last_picture.data[0];
  328. uint16_t *dst= (uint16_t*)f->current_picture.data[0];
  329. const int stride= f->current_picture.linesize[0]>>1;
  330. unsigned int bitstream_size, bytestream_size, wordstream_size, extra, bytestream_offset, wordstream_offset;
  331. if(f->version>1){
  332. extra=20;
  333. bitstream_size= AV_RL32(buf+8);
  334. wordstream_size= AV_RL32(buf+12);
  335. bytestream_size= AV_RL32(buf+16);
  336. }else{
  337. extra=0;
  338. bitstream_size = AV_RL16(buf-4);
  339. wordstream_size= AV_RL16(buf-2);
  340. bytestream_size= FFMAX(length - bitstream_size - wordstream_size, 0);
  341. }
  342. if(bitstream_size+ bytestream_size+ wordstream_size + extra != length
  343. || bitstream_size > (1<<26)
  344. || bytestream_size > (1<<26)
  345. || wordstream_size > (1<<26)
  346. ){
  347. av_log(f->avctx, AV_LOG_ERROR, "lengths %d %d %d %d\n", bitstream_size, bytestream_size, wordstream_size,
  348. bitstream_size+ bytestream_size+ wordstream_size - length);
  349. return -1;
  350. }
  351. av_fast_malloc(&f->bitstream_buffer, &f->bitstream_buffer_size, bitstream_size + FF_INPUT_BUFFER_PADDING_SIZE);
  352. if (!f->bitstream_buffer)
  353. return AVERROR(ENOMEM);
  354. f->dsp.bswap_buf(f->bitstream_buffer, (const uint32_t*)(buf + extra), bitstream_size/4);
  355. memset((uint8_t*)f->bitstream_buffer + bitstream_size, 0, FF_INPUT_BUFFER_PADDING_SIZE);
  356. init_get_bits(&f->gb, f->bitstream_buffer, 8*bitstream_size);
  357. wordstream_offset = extra + bitstream_size;
  358. bytestream_offset = extra + bitstream_size + wordstream_size;
  359. bytestream2_init(&f->g2, buf + wordstream_offset, length - wordstream_offset);
  360. bytestream2_init(&f->g, buf + bytestream_offset, length - bytestream_offset);
  361. init_mv(f);
  362. for(y=0; y<height; y+=8){
  363. for(x=0; x<width; x+=8){
  364. decode_p_block(f, dst + x, src + x, 3, 3, stride);
  365. }
  366. src += 8*stride;
  367. dst += 8*stride;
  368. }
  369. return 0;
  370. }
  371. /**
  372. * decode block and dequantize.
  373. * Note this is almost identical to MJPEG.
  374. */
  375. static int decode_i_block(FourXContext *f, DCTELEM *block){
  376. int code, i, j, level, val;
  377. /* DC coef */
  378. val = get_vlc2(&f->pre_gb, f->pre_vlc.table, ACDC_VLC_BITS, 3);
  379. if (val>>4){
  380. av_log(f->avctx, AV_LOG_ERROR, "error dc run != 0\n");
  381. }
  382. if(val)
  383. val = get_xbits(&f->gb, val);
  384. val = val * dequant_table[0] + f->last_dc;
  385. f->last_dc =
  386. block[0] = val;
  387. /* AC coefs */
  388. i = 1;
  389. for(;;) {
  390. code = get_vlc2(&f->pre_gb, f->pre_vlc.table, ACDC_VLC_BITS, 3);
  391. /* EOB */
  392. if (code == 0)
  393. break;
  394. if (code == 0xf0) {
  395. i += 16;
  396. } else {
  397. level = get_xbits(&f->gb, code & 0xf);
  398. i += code >> 4;
  399. if (i >= 64) {
  400. av_log(f->avctx, AV_LOG_ERROR, "run %d oveflow\n", i);
  401. return 0;
  402. }
  403. j= ff_zigzag_direct[i];
  404. block[j] = level * dequant_table[j];
  405. i++;
  406. if (i >= 64)
  407. break;
  408. }
  409. }
  410. return 0;
  411. }
  412. static inline void idct_put(FourXContext *f, int x, int y){
