You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

587 lines
24KB

  1. /*
  2. * Copyright (c) 2002 Dieter Shirley
  3. *
  4. * dct_unquantize_h263_altivec:
  5. * Copyright (c) 2003 Romain Dolbeau <romain@dolbeau.org>
  6. *
  7. * This file is part of FFmpeg.
  8. *
  9. * FFmpeg is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU Lesser General Public
  11. * License as published by the Free Software Foundation; either
  12. * version 2.1 of the License, or (at your option) any later version.
  13. *
  14. * FFmpeg is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * Lesser General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU Lesser General Public
  20. * License along with FFmpeg; if not, write to the Free Software
  21. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  22. */
  23. #include <stdlib.h>
  24. #include <stdio.h>
  25. #include "libavutil/cpu.h"
  26. #include "libavcodec/dsputil.h"
  27. #include "libavcodec/mpegvideo.h"
  28. #include "util_altivec.h"
  29. #include "types_altivec.h"
  30. #include "dsputil_altivec.h"
  31. // Swaps two variables (used for altivec registers)
  32. #define SWAP(a,b) \
  33. do { \
  34. __typeof__(a) swap_temp=a; \
  35. a=b; \
  36. b=swap_temp; \
  37. } while (0)
  38. // transposes a matrix consisting of four vectors with four elements each
  39. #define TRANSPOSE4(a,b,c,d) \
  40. do { \
  41. __typeof__(a) _trans_ach = vec_mergeh(a, c); \
  42. __typeof__(a) _trans_acl = vec_mergel(a, c); \
  43. __typeof__(a) _trans_bdh = vec_mergeh(b, d); \
  44. __typeof__(a) _trans_bdl = vec_mergel(b, d); \
  45. \
  46. a = vec_mergeh(_trans_ach, _trans_bdh); \
  47. b = vec_mergel(_trans_ach, _trans_bdh); \
  48. c = vec_mergeh(_trans_acl, _trans_bdl); \
  49. d = vec_mergel(_trans_acl, _trans_bdl); \
  50. } while (0)
  51. // Loads a four-byte value (int or float) from the target address
  52. // into every element in the target vector. Only works if the
  53. // target address is four-byte aligned (which should be always).
  54. #define LOAD4(vec, address) \
  55. { \
  56. __typeof__(vec)* _load_addr = (__typeof__(vec)*)(address); \
  57. vector unsigned char _perm_vec = vec_lvsl(0,(address)); \
  58. vec = vec_ld(0, _load_addr); \
  59. vec = vec_perm(vec, vec, _perm_vec); \
  60. vec = vec_splat(vec, 0); \
  61. }
  62. #define FOUROF(a) {a,a,a,a}
  63. static int dct_quantize_altivec(MpegEncContext* s,
  64. DCTELEM* data, int n,
  65. int qscale, int* overflow)
  66. {
  67. int lastNonZero;
  68. vector float row0, row1, row2, row3, row4, row5, row6, row7;
  69. vector float alt0, alt1, alt2, alt3, alt4, alt5, alt6, alt7;
  70. const vector float zero = (const vector float)FOUROF(0.);
  71. // used after quantize step
  72. int oldBaseValue = 0;
  73. // Load the data into the row/alt vectors
  74. {
  75. vector signed short data0, data1, data2, data3, data4, data5, data6, data7;
  76. data0 = vec_ld(0, data);
  77. data1 = vec_ld(16, data);
  78. data2 = vec_ld(32, data);
  79. data3 = vec_ld(48, data);
  80. data4 = vec_ld(64, data);
  81. data5 = vec_ld(80, data);
  82. data6 = vec_ld(96, data);
  83. data7 = vec_ld(112, data);
  84. // Transpose the data before we start
  85. TRANSPOSE8(data0, data1, data2, data3, data4, data5, data6, data7);
  86. // load the data into floating point vectors. We load
  87. // the high half of each row into the main row vectors
  88. // and the low half into the alt vectors.
