You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

604 lines
16KB

  1. /*
  2. * (c) 2001 Fabrice Bellard
  3. * 2007 Marc Hoffman <marc.hoffman@analog.com>
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * DCT test (c) 2001 Fabrice Bellard
  24. * Started from sample code by Juan J. Sierralta P.
  25. */
  26. #include <stdlib.h>
  27. #include <stdio.h>
  28. #include <string.h>
  29. #include <sys/time.h>
  30. #include <unistd.h>
  31. #include <math.h>
  32. #include "libavutil/cpu.h"
  33. #include "libavutil/common.h"
  34. #include "libavutil/lfg.h"
  35. #include "simple_idct.h"
  36. #include "aandcttab.h"
  37. #include "faandct.h"
  38. #include "faanidct.h"
  39. #include "x86/idct_xvid.h"
  40. #include "dctref.h"
  41. #undef printf
  42. void ff_mmx_idct(DCTELEM *data);
  43. void ff_mmxext_idct(DCTELEM *data);
  44. void odivx_idct_c(short *block);
  45. // BFIN
  46. void ff_bfin_idct(DCTELEM *block);
  47. void ff_bfin_fdct(DCTELEM *block);
  48. // ALTIVEC
  49. void fdct_altivec(DCTELEM *block);
  50. //void idct_altivec(DCTELEM *block);?? no routine
  51. // ARM
  52. void ff_j_rev_dct_arm(DCTELEM *data);
  53. void ff_simple_idct_arm(DCTELEM *data);
  54. void ff_simple_idct_armv5te(DCTELEM *data);
  55. void ff_simple_idct_armv6(DCTELEM *data);
  56. void ff_simple_idct_neon(DCTELEM *data);
  57. void ff_simple_idct_axp(DCTELEM *data);
  58. struct algo {
  59. const char *name;
  60. void (*func)(DCTELEM *block);
  61. enum formattag { NO_PERM, MMX_PERM, MMX_SIMPLE_PERM, SCALE_PERM,
  62. SSE2_PERM, PARTTRANS_PERM, TRANSPOSE_PERM } format;
  63. int mm_support;
  64. int nonspec;
  65. };
  66. #ifndef FAAN_POSTSCALE
  67. #define FAAN_SCALE SCALE_PERM
  68. #else
  69. #define FAAN_SCALE NO_PERM
  70. #endif
  71. static int cpu_flags;
  72. static const struct algo fdct_tab[] = {
  73. { "REF-DBL", ff_ref_fdct, NO_PERM },
  74. { "FAAN", ff_faandct, FAAN_SCALE },
  75. { "IJG-AAN-INT", fdct_ifast, SCALE_PERM },
  76. { "IJG-LLM-INT", ff_jpeg_fdct_islow_8, NO_PERM },
  77. #if HAVE_MMX
  78. { "MMX", ff_fdct_mmx, NO_PERM, AV_CPU_FLAG_MMX },
  79. { "MMX2", ff_fdct_mmx2, NO_PERM, AV_CPU_FLAG_MMX2 },
  80. { "SSE2", ff_fdct_sse2, NO_PERM, AV_CPU_FLAG_SSE2 },
  81. #endif
  82. #if HAVE_ALTIVEC
  83. { "altivecfdct", fdct_altivec, NO_PERM, AV_CPU_FLAG_ALTIVEC },
  84. #endif
  85. #if ARCH_BFIN
  86. { "BFINfdct", ff_bfin_fdct, NO_PERM },
  87. #endif
  88. { 0 }
  89. };
  90. #if HAVE_MMX
  91. void ff_prores_idct_put_10_sse2(uint16_t *dst, int linesize,
  92. DCTELEM *block, int16_t *qmat);
  93. static void ff_prores_idct_put_10_sse2_wrap(uint16_t *dst){
  94. int16_t qmat[64]; int i;
  95. int16_t tmp[64];
  96. for(i=0; i<64; i++){
  97. qmat[i]=4;
  98. tmp[i]= dst[i];
  99. }
  100. ff_prores_idct_put_10_sse2(dst, 16, tmp, qmat);
  101. }
  102. #endif
  103. static const struct algo idct_tab[] = {
  104. { "FAANI", ff_faanidct, NO_PERM },
  105. { "REF-DBL", ff_ref_idct, NO_PERM },
  106. { "INT", j_rev_dct, MMX_PERM },
  107. { "SIMPLE-C", ff_simple_idct_8, NO_PERM },
  108. #if HAVE_MMX
  109. #if CONFIG_GPL
  110. { "LIBMPEG2-MMX", ff_mmx_idct, MMX_PERM, AV_CPU_FLAG_MMX, 1 },