  413. DCTELEM (*block)[64]= f->block;
  414. int stride= f->current_picture.linesize[0]>>1;
  415. int i;
  416. uint16_t *dst = ((uint16_t*)f->current_picture.data[0]) + y * stride + x;
  417. for(i=0; i<4; i++){
  418. block[i][0] += 0x80*8*8;
  419. idct(block[i]);
  420. }
  421. if(!(f->avctx->flags&CODEC_FLAG_GRAY)){
  422. for(i=4; i<6; i++) idct(block[i]);
  423. }
  424. /* Note transform is:
  425. y= ( 1b + 4g + 2r)/14
  426. cb=( 3b - 2g - 1r)/14
  427. cr=(-1b - 4g + 5r)/14
  428. */
  429. for(y=0; y<8; y++){
  430. for(x=0; x<8; x++){
  431. DCTELEM *temp= block[(x>>2) + 2*(y>>2)] + 2*(x&3) + 2*8*(y&3); //FIXME optimize
  432. int cb= block[4][x + 8*y];
  433. int cr= block[5][x + 8*y];
  434. int cg= (cb + cr)>>1;
  435. int y;
  436. cb+=cb;
  437. y = temp[0];
  438. dst[0 ]= ((y+cb)>>3) + (((y-cg)&0xFC)<<3) + (((y+cr)&0xF8)<<8);
  439. y = temp[1];
  440. dst[1 ]= ((y+cb)>>3) + (((y-cg)&0xFC)<<3) + (((y+cr)&0xF8)<<8);
  441. y = temp[8];
  442. dst[ stride]= ((y+cb)>>3) + (((y-cg)&0xFC)<<3) + (((y+cr)&0xF8)<<8);
  443. y = temp[9];
  444. dst[1+stride]= ((y+cb)>>3) + (((y-cg)&0xFC)<<3) + (((y+cr)&0xF8)<<8);
  445. dst += 2;
  446. }
  447. dst += 2*stride - 2*8;
  448. }
  449. }
  450. static int decode_i_mb(FourXContext *f){
  451. int i;
  452. f->dsp.clear_blocks(f->block[0]);
  453. for(i=0; i<6; i++){
  454. if(decode_i_block(f, f->block[i]) < 0)
  455. return -1;
  456. }
  457. return 0;
  458. }
  459. static const uint8_t *read_huffman_tables(FourXContext *f, const uint8_t * const buf){
  460. int frequency[512];
  461. uint8_t flag[512];
  462. int up[512];
  463. uint8_t len_tab[257];
  464. int bits_tab[257];
  465. int start, end;
  466. const uint8_t *ptr= buf;
  467. int j;
  468. memset(frequency, 0, sizeof(frequency));
  469. memset(up, -1, sizeof(up));
  470. start= *ptr++;
  471. end= *ptr++;
  472. for(;;){
  473. int i;
  474. for(i=start; i<=end; i++){
  475. frequency[i]= *ptr++;
  476. }
  477. start= *ptr++;
  478. if(start==0) break;
  479. end= *ptr++;
  480. }
  481. frequency[256]=1;
  482. while((ptr - buf)&3) ptr++; // 4byte align
  483. for(j=257; j<512; j++){
  484. int min_freq[2]= {256*256, 256*256};
  485. int smallest[2]= {0, 0};
  486. int i;
  487. for(i=0; i<j; i++){
  488. if(frequency[i] == 0) continue;
  489. if(frequency[i] < min_freq[1]){
  490. if(frequency[i] < min_freq[0]){
  491. min_freq[1]= min_freq[0]; smallest[1]= smallest[0];
  492. min_freq[0]= frequency[i];smallest[0]= i;
  493. }else{
  494. min_freq[1]= frequency[i];smallest[1]= i;
  495. }
  496. }
  497. }
  498. if(min_freq[1] == 256*256) break;
  499. frequency[j]= min_freq[0] + min_freq[1];
  500. flag[ smallest[0] ]= 0;
  501. flag[ smallest[1] ]= 1;
  502. up[ smallest[0] ]=
  503. up[ smallest[1] ]= j;
  504. frequency[ smallest[0] ]= frequency[ smallest[1] ]= 0;
  505. }
  506. for(j=0; j<257; j++){
  507. int node;
  508. int len=0;
  509. int bits=0;
  510. for(node= j; up[node] != -1; node= up[node]){
  511. bits += flag[node]<<len;
  512. len++;
  513. if(len > 31) av_log(f->avctx, AV_LOG_ERROR, "vlc length overflow\n"); //can this happen at all ?