  89. row0 = vec_ctf(vec_unpackh(data0), 0);
  90. alt0 = vec_ctf(vec_unpackl(data0), 0);
  91. row1 = vec_ctf(vec_unpackh(data1), 0);
  92. alt1 = vec_ctf(vec_unpackl(data1), 0);
  93. row2 = vec_ctf(vec_unpackh(data2), 0);
  94. alt2 = vec_ctf(vec_unpackl(data2), 0);
  95. row3 = vec_ctf(vec_unpackh(data3), 0);
  96. alt3 = vec_ctf(vec_unpackl(data3), 0);
  97. row4 = vec_ctf(vec_unpackh(data4), 0);
  98. alt4 = vec_ctf(vec_unpackl(data4), 0);
  99. row5 = vec_ctf(vec_unpackh(data5), 0);
  100. alt5 = vec_ctf(vec_unpackl(data5), 0);
  101. row6 = vec_ctf(vec_unpackh(data6), 0);
  102. alt6 = vec_ctf(vec_unpackl(data6), 0);
  103. row7 = vec_ctf(vec_unpackh(data7), 0);
  104. alt7 = vec_ctf(vec_unpackl(data7), 0);
  105. }
  106. // The following block could exist as a separate an altivec dct
  107. // function. However, if we put it inline, the DCT data can remain
  108. // in the vector local variables, as floats, which we'll use during the
  109. // quantize step...
  110. {
  111. const vector float vec_0_298631336 = (vector float)FOUROF(0.298631336f);
  112. const vector float vec_0_390180644 = (vector float)FOUROF(-0.390180644f);
  113. const vector float vec_0_541196100 = (vector float)FOUROF(0.541196100f);
  114. const vector float vec_0_765366865 = (vector float)FOUROF(0.765366865f);
  115. const vector float vec_0_899976223 = (vector float)FOUROF(-0.899976223f);
  116. const vector float vec_1_175875602 = (vector float)FOUROF(1.175875602f);
  117. const vector float vec_1_501321110 = (vector float)FOUROF(1.501321110f);
  118. const vector float vec_1_847759065 = (vector float)FOUROF(-1.847759065f);
  119. const vector float vec_1_961570560 = (vector float)FOUROF(-1.961570560f);
  120. const vector float vec_2_053119869 = (vector float)FOUROF(2.053119869f);
  121. const vector float vec_2_562915447 = (vector float)FOUROF(-2.562915447f);
  122. const vector float vec_3_072711026 = (vector float)FOUROF(3.072711026f);
  123. int whichPass, whichHalf;
  124. for(whichPass = 1; whichPass<=2; whichPass++) {
  125. for(whichHalf = 1; whichHalf<=2; whichHalf++) {
  126. vector float tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
  127. vector float tmp10, tmp11, tmp12, tmp13;
  128. vector float z1, z2, z3, z4, z5;
  129. tmp0 = vec_add(row0, row7); // tmp0 = dataptr[0] + dataptr[7];
  130. tmp7 = vec_sub(row0, row7); // tmp7 = dataptr[0] - dataptr[7];
  131. tmp3 = vec_add(row3, row4); // tmp3 = dataptr[3] + dataptr[4];
  132. tmp4 = vec_sub(row3, row4); // tmp4 = dataptr[3] - dataptr[4];
  133. tmp1 = vec_add(row1, row6); // tmp1 = dataptr[1] + dataptr[6];
  134. tmp6 = vec_sub(row1, row6); // tmp6 = dataptr[1] - dataptr[6];
  135. tmp2 = vec_add(row2, row5); // tmp2 = dataptr[2] + dataptr[5];
  136. tmp5 = vec_sub(row2, row5); // tmp5 = dataptr[2] - dataptr[5];
  137. tmp10 = vec_add(tmp0, tmp3); // tmp10 = tmp0 + tmp3;
  138. tmp13 = vec_sub(tmp0, tmp3); // tmp13 = tmp0 - tmp3;
  139. tmp11 = vec_add(tmp1, tmp2); // tmp11 = tmp1 + tmp2;
  140. tmp12 = vec_sub(tmp1, tmp2); // tmp12 = tmp1 - tmp2;
  141. // dataptr[0] = (DCTELEM) ((tmp10 + tmp11) << PASS1_BITS);
  142. row0 = vec_add(tmp10, tmp11);
  143. // dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS);
  144. row4 = vec_sub(tmp10, tmp11);
  145. // z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
  146. z1 = vec_madd(vec_add(tmp12, tmp13), vec_0_541196100, (vector float)zero);
  147. // dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
  148. // CONST_BITS-PASS1_BITS);
  149. row2 = vec_madd(tmp13, vec_0_765366865, z1);