  111. { "LIBMPEG2-MMX2", ff_mmxext_idct, MMX_PERM, AV_CPU_FLAG_MMX2, 1 },
  112. #endif
  113. { "SIMPLE-MMX", ff_simple_idct_mmx, MMX_SIMPLE_PERM, AV_CPU_FLAG_MMX },
  114. { "XVID-MMX", ff_idct_xvid_mmx, NO_PERM, AV_CPU_FLAG_MMX, 1 },
  115. { "XVID-MMX2", ff_idct_xvid_mmx2, NO_PERM, AV_CPU_FLAG_MMX2, 1 },
  116. { "XVID-SSE2", ff_idct_xvid_sse2, SSE2_PERM, AV_CPU_FLAG_SSE2, 1 },
  117. { "PR-SSE2", ff_prores_idct_put_10_sse2_wrap, TRANSPOSE_PERM, AV_CPU_FLAG_SSE2, 1 },
  118. #endif
  119. #if ARCH_BFIN
  120. { "BFINidct", ff_bfin_idct, NO_PERM },
  121. #endif
  122. #if ARCH_ARM
  123. { "SIMPLE-ARM", ff_simple_idct_arm, NO_PERM },
  124. { "INT-ARM", ff_j_rev_dct_arm, MMX_PERM },
  125. #endif
  126. #if HAVE_ARMV5TE
  127. { "SIMPLE-ARMV5TE", ff_simple_idct_armv5te,NO_PERM },
  128. #endif
  129. #if HAVE_ARMV6
  130. { "SIMPLE-ARMV6", ff_simple_idct_armv6, MMX_PERM },
  131. #endif
  132. #if HAVE_NEON
  133. { "SIMPLE-NEON", ff_simple_idct_neon, PARTTRANS_PERM },
  134. #endif
  135. #if ARCH_ALPHA
  136. { "SIMPLE-ALPHA", ff_simple_idct_axp, NO_PERM },
  137. #endif
  138. { 0 }
  139. };
  140. #define AANSCALE_BITS 12
  141. uint8_t cropTbl[256 + 2 * MAX_NEG_CROP];
  142. static int64_t gettime(void)
  143. {
  144. struct timeval tv;
  145. gettimeofday(&tv, NULL);
  146. return (int64_t)tv.tv_sec * 1000000 + tv.tv_usec;
  147. }
  148. #define NB_ITS 20000
  149. #define NB_ITS_SPEED 50000
  150. static short idct_mmx_perm[64];
  151. static short idct_simple_mmx_perm[64] = {
  152. 0x00, 0x08, 0x04, 0x09, 0x01, 0x0C, 0x05, 0x0D,
  153. 0x10, 0x18, 0x14, 0x19, 0x11, 0x1C, 0x15, 0x1D,
  154. 0x20, 0x28, 0x24, 0x29, 0x21, 0x2C, 0x25, 0x2D,
  155. 0x12, 0x1A, 0x16, 0x1B, 0x13, 0x1E, 0x17, 0x1F,
  156. 0x02, 0x0A, 0x06, 0x0B, 0x03, 0x0E, 0x07, 0x0F,
  157. 0x30, 0x38, 0x34, 0x39, 0x31, 0x3C, 0x35, 0x3D,
  158. 0x22, 0x2A, 0x26, 0x2B, 0x23, 0x2E, 0x27, 0x2F,
  159. 0x32, 0x3A, 0x36, 0x3B, 0x33, 0x3E, 0x37, 0x3F,
  160. };
  161. static const uint8_t idct_sse2_row_perm[8] = { 0, 4, 1, 5, 2, 6, 3, 7 };
  162. static void idct_mmx_init(void)
  163. {
  164. int i;
  165. /* the mmx/mmxext idct uses a reordered input, so we patch scan tables */
  166. for (i = 0; i < 64; i++) {
  167. idct_mmx_perm[i] = (i & 0x38) | ((i & 6) >> 1) | ((i & 1) << 2);
  168. }
  169. }
  170. DECLARE_ALIGNED(16, static DCTELEM, block)[64];
  171. DECLARE_ALIGNED(8, static DCTELEM, block1)[64];
  172. static inline void mmx_emms(void)
  173. {
  174. #if HAVE_MMX
  175. if (cpu_flags & AV_CPU_FLAG_MMX)
  176. __asm__ volatile ("emms\n\t");
  177. #endif
  178. }
  179. static void init_block(DCTELEM block[64], int test, int is_idct, AVLFG *prng, int vals)
  180. {
  181. int i, j;
  182. memset(block, 0, 64 * sizeof(*block));
  183. switch (test) {
  184. case 0:
  185. for (i = 0; i < 64; i++)
  186. block[i] = (av_lfg_get(prng) % (2*vals)) -vals;
  187. if (is_idct) {
  188. ff_ref_fdct(block);
  189. for (i = 0; i < 64; i++)
  190. block[i] >>= 3;
  191. }
  192. break;
  193. case 1:
  194. j = av_lfg_get(prng) % 10 + 1;
  195. for (i = 0; i < j; i++)
  196. block[av_lfg_get(prng) % 64] = av_lfg_get(prng) % (2*vals) -vals;
  197. break;
  198. case 2:
  199. block[ 0] = av_lfg_get(prng) % (16*vals) - (8*vals);
  200. block[63] = (block[0] & 1) ^ 1;
  201. break;
  202. }
  203. }
  204. static void permute(DCTELEM dst[64], const DCTELEM src[64], int perm)
  205. {
  206. int i;
  207. if (perm == MMX_PERM) {
  208. for (i = 0; i < 64; i++)
  209. dst[idct_mmx_perm[i]] = src[i];
  210. } else if (perm == MMX_SIMPLE_PERM) {
  211. for (i = 0; i < 64; i++)
  212. dst[idct_simple_mmx_perm[i]] = src[i];
  213. } else if (perm == SSE2_PERM) {
  214. for (i = 0; i < 64; i++)
  215. dst[(i & 0x38) | idct_sse2_row_perm[i & 7]] = src[i];
  216. } else if (perm == PARTTRANS_PERM) {
  217. for (i = 0; i < 64; i++)
  218. dst[(i & 0x24) | ((i & 3) << 3) | ((i >> 3) & 3)] = src[i];
  219. } else if (perm == TRANSPOSE_PERM) {
  220. for (i = 0; i < 64; i++)
  221. dst[(i>>3) | ((i<<3)&0x38)] = src[i];
  222. } else {
  223. for (i = 0; i < 64; i++)
  224. dst[i] = src[i];
  225. }
  226. }
  227. static int dct_error(const struct algo *dct, int test, int is_idct, int speed, const int bits)
  228. {
  229. void (*ref)(DCTELEM *block) = is_idct ? ff_ref_idct : ff_ref_fdct;
  230. int it, i, scale;
  231. int err_inf, v;
  232. int64_t err2, ti, ti1, it1, err_sum = 0;
  233. int64_t sysErr[64], sysErrMax = 0;
  234. int maxout = 0;
  235. int blockSumErrMax = 0, blockSumErr;
  236. AVLFG prng;
  237. const int vals=1<<bits;
  238. double omse, ome;
  239. int spec_err;
  240. av_lfg_init(&prng, 1);
  241. err_inf = 0;
  242. err2 = 0;
  243. for (i = 0; i < 64; i++)
  244. sysErr[i] = 0;
  245. for (it = 0; it < NB_ITS; it++) {
  246. init_block(block1, test, is_idct, &prng, vals);
  247. permute(block, block1, dct->format);
  248. dct->func(block);
  249. mmx_emms();
  250. if (dct->format == SCALE_PERM) {
  251. for (i = 0; i < 64; i++) {
  252. scale = 8 * (1 << (AANSCALE_BITS + 11)) / ff_aanscales[i];
  253. block[i] = (block[i] * scale) >> AANSCALE_BITS;
  254. }
  255. }
  256. ref(block1);
  257. blockSumErr = 0;
  258. for (i = 0; i < 64; i++) {
  259. int err = block[i] - block1[i];
  260. err_sum += err;
  261. v = abs(err);
  262. if (v > err_inf)
  263. err_inf = v;
  264. err2 += v * v;
  265. sysErr[i] += block[i] - block1[i];
  266. blockSumErr += v;
  267. if (abs(block[i]) > maxout)
  268. maxout = abs(block[i]);
  269. }
  270. if (blockSumErrMax < blockSumErr)
  271. blockSumErrMax = blockSumErr;
  272. }
  273. for (i = 0; i < 64; i++)
  274. sysErrMax = FFMAX(sysErrMax, FFABS(sysErr[i]));
  275. for (i = 0; i < 64; i++) {
  276. if (i % 8 == 0)
  277. printf("\n");
  278. printf("%7d ", (int) sysErr[i]);
  279. }
  280. printf("\n");
  281. omse = (double) err2 / NB_ITS / 64;
  282. ome = (double) err_sum / NB_ITS / 64;
  283. spec_err = is_idct && (err_inf > 1 || omse > 0.02 || fabs(ome) > 0.0015);
  284. printf("%s %s: max_err=%d omse=%0.8f ome=%0.8f syserr=%0.8f maxout=%d blockSumErr=%d\n",
  285. is_idct ? "IDCT" : "DCT", dct->name, err_inf,
  286. omse, ome, (double) sysErrMax / NB_ITS,
  287. maxout, blockSumErrMax);
  288. if (spec_err && !dct->nonspec)
  289. return 1;
  290. if (!speed)
  291. return 0;
  292. /* speed test */
  293. init_block(block, test, is_idct, &prng, vals);