  514. }
  515. bits_tab[j]= bits;
  516. len_tab[j]= len;
  517. }
  518. if (init_vlc(&f->pre_vlc, ACDC_VLC_BITS, 257,
  519. len_tab , 1, 1,
  520. bits_tab, 4, 4, 0))
  521. return NULL;
  522. return ptr;
  523. }
  524. static int mix(int c0, int c1){
  525. int blue = 2*(c0&0x001F) + (c1&0x001F);
  526. int green= (2*(c0&0x03E0) + (c1&0x03E0))>>5;
  527. int red = 2*(c0>>10) + (c1>>10);
  528. return red/3*1024 + green/3*32 + blue/3;
  529. }
  530. static int decode_i2_frame(FourXContext *f, const uint8_t *buf, int length){
  531. int x, y, x2, y2;
  532. const int width= f->avctx->width;
  533. const int height= f->avctx->height;
  534. const int mbs = (FFALIGN(width, 16) >> 4) * (FFALIGN(height, 16) >> 4);
  535. uint16_t *dst= (uint16_t*)f->current_picture.data[0];
  536. const int stride= f->current_picture.linesize[0]>>1;
  537. GetByteContext g3;
  538. if(length < mbs * 8) {
  539. av_log(f->avctx, AV_LOG_ERROR, "packet size too small\n");
  540. return AVERROR_INVALIDDATA;
  541. }
  542. bytestream2_init(&g3, buf, length);
  543. for(y=0; y<height; y+=16){
  544. for(x=0; x<width; x+=16){
  545. unsigned int color[4], bits;
  546. memset(color, 0, sizeof(color));
  547. //warning following is purely guessed ...
  548. color[0]= bytestream2_get_le16u(&g3);
  549. color[1]= bytestream2_get_le16u(&g3);
  550. if(color[0]&0x8000) av_log(NULL, AV_LOG_ERROR, "unk bit 1\n");
  551. if(color[1]&0x8000) av_log(NULL, AV_LOG_ERROR, "unk bit 2\n");
  552. color[2]= mix(color[0], color[1]);
  553. color[3]= mix(color[1], color[0]);
  554. bits= bytestream2_get_le32u(&g3);
  555. for(y2=0; y2<16; y2++){
  556. for(x2=0; x2<16; x2++){
  557. int index= 2*(x2>>2) + 8*(y2>>2);
  558. dst[y2*stride+x2]= color[(bits>>index)&3];
  559. }
  560. }
  561. dst+=16;
  562. }
  563. dst += 16 * stride - x;
  564. }
  565. return 0;
  566. }
  567. static int decode_i_frame(FourXContext *f, const uint8_t *buf, int length){
  568. int x, y;
  569. const int width= f->avctx->width;
  570. const int height= f->avctx->height;
  571. const unsigned int bitstream_size= AV_RL32(buf);
  572. int token_count av_unused;
  573. unsigned int prestream_size;
  574. const uint8_t *prestream;
  575. if (length < bitstream_size + 12) {
  576. av_log(f->avctx, AV_LOG_ERROR, "packet size too small\n");
  577. return AVERROR_INVALIDDATA;
  578. }
  579. token_count = AV_RL32(buf + bitstream_size + 8);
  580. prestream_size = 4 * AV_RL32(buf + bitstream_size + 4);
  581. prestream = buf + bitstream_size + 12;
  582. if(prestream_size + bitstream_size + 12 != length
  583. || bitstream_size > (1<<26)
  584. || prestream_size > (1<<26)){
  585. av_log(f->avctx, AV_LOG_ERROR, "size mismatch %d %d %d\n", prestream_size, bitstream_size, length);
  586. return -1;
  587. }
  588. prestream= read_huffman_tables(f, prestream);
  589. init_get_bits(&f->gb, buf + 4, 8*bitstream_size);
  590. prestream_size= length + buf - prestream;