  150. // dataptr[6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
  151. // CONST_BITS-PASS1_BITS);
  152. row6 = vec_madd(tmp12, vec_1_847759065, z1);
  153. z1 = vec_add(tmp4, tmp7); // z1 = tmp4 + tmp7;
  154. z2 = vec_add(tmp5, tmp6); // z2 = tmp5 + tmp6;
  155. z3 = vec_add(tmp4, tmp6); // z3 = tmp4 + tmp6;
  156. z4 = vec_add(tmp5, tmp7); // z4 = tmp5 + tmp7;
  157. // z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
  158. z5 = vec_madd(vec_add(z3, z4), vec_1_175875602, (vector float)zero);
  159. // z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
  160. z3 = vec_madd(z3, vec_1_961570560, z5);
  161. // z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
  162. z4 = vec_madd(z4, vec_0_390180644, z5);
  163. // The following adds are rolled into the multiplies above
  164. // z3 = vec_add(z3, z5); // z3 += z5;
  165. // z4 = vec_add(z4, z5); // z4 += z5;
  166. // z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
  167. // Wow! It's actually more efficient to roll this multiply
  168. // into the adds below, even thought the multiply gets done twice!
  169. // z2 = vec_madd(z2, vec_2_562915447, (vector float)zero);
  170. // z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
  171. // Same with this one...
  172. // z1 = vec_madd(z1, vec_0_899976223, (vector float)zero);
  173. // tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
  174. // dataptr[7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, CONST_BITS-PASS1_BITS);
  175. row7 = vec_madd(tmp4, vec_0_298631336, vec_madd(z1, vec_0_899976223, z3));
  176. // tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
  177. // dataptr[5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS);
  178. row5 = vec_madd(tmp5, vec_2_053119869, vec_madd(z2, vec_2_562915447, z4));
  179. // tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
  180. // dataptr[3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS);
  181. row3 = vec_madd(tmp6, vec_3_072711026, vec_madd(z2, vec_2_562915447, z3));
  182. // tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
  183. // dataptr[1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, CONST_BITS-PASS1_BITS);
  184. row1 = vec_madd(z1, vec_0_899976223, vec_madd(tmp7, vec_1_501321110, z4));
  185. // Swap the row values with the alts. If this is the first half,
  186. // this sets up the low values to be acted on in the second half.
  187. // If this is the second half, it puts the high values back in
  188. // the row values where they are expected to be when we're done.
  189. SWAP(row0, alt0);
  190. SWAP(row1, alt1);
  191. SWAP(row2, alt2);
  192. SWAP(row3, alt3);
  193. SWAP(row4, alt4);
  194. SWAP(row5, alt5);
  195. SWAP(row6, alt6);
  196. SWAP(row7, alt7);
  197. }
  198. if (whichPass == 1) {
  199. // transpose the data for the second pass
  200. // First, block transpose the upper right with lower left.
  201. SWAP(row4, alt0);
  202. SWAP(row5, alt1);
  203. SWAP(row6, alt2);
  204. SWAP(row7, alt3);
  205. // Now, transpose each block of four
  206. TRANSPOSE4(row0, row1, row2, row3);
  207. TRANSPOSE4(row4, row5, row6, row7);
  208. TRANSPOSE4(alt0, alt1, alt2, alt3);
  209. TRANSPOSE4(alt4, alt5, alt6, alt7);
  210. }
  211. }
  212. }
  213. // perform the quantize step, using the floating point data
  214. // still in the row/alt registers
  215. {
  216. const int* biasAddr;
  217. const vector signed int* qmat;
  218. vector float bias, negBias;
  219. if (s->mb_intra) {
  220. vector signed int baseVector;
  221. // We must cache element 0 in the intra case
  222. // (it needs special handling).
