You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

312 lines
11KB

  1. /*
  2. * Copyright (c) CMU 1993 Computer Science, Speech Group
  3. * Chengxiang Lu and Alex Hauptmann
  4. * Copyright (c) 2005 Steve Underwood <steveu at coppice.org>
  5. * Copyright (c) 2009 Kenan Gillet
  6. * Copyright (c) 2010 Martin Storsjo
  7. *
  8. * This file is part of Libav.
  9. *
  10. * Libav is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU Lesser General Public
  12. * License as published by the Free Software Foundation; either
  13. * version 2.1 of the License, or (at your option) any later version.
  14. *
  15. * Libav is distributed in the hope that it will be useful,
  16. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  18. * Lesser General Public License for more details.
  19. *
  20. * You should have received a copy of the GNU Lesser General Public
  21. * License along with Libav; if not, write to the Free Software
  22. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  23. */
  24. /**
  25. * @file
  26. * G.722 ADPCM audio encoder
  27. */
  28. #include "avcodec.h"
  29. #include "g722.h"
  30. #define FREEZE_INTERVAL 128
  31. static av_cold int g722_encode_init(AVCodecContext * avctx)
  32. {
  33. G722Context *c = avctx->priv_data;
  34. if (avctx->channels != 1) {
  35. av_log(avctx, AV_LOG_ERROR, "Only mono tracks are allowed.\n");
  36. return AVERROR_INVALIDDATA;
  37. }
  38. c->band[0].scale_factor = 8;
  39. c->band[1].scale_factor = 2;
  40. c->prev_samples_pos = 22;
  41. if (avctx->trellis) {
  42. int frontier = 1 << avctx->trellis;
  43. int max_paths = frontier * FREEZE_INTERVAL;
  44. int i;
  45. for (i = 0; i < 2; i++) {
  46. c->paths[i] = av_mallocz(max_paths * sizeof(**c->paths));
  47. c->node_buf[i] = av_mallocz(2 * frontier * sizeof(**c->node_buf));
  48. c->nodep_buf[i] = av_mallocz(2 * frontier * sizeof(**c->nodep_buf));
  49. }
  50. }
  51. return 0;
  52. }
  53. static av_cold int g722_encode_close(AVCodecContext *avctx)
  54. {
  55. G722Context *c = avctx->priv_data;
  56. int i;
  57. for (i = 0; i < 2; i++) {
  58. av_freep(&c->paths[i]);
  59. av_freep(&c->node_buf[i]);
  60. av_freep(&c->nodep_buf[i]);
  61. }
  62. return 0;
  63. }
  64. static const int16_t low_quant[33] = {
  65. 35, 72, 110, 150, 190, 233, 276, 323,
  66. 370, 422, 473, 530, 587, 650, 714, 786,
  67. 858, 940, 1023, 1121, 1219, 1339, 1458, 1612,
  68. 1765, 1980, 2195, 2557, 2919
  69. };
  70. static inline void filter_samples(G722Context *c, const int16_t *samples,
  71. int *xlow, int *xhigh)
  72. {
  73. int xout1, xout2;
  74. c->prev_samples[c->prev_samples_pos++] = samples[0];
  75. c->prev_samples[c->prev_samples_pos++] = samples[1];
  76. ff_g722_apply_qmf(c->prev_samples + c->prev_samples_pos - 24, &xout1, &xout2);
  77. *xlow = xout1 + xout2 >> 13;
  78. *xhigh = xout1 - xout2 >> 13;
  79. if (c->prev_samples_pos >= PREV_SAMPLES_BUF_SIZE) {
  80. memmove(c->prev_samples,
  81. c->prev_samples + c->prev_samples_pos - 22,
  82. 22 * sizeof(c->prev_samples[0]));
  83. c->prev_samples_pos = 22;
  84. }
  85. }
  86. static inline int encode_high(const struct G722Band *state, int xhigh)
  87. {
  88. int diff = av_clip_int16(xhigh - state->s_predictor);
  89. int pred = 141 * state->scale_factor >> 8;
  90. /* = diff >= 0 ? (diff < pred) + 2 : diff >= -pred */
  91. return ((diff ^ (diff >> (sizeof(diff)*8-1))) < pred) + 2*(diff >= 0);
  92. }
  93. static inline int encode_low(const struct G722Band* state, int xlow)
  94. {
  95. int diff = av_clip_int16(xlow - state->s_predictor);