  591. av_fast_malloc(&f->bitstream_buffer, &f->bitstream_buffer_size, prestream_size + FF_INPUT_BUFFER_PADDING_SIZE);
  592. if (!f->bitstream_buffer)
  593. return AVERROR(ENOMEM);
  594. f->dsp.bswap_buf(f->bitstream_buffer, (const uint32_t*)prestream, prestream_size/4);
  595. memset((uint8_t*)f->bitstream_buffer + prestream_size, 0, FF_INPUT_BUFFER_PADDING_SIZE);
  596. init_get_bits(&f->pre_gb, f->bitstream_buffer, 8*prestream_size);
  597. f->last_dc= 0*128*8*8;
  598. for(y=0; y<height; y+=16){
  599. for(x=0; x<width; x+=16){
  600. if(decode_i_mb(f) < 0)
  601. return -1;
  602. idct_put(f, x, y);
  603. }
  604. }
  605. if(get_vlc2(&f->pre_gb, f->pre_vlc.table, ACDC_VLC_BITS, 3) != 256)
  606. av_log(f->avctx, AV_LOG_ERROR, "end mismatch\n");
  607. return 0;
  608. }
  609. static int decode_frame(AVCodecContext *avctx,
  610. void *data, int *data_size,
  611. AVPacket *avpkt)
  612. {
  613. const uint8_t *buf = avpkt->data;
  614. int buf_size = avpkt->size;
  615. FourXContext * const f = avctx->priv_data;
  616. AVFrame *picture = data;
  617. AVFrame *p, temp;
  618. int i, frame_4cc, frame_size;
  619. frame_4cc= AV_RL32(buf);
  620. if(buf_size != AV_RL32(buf+4)+8 || buf_size < 20){
  621. av_log(f->avctx, AV_LOG_ERROR, "size mismatch %d %d\n", buf_size, AV_RL32(buf+4));
  622. }
  623. if(frame_4cc == AV_RL32("cfrm")){
  624. int free_index=-1;
  625. const int data_size= buf_size - 20;
  626. const int id= AV_RL32(buf+12);
  627. const int whole_size= AV_RL32(buf+16);
  628. CFrameBuffer *cfrm;
  629. for(i=0; i<CFRAME_BUFFER_COUNT; i++){
  630. if(f->cfrm[i].id && f->cfrm[i].id < avctx->frame_number)
  631. av_log(f->avctx, AV_LOG_ERROR, "lost c frame %d\n", f->cfrm[i].id);
  632. }
  633. for(i=0; i<CFRAME_BUFFER_COUNT; i++){
  634. if(f->cfrm[i].id == id) break;
  635. if(f->cfrm[i].size == 0 ) free_index= i;
  636. }
  637. if(i>=CFRAME_BUFFER_COUNT){
  638. i= free_index;
  639. f->cfrm[i].id= id;
  640. }
  641. cfrm= &f->cfrm[i];
  642. cfrm->data= av_fast_realloc(cfrm->data, &cfrm->allocated_size, cfrm->size + data_size + FF_INPUT_BUFFER_PADDING_SIZE);
  643. if(!cfrm->data){ //explicit check needed as memcpy below might not catch a NULL
  644. av_log(f->avctx, AV_LOG_ERROR, "realloc falure");
  645. return -1;
  646. }
  647. memcpy(cfrm->data + cfrm->size, buf+20, data_size);
  648. cfrm->size += data_size;
  649. if(cfrm->size >= whole_size){
  650. buf= cfrm->data;
  651. frame_size= cfrm->size;
  652. if(id != avctx->frame_number){
  653. av_log(f->avctx, AV_LOG_ERROR, "cframe id mismatch %d %d\n", id, avctx->frame_number);
  654. }
  655. cfrm->size= cfrm->id= 0;
  656. frame_4cc= AV_RL32("pfrm");
  657. }else
  658. return buf_size;
  659. }else{
  660. buf= buf + 12;
  661. frame_size= buf_size - 12;
  662. }
  663. temp= f->current_picture;
  664. f->current_picture= f->last_picture;
  665. f->last_picture= temp;
  666. p= &f->current_picture;
  667. avctx->coded_frame= p;
  668. avctx->flags |= CODEC_FLAG_EMU_EDGE; // alternatively we would have to use our own buffer management