  223. baseVector = vec_cts(vec_splat(row0, 0), 0);
  224. vec_ste(baseVector, 0, &oldBaseValue);
  225. if(n<4){
  226. qmat = (vector signed int*)s->q_intra_matrix[qscale];
  227. biasAddr = &(s->intra_quant_bias);
  228. }else{
  229. qmat = (vector signed int*)s->q_chroma_intra_matrix[qscale];
  230. biasAddr = &(s->intra_quant_bias);
  231. }
  232. } else {
  233. qmat = (vector signed int*)s->q_inter_matrix[qscale];
  234. biasAddr = &(s->inter_quant_bias);
  235. }
  236. // Load the bias vector (We add 0.5 to the bias so that we're
  237. // rounding when we convert to int, instead of flooring.)
  238. {
  239. vector signed int biasInt;
  240. const vector float negOneFloat = (vector float)FOUROF(-1.0f);
  241. LOAD4(biasInt, biasAddr);
  242. bias = vec_ctf(biasInt, QUANT_BIAS_SHIFT);
  243. negBias = vec_madd(bias, negOneFloat, zero);
  244. }
  245. {
  246. vector float q0, q1, q2, q3, q4, q5, q6, q7;
  247. q0 = vec_ctf(qmat[0], QMAT_SHIFT);
  248. q1 = vec_ctf(qmat[2], QMAT_SHIFT);
  249. q2 = vec_ctf(qmat[4], QMAT_SHIFT);
  250. q3 = vec_ctf(qmat[6], QMAT_SHIFT);
  251. q4 = vec_ctf(qmat[8], QMAT_SHIFT);
  252. q5 = vec_ctf(qmat[10], QMAT_SHIFT);
  253. q6 = vec_ctf(qmat[12], QMAT_SHIFT);
  254. q7 = vec_ctf(qmat[14], QMAT_SHIFT);
  255. row0 = vec_sel(vec_madd(row0, q0, negBias), vec_madd(row0, q0, bias),
  256. vec_cmpgt(row0, zero));
  257. row1 = vec_sel(vec_madd(row1, q1, negBias), vec_madd(row1, q1, bias),
  258. vec_cmpgt(row1, zero));
  259. row2 = vec_sel(vec_madd(row2, q2, negBias), vec_madd(row2, q2, bias),
  260. vec_cmpgt(row2, zero));
  261. row3 = vec_sel(vec_madd(row3, q3, negBias), vec_madd(row3, q3, bias),
  262. vec_cmpgt(row3, zero));
  263. row4 = vec_sel(vec_madd(row4, q4, negBias), vec_madd(row4, q4, bias),
  264. vec_cmpgt(row4, zero));
  265. row5 = vec_sel(vec_madd(row5, q5, negBias), vec_madd(row5, q5, bias),
  266. vec_cmpgt(row5, zero));
  267. row6 = vec_sel(vec_madd(row6, q6, negBias), vec_madd(row6, q6, bias),
  268. vec_cmpgt(row6, zero));
  269. row7 = vec_sel(vec_madd(row7, q7, negBias), vec_madd(row7, q7, bias),
  270. vec_cmpgt(row7, zero));
  271. q0 = vec_ctf(qmat[1], QMAT_SHIFT);
  272. q1 = vec_ctf(qmat[3], QMAT_SHIFT);
  273. q2 = vec_ctf(qmat[5], QMAT_SHIFT);
  274. q3 = vec_ctf(qmat[7], QMAT_SHIFT);
  275. q4 = vec_ctf(qmat[9], QMAT_SHIFT);
  276. q5 = vec_ctf(qmat[11], QMAT_SHIFT);
  277. q6 = vec_ctf(qmat[13], QMAT_SHIFT);
  278. q7 = vec_ctf(qmat[15], QMAT_SHIFT);
  279. alt0 = vec_sel(vec_madd(alt0, q0, negBias), vec_madd(alt0, q0, bias),