  96. /* = diff >= 0 ? diff : -(diff + 1) */
  97. int limit = diff ^ (diff >> (sizeof(diff)*8-1));
  98. int i = 0;
  99. limit = limit + 1 << 10;
  100. if (limit > low_quant[8] * state->scale_factor)
  101. i = 9;
  102. while (i < 29 && limit > low_quant[i] * state->scale_factor)
  103. i++;
  104. return (diff < 0 ? (i < 2 ? 63 : 33) : 61) - i;
  105. }
  106. static int g722_encode_trellis(AVCodecContext *avctx,
  107. uint8_t *dst, int buf_size, void *data)
  108. {
  109. G722Context *c = avctx->priv_data;
  110. const int16_t *samples = data;
  111. int i, j, k;
  112. int frontier = 1 << avctx->trellis;
  113. struct TrellisNode **nodes[2];
  114. struct TrellisNode **nodes_next[2];
  115. int pathn[2] = {0, 0}, froze = -1;
  116. struct TrellisPath *p[2];
  117. for (i = 0; i < 2; i++) {
  118. nodes[i] = c->nodep_buf[i];
  119. nodes_next[i] = c->nodep_buf[i] + frontier;
  120. memset(c->nodep_buf[i], 0, 2 * frontier * sizeof(*c->nodep_buf));
  121. nodes[i][0] = c->node_buf[i] + frontier;
  122. nodes[i][0]->ssd = 0;
  123. nodes[i][0]->path = 0;
  124. nodes[i][0]->state = c->band[i];
  125. }
  126. for (i = 0; i < buf_size >> 1; i++) {
  127. int xlow, xhigh;
  128. struct TrellisNode *next[2];
  129. int heap_pos[2] = {0, 0};
  130. for (j = 0; j < 2; j++) {
  131. next[j] = c->node_buf[j] + frontier*(i & 1);
  132. memset(nodes_next[j], 0, frontier * sizeof(**nodes_next));
  133. }
  134. filter_samples(c, &samples[2*i], &xlow, &xhigh);
  135. for (j = 0; j < frontier && nodes[0][j]; j++) {
  136. /* Only k >> 2 affects the future adaptive state, therefore testing
  137. * small steps that don't change k >> 2 is useless, the orignal
  138. * value from encode_low is better than them. Since we step k
  139. * in steps of 4, make sure range is a multiple of 4, so that
  140. * we don't miss the original value from encode_low. */
  141. int range = j < frontier/2 ? 4 : 0;
  142. struct TrellisNode *cur_node = nodes[0][j];
  143. int ilow = encode_low(&cur_node->state, xlow);
  144. for (k = ilow - range; k <= ilow + range && k <= 63; k += 4) {
  145. int decoded, dec_diff, pos;
  146. uint32_t ssd;
  147. struct TrellisNode* node;
  148. if (k < 0)
  149. continue;
  150. decoded = av_clip((cur_node->state.scale_factor *
  151. ff_g722_low_inv_quant6[k] >> 10)
  152. + cur_node->state.s_predictor, -16384, 16383);
  153. dec_diff = xlow - decoded;
  154. #define STORE_NODE(index, UPDATE, VALUE)\
  155. ssd = cur_node->ssd + dec_diff*dec_diff;\
  156. /* Check for wraparound. Using 64 bit ssd counters would \
  157. * be simpler, but is slower on x86 32 bit. */\
  158. if (ssd < cur_node->ssd)\
  159. continue;\
  160. if (heap_pos[index] < frontier) {\
  161. pos = heap_pos[index]++;\
  162. assert(pathn[index] < FREEZE_INTERVAL * frontier);\
  163. node = nodes_next[index][pos] = next[index]++;\
  164. node->path = pathn[index]++;\
  165. } else {\
  166. /* Try to replace one of the leaf nodes with the new \
  167. * one, but not always testing the same leaf position */\
  168. pos = (frontier>>1) + (heap_pos[index] & ((frontier>>1) - 1));\
  169. if (ssd >= nodes_next[index][pos]->ssd)\
  170. continue;\
  171. heap_pos[index]++;\
  172. node = nodes_next[index][pos];\
  173. }\
  174. node->ssd = ssd;\
  175. node->state = cur_node->state;\
  176. UPDATE;\
  177. c->paths[index][node->path].value = VALUE;\
  178. c->paths[index][node->path].prev = cur_node->path;\
  179. /* Sift the newly inserted node up in the heap to restore \
  180. * the heap property */\