  669. if(p->data[0])
  670. avctx->release_buffer(avctx, p);
  671. p->reference= 1;
  672. if(avctx->get_buffer(avctx, p) < 0){
  673. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  674. return -1;
  675. }
  676. if(frame_4cc == AV_RL32("ifr2")){
  677. p->pict_type= AV_PICTURE_TYPE_I;
  678. if(decode_i2_frame(f, buf-4, frame_size + 4) < 0)
  679. return -1;
  680. }else if(frame_4cc == AV_RL32("ifrm")){
  681. p->pict_type= AV_PICTURE_TYPE_I;
  682. if(decode_i_frame(f, buf, frame_size) < 0)
  683. return -1;
  684. }else if(frame_4cc == AV_RL32("pfrm") || frame_4cc == AV_RL32("pfr2")){
  685. if(!f->last_picture.data[0]){
  686. f->last_picture.reference= 1;
  687. if(avctx->get_buffer(avctx, &f->last_picture) < 0){
  688. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  689. return -1;
  690. }
  691. }
  692. p->pict_type= AV_PICTURE_TYPE_P;
  693. if(decode_p_frame(f, buf, frame_size) < 0)
  694. return -1;
  695. }else if(frame_4cc == AV_RL32("snd_")){
  696. av_log(avctx, AV_LOG_ERROR, "ignoring snd_ chunk length:%d\n", buf_size);
  697. }else{
  698. av_log(avctx, AV_LOG_ERROR, "ignoring unknown chunk length:%d\n", buf_size);
  699. }
  700. p->key_frame= p->pict_type == AV_PICTURE_TYPE_I;
  701. *picture= *p;
  702. *data_size = sizeof(AVPicture);
  703. emms_c();
  704. return buf_size;
  705. }
  706. static av_cold void common_init(AVCodecContext *avctx){
  707. FourXContext * const f = avctx->priv_data;
  708. dsputil_init(&f->dsp, avctx);
  709. f->avctx= avctx;
  710. }
  711. static av_cold int decode_init(AVCodecContext *avctx){
  712. FourXContext * const f = avctx->priv_data;
  713. if(avctx->extradata_size != 4 || !avctx->extradata) {
  714. av_log(avctx, AV_LOG_ERROR, "extradata wrong or missing\n");
  715. return 1;
  716. }
  717. f->version= AV_RL32(avctx->extradata)>>16;
  718. common_init(avctx);
  719. init_vlcs(f);
  720. if(f->version>2) avctx->pix_fmt= PIX_FMT_RGB565;
  721. else avctx->pix_fmt= PIX_FMT_BGR555;
  722. return 0;
  723. }
  724. static av_cold int decode_end(AVCodecContext *avctx){
  725. FourXContext * const f = avctx->priv_data;
  726. int i;
  727. av_freep(&f->bitstream_buffer);
  728. f->bitstream_buffer_size=0;
  729. for(i=0; i<CFRAME_BUFFER_COUNT; i++){
  730. av_freep(&f->cfrm[i].data);
  731. f->cfrm[i].allocated_size= 0;
  732. }
  733. free_vlc(&f->pre_vlc);
  734. if(f->current_picture.data[0])
  735. avctx->release_buffer(avctx, &f->current_picture);
  736. if(f->last_picture.data[0])
  737. avctx->release_buffer(avctx, &f->last_picture);
  738. return 0;
  739. }
  740. AVCodec ff_fourxm_decoder = {
  741. .name = "4xm",
  742. .type = AVMEDIA_TYPE_VIDEO,
  743. .id = CODEC_ID_4XM,
  744. .priv_data_size = sizeof(FourXContext),
  745. .init = decode_init,
  746. .close = decode_end,
  747. .decode = decode_frame,
  748. .capabilities = CODEC_CAP_DR1,
  749. .long_name = NULL_IF_CONFIG_SMALL("4X Movie"),
  750. };