  280. vec_cmpgt(alt0, zero));
  281. alt1 = vec_sel(vec_madd(alt1, q1, negBias), vec_madd(alt1, q1, bias),
  282. vec_cmpgt(alt1, zero));
  283. alt2 = vec_sel(vec_madd(alt2, q2, negBias), vec_madd(alt2, q2, bias),
  284. vec_cmpgt(alt2, zero));
  285. alt3 = vec_sel(vec_madd(alt3, q3, negBias), vec_madd(alt3, q3, bias),
  286. vec_cmpgt(alt3, zero));
  287. alt4 = vec_sel(vec_madd(alt4, q4, negBias), vec_madd(alt4, q4, bias),
  288. vec_cmpgt(alt4, zero));
  289. alt5 = vec_sel(vec_madd(alt5, q5, negBias), vec_madd(alt5, q5, bias),
  290. vec_cmpgt(alt5, zero));
  291. alt6 = vec_sel(vec_madd(alt6, q6, negBias), vec_madd(alt6, q6, bias),
  292. vec_cmpgt(alt6, zero));
  293. alt7 = vec_sel(vec_madd(alt7, q7, negBias), vec_madd(alt7, q7, bias),
  294. vec_cmpgt(alt7, zero));
  295. }
  296. }
  297. // Store the data back into the original block
  298. {
  299. vector signed short data0, data1, data2, data3, data4, data5, data6, data7;
  300. data0 = vec_pack(vec_cts(row0, 0), vec_cts(alt0, 0));
  301. data1 = vec_pack(vec_cts(row1, 0), vec_cts(alt1, 0));
  302. data2 = vec_pack(vec_cts(row2, 0), vec_cts(alt2, 0));
  303. data3 = vec_pack(vec_cts(row3, 0), vec_cts(alt3, 0));
  304. data4 = vec_pack(vec_cts(row4, 0), vec_cts(alt4, 0));
  305. data5 = vec_pack(vec_cts(row5, 0), vec_cts(alt5, 0));
  306. data6 = vec_pack(vec_cts(row6, 0), vec_cts(alt6, 0));
  307. data7 = vec_pack(vec_cts(row7, 0), vec_cts(alt7, 0));
  308. {
  309. // Clamp for overflow
  310. vector signed int max_q_int, min_q_int;
  311. vector signed short max_q, min_q;
  312. LOAD4(max_q_int, &(s->max_qcoeff));
  313. LOAD4(min_q_int, &(s->min_qcoeff));
  314. max_q = vec_pack(max_q_int, max_q_int);
  315. min_q = vec_pack(min_q_int, min_q_int);
  316. data0 = vec_max(vec_min(data0, max_q), min_q);
  317. data1 = vec_max(vec_min(data1, max_q), min_q);
  318. data2 = vec_max(vec_min(data2, max_q), min_q);
  319. data4 = vec_max(vec_min(data4, max_q), min_q);
  320. data5 = vec_max(vec_min(data5, max_q), min_q);
  321. data6 = vec_max(vec_min(data6, max_q), min_q);
  322. data7 = vec_max(vec_min(data7, max_q), min_q);
  323. }
  324. {
  325. vector bool char zero_01, zero_23, zero_45, zero_67;
  326. vector signed char scanIndexes_01, scanIndexes_23, scanIndexes_45, scanIndexes_67;
  327. vector signed char negOne = vec_splat_s8(-1);
  328. vector signed char* scanPtr =
  329. (vector signed char*)(s->intra_scantable.inverse);
  330. signed char lastNonZeroChar;
  331. // Determine the largest non-zero index.