  294. permute(block1, block, dct->format);
  295. ti = gettime();
  296. it1 = 0;
  297. do {
  298. for (it = 0; it < NB_ITS_SPEED; it++) {
  299. memcpy(block, block1, sizeof(block));
  300. dct->func(block);
  301. }
  302. it1 += NB_ITS_SPEED;
  303. ti1 = gettime() - ti;
  304. } while (ti1 < 1000000);
  305. mmx_emms();
  306. printf("%s %s: %0.1f kdct/s\n", is_idct ? "IDCT" : "DCT", dct->name,
  307. (double) it1 * 1000.0 / (double) ti1);
  308. return 0;
  309. }
  310. DECLARE_ALIGNED(8, static uint8_t, img_dest)[64];
  311. DECLARE_ALIGNED(8, static uint8_t, img_dest1)[64];
  312. static void idct248_ref(uint8_t *dest, int linesize, int16_t *block)
  313. {
  314. static int init;
  315. static double c8[8][8];
  316. static double c4[4][4];
  317. double block1[64], block2[64], block3[64];
  318. double s, sum, v;
  319. int i, j, k;
  320. if (!init) {
  321. init = 1;
  322. for (i = 0; i < 8; i++) {
  323. sum = 0;
  324. for (j = 0; j < 8; j++) {
  325. s = (i == 0) ? sqrt(1.0 / 8.0) : sqrt(1.0 / 4.0);
  326. c8[i][j] = s * cos(M_PI * i * (j + 0.5) / 8.0);
  327. sum += c8[i][j] * c8[i][j];
  328. }
  329. }
  330. for (i = 0; i < 4; i++) {
  331. sum = 0;
  332. for (j = 0; j < 4; j++) {
  333. s = (i == 0) ? sqrt(1.0 / 4.0) : sqrt(1.0 / 2.0);
  334. c4[i][j] = s * cos(M_PI * i * (j + 0.5) / 4.0);
  335. sum += c4[i][j] * c4[i][j];
  336. }
  337. }
  338. }
  339. /* butterfly */
  340. s = 0.5 * sqrt(2.0);
  341. for (i = 0; i < 4; i++) {
  342. for (j = 0; j < 8; j++) {
  343. block1[8 * (2 * i) + j] =
  344. (block[8 * (2 * i) + j] + block[8 * (2 * i + 1) + j]) * s;
  345. block1[8 * (2 * i + 1) + j] =
  346. (block[8 * (2 * i) + j] - block[8 * (2 * i + 1) + j]) * s;
  347. }
  348. }
  349. /* idct8 on lines */
  350. for (i = 0; i < 8; i++) {
  351. for (j = 0; j < 8; j++) {
  352. sum = 0;
  353. for (k = 0; k < 8; k++)
  354. sum += c8[k][j] * block1[8 * i + k];
  355. block2[8 * i + j] = sum;
  356. }
  357. }
  358. /* idct4 */
  359. for (i = 0; i < 8; i++) {
  360. for (j = 0; j < 4; j++) {
  361. /* top */
  362. sum = 0;
  363. for (k = 0; k < 4; k++)
  364. sum += c4[k][j] * block2[8 * (2 * k) + i];
  365. block3[8 * (2 * j) + i] = sum;
  366. /* bottom */
  367. sum = 0;
  368. for (k = 0; k < 4; k++)
  369. sum += c4[k][j] * block2[8 * (2 * k + 1) + i];
  370. block3[8 * (2 * j + 1) + i] = sum;
  371. }
  372. }
  373. /* clamp and store the result */
  374. for (i = 0; i < 8; i++) {
  375. for (j = 0; j < 8; j++) {
  376. v = block3[8 * i + j];
  377. if (v < 0) v = 0;
  378. else if (v > 255) v = 255;
  379. dest[i * linesize + j] = (int) rint(v);
  380. }
  381. }
  382. }
  383. static void idct248_error(const char *name,
  384. void (*idct248_put)(uint8_t *dest, int line_size,
  385. int16_t *block),
  386. int speed)
  387. {
  388. int it, i, it1, ti, ti1, err_max, v;
  389. AVLFG prng;
  390. av_lfg_init(&prng, 1);
  391. /* just one test to see if code is correct (precision is less
  392. important here) */
  393. err_max = 0;
  394. for (it = 0; it < NB_ITS; it++) {
  395. /* XXX: use forward transform to generate values */
  396. for (i = 0; i < 64; i++)