  181. while (pos > 0) {\
  182. int parent = (pos - 1) >> 1;\
  183. if (nodes_next[index][parent]->ssd <= ssd)\
  184. break;\
  185. FFSWAP(struct TrellisNode*, nodes_next[index][parent],\
  186. nodes_next[index][pos]);\
  187. pos = parent;\
  188. }
  189. STORE_NODE(0, ff_g722_update_low_predictor(&node->state, k >> 2), k);
  190. }
  191. }
  192. for (j = 0; j < frontier && nodes[1][j]; j++) {
  193. int ihigh;
  194. struct TrellisNode *cur_node = nodes[1][j];
  195. /* We don't try to get any initial guess for ihigh via
  196. * encode_high - since there's only 4 possible values, test
  197. * them all. Testing all of these gives a much, much larger
  198. * gain than testing a larger range around ilow. */
  199. for (ihigh = 0; ihigh < 4; ihigh++) {
  200. int dhigh, decoded, dec_diff, pos;
  201. uint32_t ssd;
  202. struct TrellisNode* node;
  203. dhigh = cur_node->state.scale_factor *
  204. ff_g722_high_inv_quant[ihigh] >> 10;
  205. decoded = av_clip(dhigh + cur_node->state.s_predictor,
  206. -16384, 16383);
  207. dec_diff = xhigh - decoded;
  208. STORE_NODE(1, ff_g722_update_high_predictor(&node->state, dhigh, ihigh), ihigh);
  209. }
  210. }
  211. for (j = 0; j < 2; j++) {
  212. FFSWAP(struct TrellisNode**, nodes[j], nodes_next[j]);
  213. if (nodes[j][0]->ssd > (1 << 16)) {
  214. for (k = 1; k < frontier && nodes[j][k]; k++)
  215. nodes[j][k]->ssd -= nodes[j][0]->ssd;
  216. nodes[j][0]->ssd = 0;
  217. }
  218. }
  219. if (i == froze + FREEZE_INTERVAL) {
  220. p[0] = &c->paths[0][nodes[0][0]->path];
  221. p[1] = &c->paths[1][nodes[1][0]->path];
  222. for (j = i; j > froze; j--) {
  223. dst[j] = p[1]->value << 6 | p[0]->value;
  224. p[0] = &c->paths[0][p[0]->prev];
  225. p[1] = &c->paths[1][p[1]->prev];
  226. }
  227. froze = i;
  228. pathn[0] = pathn[1] = 0;
  229. memset(nodes[0] + 1, 0, (frontier - 1)*sizeof(**nodes));
  230. memset(nodes[1] + 1, 0, (frontier - 1)*sizeof(**nodes));
  231. }
  232. }
  233. p[0] = &c->paths[0][nodes[0][0]->path];
  234. p[1] = &c->paths[1][nodes[1][0]->path];
  235. for (j = i; j > froze; j--) {
  236. dst[j] = p[1]->value << 6 | p[0]->value;
  237. p[0] = &c->paths[0][p[0]->prev];
  238. p[1] = &c->paths[1][p[1]->prev];
  239. }
  240. c->band[0] = nodes[0][0]->state;
  241. c->band[1] = nodes[1][0]->state;
  242. return i;
  243. }
  244. static int g722_encode_frame(AVCodecContext *avctx,
  245. uint8_t *dst, int buf_size, void *data)
  246. {
  247. G722Context *c = avctx->priv_data;
  248. const int16_t *samples = data;
  249. int i;
  250. if (avctx->trellis)
  251. return g722_encode_trellis(avctx, dst, buf_size, data);
  252. for (i = 0; i < buf_size >> 1; i++) {
  253. int xlow, xhigh, ihigh, ilow;
  254. filter_samples(c, &samples[2*i], &xlow, &xhigh);
  255. ihigh = encode_high(&c->band[1], xhigh);
  256. ilow = encode_low(&c->band[0], xlow);
  257. ff_g722_update_high_predictor(&c->band[1], c->band[1].scale_factor *
  258. ff_g722_high_inv_quant[ihigh] >> 10, ihigh);
  259. ff_g722_update_low_predictor(&c->band[0], ilow >> 2);
  260. *dst++ = ihigh << 6 | ilow;
  261. }
  262. return i;
  263. }
  264. AVCodec ff_adpcm_g722_encoder = {
  265. .name = "g722",
  266. .type = AVMEDIA_TYPE_AUDIO,
  267. .id = CODEC_ID_ADPCM_G722,
  268. .priv_data_size = sizeof(G722Context),
  269. .init = g722_encode_init,
  270. .close = g722_encode_close,
  271. .encode = g722_encode_frame,
  272. .long_name = NULL_IF_CONFIG_SMALL("G.722 ADPCM"),
  273. .sample_fmts = (const enum AVSampleFormat[]){AV_SAMPLE_FMT_S16,AV_SAMPLE_FMT_NONE},
  274. };