  332. zero_01 = vec_pack(vec_cmpeq(data0, (vector signed short)zero),
  333. vec_cmpeq(data1, (vector signed short)zero));
  334. zero_23 = vec_pack(vec_cmpeq(data2, (vector signed short)zero),
  335. vec_cmpeq(data3, (vector signed short)zero));
  336. zero_45 = vec_pack(vec_cmpeq(data4, (vector signed short)zero),
  337. vec_cmpeq(data5, (vector signed short)zero));
  338. zero_67 = vec_pack(vec_cmpeq(data6, (vector signed short)zero),
  339. vec_cmpeq(data7, (vector signed short)zero));
  340. // 64 biggest values
  341. scanIndexes_01 = vec_sel(scanPtr[0], negOne, zero_01);
  342. scanIndexes_23 = vec_sel(scanPtr[1], negOne, zero_23);
  343. scanIndexes_45 = vec_sel(scanPtr[2], negOne, zero_45);
  344. scanIndexes_67 = vec_sel(scanPtr[3], negOne, zero_67);
  345. // 32 largest values
  346. scanIndexes_01 = vec_max(scanIndexes_01, scanIndexes_23);
  347. scanIndexes_45 = vec_max(scanIndexes_45, scanIndexes_67);
  348. // 16 largest values
  349. scanIndexes_01 = vec_max(scanIndexes_01, scanIndexes_45);
  350. // 8 largest values
  351. scanIndexes_01 = vec_max(vec_mergeh(scanIndexes_01, negOne),
  352. vec_mergel(scanIndexes_01, negOne));
  353. // 4 largest values
  354. scanIndexes_01 = vec_max(vec_mergeh(scanIndexes_01, negOne),
  355. vec_mergel(scanIndexes_01, negOne));
  356. // 2 largest values
  357. scanIndexes_01 = vec_max(vec_mergeh(scanIndexes_01, negOne),
  358. vec_mergel(scanIndexes_01, negOne));
  359. // largest value
  360. scanIndexes_01 = vec_max(vec_mergeh(scanIndexes_01, negOne),
  361. vec_mergel(scanIndexes_01, negOne));
  362. scanIndexes_01 = vec_splat(scanIndexes_01, 0);
  363. vec_ste(scanIndexes_01, 0, &lastNonZeroChar);
  364. lastNonZero = lastNonZeroChar;
  365. // While the data is still in vectors we check for the transpose IDCT permute
  366. // and handle it using the vector unit if we can. This is the permute used
  367. // by the altivec idct, so it is common when using the altivec dct.
  368. if ((lastNonZero > 0) && (s->dsp.idct_permutation_type == FF_TRANSPOSE_IDCT_PERM)) {
  369. TRANSPOSE8(data0, data1, data2, data3, data4, data5, data6, data7);
  370. }
  371. vec_st(data0, 0, data);
  372. vec_st(data1, 16, data);
  373. vec_st(data2, 32, data);
  374. vec_st(data3, 48, data);
  375. vec_st(data4, 64, data);
  376. vec_st(data5, 80, data);
  377. vec_st(data6, 96, data);
  378. vec_st(data7, 112, data);
  379. }
  380. }
  381. // special handling of block[0]
  382. if (s->mb_intra) {
  383. if (!s->h263_aic) {
  384. if (n < 4)
  385. oldBaseValue /= s->y_dc_scale;
  386. else
  387. oldBaseValue /= s->c_dc_scale;
  388. }
  389. // Divide by 8, rounding the result
  390. data[0] = (oldBaseValue + 4) >> 3;
  391. }
  392. // We handled the transpose permutation above and we don't
  393. // need to permute the "no" permutation case.