  397. block1[i] = av_lfg_get(&prng) % 256 - 128;
  398. block1[0] += 1024;
  399. for (i = 0; i < 64; i++)
  400. block[i] = block1[i];
  401. idct248_ref(img_dest1, 8, block);
  402. for (i = 0; i < 64; i++)
  403. block[i] = block1[i];
  404. idct248_put(img_dest, 8, block);
  405. for (i = 0; i < 64; i++) {
  406. v = abs((int) img_dest[i] - (int) img_dest1[i]);
  407. if (v == 255)
  408. printf("%d %d\n", img_dest[i], img_dest1[i]);
  409. if (v > err_max)
  410. err_max = v;
  411. }
  412. #if 0
  413. printf("ref=\n");
  414. for(i=0;i<8;i++) {
  415. int j;
  416. for(j=0;j<8;j++) {
  417. printf(" %3d", img_dest1[i*8+j]);
  418. }
  419. printf("\n");
  420. }
  421. printf("out=\n");
  422. for(i=0;i<8;i++) {
  423. int j;
  424. for(j=0;j<8;j++) {
  425. printf(" %3d", img_dest[i*8+j]);
  426. }
  427. printf("\n");
  428. }
  429. #endif
  430. }
  431. printf("%s %s: err_inf=%d\n", 1 ? "IDCT248" : "DCT248", name, err_max);
  432. if (!speed)
  433. return;
  434. ti = gettime();
  435. it1 = 0;
  436. do {
  437. for (it = 0; it < NB_ITS_SPEED; it++) {
  438. for (i = 0; i < 64; i++)
  439. block[i] = block1[i];
  440. idct248_put(img_dest, 8, block);
  441. }
  442. it1 += NB_ITS_SPEED;
  443. ti1 = gettime() - ti;
  444. } while (ti1 < 1000000);
  445. mmx_emms();
  446. printf("%s %s: %0.1f kdct/s\n", 1 ? "IDCT248" : "DCT248", name,
  447. (double) it1 * 1000.0 / (double) ti1);
  448. }
  449. static void help(void)
  450. {
  451. printf("dct-test [-i] [<test-number>] [<bits>]\n"
  452. "test-number 0 -> test with random matrixes\n"
  453. " 1 -> test with random sparse matrixes\n"
  454. " 2 -> do 3. test from mpeg4 std\n"
  455. "bits Number of time domain bits to use, 8 is default\n"
  456. "-i test IDCT implementations\n"
  457. "-4 test IDCT248 implementations\n"
  458. "-t speed test\n");
  459. }
  460. int main(int argc, char **argv)
  461. {
  462. int test_idct = 0, test_248_dct = 0;
  463. int c, i;
  464. int test = 1;
  465. int speed = 0;
  466. int err = 0;
  467. int bits=8;
  468. cpu_flags = av_get_cpu_flags();
  469. ff_ref_dct_init();
  470. idct_mmx_init();
  471. for (i = 0; i < 256; i++)
  472. cropTbl[i + MAX_NEG_CROP] = i;
  473. for (i = 0; i < MAX_NEG_CROP; i++) {
  474. cropTbl[i] = 0;
  475. cropTbl[i + MAX_NEG_CROP + 256] = 255;
  476. }
  477. for (;;) {
  478. c = getopt(argc, argv, "ih4t");
  479. if (c == -1)
  480. break;
  481. switch (c) {
  482. case 'i':
  483. test_idct = 1;
  484. break;
  485. case '4':
  486. test_248_dct = 1;
  487. break;
  488. case 't':
  489. speed = 1;
  490. break;
  491. default:
  492. case 'h':
  493. help();
  494. return 0;
  495. }
  496. }
  497. if (optind < argc)
  498. test = atoi(argv[optind]);
  499. if(optind+1 < argc) bits= atoi(argv[optind+1]);
  500. printf("ffmpeg DCT/IDCT test\n");
  501. if (test_248_dct) {
  502. idct248_error("SIMPLE-C", ff_simple_idct248_put, speed);
  503. } else {
  504. const struct algo *algos = test_idct ? idct_tab : fdct_tab;
  505. for (i = 0; algos[i].name; i++)
  506. if (!(~cpu_flags & algos[i].mm_support)) {
  507. err |= dct_error(&algos[i], test, test_idct, speed, bits);
  508. }
  509. }
  510. return err;
  511. }