  394. if ((lastNonZero > 0) &&
  395. (s->dsp.idct_permutation_type != FF_TRANSPOSE_IDCT_PERM) &&
  396. (s->dsp.idct_permutation_type != FF_NO_IDCT_PERM)) {
  397. ff_block_permute(data, s->dsp.idct_permutation,
  398. s->intra_scantable.scantable, lastNonZero);
  399. }
  400. return lastNonZero;
  401. }
  402. /* AltiVec version of dct_unquantize_h263
  403. this code assumes `block' is 16 bytes-aligned */
  404. static void dct_unquantize_h263_altivec(MpegEncContext *s,
  405. DCTELEM *block, int n, int qscale)
  406. {
  407. int i, level, qmul, qadd;
  408. int nCoeffs;
  409. assert(s->block_last_index[n]>=0);
  410. qadd = (qscale - 1) | 1;
  411. qmul = qscale << 1;
  412. if (s->mb_intra) {
  413. if (!s->h263_aic) {
  414. if (n < 4)
  415. block[0] = block[0] * s->y_dc_scale;
  416. else
  417. block[0] = block[0] * s->c_dc_scale;
  418. }else
  419. qadd = 0;
  420. i = 1;
  421. nCoeffs= 63; //does not always use zigzag table
  422. } else {
  423. i = 0;
  424. nCoeffs= s->intra_scantable.raster_end[ s->block_last_index[n] ];
  425. }
  426. {
  427. register const vector signed short vczero = (const vector signed short)vec_splat_s16(0);
  428. DECLARE_ALIGNED(16, short, qmul8) = qmul;
  429. DECLARE_ALIGNED(16, short, qadd8) = qadd;
  430. register vector signed short blockv, qmulv, qaddv, nqaddv, temp1;
  431. register vector bool short blockv_null, blockv_neg;
  432. register short backup_0 = block[0];
  433. register int j = 0;
  434. qmulv = vec_splat((vec_s16)vec_lde(0, &qmul8), 0);
  435. qaddv = vec_splat((vec_s16)vec_lde(0, &qadd8), 0);
  436. nqaddv = vec_sub(vczero, qaddv);
  437. // vectorize all the 16 bytes-aligned blocks
  438. // of 8 elements
  439. for(; (j + 7) <= nCoeffs ; j+=8) {
  440. blockv = vec_ld(j << 1, block);
  441. blockv_neg = vec_cmplt(blockv, vczero);
  442. blockv_null = vec_cmpeq(blockv, vczero);
  443. // choose between +qadd or -qadd as the third operand
  444. temp1 = vec_sel(qaddv, nqaddv, blockv_neg);
  445. // multiply & add (block{i,i+7} * qmul [+-] qadd)
  446. temp1 = vec_mladd(blockv, qmulv, temp1);
  447. // put 0 where block[{i,i+7} used to have 0
  448. blockv = vec_sel(temp1, blockv, blockv_null);
  449. vec_st(blockv, j << 1, block);
  450. }
  451. // if nCoeffs isn't a multiple of 8, finish the job
  452. // using good old scalar units.
  453. // (we could do it using a truncated vector,
  454. // but I'm not sure it's worth the hassle)
  455. for(; j <= nCoeffs ; j++) {
  456. level = block[j];
  457. if (level) {
  458. if (level < 0) {
  459. level = level * qmul - qadd;
  460. } else {
  461. level = level * qmul + qadd;
  462. }
  463. block[j] = level;
  464. }
  465. }
  466. if (i == 1) {
  467. // cheat. this avoid special-casing the first iteration
  468. block[0] = backup_0;
  469. }
  470. }
  471. }
  472. void MPV_common_init_altivec(MpegEncContext *s)
  473. {
  474. if (!(av_get_cpu_flags() & AV_CPU_FLAG_ALTIVEC)) return;
  475. // Test to make sure that the dct required alignments are met.
  476. if ((((long)(s->q_intra_matrix) & 0x0f) != 0) ||
  477. (((long)(s->q_inter_matrix) & 0x0f) != 0)) {
  478. av_log(s->avctx, AV_LOG_INFO, "Internal Error: q-matrix blocks must be 16-byte aligned "
  479. "to use AltiVec DCT. Reverting to non-AltiVec version.\n");
  480. return;
  481. }
  482. if (((long)(s->intra_scantable.inverse) & 0x0f) != 0) {
  483. av_log(s->avctx, AV_LOG_INFO, "Internal Error: scan table blocks must be 16-byte aligned "
  484. "to use AltiVec DCT. Reverting to non-AltiVec version.\n");
  485. return;
  486. }
  487. if ((s->avctx->dct_algo == FF_DCT_AUTO) ||
  488. (s->avctx->dct_algo == FF_DCT_ALTIVEC)) {
  489. s->dct_unquantize_h263_intra = dct_unquantize_h263_altivec;
  490. s->dct_unquantize_h263_inter = dct_unquantize_h263_altivec;
  491. }
  492. }